Backdoors in Planning and Scheduling Problems

Peter Gregory and Derek Long and Maria Fox
University of Strathclyde
Glasgow, UK
firstname.lastname @ cis.strath.ac.uk

Abstract

A backdoor is a set of assignments to a problem that yield the
rest of the problem polynomially determinable. Backdoors
have been shown to have interesting relationships with prob-
lem hardness, backbones and other properties.

We show deeper insight into the relationship between back-
doors and backbones than has previously been shown. The
effect of no-good clause learning on backdoors is also dis-
cussed.

The aim of this work is to find ways to exploit backdoors to
solve problems more efficiently.

Introduction

Boolean Satisfiability (SAT) underlies the optimal STRIPS
planner, Blackbox (Kautz & Selman 1999). It gained the
first place in the ‘optimal track’ of the 2004 International
Planning Competition (Hoffmann & Edelkamp 2004). The
translation is effective because modern SAT-solvers incorpo-
rate sophisticated search features such as rapid-restarts and
clause learning; these features in combination with efficient
data-structures make SAT a high performance general prob-
lem solving framework. This work furthers previous studies
on the relationship between two structures in SAT problems,
the backbone and backdoors. The backbone of a SAT prob-
lem is the variables that are set in the same way in every
solution. A backdoor of a SAT problem, is a set of vari-
ables that lead to the rest of the problem being polynomially
determinable.

The backdoor has recently been seen as an important
structure in SAT problems (Williams, Gomes, & Selman
2003), as it can explain how a rapid restart policy can im-
prove chronological backtracking search. However, there
are many unanswered questions about backdoors.

e How are backdoors distributed across the variable space?

e How exactly are backdoors and backbones related, if at
all?

o How does the amount of symmetry in a problem relate to
backdoor distribution?

e Does no-good clause learning affect the backdoor distri-
bution of a problem?

e Are backdoor properties domain-independent, or are there
specific planning backdoors, etc.

A

B
AllC B

Initial State Goal

Figure 1: A blocksworld example to illustrate the major
points in this paper. Can be solved in two time-steps, there
are two different plans that solve the problem at this length.
Note, in the goal, it is not specified that any block is on the
table.

e Can backdoor variables be predicted with enough accu-
racy to directly solve problems with them?

The following example will be used throughout the paper
as illustration of the concepts discussed. It is intentionally
trivial, so that ideas can be clarified; but its structure is not
so trivial that it isn’t representative of harder problems. Fig-
ure 1 is a blocksworld planning problem. The goal is to
reach a state where A is on B. This can be achieved in two
ways: the first being ‘put B on the table and then put A on
B’, the second being ‘put B on C and then put A on B’.

Blackbox encodes STRIPS planning problems by first
representing the problem as a plan-graph. The graph is then
translated to a SAT instance where each variable represents
either a fact (at some layer), a possible actions (including no-
ops). The clauses represent the preconditions, effects, and
mutexes between both facts and actions (Kautz, McAllester,
& Selman 1996). The example SAT instance is the transla-
tion of the plan-graph at the first satisfiable layer.

Motivation

The aim of any academic study into the structure of prob-
lems should be to better understand that problem, and to
develop novel problem solving techniques that exploit this
new understanding. If backdoors can be characterised effec-
tively, then it should be possible to search over small “can-
didate backdoors” at a much lower cost than searching the
entire set of variables.

The challenges involved in this are manifold. A good pre-
diction of the size of backdoor is required. Searching for an

unreasonably small backdoor would never find one, whilst
searching for a backdoor much larger than the smallest ones
would lead to redundant search. If we are to identify those
variables in a problem that are most likely to be backdoor
variables, then we need to have a good characterisation of
how a backdoor is structurally composed. It is this charac-
terisation that is detailed in this paper, along with some in-
teresting effects that clause learning can have on backdoors.
In previous research on backdoors, the backbone and back-
door sets been shown to be typically disjoint. For example,
(Kilby et al. 2005) shows an empirical distinction between
the two structures. In this work, we show analytically that
there is a certain part of the backdoor that necessarily is not
part of the backbone and that even if all of the backbone
variables were set correctly, that would not be enough infor-
mation to solve the problem (unless all variables are in the
backbone).

