
Memory-Efficient Graph Search in Planning and Model Checking

Peter Lamborn and Eric A. Hansen
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

pcl16@msstate.edu

Abstract

Graph search plays a central role in both planning and
model checking. We describe how to adapt an approach
to memory-efficient graph search that has been used for
domain-independent STRIPS planning in order to create a
more memory-efficient domain-independent model checker.
We discuss some changes to this approach that are required
by the differences between planning and model checking, and
report preliminary results that indicate its effectiveness.

Introduction
Model checking is a fully-automated formal technique for
verifying that a property is satisfied, or modeled, by a tran-
sition system (Clarke, Grumberg, & Peled 2000). The tran-
sition system is often a protocol, such as a protocol for wire-
less communication or an embedded hardware device. A
violation of the property is an error. For example, in a wire-
less protocol, an error could be starvation of a device. Model
checking can find errors that are difficult to detect by testing
and simulation, and is especially effective in finding errors
with long traces or errors that occur after unusual sequences
of events. Model checking can also verify that no errors ex-
ist, which is impossible using testing and simulation.

There are several important connections between research
in model checking and research in automated planning and
heuristic search. First of all, there is a large body of work
on planning via model checking (Giunchiglia & Traverso
1999). In this work, planning domains are formalized as
transition systems, goals are expressed as temporal formu-
las, and planning is done by using model checking to deter-
mine whether the temporal logic formula is true in the tran-
sition system. Another important connection between au-
tomated planning and explicit-state model checking is that
both rely on state-space exploration using graph search. For
both, scalability is limited by the state explosion problem –
the size of the state space grows exponentially in the num-
ber of variables in its description. Finally, in both plan-
ning and model checking, there is an emphasis on domain-
independent tools; there is a focus on developing domain-
independent model checkers just as there is interest in de-
veloping domain-independent planners.

This short paper describes preliminary work on using an
approach to memory-efficient graph-search originally devel-
oped for domain-independent planning in order to improve

the scalability of a domain-independent model checker. The
approach we adapt is called breadth-first heuristic search
with layered duplicate detection (Zhou & Hansen 2006).
Layered duplicate detection turns out to be a very effective
approach to reducing the memory requirements of model
checking because it can be easily implemented in a domain-
independent way and works well in searching directed
graphs; model checking always involves directed graphs. In
our adaptation, we use breadth-first search without a heuris-
tic to perform a complete search of a graph, in order to verify
that a property always holds. We report preliminary empiri-
cal results that illustrate that this approach can significantly
improve the range of models that can be verified.

Background
Graph search and model checking

In model checking, a transition system (e.g., for a protocol)
is represented by a directed graph in which the nodes cor-
respond to states of the system and the edges correspond
to state transitions. For example, a state may indicate two
packets in flight, a valid transition could be the reception of
a packet, and the new state would contain just one packet
in flight. The graph has an initial state, and the set of all
possible paths in the graph represents the set of all possi-
ble behaviors of the protocol. Given this representation, a
property can be verified by a complete search of the graph
to make sure that no error states can be reached. If an error
is found, a trace of the error (i.e., a path from the initial state
to the error state) is returned and used to debug the protocol.

The scalability of model checking is limited by the size
of the graph that must be searched. In explicit-state model
checking, every generated state is stored in a hash table that
is used for duplicate detection, which is the process of deter-
mining whether or not a newly-generated state is a duplicate
of a previously-generated state. Since a complete search of
the graph is needed to verify a system, the memory needed
to store all generated states is the bottleneck of model check-
ing. As a result, some approaches to model checking aban-
don verification and merely attempt to detect errors in a
swift manner. Heuristic search algorithms such as A* have
been used to efficiently find paths to error states, which are
treated as goal states (Edelkamp, Lluch-Lafuente, & Leue
2001). Other approaches, such as randomized search, have



also been used (Jones et al. 2003).

Frontier search and layered duplicate detection

Frontier search is a memory-efficient approach to graph
search that only stores the Open list, and saves memory by
not storing the Closed list (Korf et al. 2005). Instead of the
traceback method of solution recovery, it uses a divide-and-
conquer method that involves finding an intermediate node
along an optimal path and using it to divide the search prob-
lem into two subproblems – the problem of finding an opti-
mal path from the start node to the intermediate node, and
the problem of finding an optimal path from the intermediate
node to the goal node. The subproblems are solved recur-
sively by the same search algorithm until all nodes along an
optimal solution path for the original problem are identified.

