
Say “No” to Grounding: An Inference Algorithm for First-Order MDPs

Olga Skvortsova
International Center for Computational Logic

Technische Universität Dresden
skvortsova@iccl.tu-dresden.de

Abstract

We propose an algorithm, referred to asALLTHETA , for per-
forming efficient domain-independent symbolic reasoning in
a planning system FLUCAP that solves first-order MDPs.
The computation is done avoiding vicious grounding.

Introduction
Markov Decision Processes (MDPs) are de facto stan-
dard representational and computational model for decision-
theoretic planning problems. Recently, several com-
pact representations for propositionally-factored MDPs
have been proposed, including dynamic Bayesian net-
works (Boutilier, Dean, & Hanks 1999) and algebraic deci-
sion diagrams (Hoeyet al. 1999). For instance, the SPUDD
algorithm (Hoeyet al. 1999) has been used to solve MDPs
with hundreds of millions of states optimally, producing log-
ical descriptions of value functions that involve only hun-
dreds of distinct values.

Meanwhile, many realistic planning domains are best
specified in first-order terms. However, most existing im-
plemented solutions for first-order MDPs (FOMDPs) rely on
grounding, i.e., eliminate all variables at the outset of a so-
lution attempt by instantiating terms with all possible com-
binations of domain objects, e.g., (2002). This technique is
very impractical because the number of propositions grows
considerably with the number of domain objects and rela-
tions. This has a dramatic impact on the complexity of the
algorithms that depends directly on the number of proposi-
tions. Moreover, as soon as the universe of objects is infinite,
these algorithms cannot be made to work. Finally, systems
for solving FOMDPs that rely on state grounding also per-
form action grounding which is problematic in first-order
domains, because the number of ground actions also grows
drastically with domain size.

To address these difficulties, we have recently proposed
a first-order generalization of LAO∗ algorithm (Karabaev
& Skvortsova 2005), referred to as FOLAO∗, in which our
contribution was to show how to perform heuristic search
for FOMDPs, circumventing their grounding. In order to en-
sure first-order reasoning without descending to the propo-
sitional level, a planning system should be equipped with
highly-optimized domain-independent inference algorithms
that compute sets of successor and predecessor states of a

given state wrt. a given action. Such inference algorithms
rely on non-trivial symbolic computations as, e.g., unifica-
tion or subsumption problem under some equational theory
between two states specified as first-order terms.

In this paper, we develop an algorithm, referred to as
ALLTHETA , that solves the subsumption problem under
AC11 equational theory and delivers all possible substitu-
tions. The computation is done avoiding aggressive ground-
ing. ALLTHETA has been recently integrated into the plan-
ning system FLUCAP (Hölldobler, Karabaev, & Skvortsova
2006).

First-order Representation of MDPs
First, we propose a concise representation of FOMDPs
within Probabilistic Fluent Calculus (PFC). PFC is a log-
ical approach to modelling dynamically changing and un-
certain environments based on first-order logic (Hölldobler,
Karabaev, & Skvortsova 2006).

MDPs An MDP is a tuple(Z,A,P,R, C), whereZ and
A are finite sets of states and actions, resp.;P : Z × Z ×
A → [0, 1], writtenP(z′|z, a), specifies transition probabil-
ities of reaching a statez′ by executinga in z. R : Z → <
is a real-valued reward function associating with each statez
its immediate utilityR(z). C : A → < is a real-valued cost
function associating a costC(a) to each actiona. A solution
of an MDP is a policyπ : Z → A that maximizes the to-
tal expected discounted reward received when executing the
policy π over an infinite horizon. The value of a statez with
respect to a policyπ is defined recursively as:

Vπ(z) = R(z) + C(π(z)) + γ
∑
z′∈Z

P(z′|z, π(z))Vπ(z′),

where0 ≤ γ < 1 is a discount factor.

