
Selecting Among Heuristics by Solving Thresholded
k-Armed Bandit Problems

Matthew J. Streeter1 and Stephen F. Smith2
Computer Science Department

and Center for the Neural Basis of Cognition1 and
The Robotics Institute2

Carnegie Mellon University
Pittsburgh, PA 15213
{matts, sfs}@cs.cmu.edu

Abstract

Suppose we are givenk randomized heuristics to use
in solving a combinatorial problem. Each heuristic,
when run, produces a solution with an associated qual-
ity or value. Given a budget ofn runs, our goal is to
allocate runs to the heuristics so as to maximize the
number of sampled solutions whose value exceeds a
specified threshold. For this special case of the clas-
sical k-armed bandit problem, we present a strategy
with O(

√
np∗k ln n) additive regret, wherep∗ is the

probability of sampling an above-threshold solution us-
ing the best single heuristic. We demonstrate the use-
fulness of our algorithm by using it to select among
priority dispatching rules for the resource-constrained
project scheduling problem with maximal time lags
(RCPSP/max).

1. Introduction
Suppose we are given a set ofk randomized heuristics to
solve a combinatorial optimization problem. Running the
ith heuristic produces a solution with an associated quality
or value. With (unknown) probabilitypi(t), the value is
> t. The value ofpi(t) is instance-dependent, and the
heuristics are black boxes whose only observable behavior
is the value of the solutions they return. We would like to
solve the following problem:

Problem 1: Given a budget ofn runs, allocate runs
among the heuristics so as to maximize the probability that
a solution with value> t1 is obtained.

Unfortunately, when solving Problem 1 we cannot do
better than to select heuristics at random (no information
about the probabilitiespi is gained until an acceptable
solution has been found, at which point the information is
useless). We will instead focus on the following related
problem:

Problem 2: Given a budget ofn runs, allocate runs
among the heuristics so as to maximize the expected
number of solutions with value> t2.

The idea is thatt2 < t1, that n · maxi pi(t1) is pro-
hibitively small, and thatn · maxi pi(t2) is small but not

prohibitively so. If arg maxi pi(t1) = arg maxi pi(t2)
(i.e., the heuristic that is most likely to generate a nearly-
acceptable solution is also most likely to generate an
acceptable solution), then in solving Problem 2 we will also
solve Problem 1. In practice, we have found that sets of
heuristics for real combinatorial problems often have this
property.

1.1. A Taxonomy ofk-Armed Bandit Problems
In a k-armed bandit problem, we are faced with a set of
k slot machines (“one-armed bandits”), each with a single
arm. Each arm, when pulled, returns a payoff drawn from
a fixed distribution over the interval[0, 1]. Given a budget
of n pulls, we wish to allocate pulls so as to maximize
some objective. We consider three variants of the problem,
as summarized in the following table. The “thresholded”
variant is new to this paper.

Problem Objective to maximize
Classical Total payoff
Max Maximum payoff (from any single

pull)
Thresholded Number of payoffs that exceed a

fixed thresholdt.

Note that the thresholdedk-armed bandit problem is a
special case of the classicalk-armed bandit problem where
payoffs are drawn from{0, 1}.

We denote the mean payoff of theith arm by µi, and
define µ∗ = maxi µi. For thresholdedk-armed bandit
problems, we denote bypi the probability that a payoff
from theith arm exceed the specified threshold, and define
p∗ = maxi pi.

1.2. Contributions
The contributions of this paper are twofold. First, we present
an algorithm for the classicalk-armed bandit problem with
additive regretO(

√
nµ∗k lnn). When applied to the thresh-

oldedk armed bandit problem, our algorithm has additive
regretO(

√
np∗k lnn). Our algorithm has better regret than

the algorithm of Auer, Cesa-Bianchi, and Fischer (2002b),
which has additive regretO(

√
nk lnn). Regrettably, our

bound is slightly worse than that of the algorithm of Auer

et al. (2002a), which addresses a more general problem that
the one considered here. We hope to address this discrep-
ancy in future work.

Second, we demonstrate that an algorithm for the thresh-
oldedk-armed bandit problem can be profitably applied to
the problem of selecting among priority dispatching rules
for the RCPSP/max.

1.3. Related Work
The classicalk-armed bandit problem was first studied by
Robbins (1952) and has since been the subject of numerous
papers; see Berry and Fristedt (1986) and Kaelbling (1993)
for overviews. As discussed in§1.2, the algorithms of Auer
et al. (2002a) and Auer, Cesa-Bianchi, and Fischer (2002b)
are the most relevant to this paper.