SAT and Backdoors

In this work, we are concerned with the problem of Boolean
Satisfiability. Boolean Satisfiability (SAT herein) is a spe-
cial case of CSP. SAT restricts the domains of every vari-
able to two values, true and false. It also restricts the con-
straints to a set of clauses. A clause is a disjunction of lit-
erals. The variables correspond to logical variables, and the
clauses disjunctions of logical literals, rather than writing
x; = true and z; = false, we will use the shorthand x;
and —z; instead. We will also occasionally refer to z; and
—x; as being in positive and negative phase respectively.

A sub-solver is an algorithm that solves a tractable sub-
problem of the general problem class. Paraphrasing Garey
and Johnson (Garey & Johnson 1979), a subproblem of a
general problem is obtained whenever we place additional
restrictions on the allowed instances of that problem class.
A sub-solver is an algorithm that determines only problem
instances of a given subproblem.

The backdoor structure is reliant on the definition of a
sub-solver, A, that has the following properties (given as
input a CSP, C):

Trichotomy A either rejects the input C, or “determines”
C correctly.

Efficiency A runs in polynomial time.

Trivial Solvability A can determine if C is trivially true
(has no constraints) or trivially false (has a contradictory
constraint).

Self-Reducibility If A determines C, then for any variable
x, and value v, then A determines Clv/x]. (Williams,
Gomes, & Selman 2003)

The informal definition of a backdoor is those variables
which lead to a solution in polynomial time, when assigned
correctly, or prove no solution exists for unsatisfiable prob-
lems. A weak backdoor can determine if a problem is sat-
isfiable. That is, a set of variables wBD, for which there
is at least one assignment such that A returns a satifying
assignment. A strong backdoor can determine both satisfi-
ability and unsatisfiability. For an unsatisfiable instance, a
strong backdoor is defined as a set of variables, such that

each assignment to those variables leads to A determining
the instance unsatisfiable.

The definition of a backdoor requires a polynomial-time
sub-solver (A in the definition). In this work, the sub-solver
is assumed to be unit-propagation, and the CSP is always a
SAT instance. Even when restricted to SAT, the sub-solver
need not be unit propagation, it could be an algorithm that
solves only 2SAT problems, or an algorithm that solves only
horn-SAT problems, for example. The work will be as gen-
eral as possible, as the concepts discussed (backdoors, back-
bones, no-good learning) are ubiquitous in CSP, planning,
scheduling, and all search problems that can be modelled
using constraints. Whenever I refer to backdoors from here,
I refer to minimal backdoors as these are more interesting to
study (The entire set of variables is trivially a non-minimal
backdoor but it isn’t a very interesting one, for example.)

Distribution of Backdoors

If we can find all of the minimal backdoors in a problem,
we can easily calculate the total number of backdoors in the
problem. As this is computationally prohibitive, we can use
a sampling method to find representatives from the global set
of minimal backdoors. The algorithm we use to find these is
as follows:

ALGORITHM: MINIMAL BACKDOORS

1. s <- number of variables

2. while (!cutoff_limit) {

3 BD <- pick random variables (size s)
4 backtrack over BD, 1f backdoor thenf{
5. minBD <- MinimiseBackdoor (BD)

6 s’ <= |minBD|

7 if (s’ < s)

8 s <- s’

9 BDlist <-— BDlist U {minBD}

The algorithm seeds the size of the backdoor to be the size
of the instance. Then, while a cutoff limit is not reached,
new backdoor candidates are selected. The algorithm back-
tracks over the variables in the candidate, if a solution is
found (or unsatisfiability proven), we minimise the back-
door.

Minimisation is achieved by simply removing each vari-
able, in order, and testing if the remaining structure is a
backdoor. If it is, then the variable is not part of the min-
imal backdoor, and is discarded. If not, then the variable
is reintroduced into the candidate. This is similar to the
MINWEAKBACKDOOR algorithm in (Kilby er al. 2005).
The difference being, that algorithm used literals and not
variables as the constituents of the backdoor. This means
that different instantiation of the variables in their backdoors
could give a smaller weak backdoor. It also means that the
(Kilby et al. 2005) procedure cannot detect (or minimise)
strong backdoors. It would however have better runtime per-
formance than MINIMAL BACKDOORS.

Problem

| #Backdoors | Variables [Median BD Size | Backbone Size | Median BB Overlap |

qgl-07 8 343
qg2-07 11 343
qg7-09 13 729
bw-medium 30 116
bw-large.a 31 459
bw-huge 38 459
flat30-5 9771 90
flat75-5 141 225

|91
—_

189
169
505
97
459
459
0
0

SO WWROOO

Table 1: Table of statistics for the studied instances.

