
Sequential Monte Carlo in Probabilistic Planning Reachability Heuristics

Daniel Bryce
Department of Computer Science and Engineering

Arizona State University, Brickyard Suite 501
699 South Mill Avenue, Tempe, AZ 85281

dan.bryce@asu.edu

Abstract

In this work, we apply heuristic search to conformant prob-
abilistic planning by adapting planning graph heuristics de-
veloped for non-deterministic planning. We consider a
straight-forward application of these planning graph tech-
niques, which amounts to exactly computing the distribution
over reachable relaxed planning graph layers. In reality, com-
puting these distributions is costly, so we apply Sequential
Monte Carlo to approximate them. We demonstrate on sev-
eral domains how our approach enables our planner to far out-
scale existing (optimal) probabilistic planners and still find
reasonable quality solutions.
This work adds to a much broader dissertation on improv-
ing the scalability of planning under uncertainty. We have
designed heuristics for conformant and conditional non-
deterministic planning, in addition to this latest addition
to probabilistic planning. Future work will build on these
heuristic techniques to address conditional probabilistic plan-
ning and devise new search algorithms for probabilistic plan-
ning.

Introduction
We address the problem of conformant probabilistic plan-
ning, where the planning agent has no observability and
must formulate plans with uncertain actions. A conformant
plan is a sequence of actions that will guarantee goal sat-
isfaction with some probability. While agents can poten-
tially improve their success by devising conditional plans
(that use observations), conformant planning is a special
case that is useful when sensing is too expensive or impos-
sible (e.g., because of broken sensors). As has been seen
in non-deterministic conformant and conditional planning
(Bryce, Kambhampati, & Smith 2006; Brafman & Hoff-
mann 2005), conformant planning heuristics are useful in
conditional planning because ignoring observations is some-
times a reasonable relaxation. Future application of the work
discussed herein will validate how well conformant proba-
bilistic planning heuristics adapt to conditional probabilistic
planning. Initial experiments indicate the adaptation is ap-
propriate.

Despite long standing interest (Kushmerick, Hanks, &
Weld 1994; Hyafil & Bacchus 2003; 2004), probabilistic
plan synthesis algorithms have a terrible track record in
terms of scalability. The current best conformant probabilis-
tic planners are only able to handle very small problems. In

contrast, there has been steady progress in scaling determin-
istic planning. Much of this progress has come from the
use of sophisticated reachability heuristics. In this work, we
show how to effectively use reachability heuristics to solve
conformant probabilistic planning (CPP) problems. We
use work on planning graph heuristics for non-deterministic
planning (Bryce, Kambhampati, & Smith 2006; Hoffmann
& Brafman 2004) as our starting point.

We investigate an extension of the work by Bryce, Kamb-
hampati, & Smith (2006) that uses a planning graph gener-
alization called the labelled uncertainty graph (LUG). The
LUG is used to symbolically represent a set of relaxed plan-
ning graphs (much like the planning graphs used by Confor-
mant GraphPlan, Smith & Weld, 1998), where each is asso-
ciated with a possible world. While the LUG (as described
by, Bryce, Kambhampati, & Smith, 2006) works only with
state uncertainty, it is necessary in CPP to handle action un-
certainty. Extending the LUG to consider action uncertainty
involves symbolically representing how at each level CGP
creates a new literal layer for each joint outcomes of the un-
certain actions.

With uncertain actions, an explicit or symbolic represen-
tation of planning graphs for all possible worlds at each time
step is exactly representing an exponentially increasing set
of literal layers. Since we are only interested in planning
graphs to compute heuristics, it is both impractical and un-
necessary to exactly represent all of the reachable possible
worlds. We turn to approximate methods for representing
the possible worlds. Since we are planning in a probabilis-
tic setting, we can use Monte Carlo techniques to construct
planning graphs.

