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Abstract

Solving a scheduling problem involves considerations of
twofold nature: on one hand, the solution must be searched
according to specific optimization needs (off-line require-
ments), while on the other hand, great effort should be em-
ployed into producing solutions which can be safely put into
execution in unpredictable environments (on-line require-
ments). In many cases, these two classes of necessities hide
mutually conflicting aspects. Aim of my work is to assess
the possible integration of off-line and on-line procedures in
project scheduling in order to find the best balance between
the two, in view of the inherently dynamical utilization of
each produced scheduling solution.

Introduction
Traditionally, planning and scheduling communities have
tackled the scheduling problem according to one of the two
following mainstreams. On one side, much effort has been
put into the development of methodologies producing solu-
tions which are characterized by a certain degree of robust-
ness, therefore retaining the ability to absorb the effects of
exogenous events (proactive approach). On the other side,
thebuffer that protects the solution against possible disrup-
tions is inherently limited, and the need to device mecha-
nisms to reactively counteract circumstances that fall beyond
its boundaries (reactive approach), is not eliminated.

The present work introduces a schedule management
schema which tends to integrate the off-line and on-line ap-
proaches: according to this schema, the task of the scheduler
is not limited to the production of a sequence of activities,
as well as the process of controlling schedule executability
is not exclusively played on the ground of on-line reaction
and activity dispatchment. This work is inspired by the fol-
lowing considerations: (a) regardless the proactive approach
employed to produce the baseline schedule, a dynamic anal-
ysis on the actual behaviour of the schedule execution is nec-
essary in order to prove, from the operational standpoint,
both the efficacy of the choices made and the soundness of
the arguments which led to those choices; (b) merely count-
ing on the effectiveness of schedule adjustments at execu-
tion time is prone to fostering myopic decisions which may
readily result in a complete schedule disruption. Analyzing
how the proactive phase may influence (and possibly guide)
the reactive phase at execution time is in my opinion as im-
portant as assessing the best baseline schedule production
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strategy on the base of the schedule’s particular dynamic be-
havior. The information that can be extracted from the two
phases may reveal mutually useful in order to find an opti-
mal strategy combination, as well as the reasons behind its
optimality. For example, one may find an initial solution
which is optimal with respect to some criteria of interest
(e.g. the makespan), and may wish to know what are the
online rescheduling strategies which preserve optimality as
much as possible, given some knowledge about the types of
exogenous events that may occur during execution.

Aim of the present abstract is to describe the steps I have
taken in order to pursue the previous goal. The scheduling
problem we specifically focus upon is the project scheduling
problem (Bruckeret al. 1999). These problems are char-
acterized by a rich internal structure. They are based on a
network of activities, among which it is possible to identify
complex temporal relations that can be used to model a num-
ber of variably rigid causal links which normally constrain
the tasks in a project. As a further source of complexity, sev-
eral heterogeneous resources with different capacities serve
the activities according to complex modalities.

As a first step, I have implemented an experimental
framework which allows to compare different approaches
to schedule synthesis and execution in a fair and controlled
way. This empirical platform can be used to carry on a set
of reproducibleexperiments by (1) simulating the execution
of a number of baseline schedules produced with different
proactive methods, (2) disturbing their execution with pre-
defined exogenous events, and (3) assessing their behavior
by using separate reactive scheduling policies. Different off-
line and on-line solving procedures can be compared inde-
pendently from each other, given the generality of the de-
vised architecture.

Great attention was paid in order to grant measureabil-
ity and reproducibility of the experimentations. A Reac-
tive Scheduling Problem Benchmark Generator (RSP-BG)
has been produced, which, given a project scheduling prob-
lem P, returns a number ofexogenous events(or disturbs)
that might be fired during the execution of the solution
[baseline(P)]. The production of such events must be
strictly related to the structure of each scheduling problem in
order to maximize the probability of event acceptance dur-
ing execution. In order to guarantee experimental fairness,
for each initial problem, theRSP-BG allows to produce a
specified number of disturbs characterized by a given over-
all difficulty.