Probabilistic Fluent Calculus: Formally, letΣ denote a
set of function symbols. We distinguish two function sym-
bols in Σ, namely◦/2 which is associative (A), commuta-
tive (C), and admits the unit element, and a constant 1. Let
Σ− = Σ \ {◦, 1}. Non-variableΣ−-terms are called fluents.

1A - associative, C - commutative, 1 - unit element.

LetF denote the set of fluents. Fluent terms are defined in-
ductively as follows: 1 is a fluent term; each fluent is a fluent
term;F ◦G is a fluent term, ifF andG are fluent terms.

A state is a fluent term. We assume that each fluent
may occur at most once in a state, i.e., states of the form
euro ◦ euro are disallowed. For example, a stateZ =
on(X ′, Y ′) ◦ on(Y ′, t) ◦ cl(X ′) ◦ e denotes that some clear
blockX ′ is on the blockY ′, which is on the table, the grip-
per is empty and something else might be also true. We
note that the negation can be effortlessly included in the lan-
guage (Ḧolldobler, Karabaev, & Skvortsova 2006). The in-
terpretation overF , denoted asI, is the pair(∆, ·I), where
the domain∆ is a set of all finite sets of ground fluents from
F ; and an interpretation function·I which assigns to each
stateZ a setZI = {d ∈ ∆|∃θ.(Z ◦ U)θ =AC1 d}, whereθ
is a substitution andU is a new AC1-variable. Thus, states in
PFC represent clusters of individual states. In this way, they
embody a form of state space abstraction, referred to as first-
order state abstraction, and, hence, can be treated as abstract
states. E.g, the statez1 = on(b, c)◦on(c, t)◦cl(b)◦e◦cl(f),
wheret stands for table andb, c andf are blocks, is repre-
sented by the abstract stateZ above; whereasz2 = on(b, c)
is not, since other three ‘mandatory’ fluents ofZ are miss-
ing in z2. In essence, abstract states are defined under in-
complete semantics, viz., other fluents that are not explicitly
present in the state description might also hold, as e.g.,cl(f)
appears in the statez1 ∈ ZI .

Actionsare first-order terms leading with an action func-
tion symbol. For example, the action of picking up
some blockX from another blockY might be denoted as
pickup(X, Y). Stochastic actions are described via decom-
position into deterministic primitives under nature’s control,
referred to as nature’s choices. E.g., actionpickup(X, Y)
can be defined by means of successfulpickupS(X, Y)
and failure pickupF(X, Y) nature’s choices. Precondi-
tions and effects of an actiona, denoted asPre(a) and
Eff(a), respectively, are abstract states. E.g., for pre-
conditions and effects of the actionpickupS(X, Y), we
have: Pre(pickupS(X, Y)) := on(X, Y) ◦ cl(X) ◦ e and
Eff(pickupS(X, Y)) := h(X), whereh(X) stands for the
fact of holding a blockX. Probabilities of each nature’s
choice, rewards and action costs can be defined in an obvi-
ous way.

An Inference Algorithm for FOMDPs
Systems for solving FOMDPs that rely on state ground-
ing also perform action grounding which is problematic in
first-order domains, because the number of ground actions
grows drastically with domain size. Herein, we show how to
perform inferences, i.e., compute successors and predeces-
sors of a given abstract state, with action schemata directly,
avoiding unnecessary grounding.

For this, an inference problem of finding alla-successors
(all a-predecessors) of an abstract stateZ is represented
in terms of the AC1-unification problem2, referred to as
AC1-UNIFY(Z1, Z2), whereZ1 represents the preconditions

2AC1-unification problem is a unification problem under the
equational theory AC1.

(effects) ofa andZ2 = Z. AC1-UNIFY(Z1, Z2) is defined
by: ∃θ. (Z1 ◦ U)θ =AC1 (Z2 ◦W)θ , whereU andW are
new AC1-variables.

