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Abstract

In this work, we apply heuristic search to conformant prob-
abilistic planning by adapting planning graph heuristics de-
veloped for non-deterministic planning. We consider a
straight-forward application of these planning graph tech-
niques, which amounts to exactly computing the distribution
over reachable relaxed planning graph layers. In reality, com-
puting these distributions is costly, so we apply Sequential
Monte Carlo to approximate them. We demonstrate on sev-
eral domains how our approach enables our planner to far out-
scale existing (optimal) probabilistic planners and still find
reasonable quality solutions.

This work adds to a much broader dissertation on improv-
ing the scalability of planning under uncertainty. We have
designed heuristics for conformant and conditional non-
deterministic planning, in addition to this latest addition
to probabilistic planning. Future work will build on these
heuristic techniques to address conditional probabilistic plan-
ning and devise new search algorithms for probabilistic plan-
ning.

Introduction

We address the problem of conformant probabilistic plan-
ning, where the planning agent has no observability and
must formulate plans with uncertain actions. A conformant
plan is a sequence of actions that will guarantee goal sat-
isfaction with some probability. While agents can poten-
tially improve their success by devising conditional plans
(that use observations), conformant planning is a specia
case that is useful when sensing is too expensive or impos-
sible (e.g., because of broken sensors). As has been seen
in non-deterministic conformant and conditional planning
(Bryce, Kambhampati, & Smith 2006; Brafman & Hoff-
mann 2005), conformant planning heuristics are useful in
conditional planning because ignoring observationsis some-
times areasonable relaxation. Future application of thework
discussed herein will validate how well conformant proba-
bilistic planning heuristics adapt to conditional probabilistic
planning. Initial experiments indicate the adaptation is ap-
propriate.

Despite long standing interest (Kushmerick, Hanks, &
Weld 1994; Hyafil & Bacchus 2003; 2004), probabilistic
plan synthesis algorithms have a terrible track record in
terms of scalability. The current best conformant probabilis-
tic planners are only able to handle very small problems. In

contrast, there has been steady progressin scaling determin-
istic planning. Much of this progress has come from the
use of sophisticated reachability heuristics. In thiswork, we
show how to effectively use reachability heuristics to solve
conformant probabilistic planning (CPP) problems. We
use work on planning graph heuristics for non-deterministic
planning (Bryce, Kambhampati, & Smith 2006; Hoffmann
& Brafman 2004) as our starting point.

We investigate an extension of the work by Bryce, Kamb-
hampati, & Smith (2006) that uses a planning graph gener-
alization called the labelled uncertainty graph (LUG). The
LUG isused to symbalically represent a set of relaxed plan-
ning graphs (much like the planning graphs used by Confor-
mant GraphPlan, Smith & Weld, 1998), where each is asso-
ciated with a possible world. While the LUG (as described
by, Bryce, Kambhampati, & Smith, 2006) works only with
state uncertainty, it is necessary in CPP to handle action un-
certainty. Extending the L UG to consider action uncertainty
involves symbolically representing how at each level CGP
creates anew litera layer for each joint outcomes of the un-
certain actions.

With uncertain actions, an explicit or symbolic represen-
tation of planning graphsfor al possible worlds at each time
step is exactly representing an exponentially increasing set
of literal layers. Since we are only interested in planning
graphs to compute heuristics, it is both impractical and un-
necessary to exactly represent all of the reachable possible
worlds. We turn to approximate methods for representing
the possible worlds. Since we are planning in a probabilis-
tic setting, we can use Monte Carlo techniques to construct
planning graphs.

