
Towards Efficient Probabilistic Temporal Planning

Iain little
National ICT Australia & Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia

A related paper appears in ICAPS’06.

Introduction
Many real-world planning problems involve a combination
of both time and uncertainty (Bresina et al. 2002). For in-
stance, Aberdeen et al. (2004) investigate military opera-
tions planning problems that feature concurrent durative ac-
tions, probabilistic timed effects, resource consumption, and
competing cost measures. It is the potential for such practi-
cal applications that motivates this research.

Probabilistic temporal planning combines concurrent du-
rative actions with probabilistic effects. This unification
of the disparate fields of probabilistic and temporal plan-
ning is relatively immature, and presents new challenges in
efficiently managing an increased level of expressiveness.
Some of our techniques for solving probabilistic temporal
planning problems could be applied beyond the context they
were developed in, and may prove useful in efficiently solv-
ing the simpler subproblems.

The most general probabilistic temporal planning frame-
work considered in the literature is that of Younes and Sim-
mons (2004). It is expressive enough to model generalised
semi-Markov decision processes (GSMDPs), which allow
for exogenous events, concurrency, continuous-time, and
general delay distributions. This expressiveness comes at a
cost: the solution methods proposed in (Younes & Simmons
2004) lack convergence guarantees and significantly depart
from the traditional algorithms for both probabilistic and
temporal planning. Concurrent Markov decision processes
(CoMDPs) are a much less general model that simply allows
instantaneous probabilistic actions to execute concurrently
(Guestrin, Koller, & Parr 2001; Mausam & Weld 2004). Ab-
erdeen et al. (2004) and Mausam and Weld (2005) have
extended this model by assigning actions a fixed numeric
duration. They solved the resulting probabilistic tempo-
ral planning problem by adapting existing MDP algorithms,
and have devised heuristics to help manage the exponential
blowup of the search space.

The ultimate goal of this research is to produce plan-
ners that are expressive enough to support: concurrent dura-
tive actions, probabilistic effects, metric resources, and cost
functions; while being efficient enough to solve interesting-
sized (real-world) problems.

We currently have two separate avenues of research with
the aim of achieving this goal. The first approach is to
combine a forward-chaining search with effective heuris-

tics. We have developed a probabilistic temporal planner
called Prottle using this approach (Little, Aberdeen, &
Thiébaux 2005). Prottle uses a (deterministic) trial-
based search algorithm with a heuristic that is based on an
extension of the planning graph data structure.

Another approach to planning is the Graphplan frame-
work (Blum & Furst 1997). While Prottle makes use
of the planning graph—a data structure that originates from
this framework—it does not use the framework’s other key
features; in particular, Prottle does not use a backward
search. The Graphplan framework has previously been
successfully applied to temporal planning (concurrent dura-
tive actions) (Smith & Weld 1999), but had not been success-
fully applied to probabilistic planning (actions with prob-
abilistic effects) in its entirety. Extensions of this frame-
work for probabilistic planning had been developed (Blum
& Langford 1999), but either dispense with the techniques
that enable concurrency to be efficiently managed, or are un-
able to produce optimal contingency plans.

As a way of investigating approaches to compressing the
search space for probabilistic temporal planning, our other
avenue of research has the goal of implementing a proba-
bilistic temporal planning in the Graphplan framework.
As the issues relating to probabilistic planning had not been
adequately solved, and as a way of managing the complex-
ity, we started by developing a (concurrent) probabilistic
planner (Little & Thiébaux 2006). Paragraph, the result-
ing planner, is competitive with the state of the art, produc-
ing acyclic or cyclic plans that optionally exploit a prob-
lem’s potential for concurrency. We are confident that this
approach can be extended to the probabilistic temporal con-
text.

This paper gives a brief overview of both Prottle and
Paragraph, and concludes with remarks about our future
research intentions. For more detailed descriptions and ex-
perimental results, please refer to the respective papers (Lit-
tle, Aberdeen, & Thiébaux 2005; Little & Thiébaux 2006).