The studied instances are 3 quasi-group completion problems, 3

blocksworld problems, and 2 graph colouring problems, each from the satlib benchmark suite. The results show the num-
ber of minimal backdoors found in 10 minutes using the above algorithm.

Let us consider the blocksworld instance. Using unit
propagation as the subsolver, there are two minimal back-
doors. These relate to the actions (stack B C) and (move-
to-table B) (both at timepoint 1). This is because, in two
steps, the goal can be achieved by either putting B on the
table or on block C first, then stacking A on B. Once we
have decided which option to take, the mutex between the
two actions causes propagation to imply the other one false.
Everything else then propagates from this decision.

The Backbone and Backdoors

The backbone of a SAT instance is the set of variables that
are implied by the model. More intuitively, it is the set of
variables that take the same assignments in every solution.
There are two variables in the SAT encoding of our example
that are not in the backbone. These variables correspond to
the actions (stack B C) and (move-to-table B). These have
already been identified as the backdoor variables, no back-
bone variables are backdoor variables in this instance.

It has been previously observed that backdoor variables
are not often backbone variables (Kilby er al. 2005). There
is occasionally an intersection between the two structures,
but it appears accidental. So a better question is: what is
the reason that backbones and backdoors appear to be (typi-
cally) disjoint? Let us start by making some observations.

If all of the backbone variables are set correctly, could
this be a backdoor? No. The backbone variables are those
whose assignments are implied by the problem. Thus, if set-
ting the backdoor correctly implied another variable/value
assignment, this other variable must be in the backbone also.
Once we have this piece of information, we can see that par-
tial/ full assignments to backbone variables only have the
capacity to imply other backbone variables. Since a back-
door implies every variable’s value for a given solution, the
backbone variables cannot be a backdoor.

As variables are assigned in search, the sub-spaces that we
move into have monotonically growing backbones. Indeed,
when the problem is solved using assignment and propaga-
tion, all of the variables are trivially in the ’backbone’ (as
in the final state all variables are set). Since we have shown
backbone variables can only imply themselves, it is true that
in any sub-space of the search tree, an algorithm would not
want to make the choice of next variable one which is in the

augmented backbone, as this can’t imply any variables other
than those in the augmented backbone.

Identifying Unique Solutions

When all variables are in the augmented backbone, then
there is a single solution (in that sub-space). This doesn’t
mean that search is necessarily complete: some problems
with single solutions can be hard to solve. But it does mean
the problem is simplified to a state where it might be possi-
ble to solve the problem using propagation, because there is
now a single solution in the sub-space.

Therefore, we have a necessary, but not sufficient, prop-
erty of any backdoor — assignment of part of the backdoor
must identify a unique solution. The next enquiry naturally
concerns the question: how is the remainder of the back-
door composed? In this situation, several variables have
been assigned such that, in the current sub-space, there is
a unique solution to the studied instance (but the problem
is not solved). However, there is not enough information
in the current clauses to cause propagation of the remaining
variables. One reason this can happen is that there are cyclic
relationships in the clauses. Once a unique solution is found,
if there remain cycles in the constraint graph, it may be nec-
essary to ‘cut’ them in order to finish solving the problem.
This is equivalent to finding the cycle cutset (Dechter 2003)
of the remaining problem after a unique solution has been
identified.

Another conjecture could be posited: if we had enough in-
ferred knowledge of the problem at hand, then no backdoors
would contain any backbone variables. This claim may seem
unlikely, but some preliminary work has been carried out to
suggest that it may not be. The conjecture centres around
inferred knowledge. What exactly has to be inferred from
the problem to reduce the size of backdoors? A “perfect” set
of clauses can be imagined. With these clauses, any partial
assignment that is made would lead to the entire augmented
backbone being propagated. This would mean that the prob-
lem would have a unit clause for each variable in the back-
bone. If we actually had the “perfect” set of clauses, we
could make any assignment in full confidence that the as-
signment led to a solution. Clearly we could never find such
a model in reasonable time. But there are ways of bringing
our model closer to this “perfect” model during search. We

can infer extra knowledge of a SAT instance using conflict-
clause learning.

Clause Learning and Backdoors

Many SAT solvers make use of conflict clause learning.
What happens to the backdoors in a problem as new clauses
are learnt? It appears that as we learn new information, the
size of a typical backdoor to a problem reduces. To illustrate
how this happens, consider the following tiny SAT instance:

(IV2)AAV-2V-3)A(-1V2V3)A(-1V2V-3)

In this example 2 is the only backbone member (—2 im-
plies 1 which in turn implies 3 A =3, a contradiction, hence
2 is true in all solutions). There are two minimal backdoors
to the instance, (1) and (2, 3) (this is because 3 alone cannot
cause any propagation).