There areawealth of methods, that fall under the name se-
guential Monte Carlo (SMC) (Doucet, de Freitas, & Gordon
2001) for reasoning about a hidden random variable over
time. SMC applied to “on-line” Bayesian filtering is often
called particle filtering, however we use SMC for “off-ling”
prediction. The idea behind SMC isto represent a probabil-
ity distribution as a set of samples (particles), which evolve
recursively over time by sampling a transition function. In
our application, each particle is a (smulated) determinis-
tic planning graph and the transition function describes the
Conformant GraphPlan (Smith & Weld 1998) construction
semantics. By using more particles, we capture more pos-
sible worlds, exploiting the natural affinity between SMC



approximation and heuristic accuracy.

The SMC technique requires multiple planning graphs
(each a particle), but their number is fixed. We could rep-
resent each planning graph explicitly, but they may have
considerable redundant structure. Instead, we generalize the
LUG to symbolically represent the set of planning graph
particlesin a planning graph we call the Monte Carlo LUG
(McLUG). We show that by using the McLUG to extract
a relaxed plan heuristic we are able to greatly out-scale
the current best conformant probabilistic planner CPplan
(Hyafil & Bacchus 2004; 2003) in a number of domains,
without giving up too much in terms of plan quality.

This work appears as a full paper with Subbarao Kamb-
hampati and David E. Smith inthe ICAPS 06 Technical Ses-
sion. Our presentation starts by describing a worked exam-
ple of how to construct planning graphsthat exactly compute
the probability distribution over possible worlds versus us-
ing SMC, as well as how one would symbolically represent
planning graph particles. We then present an empirical anal-
ysis of our technique compared to CPplan, and conclusions.
Please consult the full paper for the formal details.

Monte Carlo Planning Graph Construction

We illustrate an example to give the intuition for Monte
Carlo simulation in planning graph construction. Consider
a simple logistics domain where we wish to load a specific
freight package into a truck and loading works probabilis-
tically (because rain is making things dippery). There are
two possible locations where we could pick up the package,
but we are unsure of which location. There are three flu-
ents, FF = { aP1, aP2, inP }, our initial belief state b; is
0.5: s0 = {aP1, ~aP2, —inP }, 0.5: s1 = {-atP1, atP2,
—inP }, and the goa is G ={inP}. The package is at loca-
tion 1 (atP1) or location 2 (atP2) with equal probability, and
is definitely not in the truck (inP). Our actions are LoadP1
and LoadP2 to load the package at locations 1 and 2, respec-
tively. Both actions have an empty enabling precondition { },
so they are always applicable, and have two outcomes. The
first outcome with probability 0.8 loads the package if it is
at the location, and the second outcome with probability 0.2
does nothing. We assume for the purpose of exposition that
driving between locations in not necessary.

Figure 1 illustrates severa approaches to planning graph
based reachability analysis for our simplified logistics do-
main. (We assume we are evaluating the heuristic value
h(br) of reaching G from our initial belief state.) The first
isin the spirit of Conformant GraphPlan, where uncertainty
is handled by splitting the planning graph layers for all out-
comes of uncertain events. CGP creates a planning graph
that resembles a tree, where each branch corresponds to a
deterministic planning graph.

CGP: In Figure 1a, we see that there are two initial literal
layers (denoted by literals in boxes), one for each possible
world at time zero. We denote the uncertainty in the source
belief state by X, which takes on values s0, s1 (for each
state in our belief state). Both load actions are applicable in
both possible worlds because their enabling preconditions
are aways satisfied. The edges leaving the actions denote

the probabilistic outcomes (each a set of conditional effects).
Whileitispossiblefor any outcome of an action to occur, the
effects of the outcome may or may not have their secondary
precondition supported. Inworld s0, if outcomethefirst out-
come of LoadP1 occurs, then effect denoted by atP1—inPis
enabled and will occur, however even if the first outcome of
LoadP2 occurs its effect is not enabled and will not occur.

The set of possible worlds at time one is determined by
the cross product of action outcomes in each world at time
zero. For instance, possible world 200 isformed from world
s0 when outcomes the first outcome of LoadPl and the
first outcome of LoadP2 co-occur. Likewise, world 12 is
formed from world s1 when outcomes the second outcome
of LoadP1 and the first outcome of LoadP2 occur.