Following the production of a reactive scheduling prob-



lem benchmarks, a number of explorative experiments have
been performed by simulating the execution of baseline
schedules synthesized by different proactive techniques and
therefore characterized by a different degree of initial “tem-
poral flexibility” (Cheng & Smith 1994).

The Reactive Scheduling Problem
Benchmark Generator

Real world uncertainty can be reasonably singled out in the
following points: activity delays, growth of activity process-
ing times, lowerings of resource availability, variations in
the number of activities, changes in the mutual ordering of
the activities.

Currently I have focused our attention on the temporal
changes which normally characterize the physical environ-
ments, such as delays of the activities start times and/or
modifications of activity processing times:
– delay of the activity start time: activity ai undergoes a

delay of∆st time units, att = taware
(edelay = 〈ai, ∆st, taware〉);

– change of activity processing time: activity ai’s process-
ing timepi is extended by∆p time units, attaware

(ep = 〈ai,∆p, taware〉).
In order to evaluate the difficulty of each benchmark,

proper metrics are introduced to evaluate the structure of
a scheduling problem as a set of unexpected eventsE =
{e1, . . . en} is introduced. For instance, let us consider a
scheduling problemP ′ obtained by adding to the original
problemP an eventek; given a metricµ(), it is then possi-
ble to compare the structures of the problemsP ′ andP by
considering theµ variation value:∆µ = |µ(P)− µ(P ′)|.

One of the possible metrics to use for this purpose is the
following, defined as the average width, relative to a given
temporal horizonH, of the temporal slack associated with
each pair of activities(ai, aj):

fldtH =
n∑

i=1

n∑

j=1∧j 6=i

slack(ai, aj)
H × n× (n− 1)

× 100 (1)

whereslack(ai, aj) is the width of the allowed distance in-
terval between the end time of activityai and the start time
of activity aj . This metric characterizes thefluidity of a so-
lution (Cesta, Oddi, & Smith 1998), i.e., the ability to use
flexibility to absorb temporal variation in the execution of
activities: it is a measure of the possibility that a temporal
variation concerning an activity is absorbed by the temporal
flexibility of the solution instead than generating a delete-
rious domino effect (the higher the value offldtH , the less
the risk, i.e., the higher the probability of localized changes).

The Schedule Execution Simulation Monitor
The idea behind the open schedule management framework
used in this work is simple: an off-line solver produces the
baseline solution and delivers it to an on-line module which
takes care of assessing its dynamic characteristics by stress-
ing it in a variety of ways.

The overall framework is composed of three modules: the
off-line solverand thereal world simulatorwork off-line
and have the job of, respectively, computing the initial so-
lution and generating the exogenous events, intended to dis-
turb the schedule execution; the third module, theon-line

solver, works on-line and is responsible to complete a simu-
lated execution of the initial solution (the baseline schedule).
A number of disturbing events synthesized by theRSP-BG
are injected during the simulated execution at the times spec-
ified within each event, and their effects are counteracted
by the on-line module, which is endowed with a portfolio
of reschedulingalgorithms to the aim of restoring schedule
consistency whenever necessary.

Testing Schedule Flexibility
The particular problem I focus upon is the Resource-
Constrained Project Scheduling Problem with minimum and
maximum time lags, orRCPSP/max. This is a particular
project scheduling problem which presents constraints that
define the minimum and maximum distance between the ex-
ecution of two activities1.

Each baseline solution is computed according to different
procedures: the result is the production of initial solutions
retaining different degree of temporal flexibility. A tem-
porally flexible solution can be described as a network of
activities whose start times (and end times) are associated
with a set of feasible values (feasibility intervals). Underly-
ing the activity network there exists a Temporal Constraint
Network (TCN (Dechter, Meiri, & Pearl 1991)), composed
of all the start and end points of each activity (time points),
bound to one another through specific values which limit
their mutual distances (activity on the arc representation).
The search approaches used in our schema focus on deci-
sion variables which represent conflicts in the use of the
available resources; the solving process proceeds by order-
ing pairs of activities until all conflicts in the current prob-
lem representation are removed. This approach is usually
referred to as Precedence Constraint Posting (PCP (Cheng
& Smith 1994)), because it revolves around imposing prece-
dence constraints (thesolution constraints) on the TCN in
order to solve the resource conflicts, rather than fixing rigid
values to the start times.