Since frontier search only stores nodes on the frontier, it
needs to prevent already-explored nodes that are no longer in
memory from being regenerated. In undirected graphs, Korf
et al. (2005) use a technique called used-operator bits that is
very effective. But directed graphs present more of a chal-
lenge. In the approach proposed by Korf et al., each time a
node is expanded and its successors generated, all predeces-
sors of these successors are also generated, even if no path
has yet been found to these nodes. These dummy nodes are
stored in the Open list with an g-cost of infinity until a path
to them is found, at which point they acquire the g-cost of
that path. Although this guarantees that no node is generated
more than once, the dummy nodes would not be generated
by a standard graph-search algorithm and there is no bound
on the number of dummy nodes that can be generated. In
some cases, the additional overhead for generating dummy
nodes can make search performance worse.

Zhou and Hansen (2006) propose an alternative approach
to duplicate detection that can be used in breadth-first
search. In this approach, called layered duplicate detection,
the Closed list is stored in layers, one for each g-cost, and
earlier layers are deleted to recover memory. In undirected
graphs, they point out that keeping just one previous layer
in memory is sufficient to detect all duplicates. In directed
graphs, they propose keeping one or more previous layers,
where the number needed to prevent all duplicates depends
on the structure of the graph. They also point out that even if
no previous layers are kept in memory, the number of times
a node can be regenerated is bounded by the depth of the
search. In depth-first search, by contrast, the number of node
regenerations can be exponential in the depth of the search.

Layered duplicate detection is easy to implement in a
domain-independent way, in contrast to the approach to du-
plicate detection used in Korf et al.’s implementation of fron-
tier search. Therefore, we use frontier breadth-first search
with delayed duplicate detection to reduce the memory re-
quirements of our domain-independent model checker.

Algorithm and preliminary results

We briefly describe our approach to memory-efficient model
checking and present some preliminary experimental results.

Algorithm

The starting point for our implementation is the Murφ model
checker, a domain-independent tool that takes a description
of a model as input and uses breadth-first search to verify
that the model is correct (Dill 1996). If an error is found, it
returns an error trace.

Since the graphs that are searched in model checking are
directed graphs, we modify the breadth-first search algo-
rithm to use layered duplicate detection. First of all, this
requires indexing the hash table of stored states by layers,
so that individual layers can be deleted as the search pro-
gresses. The breadth-first search proceeds as usual until it
begins to run out of memory. At that point, it recovers mem-
ory by deleting layers of generated states from memory. The
layers it deletes are those that are furthest from the frontier
(i.e., the shallowest layers), since they are less likely to be
useful in duplicate detection. Any closed nodes are eligible
for deletion, if more memory is needed. Thus, as long as
the Open list can fit in memory, the search continues. (If the
Open list does not fit in memory, we could use beam search
to continue to search for an error, but we do not consider this
possibility in this paper.)

If an error is found, the error trace is recovered by using
the traceback method to follow pointers backwards from the
error state through as many layers as still reside in memory.
If some layers are missing, the shallowest state in the error
trace is treated as a goal state, and another search is con-
ducted to find a path from the initial state to this state, in or-
der to finish recovering the error trace. This is a modification
of the divide-and-conquer technique for solution recovery.

Theoretical properties

Because the search is breadth-first, if an error is found, the
error trace is guaranteed to be a shortest path to the error
state. If no error is found, the search terminates when the
Open list is empty and there are no more states of the graph
to explore. If the search terminates in this way without find-
ing an error, the model is verified.

However, when layers of the search graph are deleted to
save memory, the search is no longer guaranteed to termi-
nate with an empty Open list, even if the graph is finite. If
some layers of the search graph are removed from memory,
it is possible for duplicate nodes to be generated during the
search. Zhou and Hansen (2006) give some conditions under
which no duplicates will be generated, but these do not hold
in general. In the worst case, the number of times a node
can be regenerated is bounded by the depth of the search
(d) and the number of of layers stored (l), and no state can
be duplicated more than d/l times. In practice, duplicates
are generated even less frequently than this. But the possi-
bility of regenerating previously explored nodes means that
there is no guarantee the search will terminate with an empty
Open list, since the search can repeatedly regenerate and re-
explore the same parts of the search graph.

If the model contains an error, however, breadth-first
search is guaranteed to terminate by finding a shortest path
to this error, no matter how many duplicates may be gen-
erated. This points to a second way to detect termination



Model Peak Nodes Total Nodes Number
in Memory Generated of Layers

cache32622 14,141 111,335 8
newlist8 3,930,856 24,714,307 44
arbiter13 1,521,655 11,545,717 17
arbiter14 1,429,446 11,255,853 14
adash1313e 684,946 13,480,127 15
ns22110 87,366 173,866 8
dynpart4 2,619,984 16,202,474 30

Table 1: Memory savings for seven different models.

and verify a model. If the diameter of the search graph is
known, or can be bounded, and no error is found by the
search algorithm in searching up to this depth, then no er-
rors can be present and the model is verified. (If the search
algorithm generates any nodes past this depth, they must be
duplicates.) This method of detecting termination is similar
to that used in bounded model checking, which uses sat-
isfiability testing to verify that a model does not have any
errors up to depth k (Clarke et al. 2001). If the model
is verified for a depth that is equal to or greater than the
diameter of the graph, called the completeness threshold,
verification is complete. Various methods for determining
a completeness threshold have been explored in the litera-
ture on bounded model checking, and can be applied in our
approach to model checking.