Studies of the maxk-armed bandit problem have much
the same objectives as ours (Cicirello & Smith 2004; 2005;
Streeter & Smith 2006). These works use ideas fromex-
treme value theoryto justify assumptions about the payoff
distributions of each arm. In constrast, our work takes a
non-parametric approach. We compare our algorithm to the
maxk-armed bandit algorithm of Cicirello and Smith (2005)
in §4.

3. An Interval Estimation Algorithm
We will analyze the following procedure for solving
(thresholded)k-armed bandit problems.

ProcedureIntervalEstimation (n, δ):
1. Initializexi ← 0, ni ← 0, andui ←∞ for all

i ∈ {1, 2, . . . , k}.
2. Repeatn times:

(a) i∗ ← arg maxi ui.
(b) Pull armi∗; incrementxi by the payoff re-

ceived; and incrementni.
(c) ui ← U(xi, ni, δ).

The function U(xi, ni, δ) returns a1 − δ upper confi-
dence interval forpi. More formally, for any parameterpi

(as well as anyni, andδ), we are guaranteed that

Ppi [U(xi, ni, δ) < pi] ≤ δ . (1)

The tightest possible upper boundU can be computed ex-
actly using the binomial distribution. For the purposes of
our analysis, it is easier to consider a weaker upper bound
defined using Chernoff’s inequality.

Chernoff’s inequality. Let X =
∑n

i=1 Xi be the sum ofn
i.i.d. variables withXi ∈ {0, 1} andP[Xi = 1] = p. Then
for β > 0,

P
[
X

n
> (1 + β)p

]
< exp

(
−µβ2

3

)
and

P
[
X

n
< (1− β)p

]
< exp

(
−µβ2

2

)
.

Lemma 1. The functionU defined by

U(xi, ni, δ) = max {pi|f(pi, xi, ni) > δ}

where

f(pi, xi, ni) = exp

(
−1

2
nipi

(
1− xi

nipi

)2
)

satisfies condition(1).

Proof. Omitted.

We first establish a bound on the number of times a sub-
optimal arm will be sampled.

Lemma 2. With probability at least1 − nδ, each arm
i ∈ {1, 2, 3, . . . , k} will be sampled at most6p∗ (1 −
√

αi)
−2 ln(1

δ) times, whereαi = pi

p∗ .

Proof. Omitted.

Theorem 1. Running interval estimation forn trials with
parameterδ = 1

n3 yields at least

s− 6
√

2s(k − 1) ln(n)− 1
n

above-threshold payoffs in expectation, wheres = np∗.

Proof. We consider only the special casek = 2. The proof
for generalk is similar.

Assumep1 = p∗ and let p2 = αp1, whereα < 1.
By Lemma 2, we sample arm 2 at mostmin{n, 6

p1
(1 −

√
α)−2 ln(1

δ)} times, so (with probability at least1 − nδ)
expected regret is at most

p1(1− α) min
{

n,
6
p1

(1−
√

α)−2 ln
(

1
δ

)}
.

Forα < 1, we have

1−α
(1−

√
α)2

= 1−α
(1−

√
α)2
· (1+

√
α)2

(1+
√

α)2

= (1+
√

α)2

1−α

< 4
1−α .

Thus the expected regret is at most

min
{

s∆,
24
∆

ln
(

1
δ

)}
where we define∆ = 1 − α. Solving the equations∆ =
24
∆ ln(1

δ) gives 2
√

6
s ln(1

δ) as the value of∆ that maxi-
mizes expected regret. So the expected regret is at most

2
√

6s ln(1
δ) = 6

√
2s ln(n).

With probabilitynδ = 1
n2 , Lemma 2 cannot be applied.

Because regret can never exceedn, this increases expected
regret by at most1n .

4. Experimental Evaluation
To evaluate the practical value of our interval estimation al-
gorithm, we use it to select among randomized priority dis-
patching rules for the resource-constrained project schedul-
ing problem with maximal time lags (RCPSP/max). Briefly,
in the RCPSP/max one must assign start times to each of
a number of activities in such a way that certain temporal
and resource constraints are satisfied. Such an assignment of
start times is called afeasible schedule. The objective is to
find a feasible schedule whose makespan is minimal, where
makespan is defined as the maximum completion time of
any activity.

Even without maximal time lags (which make the prob-
lem more difficult), the RCPSP is NP-hard and is “one of the
most intractable problems in operations research” (Möhring
et al. 2003). When maximal time lags are included, the fea-
sibility problem (i.e., deciding whether a feasible schedule
exists) as well as the optimization problem is NP-hard.

4.2. Heuristics

We consider six randomized priority dispatching rules for
the RCPSP/max. An approach that selects among ran-
domized priority dispatching rules has been shown to give
competitive performance on benchmark instances of the
problem (Cicirello & Smith 2005). We consider the six
randomized priority dispatching rules in the setH =
{LPF, LST,MST,MTS,RMS,Random}; see Cicirello
and Smith (2004; 2005) for a more complete description of
these heuristics.

