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Introduction
Finding shortest paths is a classic and fundamental
problem in theoretical computer science which has in-
fluenced a wide array of other fields. Finding stochastic
shortest paths has also been extensively studied though
it has proven harder to formalize and yield classic re-
sults. What is the right way to define stochastic short-
est paths, when we only know random distributions for
the edge weights? Is it shortest paths on average, or
shortest paths minimizing a combination of mean and
variance, or minimizing some other specified criterion?
Are they found adaptively or non-adaptively? A vari-
ety of problem variants have appeared in the literature,
and most have ended up minimizing the expected length
of paths, or a combination of expected lengths and ex-
pected costs such as bicriterion problems (Pallottino &
Scutella 1997). Adaptive formulations have prevailed,
perhaps because a non-adaptive minimization of the ex-
pected path length trivially reduces to the deterministic
shortest path problem.

Few researchers have considered optimizing a non-
linear function of the path length. Some notable
work includes that of Loui (Loui 1983) who defines a
decision-theoretic framework, where the optimal path
maximizes the expected utility of the user for a class
of monotonically increasing utility functions. Fan et al.
(Fan, Kalaba & Moore) present an adaptive heuristic
for paths that maximize the probability of arriving on
time. Formulations of this type with nonlinear objec-
tive, though perhaps most useful in practice, have been
sparse, because the hardness of the problem arises and
accumulates from many levels: combinatorial, distribu-
tional, analytic, functional, to list a few. We elaborate
on these sources below.

We focus on stochastic shortest paths models which
can effectively factor the sources of difficulty and
whose solution draws from a variety of areas underly-
ing the problem. In addition our solutions contain tech-
niques that may be useful in solving other combinatorial
problems and more generally, a number of nonconvex
optimization problems.

Related Work

A lot of the related work on shortest paths in stochastic
networks has focused on the notion of shortest paths in
expectation, e.g., (Bertsekas & Tsitsiklis 1991). Other
models have added costs on the edges in addition to
travel times (Chabini 2002), (Miller-Hooks & Mahmas-
sani 2000) where the costs depend on the realized travel
times and in this way can capture a measure of uncer-
tainty.

Finding the path of smallest expected length trivially
reduces to a deterministic shortest path problems and
does not take into account risk in predicting the optimal
route. Since most real world applications care about a
tradeoff between risk and expectation, we consider non-
linear objectives that capture more information about
the edge distributions. Closest to this model, Loui
(Loui 1983) considered a decision analytic framework
for optimal paths under uncertainty, however he only
studied monotone increasing cost functions and his al-
gorithm has running time O(nn) in the worst case. Mir-
chandani and Soroush (Mirchandani & Soroush 1985)
extended his work to a quadratic cost function of the
path length, however their algorithm is also an exhaus-
tive search over all potentially optimal paths, and thus
exponential in the worst case.

Another branch of the stochastic shortest path liter-
ature has focused on adaptive algorithms (Fan, Kal-
aba & Moore), (Gao & Chabini 2002), (Boyan &
Mitzenmacher 2001), which compute the optimal next
edge in light of lengths or travel times already real-
ized en route to the current node. Another direction has
been to give approximations and heuristics for expected
shortest paths in stochastic networks with nonstationary
(time-varying) edge length distributions (Miller-Hooks
& Mahmassani 2000), (Fu & Rilett 1998), (Hall 1986),
to list a few. In this proposal, we only consider station-
ary edge length distributions, that do not change with
time; time-varying distributions will be the subject of
future work.



Problem Statement
The offline stochastic shortest path problem takes as in-
put a graph and independent probability distributions
for all its edge weights. It asks for the optimal path
between a given source and a destination, which mini-
mizes the expectation of a specified objective function.
The term offline is used to emphasize that we seek a
nonadaptive algorithm for an optimal path, before we
observe any of the realized edge weights. When the
cost function is linear, the problem becomes equivalent
to a deterministic shortest path with edge weights equal
to the expectations of their corresponding random vari-
ables. Thus, the challenge is when the objective is non-
linear, which is also the case that most often occurs in
practical applications.