Preliminary empirical results

Table 1 shows the performance of our modified algo-
rithm in verifying seven different models. They include
a cache coherency protocol with six caches and two disks
(cache32622), a protocol for maintaining a linked list in a
parallel environment with eight parallel nodes (newlist8), a
mutual exclusion protocol with thirteen or fourteen threads
and an arbiter in charge of who gets access (arbiter13 and ar-
biter14), the DASH communications protocol for a network
of three nodes (adash1313e), the Needham-Schroeder pro-
tocol for secure communication for four participants with
two intruders (ns22110), and an algorithm for dynamically
partitioning a search with four processing nodes (dynpart4).

In model checking, the node data structure is typically
very large because the state description includes many vari-
ables that can have a large range of possible values. For
the cache coherency model, for example, the size of a sin-
gle node is 167 bytes. Therefore, even though the models
in Table 1 are relatively small, none can be verified using
1GB of memory without using our layered duplicate detec-
tion technique. The difference between the peak number of
nodes stored and the number of nodes generated during the
search gives a sense of how this approach improves scalabil-
ity by allowing larger models to be verified using the same
amount of memory. Note that because we use blind breadth-
first search, the Open list it typically much smaller than the
Closed list, and deleting the Closed list from memory saves
a substantial amount of memory and significantly improves
scalability.

Future Work
Besides testing this approach on larger and more varied
models, we hope to eventually extend it in several ways.
When the Open list does not fit in memory, we plan to use
disk to continue the search. While disk provides much more
storage than internal memory, it is also limited, and our ap-
proach will allow complete search of graphs that do not fit
on disk. For example, Korf and Schultze (2005) describe
a complete breadth-first search of the Fifteen Puzzle that
requires 1.4 terabytes of disk just to store the search fron-
tier. Their frontier search algorithm is for undirected graphs
and specialized for the Fifteen Puzzle, whereas our approach
will allow domain-independent search in directed graphs.

We will also consider parallel search algorithms. Our ap-
proach to both external-memory and parallel graph search
will be based on structured duplicate detection, which has
been shown to be very effective in domain-independent
planning (Zhou & Hansen 2004). Thus, we will continue
to leverage the close connections between graph search in
domain-independent planning and model checking.

References
Clarke, E. M.; Biere, A.; Raimi, R.; and Zhu, Y. 2001.
Bounded model checking using satisfiability solving. For-
mal Methods in System Design 19(1):7–34.
Clarke, E. M.; Grumberg, O.; and Peled, D. 2000. Model
Checking. MIT Press.
Dill, D. 1996. The Murφ verification system. In R. Alur,
and T. Henzinger., eds., Proceedings of the Eighth Inter-
national Conference on Computer Aided Verification CAV,
volume 1102, 390–393. Springer Verlag.
Edelkamp, S.; Lluch-Lafuente, A.; and Leue, S. 2001. Di-
rected explicit model checking with HSF-SPIN. In Dwyer,
M. B., ed., Proc. of the 8th Int. SPIN Workshop, volume
2057 of Lecture Notes in Computer Science, 57–79.
Giunchiglia, F., and Traverso, P. 1999. Planning as model
checking. In Proceeding of the Fifth European Conference
on Planning (ECP 1999), volume 1809 of Lecture Notes in
Computer Science, 1–20. Springer.
Jones, M.; Mercer, E.; Bao, T.; Kumar, R.; and Lamborn,
P. 2003. Benchmarking explicit state parallel model check-
ers. In Proceedings of the 2nd International Workshop on
Parallel and Distributed Methods in Verification, 84–98.
Korf, R., and Schultze, P. 2005. Large-scale parallel
breadth-first search. In Proc. of the 20th National Con-
ference on Artificial Intelligence (AAAI-05), 1380–1385.
Korf, R.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search. Journal of the ACM 52(5):715–748.
Zhou, R., and Hansen, E. 2004. Structured duplicate de-
tection in external-memory graph search. In Proceedings
of the 19th National Conference on Artificial Intelligence
(AAAI-04), 683–688.
Zhou, R., and Hansen, E. 2006. Breadth-first heuristic
search. Artificial Intelligence 170:385–408.


