
Thesis Summary: First-order Decision-Theoretic Planning

Scott Sanner
Department of Computer Science

University of Toronto
ssanner@cs.toronto.edu

1 Overview
MDPs have become the de facto standard for modelling
decision-theoretic planning problems. Recent work on
MDPs has focused primarily on two research areas:

1. Language extensions for MDP models. The language
used to specify an MDP determines how succinctly a
given domain can be described. In addition, the struc-
ture used in succinct model specification often has a direct
impact on the design of algorithms that can efficiently ex-
ploit this structure.

2. Exploiting MDP structure for efficient solution algo-
rithms. There are many types of MDP structure that can
be exploited by solution algorithms to avoid full state and
action enumeration. By exploiting this structure, solution
algorithms can scale to MDPs that would be otherwise
unsolvable with full state and action enumeration.

In recent years, first-order MDPs (FOMDPs) (Boutilier,
Reiter, & Price 2001) have become a popular formalism for
modelling decision-theoretic planning problems, owing to
their ability to succinctly represent planning problems stated
as stochastic variants of STRIPS (Fikes & Nilsson 1971) or
PDDL (McDermott et al. 1998). In this thesis summary, I
outline current work and future directions for research in the
areas of language extensions and exploitation of structure to
efficiently represent and solve first-order decision-theoretic
planning problems.

2 Previous and Current Research
To date, previous and current research has focused primarily
on exploiting various types of structure that naturally occurs
in decision-theoretic planning problems.

2.1 Exploiting Independence for Exact Solutions

Previous work (Boutilier, Dearden, & Goldszmidt 2000;
Hoey et al. 1999) for solving propositionally factored MDPs
has used tree and ADD (R.I. Bahar et al. 1993) data struc-
tures to exploit context-specific independence (Boutilier et
al. 1996). Very recent work on affine extensions of
ADDs (Sanner & McAllester 2005) has provided a data
structure that extends ADDs to compactly exploit additive,
multiplicative, and context-specific independence in MDP

inference. Empirical results suggest that the AADD outper-
forms both traditional tabular representations and ADDs on
a variety of problems containing additive and multiplicative
structure.

In another vein, current research on first-order ADDs
(FOADDs) has examined methods for generalizing the ADD
data structure from propositional to first-order representa-
tions. This work allows decision diagram nodes to con-
sist of full first-order formulae that are lexicographically or-
dered with respect to a fixed relation ordering. Then, or-
dered resolution can be efficiently applied during a gener-
alization of the standard ADD Reduce(·) and Apply(·) op-
erations to prune out inconsistent nodes in the resulting de-
cision diagram. With the FOADD data structure and algo-
rithms properly defined, it is then straightforward to extend
them to a first-order affine ADD (FOAADD), thus allow-
ing FOMDP solution algorithms to exploit context-specific,
additive, and multiplicative structure. Initial empirical re-
sults with the FOADD approach for value iteration have
been promising, showing a marked increase in performance
over a simple enumerated case representation. However,
more comprehensive experimentation with both FOADDs
and FOAADDs is needed to fully evaluate the impact of
each of these data structures on the efficiency of FOMDP
inference algorithms.

2.2 Exploiting Basis Function Representations for
Approximate Solutions

Given the complexity of solving first-order MDPs, approx-
imation techniques offer an efficient alternative to finding
an exact solution. One popular method for approximating
MDP solutions has been to represent the value function as
a linear combination of weighted basis functions. Previous
work (Guestrin et al. 2002; Schuurmans & Patrascu 2001)
has provided efficient solution techniques for finding good
sets of basis function weights by exploiting the structure of
propositionally factored MDPs.

More recent work on first-order approximate linear
programming (FOALP) solution approaches (Sanner &
Boutilier 2005) has extended these basis function tech-
niques to efficiently solve for approximate value functions
in FOMDPs. This work represents the value function as a
weighted set of first-order basis functions. It then uses a
first-order generalization of cost network maximization in



tandem with constrain generation techniques to efficiently
solve for settings of these weights. Empirical results have
shown that these techniques are relatively efficient in prac-
tice and yield policies that outperform both handcoded
heuristics and myopically optimal policies. In addition,
these solutions yield error bounds on policy quality that ap-
ply equally to all domain instantiations of a problem – a
novel result for the relational and first-order MDP literature.