Prottle
Prottle is a probabilistic temporal planner that allows
effects, the time at which they occur, and action durations
to all be probabilistically determined. Its input language is
the temporal STRIPS fragment of PDDL2.1 (Fox & Long
2003), but extended so that effects can be probabilistic, as



in PPDDL (Younes & Littman 2004). We also allow effects
to occur at any time within an action’s duration. The prob-
abilistic and temporal language constructs interact to allow
effect times and action durations to vary probabilistically.
For clarity, each probabilistic alternative is given a descrip-
tive label.

(:durative-action jump
:parameters (?p - person ?c - parachute)
:condition (and (at start (and (alive ?p)

(on ?p plane)
(flying plane)
(wearing ?p ?c)))

(over all (wearing ?p ?c)))
:effect (and (at start (not (on ?p plane)))

(at end (on ?p ground))
(at 5

(probabilistic
(parachute-opened 0.9 (at 42 (standing ?p)))
(parachute-failed 0.1

(at 13 (probabilistic
(soft-landing 0.1

(at 14 (bruised ?p)))
(hard-landing 0.9

(at 14 (not (alive ?p)))))))))))

Figure 1: An example of an action to jump out of a plane.

Figure 1 shows an example action that represents a per-
son jumping out of a plane with a parachute. After 5
units of time, the person makes an attempt to open the
parachute. The case where this is successful has the label
parachute-opened, and will occur 90% of the time; the
person will gently glide to safety, eventually landing at time
42. However, if the parachute fails to open, then the per-
son’s survival becomes dependent on where they land. The
landing site is apparent at time 13, with a 10% chance of it
being soft enough for the person to survive. Alive or dead,
the person then lands at time 14, 28 units of time sooner
than if the parachute had opened. But regardless of the out-
come, or how long it takes to achieve, the action ends with
the person’s body on the ground.
Prottle’s search space is defined in terms of an

AND/OR graph. In the interpretation that we use, an AND
node represents a chance, and an OR node a choice. We
associate choice nodes with the selection of actions, and
chance nodes with the probabilistic event alternatives.

Each node is used in one of two different ways: for selec-
tion or advancement. This is similar to what some tempo-
ral planners do, where states are partitioned between those
that represent action selection, and those that represent time
advancement (Bacchus & Ady 2001). This sort of optimisa-
tion allows forward-chaining planners to be better guided by
heuristics, as action sets are structured into linear sequences.

The rules for node succession are defined by Figure 2.
They can be summarised as: every successor of a node must
either be a selection node of the same type, or an advance-
ment node of the opposite type. Our choice of a search
space structure is intended to be used with a ‘phased’ search,
where action selection and outcome determination are kept
separate. It might seem that it would be more efficient to
have only a single selection phase, where an action’s prob-
abilistic branching is dealt with immediately after it is se-
lected, but consider what this does to the problem: we would
be assuming that an action’s outcome is known as soon as

choice
advancement

selection

choice
advancement

chance

selection

chance

Figure 2: A state machine for valid node orderings. Time
may only increase when traversing bold face arcs.

the action starts execution. In contrast, the phased approach
allows the time at which this knowledge is available to be
accurately represented, by deferring the branching until the
appropriate time. This issue of knowledge becomes rele-
vant when concurrency is combined with probabilistic ef-
fects. The conservative assumption — that we wait until
actions terminate — breaks down when an action’s duration
can depend on its outcome.

Using the graph structure that we have established, we
define a state of the search space as a node in an AND/OR
graph that is identified by a time, model and event queue.
The time of a state is generally the same as its predecessors,
but may increase when advancing from choice to chance
(see Figure 2). The model is the set of truth values for
each of the propositions, and the event queue is a time-
ordered list of pending events. An event can be an effect
e.g. (on ?p ground), a probabilistic event, or an action
execution condition that needs to be checked. When the time
is increased, it is to the next scheduled event time.

