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Abstract
We investigate the problem of temporal planning with con-
current actions having stochastic durations, especially in the
context of extended-state-space based planners. The problem
is challenging because stochastic durations lead to an explo-
sion in the space of possible decision-epochs, which exacer-
bates the familiar challenge of growth in executable action
combinations caused by concurrency. We present various ob-
servations and insights into different variations of this prob-
lem that form the basis of our future research.

Introduction
Recent progress in temporal planning (JAIR Special Issue
2003) raises hopes that this technology may soon apply to a
wide range of real-world problems. However, concurrent ac-
tions with stochastic durations characterise many real-world
domains. While both concurrency and duration uncertainty
have independently received some attention by planning re-
searchers, very few systems have addressed them in concert,
and all of these systems have used an extended-state-space
method (as opposed to a constraint-posting approach). In
this paper we step back from specific algorithms and analyse
the broader problem of concurrent temporal planning with
actions having stochastic durations, especially in the context
of extended-state-space planners.

We find that the problem is challenging in novel ways and
opens interesting avenues for future research. The stochas-
tic durations lead to an explosion in the space of possible
decision-epochs, which exacerbates the familiar challenge
of growth in executable action combinations caused by con-
currency. The rate of decision-epoch growth increases with
greater expressiveness in the action language, and we char-
acterise the challenges along several dimensions, e.g., the
possible times for which action preconditions and effects
may be specified, duration distributions of actions.

Expressiveness of Action Models
The action models handled by different temporal planners
vary in complexity. Figure 1 lists different representations
along two dimensions (ignoring continuous change). The
simplest temporal model is used in TGP (Smith & Weld
1999). TGP-style actions require preconditions to be true
throughout execution; the effects are guaranteed to be true
only after termination; and actions may not execute concur-
rently if they clobber each other’s preconditions or effects.

Simple Boundary Metric
Deterministic duration TGP PDDL2.1 Zeno
Prob. but independent Prob. TGP Prob. PDDL2.1

Joint distrib: dur×effects Prottle

Figure 1: Action models for temporal planning (ignoring continu-
ous change). The horizontal axis varies the times at which precon-
ditions and effects may be specified. The vertical axis varies the
uncertainty in effects and its correlations with durations.

Along the horizontal axis, we vary the temporal ex-
pressiveness in the precondition and effect representations.
PDDL2.1 (Fox & Long 2003) is more expressive than TGP’s
representation as it can represent preconditions that are re-
quired to be true just at start, over whole action execution
or just at the end. Where PDDL2.1 allows effects to ap-
pear only at boundaries, Zeno’s representation (Penberthy
& Weld 1994) allows effects (preconditions) to appear at ar-
bitrary intermediate points (and intervals).

Along the vertical axis, we vary the representation of un-
certainty in the model. PDDL2.1 doesn’t support probabilis-
tic action effects or durations. “Probabilistic PDDL2.1” ex-
tends PDDL2.1 along this direction, associating a distribu-
tion with each action duration; the distribution for durations
is independent of that for effects. “Probabilistic TGP” ex-
tends the TGP action representation similarly. Even more
expressive representations may use a single joint distribu-
tion — enabling action durations that are correlated with ef-
fects. Indeed, the representation language of Prottle (Little,
Aberdeen, & Thiebaux 2005) contains all these features: ef-
fects at intermediate points, action durations correlated with
probabilistic effects. Tempastic (Younes & Simmons 2004)
uses probabilistic TGP-style actions, but because it also sup-
ports exogenous events, it is at least as expressive as Prottle.
The blank entries in Figure 1 denote action languages that
have not yet been discussed in the literature.

Planning with TGP-style Actions
We first study TGP-style actions in the context of uncertain
durations (Smith & Weld 1999). TGP-style actions require
preconditions to be true throughout execution; the effects
are guaranteed to be true only after termination; and actions
may not execute concurrently if they clobber each other’s
preconditions or effects.

We find that planning, even with these simplified action
models, suffers significant computational blowup. All the
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Figure 2: Planning with expected durations leads to a sub-optimal
solution.

examples in this section apply regardless of whether effects
are deterministic or stochastic. We investigate extensions to
richer representations in the next sections.