There are a wealth of methods, that fall under the name se-
quential Monte Carlo (SMC) (Doucet, de Freitas, & Gordon
2001) for reasoning about a hidden random variable over
time. SMC applied to “on-line” Bayesian filtering is often
called particle filtering, however we use SMC for “off-line”
prediction. The idea behind SMC is to represent a probabil-
ity distribution as a set of samples (particles), which evolve
recursively over time by sampling a transition function. In
our application, each particle is a (simulated) determinis-
tic planning graph and the transition function describes the
Conformant GraphPlan (Smith & Weld 1998) construction
semantics. By using more particles, we capture more pos-
sible worlds, exploiting the natural affinity between SMC



approximation and heuristic accuracy.
The SMC technique requires multiple planning graphs

(each a particle), but their number is fixed. We could rep-
resent each planning graph explicitly, but they may have
considerable redundant structure. Instead, we generalize the
LUG to symbolically represent the set of planning graph
particles in a planning graph we call the Monte Carlo LUG
(McLUG). We show that by using the McLUG to extract
a relaxed plan heuristic we are able to greatly out-scale
the current best conformant probabilistic planner CPplan
(Hyafil & Bacchus 2004; 2003) in a number of domains,
without giving up too much in terms of plan quality.

This work appears as a full paper with Subbarao Kamb-
hampati and David E. Smith in the ICAPS’06 Technical Ses-
sion. Our presentation starts by describing a worked exam-
ple of how to construct planning graphs that exactly compute
the probability distribution over possible worlds versus us-
ing SMC, as well as how one would symbolically represent
planning graph particles. We then present an empirical anal-
ysis of our technique compared to CPplan, and conclusions.
Please consult the full paper for the formal details.

Monte Carlo Planning Graph Construction
We illustrate an example to give the intuition for Monte
Carlo simulation in planning graph construction. Consider
a simple logistics domain where we wish to load a specific
freight package into a truck and loading works probabilis-
tically (because rain is making things slippery). There are
two possible locations where we could pick up the package,
but we are unsure of which location. There are three flu-
ents, F = { atP1, atP2, inP }, our initial belief state bI is
0.5: s0 = {atP1, ¬atP2, ¬inP }, 0.5: s1 = {¬atP1, atP2,
¬inP }, and the goal is G ={inP}. The package is at loca-
tion 1 (atP1) or location 2 (atP2) with equal probability, and
is definitely not in the truck (inP). Our actions are LoadP1
and LoadP2 to load the package at locations 1 and 2, respec-
tively. Both actions have an empty enabling precondition {},
so they are always applicable, and have two outcomes. The
first outcome with probability 0.8 loads the package if it is
at the location, and the second outcome with probability 0.2
does nothing. We assume for the purpose of exposition that
driving between locations in not necessary.

Figure 1 illustrates several approaches to planning graph
based reachability analysis for our simplified logistics do-
main. (We assume we are evaluating the heuristic value
h(bI) of reaching G from our initial belief state.) The first
is in the spirit of Conformant GraphPlan, where uncertainty
is handled by splitting the planning graph layers for all out-
comes of uncertain events. CGP creates a planning graph
that resembles a tree, where each branch corresponds to a
deterministic planning graph.

CGP: In Figure 1a, we see that there are two initial literal
layers (denoted by literals in boxes), one for each possible
world at time zero. We denote the uncertainty in the source
belief state by X0, which takes on values s0, s1 (for each
state in our belief state). Both load actions are applicable in
both possible worlds because their enabling preconditions
are always satisfied. The edges leaving the actions denote

the probabilistic outcomes (each a set of conditional effects).
While it is possible for any outcome of an action to occur, the
effects of the outcome may or may not have their secondary
precondition supported. In world s0, if outcome the first out-
come of LoadP1 occurs, then effect denoted by atP1→inP is
enabled and will occur, however even if the first outcome of
LoadP2 occurs its effect is not enabled and will not occur.

The set of possible worlds at time one is determined by
the cross product of action outcomes in each world at time
zero. For instance, possible world x00 is formed from world
s0 when outcomes the first outcome of LoadP1 and the
first outcome of LoadP2 co-occur. Likewise, world x12 is
formed from world s1 when outcomes the second outcome
of LoadP1 and the first outcome of LoadP2 occur.

(a) CGP

LoadP1

LoadP2

atP1!inP

Noop

X0=s0

X0=s1

: inP
: atP2

atP1

: atP1

: inP
atP2

atP2!inP

Noop

X1=x00

X1=x01

X1=x02

X1=x03

: inP
: atP2

atP1

inP
?

?

LoadP1

LoadP2

atP1!inP

Noop

atP2!inP

Noop

X1=x10

X1=x11

X1=x12

X1=x13

?

?

