Planning with Preferences and Trajectory Constraints
by Integer Programming

Menkes van den Briel
Department of Industrial Engineering
Arizona State University
Tempe AZ, 85287-8809
menkes@asu.edu

Abstract

The focus of my research is on the formulation and
analysis of mathematical programming techniques in
automated planning. This extended abstract provides
a brief overview of the paper that will be presented
at the ICAPS Workshop on Planning with Preferences
and Trajectory Constraints. A synopsis of some of my
future research plans is given at the end.

Introduction

Given the recent success of integer programming ap-
proaches to automated planning (van den Briel, Vossen,
& Kambhampati 2005), I believe that these approaches
are a good avenue to explore further both because of
the recent improvements, and the fact that with pref-
erences, planning becomes an optimization problem,
which integer programming is naturally equipped to
handle.

Preferences and trajectory constraints are two new
language features in PDDL3.0 that can be used to ex-
press hard and soft constraints on plan trajectories, and
that can be used to differentiate between hard and soft
goals. Hard constraints and goals define a set of condi-
tions that must be satisfied by any solution plan, while
soft constraints and goals define a set of conditions that
merely affect solution quality.

In particular, preferences assume a choice between
alternatives and the possibility to rank or order these
alternatives. In PDDL3.0, preferences can be defined
on states, on action preconditions, on trajectory con-
straints, or on some combination of these. Since prefer-
ences may or may not be satisfied for a plan to be valid
they impose soft constraints or goals on the planning
problem. Trajectory constraints, on the other hand,
define a set of conditions that must be met throughout
the execution of the plan. They can be used to express
control knowledge or simply describe restrictions of the
planning domain. Since trajectory constraints define
necessary conditions for a plan to be valid (except in
the case where the trajectory constraint is a preference)
they impose hard constraints or goals on the planning
problem.

Neither preferences nor trajectory constraints have
yet gotten a lot of attention from the planning com-

munity, but the importance of solution quality and the
efficient handling of hard and soft constraints and goals
has increasingly been addressed by some recent works.

Planning with preferences is closely related to over-
subscription planning. In oversubscription planning
goals are treated as soft goals as there are not enough
resources to satisfy all of them. This problem has been
investigated by Smith (2004) and further investigated
by several other works.

Preferences, however, are more general than soft
goals as they also include soft constraints. Son and
Pontelli (2004) describe a language for specifying pref-
erences in planning problems using logic programming.
Their language can express a wide variety of prefer-
ences, including both soft goals and soft constraints,
but it seems that it has not been used for testing yet.
Empirical results for planning with preferences are pro-
vided by Rabideau, Engelhardt and Chien (2000) and
Brafman and Chernyavsky (2005). Rabideau, Engel-
hardt and Chien describe an optimization framework
for the ASPEN planning system, and Brafman and
Chernyavsky describe a constraint based approach for
the GP-CSP planning system.

Planning with trajectory constraints is closely re-
lated to reasoning about temporal control knowl-
edge and temporally extended goals, which are dis-
cussed by Ghallab Laruelle (1994) and Muscettola 1994.
Edelkamp (2005) handles trajectory constraints by con-
verting a PDDL3.0 description into a PDDL2.2 descrip-
tion and then using a heuristic search planner.

In this extended abstract I will show a few exam-
ples of how to express preferences and trajectory con-
straints by linear constraints over 0-1 variables. These
constraints are then to be added to the integer program-
ming formulation of the planning problem after which
the model is solved. Currently, I'm in the process of
incorporating these constraints in the integer program-
ming formulations described in van den Briel, Vossen,
& Kambhampati (2005).

Simple Preferences

Simple preferences are preferences that appear in the
goal or that appear in the preconditions of an action.
Goal preferences can be violated at most once (at the



end of the plan), whereas precondition preferences can
be violated multiple times (each time the corresponding
action is executed).

For each goal preference in the planning problem we
introduce a 0-1 variable p, where p = 1, if the goal
preference is violated and, p = 0 if the goal preference
is satisfied. Similarly, for each precondition preference
for action a at step t (1 <t < T) we introduce a
0-1 variable p,¢, where p,s = 1, if the precondition
preference is violated for action @ at step ¢ and, p,+ =
0 if the precondition preference is satisfied for action
a at step t. This way all violations can be counted
for separately and given different costs in the objective
function of the formulation.