We focus on problems whose objective is to achieve a goal
state, while minimising total expected time (make-span), but
our observations apply to cost functions that combine make-
span and resource usage. This raises the question of when
a goal counts as achieved. We require that all executing ac-
tions terminate before the goal is considered achieved.

A naive way to solve our problem is by ignoring duration
distributions. We can assign each action a constant dura-
tion equal to the mean of its distribution, and then apply a
deterministic-duration planner such as that of Mausam and
Weld (2005). Unfortunately, this method may not produce
an optimal policy, as the following example illustrates.
Example: Consider the planning domain in Figure 2, in
which the goal can be reached in two independent ways —
executing the plan 〈a0; a1〉, i.e., a0 followed by a1, or the
plan 〈b0; b1〉. Let a0, a1 and b1 have constant durations 3,
1, and 2 respectively. Let b0 have a uniform distribution
between lengths 1, 2 and 3. It is clear that if we disregard
b0’s duration distribution and replace it by the mean 2, then
both these plans have an expected cost of 4. However, the
truly optimal plan has duration 3.67 — start both a0 and b0;
if b0 finishes at time 1 (prob. 0.33) then start b1, else (prob.
0.67) wait until a0 finishes and execute a1 to reach the goal.
In this policy, the expected cost to reach the goal is 0.33×3
+ 0.67×4 = 3.67. Thus for optimal solutions, we need to
explicitly take duration uncertainty into account. 2

Definition Any time point when a new action is allowed to
start execution is called a decision epoch. A happening is
either 0 or a time when an action actually terminates.

For TGP or probabilistic TGP-style actions with deter-
ministic durations, restricting decision epochs to happenings
suffices for optimal planning (Mausam & Weld 2005). Un-
fortunately, the same is not true for problems with duration
uncertainty.

Temporal planners may be classified as having one of two
architectures: constraint-posting approaches, in which the
times of action execution are gradually constrained during
planning (e.g., Zeno and LPG (Penberthy & Weld 1994;
Gerevini & Serina 2002)), and extended-state-space meth-
ods (e.g., TP4 and SAPA (Haslum & Geffner 2001; Do &
Kambhampati 2001)). The following example has impor-
tant computational implications for state-space planners, be-
cause limiting attention to a subset of decision epochs can
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Figure 3: Intermediate decision epochs are necessary for optimal
planning.

speed these planners.
Example: Consider Figure 3, in which the goal can be
reached in two independent ways — executing both {a0, a1}
followed by a2 (i.e. effects of both a0 and a1 are precondi-
tions to a2); or by executing action b0. Let a1, a2, and b0

have constant durations 1, 1, and 7 respectively. Suppose
that a0 finishes in 2 time units with 0.5 probability and in
9 units the other half of the time. Furthermore, b0 is mutex
with a1, but no other pairs of actions are mutex.

In such a domain, following the first plan, i.e.,
〈{a0, a1}; a2〉, gives an expected cost of 6.5 = 0.5 × 2 +
0.5 × 9 + 1. The second plan (〈b0〉) costs 7. The optimal
solution, however, is to first start both a0 and a1 concur-
rently. When a1 finishes at time 1, wait until time 2. If a0

finishes, then follow it with a2 (total length 3). If at time 2,
a0 doesn’t finish, start b0 (total length 9). The expected cost
of this policy is 6 = 0.5 × 3 + 0.5 × 9. 2

Notice above that the optimal policy needs to start action
b0 at time 2, even when there is no happening at 2. Thus
limiting the set of decision epochs to happenings does not
suffice for optimal planning with uncertain durations. It is
quite unfortunate that non-happenings are potentially nec-
essary as decision epochs, because even if one assumes that
time is discrete, there are many interior points during a long-
running action; must a planner consider them all?
Definition An action has independent duration if there is no
correlation between its probabilistic effects and its duration.
An action has monotonic continuation if the expected time
until action termination is nonincreasing during execution.

Actions without probabilistic effects have independent
duration. Actions with monotonic continuations are com-
mon, e.g., those with uniform, exponential, Gaussian, and
many other duration distributions. However, actions with
bimodal or multi-modal distributions don’t have monotonic
continuations.