The effect of choosing —2 as the first decision, causes the
contradiction on variable 3. Using FirstUIP conflict analy-
sis, the generated conflict clause would be simply the unit-
clause (2). With this clause in place, one of the previ-
ous minimal backdoors is now non-minimal. The backdoor
(2, 3) need not have 2 in it, as this is already implied by the
conflict clause. Clause learning has reduced the size of the
largest minimal backdoor and removed the backdoor values
from it.

This one example only shows that clause learning can be
used to reduce the size of backdoors.

Results and Discussion

The results in Table 1 were found by running MINIMAL
BACKDOORS on each problem instance for 10 minutes.
There are three classes of problems studied. The first are
quasigroup completion problems. These are partially com-
plete latin squares with additional constraints. These are
useful in experimental design, for example scheduling a
drugs trial. The second class of problem is the blocksworld
planning problem. The third class of problem are graph
colouring instances. The problems are benchmarks picked
from the satlib web resource (Hoos & Sttzle 2000).

It is interesting to note the fact that the planning instances
have very large backbones. This is because of the the fact
that at the first satisfiable plan graph layer, the number of
valid solutions to these blocksworld problems is extremely
limited. The median backdoor sizes for every instance stud-
ied is tiny in proportion to the total number of variables in
the respective problems. This is what was expected, and
further indication that direct exploitation of backdoors is a
promising research avenue.

Conclusions and Future Work

Backdoors and backbones are related structures, even
though they do not often contain the same variables as each
other. A backdoor causes the backbone to “grow” so that it
covers all of the variables. The rest of the backdoor is com-
posed of assignments that “fill-in” the missing information
that renders the problem easily soluble. It also appears that
clause learning can reduce the size of backdoors. Immediate

future work includes rigourous empirical analysis of the re-
lationship between backdoors and backbones; and between
backdoors and clause learning.

Algorithms that predict which variables are backbone
variables (Dubois & Dequen 2001) have been used previ-
ously to guide DPLL based search. If the algorithm they use
can successfully predict backbone variables, then these vari-
ables are unlikely to be backdoor variables. Once the likely
backdoor variables are found, then candidate backdoor sets
can be generated from these, and tested using backtracking.

In DPLL based search, certain types of learnt clause are
not useful. The decision variables are never used to generate
conflict clauses as the same assignments will never again be
visited in chronological search. However, this changes with
restarts occurring, and will be just as important with search
using backdoors. Which type of clause learning will be most
useful in the development of a solver that exploits backdoors
directly isn’t clear, and is worthy of further work.

The final goal of this work is to create a SAT Solver that
uses analysis of the structure of problems to find backdoors
efficiently, so that problems can be solved faster and and
problems that are currently out of reach of current solvers
can be solved.

References

Dechter, R. 2003. Constraint Processing. Morgan Kauff-
man.

Dubois, O., and Dequen, G. 2001. A backbone-search
heuristic for efficient solving of hard 3-sat formulae. In
Nebel, B., ed., Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI
2001, Seattle, Washington, USA, August 4-10, 2001, 248—
253. Morgan Kaufmann.

Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.

Hoffmann, J., and Edelkamp, S. 2004. International plan-
ning competition. http://ipc.icaps-conference.org/.

Hoos, H. H., and Sttzle, T. 2000. SATLIB: An Online
Resource for Research on SAT. In I.P.Gent; H.v.Maaren;
and T.Walsh., eds., Proceedings of the Third International
Conference on the Theory and Applications of Satisfiability
Testing, 283-292. 10S Press.

Kautz, H., and Selman, B. 1999. Unifying SAT-based
and graph-based planning. In Minker, J., ed., Workshop on
Logic-Based Artificial Intelligence, Washington, DC, June
14-16, 1999. College Park, Maryland: Computer Science
Department, University of Maryland.

Kautz, H. A.; McAllester, D.; and Selman, B. 1996. En-
coding plans in propositional logic. In Proceedings of the
Fifth International Conference on the Principle of Knowl-
edge Representation and Reasoning (KR’96), 374-384.
Kilby, P.; Slaney, J.; Thiebaux, S.; and Walsh, T. 2005.
Backbones and backdoors in satisfiability. In Proceedings
of AAAI-2005.

Williams, R.; Gomes, C.; and Selman, B. 2003. Backdoors
to typical case complexity.