Intuitively, an actiona is applicable to an abstract state
Z iff it is applicable toall individual states that constitute
ZI . In order to determine all fragments ofZ, an actiona
is applicable to, we compute all solutions for the following
AC1-unification problem:(Pre(a) ◦ U)θ =AC1 (Z ◦W)θ.
In this way, the bindings forW define the fragmentsZi =
(Z ◦ W)θ of Z, an actiona is applicable to. Moreover,
the bindings forU allow us to construct the successors of
Zi, i.e., Zi

succ := (Eff(a) ◦ U)θ. In essence, in order to
compute the set of alla-successors of all fragments ofZ, a
is applicable to, it is enough to find all solutionsθ for the
above AC1-unification problem.

In this work, we present a restricted case of AC1-
unification, i.e., AC1-subsumption, referred to as
AC1-SUBSUME(Z1, Z2), where(Z2 ◦W)θ = Z2:

∃θ. (Z1 ◦ U)θ =AC1 Z2 .

There are at least two applications of
AC1-SUBSUME(Z1, Z2) in the FOLAO∗ algorithm.
First, for detecting a more specific abstract state betweenZ1

andZ2, that can be removed from the state space thereafter.
Second, for computing a set ofall states that are reachable
from an initial state wrt. all actions.

In the following, we exploit the fact that the AC1-
subsumption problem is a specialization of theθ-
subsumption problem on general clauses, since abstract
states are Horn clauses with empty head (Scheffer, Herbrich,
& Wysotzki 1996). Theθ-subsumption problem for clauses
C andD is a problem of whether there exists a substitution
θ such thatCθ ⊆ D (or, in our terms,(C ◦ U)θ =AC1 D).

In general,θ-subsumption isNP-complete (Scheffer, Her-
brich, & Wysotzki 1996). It is known that deterministic sub-
sumption, i.e., when there exists an ordering of fluents, such
that in each step there is a fluent which has exactly one match
that is consistent with the previously matched fluents, can be
solved in polynomial time. Unfortunately, in general, there
are only few, or none at all, fluents in a state that can be
matched deterministically.

Following (Scheffer, Herbrich, & Wysotzki 1996), we
have developed two approaches to reduce the complex-
ity of non-deterministicθ-subsumption, and hence, AC1-
subsumption. Both approaches have been reconciled in an
algorithm, referred to asALLTHETA , that returns all solu-
tions for the AC1-subsumption problem.

Phase one: context-based subsumption.One approach
is context-based matching candidate elimination. In gen-
eral, a fluentf in an abstract stateZ1 can be matched with
several fluents in an abstract stateZ2, that are referred to
as matching candidates off . The approach is based on the
idea that fluents inZ1 can be only matched to those fluents
in Z2, the context of which include the context of the flu-
ents inZ1. The context is given by occurrences of identi-
cal variables or chains of such occurrences and is defined
up to some fixed depth. In effect, matching candidates that
do not meet the above context condition can be effortlessly
pruned. In most cases, such pruning results in deterministic

subsumption, thereby considerably extending the tractable
class of abstract states. Deterministic subsumption that ex-
ploits the context information is referred to as context-based
deterministic subsumption.

For example, two abstract statesZ1 = on(X, Y) ◦
on(Y, t) andZ2 = on(a, b) ◦ on(b, c) ◦ on(c, t) ◦ on(d, t)
cannot be subsumed deterministically because each fluent
in Z1 has more than one matching candidate inZ2. How-
ever, exploiting the context information already at depth 1
enables us to conclude thatZ1 subsumesZ2. At depth 1,
the context ofon(X, Y) contains the pathon · 2 → 1 · on,
i.e., a variableY appears at position2 in on(X, Y) and at
position1 in on(Y, t). The context ofon(Y, t) contains the
pathon · 1 → 2 · on, i.e., the variableY appears at posi-
tion 2 in on(X, Y) and at position1 in on(Y, t). The con-
texts of the fluents inZ2 are{on · 2 → 1 · on}, {on · 1 →
2 ·on, on ·2 → 1 ·on}, {on ·1 → 2 ·on, on ·2 → 2 ·on} and
{on·2 → 2·on}, resp. The fluenton(Y, t) has two matching
candidates, viz.,on(c, t) andon(d, t). Since the context of
on(Y, t) can only be embedded in the context ofon(c, t), the
matching candidateon(d, t) is excluded andon(Y, t) can be
matched deterministically. Then, the matching substitution
µ1 = {Y 7→ c} is applied toZ1. As a result, the fluent
on(X, Y)µ1 = on(X, c) can be matched deterministically
to on(b, c) with µ2 = {X 7→ b}. Hence, both fluents can
be matched deterministically and the substitutionθ = µ1µ2