4.3. Methodology

We evaluate our approach on a setI of 540 RCPSP/max in-
stances from the ProGen/max library (Schwindt 1996). For
each RCPSP/max instanceI ∈ I, we ran each heuristic
h ∈ H 10,000 times, storing the results in a file. Using this
data, we created a setK of 540 6-armed bandit problems
(each of the six heuristicsh ∈ H represents an arm). For
each instanceK ∈ K, we ran three algorithms with a bud-
get ofn = 10, 000 pulls: our interval estimation algorithm,
the QD-BEACON algorithm of Cicirello and Smith (2005),
and a straw man algorithm that simply sampled the arms in a
round-robin fashion. When running our interval estimation
algorithm, we use a thresholded version ofK. We calculated
(offline) the highest threshold such that, for some heuristic
h ∈ H, at least 5% of the schedules had quality (equal to -1
times makespan) in excess of the threshold.

4.5. Results

We first evaluate the three algorithms in terms of the number
of above-threshold schedules that were obtained. For each
algorithmA and each instanceK, we computed the ratio
of the number of above-threshold schedules sampled by
A to the number that would have been sampled using the
single best heuristic. The table below shows the minimum
and average value of this ratio over all 540 instances. In
addition, the table showspbest, the probability that the arm
sampled most often byA was an arm that would yield a

maximum-quality solution if sampled for alln trials.

Heuristic Min. ratio Avg. ratio pbest

Interval estimation 0.80 0.95 0.93
QD-BEACON 0 0.81 0.88
Round-robin 0.16 0.49 NA

The above table shows that interval estimation outper-
forms the other two algorithms in terms of its ability to ob-
tain above-threshold schedules.

We additionally computed the fraction of instances where
the best schedule generated by interval estimation was bet-
ter than the best schedule generated by QD-BEACON (resp.
round-robin). Ignoring ties, the best schedule from interval
estimation was superior to that from QD-BEACON in 84%
of the time, and superior to that from round-robin 85% of
the time.

Future Work
Below we outline two areas for potential future work.

Threshold selection. In the experiments reported in§4,
we calculated (offline) the highest threshold such that, for
some heuristich ∈ H, at least 5% of the schedules had
quality in excess of the threshold. In a real application, the
thresholds instead must be determined online, and may be
adjusted dynamically over time. We are currently investi-
gating approaches to this problem.

Variable run lengths and restarts. In this work, we have
assumed that each run of each heuristic has (approximately)
the same computational cost. It is desirable to effectively
handle a set of heuristics where the run time varies signif-
icantly across heuristics and across multiple runs of a sin-
gle heuristic. In this scenario it is also desirable to restart a
heuristic if it appears unlikely to produce an acceptable so-
lution within a reasonable amount of time. Specifically, it
is desirable to learn online, for each heuristic, a time bound
after which the heuristic should be restarted.

References
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
2002a. The nonstochastic multiarmed bandit problem.
SIAM Journal on Computing32(1):48–77.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002b. Finite-
time analysis of the multiarmed bandit problem.Machine
Learning47:235–256.
Berry, D. A., and Fristedt, B. 1986.Bandit Problems:
Sequential Allocation of Experiments. London: Chapman
and Hall.
Cicirello, V. A., and Smith, S. F. 2004. Heuristic selection
for stochastic search optimization: Modeling solution qual-
ity by extreme value theory. InProceedings of the 10th In-
ternational Conference on Principles and Practice of Con-
straint Programming, 197–211.
Cicirello, V. A., and Smith, S. F. 2005. The max k-armed
bandit: A new model of exploration applied to search

heuristic selection. InProceedings of AAAI 2005, 1355–
1361.
Kaelbling, L. P. 1993. Learning in Embedded Systems.
Cambridge, MA: The MIT Press.
Möhring, R. H.; Schulz, A. S.; Stork, F.; and Uetz, M.
2003. Solving project scheduling problems by minimum
cut computations.Management Science49(3):330–350.
Neumann, K.; Schwindt, C.; and Zimmerman, J. 2002.
Project Scheduling with Time Windows and Scarce Re-
sources. Springer-Verlag.
Robbins, H. 1952. Some aspects of sequential design of
experiments.Bulletin of the American Mathematical Soci-
ety58:527–535.
Schwindt, C. 1996. Generation of resource–constrained
project scheduling problems with minimal and maximal
time lags. Technical Report WIOR-489, Universität Karl-
sruhe.
Streeter, M. J., and Smith, S. F. 2006. An asymptotically
optimal algorithm for the maxk-armed bandit problem.
Technical Report CMU-CS-06-110, Department of Com-
puter Science, Carnegie Mellon University.