Constraints for goal and precondition preferences are
easily modeled by integer programming. There are only
finitely many operators in PDDL3.0, including some
standard operators like or, and, and imply, which can
all be represented by one or more linear constraints.

Examples

In the examples we will use variables z,,; to denote the
execution of an action a at step t, and use variables
yr to denote the truth value of a fluent f at step t.
This is slightly different from the notation and variables
used in the formulations by van den Briel, Vossen, and
Kambhampati 2005, but for explanation purposes we
think it is more obvious this way.

In PDDL3.0, the goal preference p; “We would like
that personl is at city2” is expressed as follows.

(:goal (and (preference pl
(at personl city2))))

The inequality corresponding to preference p; is
given by:

b1 > 1- Yat personl city2,T (]-)

Thus preference p; is violated (p; = 1) if personl is not
at city2 at the end of the plan (yat persont city2,7 = 0).

The goal preference p, “We would like that personl
or person2 is at city2” is expressed as follows.

(:goal (and (preference p2 (or
(at personl city2) (at person2 city2)))))

The inequality corresponding to preference po is
given by:

P2 21—y personl city2,T — Yat person2 city2,T (2)

Now, preference po is violated if neither personl nor
person? is at city2 at the end of the plan. Preference
po is satisfied when either or both personl and person2
are at city2 at the end of the plan.

The goal preference p3 “We would like that person2
is at cityl if personl is at cityl” is expressed as follows.

(:goal (and (preference p3 (imply
(at personl cityl) (at person2 cityl1)))))

The inequality corresponding to preference ps is
given by:

P3 Z Yat personl cityl, T — Yat person2 cityl,T (3)
So preference p3 is violated if person2 is not at cityl
while personl is.

Preferences over preconditions are different from
goal preferences as they depend on both the execution
of an action and on the state of the precondition of that
action. Moreover, a precondition preference is defined
for each plan step ¢, where 1 < ¢ < T. In PDDL3.0, the
precondition preference psay7q7c17¢2, “We would like
that some person is in the aircraft” whenever we fly air-
craft 7a from city ?cl to city ?c2 is expressed as follows:

(:action fly
:parameters (7a - aircraft 7cl 7c2 - city)
:precondition (and (at 7a 7cl)
(preference p4
(exists (?p - person) (in ?p 7a))))
:effect (and (not (at 7a 7cl))
(at 7a 7c¢c2)))

The inequalities corresponding to each ground
fly 7a ?cl ?7c2 action is given by:

P4, fly?a?cl?c2,t > Tfly ?a ?cl 7c2,t — E Yin ?p ?a,t
?
p

Vi<t<T (4)

Thus, preference py ay2a2c17¢2,+ is violated at step ¢ if
we fly aircraft ?a from city 7cl to city 7¢2 at step ¢
(Zfy 7a 71 7024 = 1) without having any passenger 7p
onboard at step ¢ (Yin 7p 7a,t = 0, for each ?p).

Qualitative Preferences

In propositional planning, qualitative preferences in-
clude trajectory constraints and preferences over trajec-
tory constraints none of which involve numbers. Given
the space limitations we will mainly concentrate on the
trajectory constraints here that use the new modal op-
erators of PDDL3.0 in this section.

There is a general rule of thumb for the operators
forall and always. forall indicates that the trajec-
tory constraint must hold for each object to which it is
referring to. For example, forall (7b block) means
that the trajectory must hold for each instantiation of
?b, thus we generate the trajectory constraint for all
blocks ?b. always in propositional planning is equiva-
lent to saying for all ¢, thus we generate the trajectory
constraint for all t where 1 <t <T.

Constraints for trajectories are easily modeled by in-
teger programming through observing the different op-
erators carefully. It is often the case, that the trajec-
tory constraint simply represent one of the standard
relationships described earlier in this paper.

Examples

In PDDL3.0 the trajectory constraint “A fragile block
can never have something above it” is expressed as



follows.