was found without backtracking.
There is a well-known tradeoff. The deeper inside the

abstract state we look, thus devoting the considerable effort
for computing the context itself, the higher the pruning rate
is. Alternatively, if the depth value is underestimated, we
save time and space for constructing the context but end up
with a larger search space. Very often, the optimal depth has
the value of 2.

Phase two: ALL -CLIQUES. In some cases, however, af-
ter performing the context-based deterministic subsumption,
there still remain some fluents that cannot be matched deter-
ministically. Thus, a remaining space of matching candi-
dates has to be searched for a substitution. For this, a second
approach that reduces the complexity of non-deterministic
AC1-subsumption, referred to asALL -CLIQUES, has been
developed.ALL -CLIQUES is a modified version of its ances-
tor CLIQUE (Scheffer, Herbrich, & Wysotzki 1996), where
all cliques are computed and additional pruning techniques
have been developed in order to alleviate the search for sub-
stitutions.

ALL -CLIQUES exploits a well-known correspondance be-
tween the AC1-subsumption problem and the clique prob-
lem, i.e., a problem of finding a clique3 of the fixed size in
a graph. More precisely, an abstract stateZ1 subsumes an
abstract stateZ2 iff there is a clique of size|Z1| in the space
of matching candidates for fluents inZ1. By the size|Z|, we
mean the number of fluents comprisingZ. The candidates
that do not form a clique can be effortlessly excluded from
the search space.

We start with constructing a substitution graph(V,E) for
abstract statesZ1 andZ2 with nodesv = (µ, i) ∈ V , where

3A clique in a graph is a set of pairwise adjacent nodes.

Function findPath(V , E, Paths,v, currPath,i)
if valid(v) then1

currPath:=currPath∪{v}2
if i = |Z1| then3

Paths:= Paths∪ {currPath}4
else5

foreachu = (µ′, i + 1) ∈ V with (v, u) ∈ E do6
if clique(u, currPath) then7

findPath(V , E, Paths,u, currPath,8
i + 1)

elseV := V \ {v}9
return Paths10

µ matches some fluent at positioni in Z1 to some fluent
in Z2 and i ≥ 1 is referred to as a layer ofv. Two nodes
(µ1, i1) and(µ2, i2) are connected with an edge iffµ1µ2 =
µ2µ1 andi1 6= i2.

ALL -CLIQUES returns all pathsPathsin the graph(V,E)
that start at the first layer and form a clique of size|Z1|.
Its core is the functionFINDPATH. If valid(v) is true,
i.e., v has at least one edge to each layer,v is added to the
current pathcurrPath. If v is located at the last layer then
Paths is updated with thecurrPath. Otherwise, if a next-
layer neighbouru of v forms a clique with the nodes in
currPath, i.e., clique(u, currPath) holds in line 7, then
findPath is called recursively foru. The removal of in-
valid nodes in line 9 is a distinct feature ofALL -CLIQUES,
which was not introduced before. Another important prun-
ing technique, employed inALL -CLIQUES, relies on the idea
of a layered substitution graph. In contrast to (Scheffer, Her-
brich, & Wysotzki 1996), we organize a substitution graph
in layers, i.e., each nodev = (µ, i) ∈ V belongs to a layeri.
The layers should be visited in the order of their appearance.
The layered architecture of the substitution graph is a natu-
ral way to avoid duplicate occurrences of the same clique
in the set of all cliques. In effect, context-based determi-
nacy andALL -CLIQUES are combined into an algorithm, re-
ferred to asALLTHETA , that delivers all substitutions for the
AC1-SUBSUME(Z1, Z2) problem.