We believe that if all actions have independent dura-
tion and monotonic continuation, then the set of decision
epochs may be restricted to happenings without sacrificing
optimality; this idea can be exploited to build a fast plan-
ner (Mausam & Weld 2006).

Timing Preconditions & Effects
Many domains require more flexibility concerning the times
when preconditions and effects are in force: different effects
of actions may apply at different times within the action’s



:action a
:duration 4
:condition (over all P) (at end Q)
:effect (at end Goal)

:action b
:duration 2
:effect (at start Q) (at end (not P))

Figure 4: A domain to illustrate that an expressive action model
may require arbitrary decision epochs for a solution. In this exam-
ple, b needs to start at 3 units after a’s execution to reach Goal.

execution, preconditions may be required only to hold for
part of execution, and executing two actions concurrently
might lead to different results than executing them sequen-
tially. Note that the decision epoch explosion is even more
pronounced for such problems. Moreover, this not only af-
fects optimality, but also affects the completeness of the al-
gorithms. The following example with deterministic dura-
tions demonstrates this further.
Example: Consider the deterministic temporal planning
domain in Figure 4 that uses PDDL2.1 notation (Fox & Long
2003). If the initial state is P=true and Q=false, then the
only way to reach Goal is to start a at time 0, and b at time 3.
Clearly, no action could terminate at 3, still it is a necessary
decision epoch. 2

Intuitively, two actions may require a certain relative
alignment within them to achieve the goal. This alignment
may force an action to start somewhere in the midst of the
other’s execution thus requiring a lot of decision epochs to
be considered.

This example clearly shows that additional complexity in
planning is incurred due to a more expressive action repre-
sentation. It has important repercussions on existing plan-
ners. For instance, popular planners like SAPA and Prot-
tle (Little, Aberdeen, & Thiebaux 2005) will not be able to
solve this simple problem, because they consider only a re-
stricted set of decision epochs. This shows that both these
planners are incomplete (i.e., problems may be incorrectly
deemed unsolvable). Indeed, these planners can be naively
modified by considering each time point as a decision epoch
to obtain a complete algorithm. Unfortunately, such a mod-
ification is bound to be ineffective in scaling to any reason-
able sized problem. Intelligent sampling of decision epochs
is, thus, the key to finding a good balance between the two.
Finding the exact modalities of such an algorithm is an im-
portant open research problem.

Continuous Action Durations
Previously, we assumed that an action’s possible durations
are taken from a discrete set. We now investigate the effects
of dealing directly with continuous uncertainty. Let fT

i (t)dt
be the probability of action ai completing between times t+
T and t + T + dt, if we know that action ai did not finish
until time T . Similarly, define FT

i (t) to be the probability
of the action finishing after time t + T .
Example: Consider the extended state 〈X, {(a1, T )}〉,
which denotes that action a1 started T units ago in the world
state X . Let a2 be an applicable action that is started in this
extended state. Define M = min(∆M (a1) − T,∆M (a2)),
where ∆M denotes the maximum possible duration of exe-

cution for each action. Intuitively, M is the time by which at
least one action will complete. Also, let Jn and Qn denote
the nth revision to the expected cost to reach a goal starting
from a state or a state-action pair respectively (Mausam &
Weld 2005). Qn may be computed as follows:

Qn+1 (〈X, {(a1, T )}〉, a2) =∫ M

0

fT
1 (t)F 0

2 (t) [t + Jn (〈X1, {a2, t}〉)] dt +∫ M

0

FT
1 (t)f0

2 (t) [t + Jn (〈X2, {a1, t + T}〉)] dt (1)

Here X1 and X2 are world states obtained by applying
the deterministic actions a1 and a2 respectively on X . Re-
call that Jn+1(s) = mina Qn+1(s, a). For a fixed point
computation of this form, we desire that Jn+1 and Jn have
the same functional form1. Going by the equation above this
seems very difficult to achieve, except perhaps for very spe-
cific action distributions in some special planning problems.
For example, if all distributions are constant or if there is no
concurrency in the domain, then these equations are easily
solvable. But for anything mildly interesting, solving these
equations is a challenging open question.