() CGP atP
atP1—inP X,=x00~ inP

Noop

Xy=s0 X;=x01 |- inP
0.5 0.08 inP
. 0.8 atP2—inP —rwon

LoadP2 <? X,=x02 atP2
0.2 Noop 008 =inP
atPl
X,=x03 | atP2
0.0p P
atP]
X;=x10 atPPZ
0.84 atPl—sinP t 3 Linp
LoadP1 ? —_——
— atP1 0.2 atPl

X,=sI | atP2 Noop X,=xI1 a_ﬂig

0.5 LoinP \‘ 0.08 Cn
atP]

; 0.8 A atP2—inP X,=x12 ﬁ%P]Z

Loa P202 ? 0.08 inP

: Noop atP]

X, =xI3 a.tPP2

0.02 (1N

(b) McCGP

Pl
atP1 \\‘ X0, =x01 ﬂgttPZ

=50 (2382 |LoadPl —»  atP1—inP - fop

inP
LoadP2 —» Noop

atPl ——mm x!=x01 atlrb)%
xy=s0 2 a2 | oadPl —» atPl—inP -

~—LoadP2 —¥» Noop inP

LoadPl —¥ atP1—inP P
. 0a a n = a
. atrl)’zl x?=x10 | ap2
el | a2 - inp
) LoadP2 —>  atP2—inP inP
'
( atP1 LoadP1 — Noop x=x12 (—atPl
G atP2
xo=sl | atP2 — i
- inP [ b
LoadP2 —» atP2—inP inP
(c) McLUG N
— X xl,
x’pxty atP1
atPl ——
m x-’l x3l
x2y Xy xyxly xzux ! oy - atpl
. atPl 223, o atP1—inP X2, X,
LoadP1 ?
X ¥y V<: N i atp2
X 00]
atP2 —— P xpxl
*0px!y ~ath2 0 1
— atP2 X"o o X%y X3, X X {I
0 1 a4 tP2—inP x7y X
©ox' X0 x3, o ate—m —inp !
- inl;( 92X | LoadP2 ? N X0 x!, X0, x!,
00 20X
xyxty P infi( 1

Figure 1: Variations on planning graph representations.



CGPisexactly representing thereachableliteral layersfor
all possible worlds. In our example, CGP could determine
the exact distribution over X for every value of X,. We see
that our goal is satisfied in half of the possible worlds at time
1, with atotal probability of 0.8. It is possible to back-chain
on this graph to extract arelaxed plan (by ignoring mutexes)
that satisfiesthe goal with 0.8 probability. However, we note
that this is not efficient because it is exactly representing all
possible worlds (which can increase exponentially).

McCGP: Next, we illustrate a Monte Carlo simulation ap-
proach we call Monte Carlo CGP (McCGP), in Figure 1b.
The idea is to represent a set of N planning graph parti-
cles. In our example we sample N = 4 states {23}
P(Xyp) = by and create an initia literal layer for each. To
simulate a particle we first insert the applicable actions. We
then insert effects by sampling from the distribution of joint
action outcomes. Finally, the subsequent literal layer is con-
structed, given the sampled outcomes. Note that each parti-
cleisadeterministic planning graph.

In our example, the simulation was lucky and the literal
layer for each particle at time 1 satisfies the goal, so we may
think the best one step plan achieves the goal with certainty.
From each of these graphs where the god is satisfied it's
possible to extract a relaxed plan, which can then be ag-
gregated to give a heuristic as described by Bryce, Kamb-
hampati, & Smith (2006). While McCGP improves memory
consumption by bounding the number of possible worlds, it
still wastes quite a bit of memory. Of the planning graphs
many literal layers are identical. Symbolic methods allow
us to compactly represent these planning graph particles.