We associate states with both lower and upper cost
bounds. As the search space is explored, the lower bounds
will monotonically increase, the upper bounds monotoni-
cally decrease, and the actual cost is sandwiched within an
ever-narrowing interval. We say that a state’s cost has con-
verged when, for a given ε ≥ 0: U(s) − L(s) ≤ ε where
U is the upper bound and L the lower bound of state s. A
state’s cost bounds are initially determined using a planning
graph-based heuristic, and are updated by comparing its cur-
rent values with those of its successors.

In addition to a cost, we also associate each state with
a label of either solved or unsolved. A state is labelled as
solved once the benefit of further exploration is considered
negligible; for instance, once its cost has converged for a suf-
ficiently small ε. The search algorithm ignores a state once
it has been labelled as solved, and confines its exploration to
the remaining unsolved states.
Prottle uses a search algorithm that combines a deter-

ministic search with the convergence and labelling optimisa-
tions used by LRTDP (Bonet & Geffner 2003). As with pre-
vious probabilistic temporal planners (Aberdeen, Thiébaux,
& Zhang 2004; Mausam & Weld 2005), this algorithm is
trial-based, and explores the search space by performing re-
peated depth-first probes starting from the initial state.

Paragraph
Paragraph is a probabilistic planner that finds contin-
gency plans that maximise the probability of reaching the
goal within a given time horizon. These solutions are op-
timal in the non-concurrent case, and optimal for a re-



a2a1

o3 o4

p1 p2

pg p2

o2 o1

p1

o3 o1

a2 a1

p1

a1 a2

p2

o1 o3
o2 o4

t: 0 p1

p2

pg

t: 1 pg

t: 2

Figure 3: An action-outcome-proposition dependency graph
and search space for an example problem.

stricted model of concurrency. A detailed description of this
model—and of Paragraph in general—is given in (Little,
Aberdeen, & Thiébaux 2005).
Paragraph extends the Graphplan framework to the

probabilistic setting. To do this, it is necessary to extend
the planning graph data structure to account for uncertainty.
We do this by introducing a node for each of an action’s
possible outcomes, so that there are three different types of
nodes in the graph: proposition, action, and outcome. Ac-
tion nodes are then linked to their respective outcome nodes,
and edges representing effects link outcome nodes to propo-
sition nodes. Each persistence action has a single outcome
with a single add effect. We refer to a persistence action’s
outcome as a persistence outcome. This extension is func-
tionally equivalent to that described in (Blum & Langford
1999), except that we also adapt the planning graph’s mutex
propagation rules from the deterministic setting.

The solution extraction step of the Graphplan algo-
rithm relies on a backward search through the structure of
the planning graph. In classical planning, the goal is to find a
subset of action nodes for each level such that the respective
sequence of action sets constitutes a valid trajectory. The
search starts from the final level of the graph, and attempts
to extend partial trajectories one level at a time until a solu-
tion is found.
Paragraph uses this type of goal-regression search with

an explicit representation of the expanded search space. This
search is applied exhaustively, to find all trajectories that the
Graphplan algorithm can find. An optimal contingency
plan is formed by linking these trajectories together. This
requires some additional computation, and involves using
forward simulation through the search space to compute the
possible world states at reachable search nodes.

As observed by Blum and Langford (1999), the difficulty
with combining probabilistic planning with Graphplan-
style regression is in correctly and efficiently combining the
trajectories. Sometimes the trajectories will ‘naturally’ join
together during the regression, which happens when search
nodes share a predecessor through different ‘joint outcomes’
(sets of outcomes) of the same action set.

Unfortunately, the natural joins are not sufficient to find
all contingencies. Consider the problem shown in Fig-
ure 3, which we define as:1 the propositions p1, p2 and pg;

1This problem was used by Blum and Langford (1999) to il-
lustrate the difficulty of using goal-regression for probabilistic

s0 = {p1, p2}; G = {pg}; the actions a1 and a2; and the
outcomes o1 to o4. a1 has precondition p1 and outcomes
{o1, o2}; a2 has precondition p2 and outcomes {o3, o4}.
Both actions always delete their precondition; o1 and o3
both add pg. To simplify the example, we prohibit a1 and
a2 from executing concurrently. The optimal plan for this
example is to execute one of the actions; if the first action
does not achieve the goal, then the other action is executed.