In (Cesta, Oddi, & Smith 1998) it is shown that the pre-
vious schedule representation inherently provides a certain
level of resilience at execution time (i.e. it producesFlex-
ible Schedules), even though temporal and resource con-
sistency are guaranteed only if the lower bounds (or upper
bounds) from the feasibility intervals are chosen for the time
points. In order to overcome the limitation imposed by the
flexible schedule, i.e. having only one consistent solution,
a generalization of the TCN produced by a PCP phase is
proposed in works such as (Cesta, Oddi, & Smith 1998;
Policellaet al. 2004), in which methods for defining a set of
both time and resource feasible solutions are presented. This
new representation is calledPartial Order Schedule(POS),
a special case of a flexible solution which is obtained by re-
placing the solution constraints with a new set of constraints
that impose a stronger condition on the TCN (chaining con-
straints). A POS is a flexible solution such that any possible
temporal solution is also a resource-consistent assignment.
As a third type of solution, fixed time solutions have been
tested against Flexible schedules andPOSs.

The execution of each baseline schedule has been sim-
ulated, in the face of an increasing number of exogenous

1RCPSP/max is recognized as a quite complex problem; in fact,
even the feasibility version of the problem is NP-hard. The reason
for the NP-hardness lies in the presence of maximum time-lags,
which inevitably imply the satisfaction of deadline constraints.



Algorithm 1 : Solve a scheduling problemP and Exe-
cute one of its solutionS

Input : problemP, policies parameterretract andpos
Output : Execution report

// off-line phase
S ← offlineScheduler( P)
if S does not existthen

STOP(SOLVER FAILURE)
if pos then

S ← createPOS( S)

// on-line phase
while a disturbE existsdo

if retract then
if propagation( E, S) fails∨ S is not resource
consistentthen

S ← removeChoice (S)
if propagation( E,S) fails then

STOP(EXECUTION FAILURE)
S ← onlineScheduler( S)
if S does not existthen

STOP(EXECUTION FAILURE)
if pos then

S ← createPOS*( S)

else
if propagation( E,S) fails then

STOP(EXECUTION FAILURE)
if S is not resource consistentthen

S ← onlineScheduler( S)
if S does not existthen

STOP(EXECUTION FAILURE)

events, according to the Algorithm 1.
The algorithm is divided in an off-line and an on-line

section; in the former, the initial solution can be com-
puted by theofflineScheduler() either as a flexi-
ble schedule (case FS) or as aPOS (case POS) through
the createPOS() procedure, depending on the value of
the flag pos . In the latter, and regardless how the ini-
tial solution is produced, it is put into execution according
to different modalities, depending on the value of the flag
retract . At each step of the execution cycle, the en-
vironment is sensed for possible disturbs. Afterwards, if
retract = true, the execution algorithm firstly removes
all the constraints imposed in the previous solving process
(removeChoice() ), and secondly looks for a new so-
lution (onlineScheduler() ), possibly creating a new
POS. If retract = false, a new solution is searched leav-
ing the previously imposed solution constraints untouched.
In both cases, the algorithm initially checks for temporal
consistency after each disturb is acknowledged through the
propagation() procedure.

Preliminary Experiments and Results
Table 1 shows some preliminary results of our investigation
(refer to (Rasconi, Policella, & Cesta 2006) for a more de-
tailed description). As explained earlier, we evaluate the dif-
ferent combinations of off-line/on-line policies — POS-R
(POS + retraction), POS-NR (POS + no retraction), FS-
R (Flexible Schedule + retraction), and FS-NR (Flexible

Schedule + no retraction). To make the comparison more
complete, we add a further execution mode based on the use
of fixed time solution where each activity is assigned a sin-
gle start time instead of a set of alternatives.