Non-Monotonic Duration Distributions
Dealing with continuous multi-modal distributions worsens
the decision epochs explosion. We illustrate this below.
Example: Consider the domain of Figure 3 except that let
action a0 have a bi-modal distribution, the two modes being
uniform between 0-1 and 9-10 respectively as shown in Fig-
ure 5(a). Also let a1 have a very small duration. Figure 5(b)
shows the expected remaining termination times if a0 termi-
nates at time 10. Notice that due to bi-modality, this time
increases between 0 and 1. The expected time to reach the
goal using plan 〈{a0, a1}; a2〉 is shown in the third graph.

Now suppose that, we have started {a0, a1}, and we need
to choose the next decision epoch. It is easy to see that the
optimal decision epoch could be any point between 0 and 1
and would depend on the alternative routes to the goal. E.g.,
if duration of b0 is 7.75, then the optimal time-point to start
the alternative route is 0.5 (right after the expected time to
reach the goal using first plan exceeds 7.75). 2

We have shown that the choice of decision epochs de-
pends on the expected durations of the alternative routes.
But these values are not known in advance, in fact these are
the ones being calculated in the planning phase. Therefore,
choosing decision epochs ahead of time does not seem pos-
sible. This makes the optimal continuous multi-modal dis-
tribution planning problem mostly intractable for any rea-
sonable sized problem.

Correlated Durations and Effects
When actions’ durations are correlated with the effects, then
failure to terminate provides additional information regard-
ing an action’s effects. For example, non-termination at a

1This idea has been exploited in order to plan with continuous
resources (Feng et al. 2004).
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Figure 5: If durations are continuous (real-valued) rather than discrete, there may be an infinite number of potentially important decision
epochs. In this domain, a crucial decision epoch could be required at any time in (0, 1] — depending on the length of possible alternate plans.

point may change the probability of the action’s eventual ef-
fects, and this may prompt new actions to be started. Thus,
these points need to be considered for decision epochs, and
cannot be omitted, even with TGP-style actions.

Notion of Goal Satisfaction
Different problems may require slightly different notions of
when a goal is reached. For example, we have assumed thus
far that a goal is not “officially achieved” until all executed
actions have terminated. Alternatively, one might consider a
goal to be achieved if a satisfactory world state is reached,
even though some actions may be in the midst of execution.
There are intermediate possibilities in which a goal requires
some specific actions to necessarily end.

Interruptible Actions
We have assumed that, once started, an action cannot be ter-
minated. However, a richer model may allow preemptions,
as well as the continuation of an interrupted action. The
problems in which all actions could be interrupted at will
have a significantly different flavour. To a large extent, plan-
ning with such actions is similar to finding different concur-
rent paths to the goal and starting all of them together, since
one can always interrupt all the executing paths as soon as
the goal is reached. For instance, example in Figure 3 no
longer holds, since b0 can be started at time 1, and later ter-
minated as needed to shorten the make-span.

Conclusions
This paper investigates planning problems with concurrent
actions having stochastic durations, focussed primarily on
extended-state-space planners. We identify the explosion in
the number of decision epochs as the main cause of com-
putational blowup. No longer can a planner limit action-
initiation times to points when a different action has ter-
minated. The rate of decision-epoch growth increases with
greater expressiveness in the action language, and we char-
acterise the challenges along several dimensions.

Even with simple probabilistic TGP-style actions, many
more decision epochs must be considered to achieve opti-
mality. However, if all durations are unimodal and uncor-
related with effects, we conjecture that one can bound the
decision epochs in terms of times of action terminations.

We show that for PDDL2.1 and richer action represen-
tations, the currently employed extended state space based
methods are incomplete, and the straightforward ways to en-
sure completeness are highly inefficient. Developing an al-
gorithm that achieves the best of both worlds is an important
research question.

Additionally, we discuss the challenges posed by contin-
uous time, observing that techniques employing piecewise
constant/linear representations, which are popular in dealing
with functions involving continuous variables, may be inef-
fective for our problem. These techniques rely on the same
functional forms for successive approximations of the value
function — and this does not hold in our case. Other potent
directions for future research include multi-modal distribu-
tions, interruptibility, and correlated durations and effects.
We develop algorithms to handle some of these issues in
(Mausam & Weld 2006).
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