Experimental Evaluation
We demonstrate the advantages of using the context infor-
mation for efficient domain-independent symbolic reason-
ing in FOMDPs on a system, referred to asALLTHETA .
ALLTHETA has been recently integrated as a module into
the FLUCAP 1.1 planning system, that is a successor of
FLUCAP 1.0 (Ḧolldobler, Karabaev, & Skvortsova 2006)
that has entered the probabilistic track of the International
Planning Competition IPC’2004. The experimental results
were all obtained using a Linux RedHat machine running at
2.4 GHz Intel Celeron with 1 Gb of RAM.

Table 1 presents the comparison results ofALLTHETA
with the systemFASTTHETA (Ferilli et al. 2003) on theCBW
dataset.CBW stems from the colored Blocksworld scenario
that was first introduced during the IPC’2004.CBW is, cur-
rently, one of a few probabilistic scenarios that are repre-
sented in first-order terms and, hence, enable to make use

Total time, sec.

B C AllTheta

F
T

he
ta

d=
0

d=
1

d=
2

d=
3

d=
4

d=
5

5 3 0.5 2.9 0.4 0.3 0.3 0.4 1.0
4 0.4 2.0 0.3 0.2 0.2 0.3 0.6
5 0.4 1.7 1.3 0.2 0.2 0.2 0.5

10 3 1.5 44.7 1.1 0.5 0.5 1.0 4.3
4 1.1 22.4 1.1 0.4 0.4 0.5 1.4
5 0.9 13.5 1.0 0.5 0.5 0.8 3.1

15 3 3.9 n/a 2.3 0.9 0.9 1.7 7.7
4 3.5 243.3 2.4 0.8 0.9 2.0 10.6
5 2.8 84.7 2.0 0.7 0.7 1.2 4.9

20 3 8.7 n/a 10.1 4.6 3.1 4.2 15.7
4 9.2 n/a 3.3 1.1 1.0 1.8 8.5
5 7.3 n/a 3.0 1.0 1.1 2.1 11.6

25 3 16.5 n/a 7.2 2.0 1.8 4.1 28.3
4 17.1 n/a 7.8 1.8 1.7 4.2 30.7
5 15.7 n/a 7.3 1.7 1.8 4.2 34.0

50 3 164.9 n/a n/a 38.8 29.5 28.6 52.2
4 201.1 n/a 186.8 33.0 26.0 27.9 42.7
5 175.1 n/a 140.4 30.8 26.3 29.1 57.7

75 5 702.5 n/a 240.8 58.0 47.2 52.3 121.8

100 5 n/a n/a 452.6 96.7 78.1 74.0 155.0

Table 1: Performance comparison ofALLTHETA (denoted
asAllTheta) with FASTTHETA (denoted asFTheta) on the
CBW dataset.

of symbolic reasoning.CBW differs from the classical case
in that, along with the unique identifier, each block is as-
signed a specific color. A goal formula, specified in first-
order terms, provides an arrangement of colors instead of an
arrangement of blocks.FASTTHETA, that is motivated by the
field of Inductive Logic Programming (ILP), can be applied
to compute all solutions of the AC1-subsumption problem.

In the following, we motivate the importance of the con-
text depth parameter. Altogether, there are 100 abstract
states that lead to 10000 subsumption tests. The column la-
belled Total time presents the time needed to solve all of
10000 subsumption tests. A 30-mins slot is allocated for
each problem. The cells marked with ‘n/a’ mean that the
limit was exceeded. EachCBW problem is defined by a num-
berB of blocks and a numberC of colors.