However, despite the successes of the FOALP work, there
are many future refinements to this work that could further
improve results. One interesting question for future work is
whether the uniform relevance weighting of partitions cur-
rently used in the FOALP objective is the best approach.
It would be informative to explore alternative FOALP ob-
jective specifications and to evaluate their impact on value
function quality over a variety of domains. In addition, it
is an interesting question as to whether dynamic reweight-
ing schemes could improve solution quality by identifying
state partitions with large error and adjusting their relevance
weights so they receive more emphasis on the next LP iter-
ation. Altogether, such improvements to FOALP could bol-
ster an already promising approach for efficiently and com-
pactly approximating FOMDP value functions.

3 Future Research Directions
Future research directions build on current research direc-
tions and additionally look at first-order MDP modelling
language extensions and the generalization of solution al-
gorithms to handle such extensions.

3.1 Modelling Language Extensions

Perhaps one of the most important frontiers for FOMDP
and general decision-theoretic planning research is that of
providing the user with a rich set of language features that
enable them to naturally model real-world problems. Fol-
lowing are a number of modelling language extensions that
were motivated by actual planning problems along with a
brief discussion of the modifications to solution algorithms
to handle such extensions.

Sum and Counting Aggregators In first-order domains,
it is often very natural to predicate transition function and re-
ward dependencies on the count of objects satisfying some
criteria. For example, in a logistics domain, the probabil-
ity that a delivery truck leaves on time may depend on the
number of packages being loaded on the truck, and the re-
ward might be the count of packages successfully delivered.
While counting and inequalities can be stated for specific
values within first-order logic, generic counting for poten-
tially infinite domains cannot be done without augmenta-
tions of the FOMDP specification language. For example,
using a count aggregator #p φ(p) which counts the num-
ber of instantiations of p that make φ(p) true, one can eas-
ily state a reward that scales with the number of packages
successfully delivered: #p [Package(p) ∧ Delivered(p)].
However, there is no finite representation of such a reward
for potentially infinite domains when using only standard
first-order quantifiers; Such a specification would need to

provide a condition and corresponding reward value for ev-
ery possible count of packages.

The specification of sum and counting aggregators and the
necessary extension of the regression operator is straightfor-
ward for FOMDPs. Thus, a general research approach for
solving FOMDPs with sum and count aggregators would
rely on defining the general backup operators and a full
dynamic programming (DP) solution algorithm. However,
solving such extensions of FOMDPs with a full DP algo-
rithm presents a number of technical complications. Specif-
ically, simplification and consistency checking are needed by
full DP solution algorithms and the complex interaction be-
tween quantifiers and sum aggregators makes both of these
operations very difficult.

Consequently, once the full DP solution to FOMDPs with
sum and count aggregators has been defined, this defini-
tion could be applied to a more tractable approximate so-
lution approach using basis functions. Basis function so-
lution techniques would pose an elegant and tractable so-
lution approach since they do not require that formulae be
simplified and since sampling techniques can be used to re-
duce the sum aggregators to first-order formulae for which
consistency checking is straightforward. Although sampling
and the avoidance of simplification considerably blowup the
representation, these solution methods discard this represen-
tational blowup and project the value function down to a set
of basis function weights, thus maintaining compactness.

Handling Quantity Sum and counting aggregators are
useful for counting domain objects satisfying some cri-
teria, but discrete and continuous quantities can also
be represented directly as relational attributes, e.g.
hasPackages(Paris, 5). While this specification does not
allow one to model the specific properties of individual el-
ements contributing to the quantity, it is a commonly used
construct in planning domains and is simple to formalize
in a FOMDP using the + and − arithmetic functions and
equality/inequality predicates. The primary difficulty with
reasoning in such domains is introducing relevant rules of
inference for performing tractable inconsistency detection
with the intended interpretation of these additional language
elements.