(b) McCGP

LoadP1

LoadP2

atP1!inPx00=s0

x20=s1

: inP
: atP2

atP1

: atP1

: inP
atP2

Noop

: inP
: atP2

atP1

inP

LoadP1 atP1!inP

LoadP1

LoadP2

atP1!inPx10=s0

Noop

LoadP2 atP2!inP

atP2
:atP1

: inP
inP

x30=s1

: atP1

: inP
atP2

LoadP1

LoadP2 atP2!inP

Noop

(c) McLUG

: atP1

atP2

LoadP1

LoadP2

atP1

: inP

: atP2

: atP1

atP2

atP1

: inP

: atP2

atP1!inP

Noop

atP2!inP

Noop

?

?

: inP
: atP2

atP1

inP

: inP
: atP2

atP1

: inP
: atP2

atP1

: inP
atP2

: atP1

inP

: inP
atP2

: atP1

inP

: inP
atP2

: atP1

: inP
atP2

: atP1

: inP
: atP2

atP1

inP

atP2
:atP1

: inP
inP

inP

: inP
: atP2

atP1

x01=x01

x21=x10

x11=x01

x31=x12

x20 x
3
0

x20 x
3
0

x10x00

x10x00

x10x00

x20 x
3
0

x10
x00

x20 x30

x10x00

x20 x
3
0

x11x01

x31x30

x10x00

x20

x21 x
3
1

x11x01

x11x01

x21 x
3
1

x20 x
3
0

x10x00

x21 x
3
1

x11x01

x11x01

x21 x
3
1

x11x01

x21 x
3
1

0.5

0.5

0.8

0.2

0.8

0.2

0.8

0.2

0.8

0.2

0.32

0.08

0.08

0.02

0.32

0.08

0.08

0.02

Figure 1: Variations on planning graph representations.



CGP is exactly representing the reachable literal layers for
all possible worlds. In our example, CGP could determine
the exact distribution over X1 for every value of X0. We see
that our goal is satisfied in half of the possible worlds at time
1, with a total probability of 0.8. It is possible to back-chain
on this graph to extract a relaxed plan (by ignoring mutexes)
that satisfies the goal with 0.8 probability. However, we note
that this is not efficient because it is exactly representing all
possible worlds (which can increase exponentially).

McCGP: Next, we illustrate a Monte Carlo simulation ap-
proach we call Monte Carlo CGP (McCGP), in Figure 1b.
The idea is to represent a set of N planning graph parti-
cles. In our example we sample N = 4 states {xn

0}N−1
n=0 ∼

P (X0) = bI and create an initial literal layer for each. To
simulate a particle we first insert the applicable actions. We
then insert effects by sampling from the distribution of joint
action outcomes. Finally, the subsequent literal layer is con-
structed, given the sampled outcomes. Note that each parti-
cle is a deterministic planning graph.

In our example, the simulation was lucky and the literal
layer for each particle at time 1 satisfies the goal, so we may
think the best one step plan achieves the goal with certainty.
From each of these graphs where the goal is satisfied it’s
possible to extract a relaxed plan, which can then be ag-
gregated to give a heuristic as described by Bryce, Kamb-
hampati, & Smith (2006). While McCGP improves memory
consumption by bounding the number of possible worlds, it
still wastes quite a bit of memory. Of the planning graphs
many literal layers are identical. Symbolic methods allow
us to compactly represent these planning graph particles.

McLUG: Using ideas from Bryce, Kambhampati, & Smith
(2006) , we can represent a single literal layer at every time
step for all samples in a planning graph called the Monte
Carlo LUG (McLUG), in Figure 1c. The idea is to union
the connectivity of multiple planning graphs into a single
planning graph skeleton, and use labels on the actions and
literals to signify the original, explicit planning graphs in
which an action or literal belongs. The contribution in the
McLUG is to represent a set of particles symbolically and
provide a relaxed plan extraction procedure that takes ad-
vantage of the symbolic representation. From the McLUG
we are able to extract a relaxed plan that supports the goal
for every particle that reaches the goal.