In CBW case, on small problems of size up to 25 blocks,
the depth parameterd posesses the optimal value of 2.
Whereas, on larger problems, this value grows. This re-
flects the necessity to store an additional context informa-
tion about the fluents in an abstract state. The special case
of d=0 means that no context information is considered. In
comparison toALLTHETA , the runtime ofFASTTHETA grows
considerably faster in the size of a problem. For example,
at depth of 2, for the five-colored 15, 25 and 75 problems,
FASTTHETA is by factor of 4, 8 and 15 slower. As a result,
it could scale to problems up to the size of 75 blocks only.
Whereas, the limit ofALLTHETA comprises 360 blocks.

Neither FASTTHETA nor ALLTHETA are sensitive to the
number of colors in a problem. In contrast, grounding-based
reasoners are severely affected by this parameter. The timing
results for a special case ofd=0 demonstrate the dramatic
loss in runtime in comparison even with the case ofd=1,
where the context information about the direct neighbours
of a fluent is counted.

Most importantly, present results indicate that the
domain-independent inference algorithmALLTHETA per-

forms symbolic reasoning for first-order MDPs in about the
same time as the domain-specific subsumption solver that
was integrated in FLUCAP 1.0. We note that the latter re-
duces the AC1-subsumption problem to a quadratic variant
of the subset problem. Whereas, the former solves the gen-
eral case, which isNP-complete. For example, for a single
subsumption test at depth of 2 in the problem of 15 blocks
and 3 colors,ALLTHETA requires of about 92 microseconds.
Whereas, for its domain-specific counterpart, the runtime
comprises 85 microseconds. Finally,FASTTHETA has out-
performedALLTHETA by a factor of four, on the Mutagene-
sis dataset that is a classical ILP testbed.

Conclusions, Related and Future Work
We have proposed an algorithm, referred to asALLTHETA ,
for performing automated domain-independent symbolic
reasoning in FOMDPs. The construction is done avoiding
grounding. In comparison toFASTTHETA, our approach
scales better on larger FOMDPs. Some related approaches
are known. For example, Django (Maloberti & Sebag 2004)
is, nowadays, the fastestθ-subsumption checker that is based
on the constraint satisfaction. Yet, it returns a binary answer
‘yes/no’ only and provides no solutions, even in the positive
case. In (Kersting, van Otterlo, & de Raedt 2004), authors
employ a generalized AC1-subsumption framework in the
ReBel algorithm. ReBel treats abstract states as sets of flu-
ents. Whereas,ALLTHETA can potentially work with multi-
sets. We plan to incorporate these and disequalities into our
setting. It is also important to extend our results towards the
case of the AC1-unification problem.

Acknowledgements
We thank reviewers for their comments. Many thanks to
Eldar Karabaev and Georg Rammé for fruitful discussions.
This work is supported by the grant GRK 334 under auspices
of DFG.

References
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural Assumptions and Computational Leverage.
JAIR11.

Feng, Z., and Hansen, E. 2002. Symbolic heuristic search for
factored markov decision processes. InAAAI.

Ferilli, S.; Di Mauro, N.; Basile, T.; and Esposito, F. 2003. A
complete subsumption algorithm. InAI*IA .

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. SPUDD:
Stochastic Planning using Decision Diagrams. InUAI.

Hölldobler, S.; Karabaev, E.; and Skvortsova, O. 2006. FLUCAP:
A heuristic search planner for first-order MDPs.JAIR. To appear.

Karabaev, E., and Skvortsova, O. 2005. A Heuristic Search Al-
gorithm for Solving First-Order MDPs. InUAI.

Kersting, K.; van Otterlo, M.; and de Raedt, L. 2004. Bellman
goes relational. InICML.

Maloberti, J., and Sebag, M. 2004. Fast theta-subsumption with
constraint satisfaction algorithms.ML 55(2).

Scheffer, T.; Herbrich, R.; and Wysotzki, F. 1996. Efficientθ-
subsumption based on graph algorithms. InILP Workshop.