For each entry in the tables, we take into account the fol-
lowing aspects: the number of unexpected events (number of
disturbs) injected during each single execution, the percent-
age (with respect to the number of initially solved problems)
of the schedules which successfully completed the execution
(% executed), the execution failure percentage due to the in-
ability to find an alternative solution (% failed resch.), the
execution failure percentage due to the impossibility to ac-
cept the exogenous event on behalf of the TCN (% refused
events), the average makespan of the solutions at the end of
the execution (mk), the average difference between the ini-
tial and the final makespan (∆ mk), the percentage of the
performed rescheduling actions with respect to the number
of the injected disturbs (% rescheduling)2, the average CPU
time, in msecs, to compute the initial solution (CPU Off-
line), the average CPU time spent to perform all reschedul-
ings during the execution (CPU On-line), thesensitivityof
activity start time w.r.t. the execution process (ψ).

For a fair comparison of the different policies, the data
presented in the rightmost part of the table are computed on
the basis of the problem instances commonly executed with
all the execution strategies.

One of the most striking results that we observe regards
the different abilities in preserving the executability of a
solution. The outcome shows that the use of partial or-
der schedules tends to lower the success rate in terms of
completed executions (% executedcolumn). As the table
presents, this is mainly due to the dramatic increase in the
number of rejected disturbs (refused eventscolumn). This
apparent anomaly can be explained as follows: the creation
of aPOS inherently involves a higher level of “constrained-
ness” in the TCN, in order to guarantee a resource conflict-
free solution. This circumstance inevitably makes the TCN
more reluctant in accepting new contraints, in the specific
case, the constraints which model the exogenous events.
Also, note how this effect gets worse as the number of the
exogenous events increases (86,87% in the POS-NR case
with 1 event, against 56,66% with 5 events).

The rightmost part of Table 1 offers different yet interest-
ing results. One of the most important characteristic to be
observed is the extremely low rate of necessary reschedul-
ings exhibited by the POS-R/POS-NR policies (% resched.
column): this result is all but surprising and confirms the
theoretical expectations which motivated the study on the
POS. As shown, the need for schedule revision in case
of POS utilization roughly decreases by more than 50% in
case of 5 disturbs.

A maybe misleading results is given by the compari-
son of the final makespan (mk) obtained respectively by
using the Retraction and the No-Retraction strategies. In
fact, one would expect the R strategies (which allow a
greater re-shuffling) to return better makespan values with
respect to NR strategies. This is not our case because, as
described before, the rescheduling actions are performed
by using a less specialized makespan-optimizing procedure
(onlineScheduler in Algorithm 1) which tends to spoil

2We recall that we have a rescheduling action each time the on-
line solver is invoked.



number of % failed refused mk ∆mk % CPU CPU ψ

disturbs executed resch. events resched. off-line on-line
FS-R 91,04% 2,08% 6,88% 424,60 9,02 24,38% 36242,48 766,15 5,44

POS-R 1 87,29% 2,08% 10,63% 419,88 5,07 11,58% 36287,86 303,97 3,00
FS-NR 91,87% 1,25% 6,87% 419,06 3,48 24,14% 36242,48 130,74 1,48

POS-NR 86,87% 2,50% 10,62% 417,11 2,31 11,58% 36287,86 54,59 1,05
fixed time 89,79% 3,75% 6,45% 437,36 21,78 99,75% 36242,48 3035,68 15,16

FS-R 85,21% 3,13% 10,66% 435,54 13,95 23,04% 30259,15 874,70 9,48
POS-R 2 76,46% 2,29% 21,25% 429,22 8,41 10,03% 32371,82 674,86 5,17
FS-NR 85,62% 2,71% 11,66% 427,90 6,30 22,88% 30259,15 258,50 3,07

