
Improving Planning Techniques for Web Services

Francisco Carlos Palao Reinés
Dept. of Computer Science and Artificial Intelligence

University of Granada, SPAIN
palao@decsai.ugr.es

Abstract

The new trend on software development is oriented to
web services running in collaborative environments. In-
telligent planning techniques are very useful to compose
complex calls to these web services. However, there are
still some issues that need to be improved to use plan-
ning and scheduling techniques in dynamic and collab-
orative contexts like the web service environment. This
paper proposes some extensions to our planning system
for using it to compose web service calls.

Introduction
This research extends the SIADEX environment, which is
a planning system oriented to assist the command technical
staff for decision support in forest fire fighting operations.
The system is composed of different components communi-
cating each other and working together through the Internet.
These components are implemented as web services: they
are pieces of software that make themselves available over
the Internet and use standard XML messaging system. The
World Wide Web is turning into a new paradigm called the
Collaborative Web (Pallot, Prinz, & Schaffers 2005) where
not only documents are connected through the network but
collaborative services as well. The SIADEX project has
some different web services working together for a common
goal (Figure 1). One web service to store the knowledge of
the problem; another to make the planning process; and a
third monitors the plan execution. The planning web service
uses the SIADEX planner that has been developed by us and
is a forward state-based HTN temporal planner (Castillo et
al. 2006). Moreover there is a user interface where techni-
cal staff can introduce the problem to solve it, see the plan
generated by the planner and follow the execution.

To achieve a correct system operation we need to call the
different web services in the correct order and time. In or-
der to do that we have developed a central server that syn-
chronizes all the component of the architecture. This cen-
tral server has been called the InfoCenter. The InfoCen-
ter is based on a publish/subscribe architecture (Carzaniga,
Rosenblum, & Wolf 2001) (PSA) that works as follows.
Each web service or user interface can publish information
in the central server (InfoCenter) and also it may subscribe to
the information (published by others web services or clients)

that they want. For instance, when the technical staff pub-
lishes the problem, the InfoCenter sends it to the planner
web service that is subscribed to it.

At the present, our architecture is very simple because
only a web service of each kind is available and no exter-
nal web services can connect to the InfoCenter to make the
system more complete. Therefore the InfoCenter can easily
compose calls to the web services to achieve the requests,
the execution and the monitoring of the plans.

Now, we want to extend the system not only to assist
the technical staff for decision support in forest fire fight-
ing but also for e-business, e-tourism and workflow applica-
tions among others. Therefore we need to extend the system
with new web services, some of them different than the cur-
rent ones and another with similar capabilities. However, the
current PSA presents some lacks that impede the extension
of the system. For instance, the InfoCenter can not choose
what web service is the correct one (or optimal one) when
there are more than one web service that offer the same func-
tionality. Furthermore, the PSA is purely reactive because it
only make web service calls upon receptio nof a publication
and it is not able to compose sequences of web services with
a longer time horizon.

In order to extend the system architecture we are going to
use planning techniques into the InfoCenter, as well some
frameworks to use planning techniques for web services
composition have been purposed (Madhusudan & Uttams-
ingh 2006; Mithum, desJardins, & Finin 2003) but there are
still a lot of issues to solve to fulfill our InfoCenter require-
ments. We are thinking of using our own planner, SIADEX,
to use it inside the InfoCenter. However, we need to improve
it for some reasons. Firstly, the web services environment is
a very dynamic context. Therefore, the state of web services
(the domain) and the requests of the users (the goal) can
change during the execution of calls to web services. And
our planner can not check domain and state changes during
planning time. Secondly, there could be a large number of
web services with similar capabilities and the InfoCenter has
to evaluate them to decide which one is the best to achieve
its goals. And thirdly, we are thinking of an architecture
oriented to the Collaborative Web, so our intelligent Info-
Center need to communicate with others intelligent servers
in order to access trough them to resources that are not di-
rectly connected to it. So, the planner needs to be extended



with distributed planning skills and to be able to understand
web services standard languages.

In this work we present our system SIADEX as a frame-
work that will be extended with novel ideas to give solutions
to all these problems.

The SIADEX architecture
SIADEX is a system being developed under a research con-
tract with the Andalusian Regional Ministry of Environ-
ment. Its objective is to assist the command technical staff
in the design, dispatching and progress of forest fire fighting
plans. It is composed of different, domain independent web
services (Figure 1), that offers different services, that are dis-
tributed and communicate with each other using XML-RPC
standard protocols.