(:constraints (and (always (forall (7b block)
(implies (fragile ?b) (clear ?7b))))))

The inequality corresponding to this trajectory
constraint corresponds to the relation that fragile
implies clear for all blocks ?b, for all steps t, where
1<t <T. It is given by:

Ytragile ?b,t — Yclear ?b,t < 0 v?by 1 <t< T (5)

The trajectory constraint “Each block should be
picked up at most once” which is expressed as follows.

(:constraints (and (forall (?b block)
(at-most-once (holding ?7b)))))

It translates to an at most once relation for all
blocks ?7b and is given by:

Yholding ?b,0 + E
a€A,1<t<T:holding ?be ADD(a)

Likewise the trajectory constraint “Each block
should be picked up at least once” is expressed as
follows.

(:constraints (and (forall (?b block)
(sometime (holding ?b)))))

This translates to a sometime relation for all
blocks 7b and is given by:

tholding e =1 V7 (7)
t

Continuing in the same way, the trajectory con-
straint “A truck can visit cityl only if it has visited
city2 sometime before” is expressed in PDDL3.0 as
follows.

(:constraints (and (forall (7t truck)
(sometime-before
(at 7t cityl) (at 7t city2)))))

The corresponding inequality describes a sometime-
before relationship for all trucks ?¢ and is given
by:

Z Yat 7t city2,s > Yat 7t cityl,t V?t, 1 <t< T (8)
1<s<t

More examples can be presented, but it seems enough
to bring the point across that integer programming pro-
vides a natural framework for modeling propositional
planning with preferences and trajectory constraints.

Conclusions and Future Work

This extended abstract shows a few examples of how
to model preferences and trajectory constraints by in-
teger programming manually. The main challenge is to

20 <1 V7 (6)

automatically generate these constraints and add them
to the integer programming formulation of the plan-
ning problem. Especially, generating constraints for
complicated instances of preferences and trajectory con-
straints that contain nested expressions can be tricky,
but is feasible.

An interesting analysis for future work would be to
compare the performance of the integer programming
formulations that use preferences and trajectory con-
straints as side constraints (as shown in the above ex-
amples) with integer programming formulations that
handle preferences and trajectory constraints which are
compiled down into PDDL2.2.

The general focus of my future research is to extend
and improve the current integer programming formu-
lations for automated planning, and to apply integer
programming techniques to a broader range of plan-
ning problems, including resource planning and tem-
poral planning. Techniques like branch-and-cut and
branch-and-price will be at the base of most of these
extensions.

References

Brafman, R., and Chernyavsky, Y. 2005. Planning
with goal preferences and constraints. In Proceedings

of the 15th International Conference on Automated
Planning and Scheduling (ICAPS), 182-191.

Edelkamp, S. 2005. Efficient planning with state
trajectory constraints. In Sauer, J., ed., Proceed-
ings Workshop Planen, Scheduling und Konfigurieren
/ Entwerfen, 89-99.

Ghallab, M., and Laruelle, H. 1994. Representation
and control in IxTeT, a temporal planner. In Proceed-
ings of the 2nd International Conference on Artificial
Intelligence Planning and Scheduling (AIPS), 62—67.

Muscettola, N. 1994. Intelligent Scheduling. Morgan
Kaufmann. chapter HSTS: Integrating planning and
scheduling, 169-212.

Rabideau, G.; Engelhardt, B.; and Chien, S. 2000. Us-
ing generic preferences to incrementally improve plan
quality. In Proceedings of the 2nd NASA International
Workshop on Planning and Scheduling for Space, 11—
16.

Smith, D. 2004. Choosing objectives in over-
subscription planning. In Proceedings of the 14th In-
ternational Conference on Automated Planning and
Scheduling (ICAPS), 393-401.

Son, T., and Pontelli, E. 2004. Planning with prefer-
ences unsing logic programming. In Proceedings of the
7th International Conference on Logic Programming

and Nonmonotonic Reasoning (LPNMR), 247-260.

van den Briel, M.; Vossen, T.; and Kambhampati, S.
2005. Reviving integer programming approaches for
ai planning: A branch-and-cut framework. In Pro-
ceedings of the 15th International Conference on Au-

tomated Planning and Scheduling (ICAPS), 310-319.