Empirical Analysis
We externally evaluate our planner and its heuristic based
on the McLUG by comparing with the leading approach to
CPP, CPplan (Hyafil & Bacchus 2003; 2004). We also in-
ternally evaluate our approach by adjusting the number of
particles N that we use in each McLUG. We show results
for a logistics domain. CPplan finds the optimal probability
of goal satisfaction for a given plan length, but our plan-
ner, like Buridan (Kushmerick, Hanks, & Weld 1994), finds
plans that satisfy the goal with probability no less than τ . We
find plans with a forward-chaining A* search in the space of
belief states. To compare with CPplan, we run CPplan on
a problem for each plan length until it exceeds our time or

0.1

1

10

100

1000

.8.7.6.5.4.3.2.1

(16)
(32)
(64)

(128)
(CPplan)

10

20

30

40

50

60

70

.8.7.6.5.4.3.2.1

(16)
(32)
(64)

(128)
(CPplan)

Figure 2: Run time in seconds (top), and Plan lengths (bottom) vs.
τ (log scale) for Logistics p4-2-2

memory limit. We record the probability that CPplan satis-
fies the goal for each plan length. We then give our planner a
series of problems with increasing values of τ that match the
values found by CPplan (and fixed increments thereafter).
We ran our planner five times on each problem and present
the average run time, and plan length.

The logistics domain has the standard logistics actions of
un/loading, driving, and flying, but adds uncertainty. Hyafil
& Bacchus (2004) enriched the domain to not only include
initial state uncertainty, but also action uncertainty. In each
problem there are some number of packages whose prob-
ability of initial location is uniformly distributed over some
locations and un/loading is only probabilistically successful.
Plans require several loads and unloads for a single package
at several locations, making a relatively simple deterministic
problem a very difficult stochastic problem. We compare on
problem p4-2-2, where there are 4 possible initial locations
for a package, 2 cities, and 2 packages.

The plots in Figure 2 compare the total run time in sec-
onds (top) and the plan lengths (bottom) of our planner with
16/32/64/128 particles in the McLUG versus CPplan. In
this domain we also use helpful actions from the relaxed
plan. We notice that CPplan is able to at best find solu-
tions where τ ≤ 0.09. In most cases our planner is able
to find plans much faster than CPplan for the problems they



both solve. It is more interesting that our planner is able
to solve problems for much larger values of τ . Our plan-
ner finds solutions where τ ≤ 0.85 which is 9.6 times the
maximum values of τ solved by CPplan. In terms of plan
quality, the average increase in plan length for the problems
we both solved was 4.2 actions. Where CPplan exactly eval-
uates plan suffixes to find pruning conditions for plan pre-
fixes, we use a heuristic to estimate plan suffixes. As the
results demonstrate, our heuristic effectively guides search
toward good plans.

Conclusion & Future Work
We have presented an approach called McLUG to inte-
grate Monte Carlo into heuristic computation on planning
graphs. The McLUG enables us to quickly compute effec-
tive heuristics for conformant probabilistic planning. With
the heuristics, our planner is able to far out-scale the current
best conformant probabilistic planner. At a broader level,
our work shows one fruitful way of exploiting the recent suc-
cess in deterministic planning to scale stochastic planners.

Our future work will concentrate on adapting the heuris-
tics described here to handle conditional probabilistic plan-
ning. We also intend to develop a Monte Carlo based heuris-
tic search algorithm for search in belief space that com-
bines the work of Thrun (2000) and Barto, Bradtke, & Singh
(1995).

References
Barto, A. G.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intel-
ligence 72:81–138.
Brafman, R., and Hoffmann, J. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
Proceedings of ICAPS’05.
Bryce, D.; Kambhampati, S.; and Smith, D. 2006. Planning
graph heuristics for belief space search. JAIR. (To appear).
Doucet, A.; de Freitas, N.; and Gordon, N. 2001. Sequen-
tial Monte Carlo Methods in Practice. New York, New
York: Springer.
Hoffmann, J., and Brafman, R. 2004. Conformant planning
via heuristic forward search: A new approach. In Proceed-
ings of ICAPS’04.
Hyafil, N., and Bacchus, F. 2003. Conformant probabilistic
planning via CSPs. In Proceedings of ICAPS’ 03.
Hyafil, N., and Bacchus, F. 2004. Utilizing structured
representations and CSPs in conformant probabilistic plan-
ning. In Proceedings of ECAI’04.
Kushmerick, N.; Hanks, S.; and Weld, D. 1994. An al-
gorithm for probabilistic least-commitment planning. In
Proceedings of AAAI’94.
Smith, D., and Weld, D. 1998. Conformant graphplan. In
Proceedings of AAAI’98.
Thrun, S. 2000. Monte Carlo POMDPs. In Advances in
Neural Information Processing 12, 1064–1070.