• SIADEX Planner: Is a planning web service that can be
called by XML-RPC protocol. SIADEX is a forward
state-based HTN temporal planner (Castillo et al. 2006).
It uses its own hierarchical extension of PDDL 2.2 level
3 language, that makes it very expressive. It also has the
capability to include embedded Python scripts in the do-
main definition, that allows us to implement external calls
at planning time.

• BACAREX: Is an ontology web service that stores the
knowledge related to the planning domain. In our case its
stores information about the forest fire fighting domain in
Andalusia (Spain). BACAREX is also capable of gener-
ating domain and problem files that are processed by our
planning web service.

• Monitor service: This web service splits the plan into sev-
eral pieces and sends every piece to the person in charge
of executing it. These parts of the plan will be presented to
the user using any portable electronic device. The moni-
tor controls the plan executions attending the dependences
between tasks and their possible delays (Castillo et al.
2006).

• User interfaces: We have provided GUI capabilities to the
planning system for the expert. The GUI is built on top
of the ArcView GIS tool (ESRI ). This GUI is totally do-
main dependent and oriented toward the interaction with
the forest fire technical staff. We have also developed a
web interface to monitor the execution of the plan with
any available web browser.

• InfoCenter: It is the central component of our architec-
ture. All the aforementioned web services are connected
to the InfoCenter and collaborate each other by passing
messages through it. The InfoCenter has been developed
as a publish/subscribe architecture (PSA) in which the
others web services can subscribe to the information that
they want and publish the information that they have to
share with others web services. The PSA works correctly
in small environments like this with a few web services
but it is purely reactive. And we want to extend this archi-
tecture to larger and more dynamic environments where
we would need a deliberative server able to compound se-
quences of calls to web services. To achieve this we are

thinking on extending the InfoCenter with planning tech-
niques that we need to develop and are explained below.

Composing Web Services and SIADEX
There is an interchange of information between all the web
services described above during a planning episode to as-
sist the technical staff for decision support. In this section
we show how this interchange of information is done at the
present and how would be done in the future supporting
larger environments of web services.

Present operation between web services
The InfoCenter is the Broker Server in our PSA . Each web
service or user interface can publish information in the cen-
tral server (InfoCenter) and also can subscribe to the infor-
mation (published by others web services or clients) that
they want. The basic cycle of the present architecture is:

1. The user interface publishes the goal of the planning
problem defined by the technical staff and the InfoCen-
ter sends it to the ontology web service that is subscribed
to all new information about the world state and the new
goals.

2. The ontology web service BACAREX publishes the do-
main and the problem translated into PDDL from the
ontology knowledge and the InfoCenter sends it to the
SIADEX Planner that is subscribed to all the domains and
problems in PDDL generated.

3. The SIADEX Planner publishes the plan generated and
the broker server sends it to the Monitor because it is sub-
scribed to new plans.

4. The Monitor publishes the actions that have to be exe-
cuted at each time and the InfoCenter sends it to the tech-
nical staff in charge of doing it.

5. Until the plan is completely executed, the technical staff
send (public) confirmations about actions completed to
the InfoCenter and the Monitor, that is subscribed to new
events of the actions, publishes new actions. BACAREX
is also subscribed to the new events of the actions in order
to update the world state in the ontology.

The cycle shown above can be carried out with the present
PSA that implements the InfoCenter. However, if we had
more web services connected and some of them offer the
same or similar functionalities, we would need to make more
complex compositions of web services that we can not make
now. At the moment, the InfoCenter can not choose what
web service is the correct one (or optimal one) when there
are more web services that offer the same functionality. Fur-
thermore, the PSA is purely reactive because it only make
web service calls when receive a publication and it is not
able to compose sequences of web services with a longer
time horizon. Note that it is not only a selection problem
to pick the best web service, we need to make a sequence
of calls to web services to know if the goal can be achieved
with the available web services. We want to keep the easy



Figure 1: General overview of SIADEX Architecture.

connectivity and scalability of our current PSA but in a de-
liberative way. In order to do that, we will extend the Info-
Center or Broker Server with intelligent planning techniques
like we describe below.