Topological Structure Topological structure occurs com-
monly in a number of planning domains, especially those
with underlying location constraints. For example, logistics
problems may require that trucks can only travel on certain
roads to reach different cities, and that planes can only fly
to certain airports in certain cities. While these domains can
be formalized in FOMDPs for arbitrary underlying topolo-
gies, the solutions to such FOMDPs are often intractable as
they have to take into account every possible topology for a
potentially infinite number of locations.

When considering problems with an underlying topology,
it is reasonable to assume that the topology is fixed and to
solve the FOMDP with respect to that specific topology. In
doing this, one can then make use of efficient graph algo-
rithms in place of first-order reasoning during the FOMDP
solution process. Such techniques have the capacity to yield
efficient solutions for problems with underlying topologies



– solutions which would otherwise prove difficult with first-
order reasoning techniques alone.

Concurrent Actions Many real-world planning domains
allow multiple non-interfering actions to be executed sim-
ulataneously. While this can currently be done within the
FOMDP framework, it involves specifying primitive actions
corresponding to all possible joint action combinations that
could take place. This approach is inefficient in that it re-
quires an inordinately (if not infinitely) large number of
joint actions, but also the specification of positive and neg-
ative effects for each of these actions. What is needed for
efficient reasoning with concurrent actions is an efficient
method for factoring both the effects and the value of si-
multaneously executed primitive actions in order to tractably
deal with the combinatorial explosion of potential action ex-
ecutions. Two potential sources of ideas for this work are
ConGolog (De Giacomo, Lesperance, & Levesque 2000)
which specifies transition semantics for situation calculus
domains with concurrent and exogenous actions, and work
in MDPs (Meuleau et al. 1998) that deals with weakly cou-
pled MDPs, each MDP having its own set of actions and
local effects.

Program Constraints Quite often, one has a good idea of
the general sequence of actions that an agent should follow
and there are simply a few choice points which should be left
to the agent to decide according to some decision-theoretic
criterion. In this case, it is useful to extend FOMDP solution
techniques to handle program constraints such as those spec-
ified by DT-GOLOG (Boutilier et al. 2000). The primary
approach to solving a FOMDP under such constraints should
be a relatively straightforward extension of the hierarchical
abstract machine (HAM) framework (Parr & Russell 1998;
Andre & Russell 2001; 2002) for solving MDPs. However,
modifications will be required to generalize this technique
to first-order state spaces.

3.2 Efficient Approximation Algorithms

There appear to be two distinct approaches taken by
FOMDP solution algorithms: extensions of value and policy
iteration for MDPs and extensions of linear programming
techniques for basis function approximations of MDP value
functions. Each of these techniques has its own advantages
and disadvantages and thus it is worth examining possible
extensions that can be made to both classes of algorithms.

Approximation Techniques that Exploit Indepen-
dence Value iteration techniques based on FOADDs and
FOAADDs hold the promise of yielding efficient exact
solutions to FOMDPs. However, it is also interesting to
look at approximation extensions of these algorithms in
the flavor of the APRICODD (St-Aubin, Hoey, & Boutilier
2000) extension of SPUDD (Hoey et al. 1999). In brief,
APRICODD approximates an MDP value function by inter-
leaving SPUDD value iteration steps with an approximation
step that prunes nodes from the value function ADD in order
to maintain a tractable representation. If the approximation
is carried out so that it keeps track of the minimum and
maximum bounds for the value function, then it is still

possible to achieve convergence of the approximated value
function under certain conditions. Following this work,
APRICODD-style extensions to SPUDD could likewise be
generalized to FOMDP value iteration algorithms based
on FOADDs and FOAADDs, thus creating a new class of
FOMDP approximate solution algorithms.

There are two main research questions for such exten-
sions that have not been considered yet. First, while efficient
ADD-based value function approximation techniques have
been explored in APRICODD, approximation with AADDs
is still an open research area. AADDs pose a number of
difficulties for approximation techniques, namely that the
properties of the data structure do not permit the direct
extension of methods used for approximation with ADDs.
Second, while efficient MDP value function approximation
techniques have been explored for propositional MDPs, it is
an open question as to whether these same techniques will
apply to FOMDPs or whether modifications must be made
that take into consideration the first-order structure found in
FOADDs and FOAADDs. Both of these questions will need
to be resolved for efficient FOMDP approximate solution
techniques based on FOAADDs.