The backward search will correctly recognise that exe-
cuting a1–o1 or a2–o3 will achieve the goal, but it fails to
realise that a1–o2, a2–o3 and a2–o4, a1–o1 are also valid
trajectories. The longer trajectories are not discovered be-
cause they contain a ‘redundant’ first step; there is no way
of relating the effect of o2 and the precondition of a2, or the
effect of o4 with the precondition of a1. While these undis-
covered trajectories are not the most desirable execution se-
quences, they are necessary for an optimal contingency plan.
In classical planning, it is actually a good thing that trajec-
tories with this type of redundancy cannot be discovered, as
redundant steps only hinder the search for a single shortest
trajectory. Identifying the missing trajectories requires some
additional computation beyond the goal regression search.
We refer to trajectories that can be found using unadorned
goal regression as natural trajectories.

The solution we have developed is based on constructing
all ‘non-redundant’ contingency plans by linking together
the trajectories that goal regression is able to find. This is
sufficient to find an optimal solution, as there always exists
at least one non-redundant optimal plan. Paragraph com-
bines pairs of trajectories by linking a node in one trajectory
to a node in the other. This can be done when a possible
world state of the earlier node has a resulting world state
that subsumes the goal set of the later node.

A detailed description of Paragraph’s acyclic search
algorithm follows.2 The first step is to generate a plan-
ning graph from the problem specification. This graph is
expanded until all goal propositions are present and not mu-
tex with each other, or until the graph levels off to prove that
no solution exists. Assuming the former case, a depth-first
goal regression search is performed from a goal node for the
graph’s final level. This search exhaustively finds all natu-
ral trajectories from the initial conditions to the goal. Once
this search has completed, the possible world states for each
trajectory node are computed by forward-propagation from
time 0, and the node/state costs are updated by backward-
propagation from the goal node. Potential trajectory joins
are detected each time a new node is encountered during
the backward search, and each time a new world state is
computed during the forward state propagation. Unless a
termination condition has been met, the planning graph is
then expanded by a single level, and the backward search is
performed from a new goal node that is added to the exist-
ing search space. This alternation between backward search,
state simulation, cost propagation, and graph expansion con-
tinues until a termination condition is met. An optimal con-

planning, and to explain their preference of a forward search in
PGraphplan.

2We have another algorithm for extracting cyclic solutions.



Horizon PRTTL Time NA-PG Time Cost
10 14.0 0.23 0.728
15 21.6 0.73 0.607
20 25.1 12.5 0.486
25 36.0 52.2 0.429
30 40.6 103 0.429

(a) g-tire

Horizon PRTTL Time CA-PG Time PRTTL Cost CA-PG Cost
5 4.38 0.08 0.272 0.204
6 14.9 0.13 0.204 0.193
7 168 0.26 0.178 0.156
8 554 0.71 0.151 0.149
15 − 613 − 0.078

(b) maze

tingency plan is then extracted from the search space by
traversing the space in the forward direction using a greedy
selection policy.

Example Results
We give a sample of our experimental results for Prottle
and Paragraph. For more detailed comparative re-
sults, see (Little & Thiébaux 2006). Additional results for
Prottle can be found in (Little, Aberdeen, & Thiébaux
2005). Prottle and Paragraph are implemented in
Common Lisp, and were both compiled using CMUCL ver-
sion 19c. These experiments were performed on a machine
with a 3.2 GHz Intel processor and 2 GB of RAM.