Future operation between web services

In the last section we have seen that we need to compose
complex calls to web services in dynamic and larger envi-
ronments. In order to do that we need to improve some fea-
tures of our own SIADEX planner to use it in the InfoCenter.
The features with which we need to extend our planner are
shown in this section.
Continuous revision of the state and the goal. A great
advantage of our PSA is the high response capabilities to the
environment changes. So, it has to be supported by the plan-
ner. The set of services available could be constantly chang-
ing as online or offline status while we are executing the
sequence of calls to web services. In addition the user could
change his goals at execution time. Therefore the planning
process needs to be continually checking for changes in the
domain, in the state or in the goals (Giunchiglia & Traverso
1999; Madhusudan & Uttamsingh 2006) during the execu-
tion of web services. We can achieve this using the embed-
ded Python scripts in the domain definition to implement
external calls at planning time. There are two kinds of calls
to extern web services. Firstly, calls to ensure a complete
solution by checking that the web service is available. Sec-
ondly, calls to ensure a sound solution by checking that the
web service behavior is the correct one.
Automated generation of domains and heuristics. As
new web services are connected or disconnected to the Info-
Center the domain knowledge changes and the planner need
to know it to compose the sequences of calls to web ser-
vices (plans). We need to make an ontology inside the Info-
Center that stores the web service information (the domain)
and define an automatic process that translates the ontology
knowledge into the PDDL readable by the planner (Sirin et
al. 2004). In addition, this web service has to be evaluated

to make optimal plans. We need to implement automated
heuristics generations (Zimmerman & Kambhampati 2003).
To judge the optimality of the plans we need to evaluate the
web services by using metrics about the network behavior
(response time, transfer rating) and the final user preferences
(it could be the price of a product, the duration of a trip, etc).

Distributed planning capabilities. As we have said in the
Introduction section, Internet is turning into a new paradigm
named the ”Collaborative Web” where services collaborate
between them. Therefore the InfoCenter has to be able to
share with other intelligent servers its plans (or part of them)
or to ask others intelligent servers for plans (or part of them).
In order to do that we need to consider all the work done in
collaborative planning environments (desJardins & Wolver-
ton 1999). Furthermore, the InfoCenter has to be able to
understand standard web service description languages such
as WSDL (Christensen et al. 2001) and to generate plan out-
puts as web service flows with standard specifications such
as BEPEL4WS (Curbera 2002) or OWL-S (Coalition 2003).

Concluding remarks
We have described a new approach in the SIADEX planning
system architecture in order to prepare it for the new trends
on web services environments. The main challenges faced at
planning time are in dynamic conditions and the need to col-
laborate with others web services architectures. We sketch
an extension of our planner to check the completeness and
soundness of the solutions in these environments and to be
able to communicate with others web services architectures.
All the changes proposed are about the central component
of the architecture: the InfoCenter. That is the one in charge
to compose the sequences of calls to web services with the
new planning techniques that will be developed. These se-
quences of calls to web services have to be formulated in
standards specifications such as BPEL4WS or OWL-S.

Acknowledgements
This research was supported by the contract NET033957
with the Andalusian Regional Ministry of Environment for



the assisted design of forest fighting plans.

References
Carzaniga, A.; Rosenblum, D.; and Wolf, A. 2001. De-
sign and evaluation of a widearea event notification service.
ACM Transactions on Computer Systems 19:332–383.
Castillo, L.; Fdez-Olivares, J.; Garcia-Perez, O.; and Palao,
F. 2006. Efficiently handling temporal knowledge in an htn
planner. In International Conference on Automated Plan-
ning & Scheduling.
Christensen, E.; Curbera, F.; Meredith, G.; and Weer-
awarana, S. 2001. The web services descriptio nlanguage
wsdl. http://www-4.ibm.com/software/solutions/web-
services/resources.html.
Coalition, O. S. 2003. Owl-s: Semantic
markup for web services. OWL-S White Paper
http://www.daml.org/services/owl-s/0.9/owl-s.pdf.
Curbera, F. e. a. 2002. Business process exe-
cution language for web services. http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel.
desJardins, M., and Wolverton, M. 1999. Coordinat-
ing planning activity and information flow in a distributed
planning system. AI Magazine 20:45–53.
ESRI. http://www.esri.com.
Giunchiglia, F., and Traverso, P. 1999. Planning as model
checking. In In Proc. 5th European Conference on Plan-
ning.
Madhusudan, T., and Uttamsingh, N. 2006. A declarative
approach to composing web services in dynamic environ-
ments. In Decision Support System 41 (2) 325-357.
Mithum, S.; desJardins, M.; and Finin, T. 2003. A planner
for composing services described in daml-s. In ICAPS2003
Workshop on Planning for Web Services.
Pallot, M.; Prinz, W.; and Schaffers, H. 2005. Fu-
ture workplaces, towards the ’collaborative web’. In 1st
AMI@WORK Communities Forum Day.
Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2004.
A declarative approach to composing web services in dy-
namic environments. In J. Web Sem 1(4): 377-396.
Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: Looking back, taking stock,
going forward. AAI Magazine 24:(2) 7396.