Alternate Basis Function Approximation Approaches
Currently, only the first-order approximate linear program-
ming (ALP) (Sanner & Boutilier 2005) approach to approx-
imating the FOMDP value function as a linear combination
of basis functions has been considered. However there are
two alternate approaches to finding basis function weights
that have also been considered in the propositional MDP lit-
erature. These two methods are approximate value iteration
(AVI) and approximate policy iteration (API), the latter hav-
ing been identified as typically offering higher quality solu-
tions than ALP.

While it is relatively straightforward to define the first-
order extensions of the propositional versions of AVI and
API in the spirit of the extension for ALP, this leaves a num-
ber of computational issues which have posed problems for
such extensions. Both AVI and API require that a policy be
derived at each step for their respective weight projection
tasks.1 However, naive methods for deriving a policy from
a set of Q-functions have turned out to yield extremely large
policies and have proved intractable to work with in prac-
tice. Before AVI and API can be effective techniques for
approximate FOMDP solutions, a compact method for rep-
resenting the policy and computing it must be derived. For
now, one promising approach appears to involve structuring
the policy using a FOADD or FOAADD to avoid unneces-
sary redundancy and to provide as compact a representation
of the policy as possible.

References
Andre, D., and Russell, S. 2001. Programmable reinforce-
ment learning agents. In In Advances in Neural Informa-

1While the fact that a policy needs to be derived for API is
obvious, this may not be the case for AVI. However it turns out
that given the infinite action space of FOMDPs, deriving the max

over the Q-functions inherently requires carrying out an operation
equivalent to finding the policy for a given value function.



tion Processing Systems, volume 13.
Andre, D., and Russell, S. 2002. State abstraction for
programmable reinforcement learning agents. In In Proc.
AAAI-02. Edmonton, Alberta: AAAI Press.
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller,
D. 1996. Context-specific independence in Bayesian net-
works. In UAI 96, 115–123.
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-theoretic, high-level agent programming
in the situation calculus. In AAAI 00, 355–362.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored represen-
tations. Artificial Intelligence 121:49–107.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic
dynamic programming for first-order MDPs. In IJCAI 01,
690–697.
De Giacomo, G.; Lesperance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2):109–
169.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. AI Journal 2:189–208.
Guestrin, C.; Koller, D.; Parr, R.; and Venktaraman, S.
2002. Efficient solution methods for factored MDPs. JAIR.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
UAI 99, 279–288.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL—The planning domain definition language.
Meuleau, N.; Hauskrecht, M.; Kim, K.-E.; Peshkin, L.;
Kaelbling, L. P.; Dean, T.; and Boutilier, C. 1998. Solving
very large weakly coupled Markov decision processes. In
AAAI 98, 165–172.
Parr, R., and Russell, S. 1998. Reinforcement learning
with hierarchies of machines. In M. Jordan, M. K., and
Solla, S., eds., Advances in Neural Information Processing
Systems 10. Cambridge: MIT Press. 1043–1049.
R.I. Bahar; E.A. Frohm; C.M. Gaona; G.D. Hachtel; E.
Macii; A. Pardo; and F. Somenzi. 1993. Algebraic De-
cision Diagrams and Their Applications. In IEEE /ACM
International Conference on CAD.
Sanner, S., and Boutilier, C. 2005. Approximate linear
programming for first-order mdps. In UAI 2005.
Sanner, S., and McAllester, D. 2005. Affine algebraic de-
cision diagrams (aadds) and their application to structured
probabilistic inference. In IJCAI 2005.
Schuurmans, D., and Patrascu, R. 2001. Direct value ap-
proximation for factored MDPs. In Advances in Neural In-
formation Processing Systems 14 (NIPS-2001). to appear.
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2000. APRI-
CODD: Approximate policy construction using decision
diagrams. In Advances in Neural Information Processing
Systems 13 (NIPS-2000), 1089–1095.