McLUG: Using ideas from Bryce, Kambhampati, & Smith
(2006) , we can represent asingle literal layer at every time
step for al samples in a planning graph called the Monte
Carlo LUG (McLUG), in Figure 1c. The ideais to union
the connectivity of multiple planning graphs into a single
planning graph skeleton, and use labels on the actions and
literals to signify the original, explicit planning graphs in
which an action or literal belongs. The contribution in the
MecLUG is to represent a set of particles symbolicaly and
provide a relaxed plan extraction procedure that takes ad-
vantage of the symbolic representation. From the McLUG
we are able to extract a relaxed plan that supports the goal
for every particle that reaches the goal.

Empirical Analysis

We externally evaluate our planner and its heuristic based
on the McLUG by comparing with the leading approach to
CPP, CPplan (Hyafil & Bacchus 2003; 2004). We also in-
ternally evaluate our approach by adjusting the number of
particles N that we use in each McLUG. We show results
for alogistics domain. CPplan finds the optimal probability
of goa satisfaction for a given plan length, but our plan-
ner, like Buridan (Kushmerick, Hanks, & Weld 1994), finds
plansthat satisfy the goal with probability nolessthan 7. We
find plans with aforward-chaining A* search in the space of
belief states. To compare with CPplan, we run CPplan on
a problem for each plan length until it exceeds our time or

1000
100

10

0.1

60 |- 4

Figure 2: Run timein seconds (top), and Plan lengths (bottom) vs.
7 (log scale) for Logistics p4-2-2

memory limit. We record the probability that CPplan satis-
fiesthe goal for each plan length. We then give our planner a
series of problemswith increasing values of + that match the
values found by CPplan (and fixed increments thereafter).
We ran our planner five times on each problem and present
the average run time, and plan length.

The logistics domain has the standard logistics actions of
un/loading, driving, and flying, but adds uncertainty. Hyéfil
& Bacchus (2004) enriched the domain to not only include
initial state uncertainty, but also action uncertainty. In each
problem there are some number of packages whose prob-
ability of initial location is uniformly distributed over some
locations and un/loading is only probahilistically successful.
Plans require several loads and unloads for a single package
at several locations, making arelatively simple deterministic
problem avery difficult stochastic problem. We compare on
problem p4-2-2, where there are 4 possible initial locations
for a package, 2 cities, and 2 packages.

The plots in Figure 2 compare the total run time in sec-
onds (top) and the plan lengths (bottom) of our planner with
16/32/64/128 particles in the McLUG versus CPplan. In
this domain we aso use helpful actions from the relaxed
plan. We notice that CPplan is able to at best find solu-
tions where 7 < 0.09. In most cases our planner is able
to find plans much faster than CPplan for the problems they



both solve. It is more interesting that our planner is able
to solve problems for much larger values of 7. Our plan-
ner finds solutions where = < 0.85 which is 9.6 times the
maximum values of 7 solved by CPplan. In terms of plan
quality, the average increase in plan length for the problems
we both solved was 4.2 actions. Where CPplan exactly eval-
uates plan suffixes to find pruning conditions for plan pre-
fixes, we use a heuristic to estimate plan suffixes. As the
results demonstrate, our heuristic effectively guides search
toward good plans.

Conclusion & Future Work

We have presented an approach called McLUG to inte-
grate Monte Carlo into heuristic computation on planning
graphs. The McLUG enables us to quickly compute effec-
tive heuristics for conformant probabilistic planning. With
the heuristics, our planner is ableto far out-scale the current
best conformant probabilistic planner. At a broader level,
our work shows one fruitful way of exploiting the recent suc-
cess in deterministic planning to scale stochastic planners.

Our future work will concentrate on adapting the heuris-
tics described here to handle conditional probabilistic plan-
ning. We also intend to develop aMonte Carlo based heuris-
tic search algorithm for search in belief space that com-
binesthe work of Thrun (2000) and Barto, Bradtke, & Singh
(1995).
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