POS-NR 73,95% 5,00% 21,04% 424,74 3,93 9,56% 32371,82 97,46 2,02
fixed time 81,25% 8,54% 10,20% 446,62 25,02 99,53% 30259,15 2768,37 17,73

FS-R 79,17% 3,96% 16,87% 449,84 19,40 20,27% 26318,37 963,16 11,83
POS-R 3 69,58% 2,92% 27,50% 441,49 11,93 9,41% 28406,98 675,18 6,96
FS-NR 80,00% 2,50% 17,50% 439,66 9,23 22,37% 26318,37 371,03 4,08

POS-NR 67,71% 5,41% 26,87% 436,24 6,68 9,63% 28406,98 151,26 3,16
fixed time 77,50% 6,87% 15,62% 458,32 27,89 99,22% 26318,37 3716,15 19,77

FS-R 70,21% 4,17% 25,63% 464,12 28,85 22,45% 25682,40 2391,92 17,36
POS-R 5 60,42% 3,13% 36,46% 455,56 21,07 10,57% 27544,98 1748,56 13,12
FS-NR 70,41% 3,33% 26,25% 447,42 12,15 21,66% 25682,40 646,90 5,80

POS-NR 56,66% 7,08% 36,25% 444,68 10,18 10,48% 27544,98 289,17 4,81
fixed time 67,08% 8,33% 24,58% 465,56 30,29 98,43% 25682,40 6721,48 19,74

Table 1: Summarizing data for each execution strategy (the values in the last six columns are computed on the intersection set
of all successfully executed j100 problems)

the makespan quality. On the other hand, the NR strategy
that tries to maintain the schedule continuity is also able to
obtain a preservation of makespan values.

Another interesting aspect can be observed by compar-
ing theCPU on-linevalues between theRetractionandNo
Retractionstrategies. In general, the Retraction methods
require a higher CPU on-line load because the removal of
the solution constraints inevitably re-introduces some re-
source conflicts that must be solved by rescheduling. But
the intriguing result lies in the fact that this difference in the
CPU on-line rates standsdespite the comparable amount of
performed reschedulings. Let us look at the difference be-
tween the FS-R and FS-NR rates: it can be seen that, in the
5 events case, we have 2392 ms. (FS-R) against 647 ms.
(FS-NR), although the number of performed reschedulings
is practically the same (≈ 21%)! The same effect can be
observed between the POS-R and POS-NR cases: 1748 ms.
against 289 ms, notwithstanding the same (≈ 10.5%) num-
ber of reschedulings. This circumstance can be explained as
follows: NR execution modes retain all the temporal con-
straints of the previous solution: hence, the rescheduler is
bound to work on a smaller search space, finding the next
solution almost immediately.

Ongoing Work
The analysis being performed on the considered schedul-
ing benchmarks is returning several interesting information.
Some results confirm the expectations while other require a
certain level of analysis in order to be correctly understood.
For instance, the rigid behavior exhibited by the fixed time
schedules when confronted with dynamically variable envi-
ronments is totally confirmed, as confirmed is the behavior
of schedules characterized by a more flexible nature.

However, among several other aspects, the experiments
revealed a scarce capability in accepting exogenous events
on behalf of thePOS: post-experimental analysis about this
unexpected effect has shown that this drawback is due to an
increase of constrainedness in the TCN, necessary to guar-
antee a resource conflict-free solution at all times. This has

suggested several research lines which are the object of on-
going work, such as the production of a different class of
POSs, through the development of alternative chaining pro-
cedures aimed at minimizing the inevitable constrainedness
increase in the TCN. Moreover, the observed dynamic be-
havior of the schedules suggests to study the introduction of
different reactive techniques. For instance, a possible ap-
proach under current development is based oninformed re-
traction procedures, where the constraint removal strategy
is preceded by a search phase to determine the constraints
which are to be retracted, depending on the particular dy-
namic requirements.
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