Figure shows comparative results for two problems, g-
tire and maze. Their PDDL definitions are available at http:
//rsise.anu.edu.au/∼thiebaux/benchmarks/pddl/. The plan-
ner configurations used in these experiments are: Prottle
with ε = 0 and its cost-based planning graph heuristic
(PRTTL), and Paragraph with its acyclic search using ei-
ther the restricted concurrency model (CA-PG) or no con-
currency (NA-PG).

The objective of the g-tire problem is to move a vehicle
from one location to another, where each time the vehicle
moves there is a chance of it getting a flat tire. There are
spare tires at some of the locations, and these can be used
to replace flat tires. This problem is not concurrent. The
results compare Prottle to Paragraph’s acyclic search;
Paragraph is faster for the earlier horizons, but Prottle
scales better.

The maze problem involves a number of connected
rooms and doors, some of which are locked and require
a specific key to open. This problem has some potential
for concurrency, although mostly of the type not allowed in
composite contingency plans. None of the planner configu-
rations fully expoit it. Paragraph scales much better than
Prottle this time.

We have found that Paragraph usually out-performs
Prottle. Paragraph has the best comparative perfor-
mance on problems with a high forward branching factor
and relatively few paths to the goal.

Conclusion and Future Work
In Paragraph and Prottle, we have made significant
progress towards our goal of producing an efficient planner
that can deal with all of: concurrent durative actions, proba-
bilistic effects, metric resources, and cost functions. We be-

lieve that both planning approaches show promise, and have
a strong potential for future improvement.

The most important future improvements for Prottle
include: reducing the implementation’s memory usage, de-
vising ways of efficiently extracting a greater amount of
heuristic information from the planning graph, and adding
support for metric resources and cost functions. Another
intriguing possibility is extending Prottle’s effect model
(as a decision tree) to the more general graph. This might be
an effective way of modelling exogenous processes.

We have many ideas for improving Paragraph’s per-
formance, in particular by adapting optimisations developed
for the Graphplan framework in the deterministic setting.
For example, we have observed that a small amount of con-
trol knowledge in the form of mutex invariants can make
a substantial impact on efficiency. This suggests that there
would also be a benefit in investigating ways of strengthen-
ing the planning graph’s mutex reasoning and in incorpo-
rating explanation-based learning. But the most important
future direction of this research is extending Paragraph
to the probabilistic temporal setting, which will allow us to
compare our two approaches in the context of probabilistic
temporal planning.

References
Aberdeen, D.; Thiébaux, S.; and Zhang, L. 2004. Decision-
theoretic military operations planning. In Proc. ICAPS.
Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: A forward chaining approach. In Proc. IJCAI.
Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90:281–300.
Blum, A., and Langford, J. 1999. Probabilistic planning in the
Graphplan framework. In Proc. ECP.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving the
convergence of real-time dynamic programming. In Proc. ICAPS.
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith,
D.; and Washington, R. 2002. Planning under continuous time
and resource uncertainty: A challenge for AI. In Proc. UAI.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20:61–124.
Guestrin, C.; Koller, D.; and Parr, R. 2001. Multiagent planning
with factored MDPs. In Proc. NIPS.
Little, I., and Thiébaux, S. 2006. Concurrent probabilistic plan-
ning in the graphplan framework. In Proc. ICAPS.
Little, I.; Aberdeen, D.; and Thiébaux, S. 2005. Prottle: A prob-
abilistic temporal planner. In Proc. AAAI.
Mausam, and Weld, D. 2004. Solving concurrent Markov deci-
sion processes. In Proc. AAAI.
Mausam, and Weld, D. 2005. Concurrent probabilistic temporal
planning. In Proc. ICAPS.
Smith, D., and Weld, D. 1999. Temporal planning with mutual
exclusion reasoning. In Proc. IJCAI.
Younes, H., and Littman, M. 2004. PPDDL1.0: The language for
the probabilistic part of IPC-4. In Proc. International Planning
Competition.
Younes, H. L. S., and Simmons, R. G. 2004. Policy generation for
continuous-time stochastic domains with concurrency. In Proc.
ICAPS.