Notation. We denote the graph G = (V, E), with
|V | = n and |E| = m. Let the source and destination
be S and T respectively. Denote the random weight
of edge e by Xe. The objective function is C : R →
R. Strictly speaking, C(X) is a function of the random
path length X =

∑
Xe. Thus, our problem is to solve

min
π

E[C(
∑

e∈π

Xe)] (1)

for paths π between the source and destination.
The meaning of a non-linear cost function of the path
length is not as intuitive as the notion of penalty for be-
ing late. Thus, we provide an equivalent formulation
of the objective function, by including the extra param-
eter t for the clock time relative to a deadline at time
0. The penalty for arriving at the destination at time
t is C̃(t) (t is negative for early arrivals and positive
for late arrivals). The expected cost of a path is then∫
∞

0
f(x)C̃(t + x)dx where f(.) is the probability den-

sity of the length X of the path and t is the departure
time. For a fixed departure time t, the cost of the path is
Ct(X) = C̃(t+X), simply a horizontal shift by t units,
and the minimization of its expectation over the set of
paths is equivalent to the problem (1). When it is clear
from the context, the parameter dependence Ct(X) will
be suppressed and we will write C(X). This richer
framework allows us to solve an additional problem:
what is the optimal path and the optimal departure time
t? This question is well defined for non-monotone cost
functions with a global minimum.

We sometimes distinguish the cost functions by call-
ing C̃(t) the penalty function (since it explicitly speci-
fies a penalty for being late), and E[C(X)] the objective
function.

Note that we may not expect to solve the problem (1)
in full generality for several reasons.
• Combinatorial difficulty. Even in the absence of ran-

domness, when the edge weights are fully determin-
istic, a wide class of cost functions reduce to finding
the longest path in the graph, which is NP-hard and

inapproximable within a reasonable factor (Karger,
Motwani & Ramkumar 1997).

• Distributional difficulty. The distributional assump-
tions on the edge lengths may bring a difficulty on
their own, to the extent that we cannot even com-
pute the distribution of the total length of a path
X =

∑
Xe, let alone evaluate the function E[C(X)]

and minimize it. For example, Kleinberg et al.
show that computing the distribution of the sum of n
non-identical Bernoulli random variables is #P-hard
(Kleinberg, Rabani & Tardos).

• Analytic difficulty. Even with additive edge length
distributions such as the Normal distribution, with
which we can readily compute the sum X =

∑
Xe,

we might not be able to get a closed analytic form
of the objective function E[C(X)] =

∫
f(x)C(x)dx

and thus cannot optimize it efficiently. This is a com-
mon problem in decision theory and related fields,
which therefore focus attention on conjugate pairs
of function and distribution families (more precisely,
conjugate priors), i.e., function-distribution pairs for
which the integral can be computed in a closed form
and the Expected Cost function lies in the same fam-
ily as the original Cost function C(X). For exam-
ple, standard conjugate pairs are (Beta, Binomial)
and (Gamma, Exponential).

• Functional difficulty. Having computed the distribu-
tion of the path length X and a closed form expres-
sion for the objective function E[C(X)], we are left
with an integer optimization problem, to minimize a
function over the collection of ST-paths of graph G.
Relaxing the integer constraint, we have to optimize
the function E[C(X)] over the path polytope in Rm.
The path polytope likely does not have any nice de-
scription with fewer than exponentially many linear
constraints. Thanks to the separability of a linear ob-
jective into the graph edges, the deterministic shortest
path problem has an efficient combinatorial solution.
However, other than the linear and exponential ob-
jectives, no other cost function is separable into the
edges (Loui 1983) and thus we might not hope to find
exact optimal solutions in the general case. In special
cases, convex and quasi-convex objective functions
may admit greedy approaches that are equivalent to
gradient descent on the path polytope, or they may
admit efficient enumeration of a small set of candi-
date paths, which would contain the optimum. Non-
convex functions in the relaxed problem may achieve
an optimum anywhere in the path polytope, and as
there are no general efficient methods for non-convex
programming, it might not be tractable to find the
relaxed optimum, nor approximate the integer opti-
mum.
In addition to looking for efficient and approximation

algorithms, we would like to understand the degree of



difficulty each factor above contributes with.
For the case of general objective, we prove hard-

ness and inapproximability results for objectives with
a global minimum. We then describe approximations
based on a combination of problem substructure and
discretization. This method applies to non-separable
objectives which have a separable term, and the solution
idea is similar to partial minimization of a multivariate
function.

We also study several specific but fundamental cost
functions together with several different distributions,
and offer hardness results, exact and approximation al-
gorithms based on a variety of techniques.
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