
Discrepancy Search with Reactive Policies for Planning

SungWook Yoon
Electrical & Computer Engineering

Purdue University
West Lafayette, IN 47907

sy@purdue.edu

Abstract

We consider a novel use of mostly-correct reactive policies.
In classical planning, reactive policy learning approaches
could find good policies from solved trajectories of small
problems and such policies have been successfully applied
to larger problems. Often, due to the inductive nature, the
learned reactive policies are mostly correct but commit er-
rors on some portion of the states, rendering them useless in
solving every problem of the domain. When the reward is
only at goal states, the well known policy rollout approach
cannot improve the performance of such faulty policies. Dis-
crepancy Search has been developed in search to leverage the
structural information of the heuristic functions which tends
to be mostly-correct due to the human support. In this paper,
we use reactive policies in discrepancy search for planning, in
place of the heuristic functions. In our initial experiments, our
proposed approach is effective in improving the performance
of the given faulty reactive policies. The proposed approach
outperformed the policy rollout as well as the reactive poli-
cies themselves. We will conclude with our research plan in
the extension of the current proposal.

Introduction
Machine Learning (ML) has been successfully applied to
many real life application domains, from image classifi-
cation to natural language processing. AI Planning is no
exception and ML techniques have been applied to AI
planning and has shown some successes (Khardon 1999;
Martin & Geffner 2000; Yoon, Fern, & Givan 2002). The
role of ML here is producing a classifier that classifies an
optimal or good action conditioned on the current state and
the goal. Then, the sequential application of a good clas-
sifier to any problem in the target domain, will result in a
goal state with high probability. The most successful ap-
proach of ML to planning was learning from sampled so-
lution trajectories (Khardon 1999; Martin & Geffner 2000;
Yoon, Fern, & Givan 2002) and the classifier produced by
the ML techniques took the form of ordered list of rules
(Khardon 1996). The resulting classifier is called (reac-
tive) policy (Martin & Geffner 2000; Yoon, Fern, & Gi-
van 2002) following the Markov Decision Process (MDP)
framework orcontrol knowledge(Estlin & Mooney 1996;
Huang, Selman, & Kautz 2000; Aler, Borrajo, & Isasi 2002;

Fern, Yoon, & Givan 2004) following search control frame-
work. The classifier is calledreactivecontrol or policy when
the only input to the classifier is the current state and goal in-
formation, without any information on the history of the ac-
tion choices or state sequences that led to the current state.

To be useful in planning, a classifier for planning must be
highly accurate. One wrong-selection among any of the state
sequence of long plan trajectory could result in the failure
on the whole planning problem, even if the classifier made
correct choices all along the trajectory except in one state.
As reported by (Khardon 1999; Martin & Geffner 2000;
Yoon, Fern, & Givan 2002), ML technique found good re-
active policies that achieve high success ratio on some plan-
ning domains like Blocksworld. Due to the nature of induc-
tion in ML techniques, often automatically found reactive
policies, are prone to have some faults, typically caused by
overfitting. Ensemble(Breiman 1996) can overcome over-
fitting but Ensemble itself can be faulty and it takes more
time to train and get a set of reactive policies (Yoon, Fern, &
Givan 2002). From decision theoretic planning, iterative up-
dating of policy has been developed and one can use approx-
imate policy iteration (API) (Bertsekas & Tsitsiklis 1996)in
correcting the faulty policies. API (Fern, Yoon, & Givan
2003) has been shown effective in correcting faulty policies
for planning, but it needs time in updating the policies and
there is no guarantee that API always will produce improved
policy over the current policy.

Ensemble and API techniques both need the assumption
that the hypothesis space for the classifier is complete in ev-
ery state. When the hypothesis space for the classifier cannot
choose the correct action in every state of the target domain,
either of the technique has no chance in selecting the correct
actions on every state in the target domain.

In this proposal, we would like to answer the following
question, “how to use reactive policies found by an ML tech-
nique when there is some possibility that the policies can be
faulty”. Or what if the hypothesis space for the ML is not
complete, means that the knowledge representation (KR) for
the hypothesis is good for most of the states in the target
domain but for small portion of the states. We seek a de-
ductive technique in using possibly faulty policies. Policy
rollout (Bertsekas & Tsitsiklis 1996) is one such technique
that can improve the performance of the given policy by se-
quentially choosing the actions considered best in one-step



look ahead policy evaluation. Although policy rollout is a
powerful technique that can improve upon the given policy,
when the reward is limited to a specific state like goal state
and the faulty choice of the given policy is sporadic across
the trajectory of the policy, then policy rollout may not be
able to improve the performance of the given policy. Even
multi-level policy rollout (Xiang Yan & Van Roy 2004) can-
not fix the problem unless the faulty choices are limited to
the initial part of the trajectories. In this proposal, we seek
an answer to this sporadic distribution of faulty choices ofa
policy, in search techniques.

In search community, due to the involvement of human,
many search application domains have a good set of well-
designed features and have good heuristic functions. For
some search application domains, heuristic functions are
mostly-correct in guiding the search path but though infre-
quent, they can be wrong.Discrepancy Search(William
D. Harvey 1995) is developed to leverage such structural
information about heuristic function, or when the heuristic
function is mostly-correct. In this proposal, we will employ
discrepancy search in using mostly correct reactive policies.

The remainder of this proposal is structured as follows.
We will describe the proposed technique. Then, we will
show initial experimental results. Finally, we will give re-
search direction following this proposal.

Proposed Algorithm
Figure 1 shows our proposed algorithm. The big picture of
our algorithm is the same as the Discrepancy Search (DS).
One difference is the consideration of the nature of the plan-
ning. Unlike the typical applications of the traditional DS,
the depth of the search for planning problems can be arbi-
trarily long. And one cannot follow the given policy in-
definitely. To address this issue, in theNeighbors func-
tion of figure 1, in every expansion of a node, we assign
weight. Weight can be understood as the discrepancy from
a state to another state with regard to the input policy. The
paths favored by the policy will be weighted lower, enabling
deeper search following those paths. The depth of the search
is increased by the amount of the weight calculated by the
assign-weight function. In this proposal, we suggested to
use 1 - (the probability that the policy selects the path) +ǫ,
whereǫ > 0. Investigating alternative techniques like log-
arithmic use of the probability of the choice for the assign-
weight function is in our agenda for the research. The pa-
rameterǫ gives a natural horizon to the paths that follows
the input policy, preventing paths with arbitrary depth.

Figure 1 also suggests a natural way of using stochastic
policy. The assign-weight function is designed to consider
a stochastic policy. During machine learning, based on the
purity of the coverage in training data, one can easily assign
the weight of the policy or the weight of each rule of the pol-
icy. And this information can be effectively used in stochas-
tic search and in our algorithm. Weighting the selection of
the heuristic function in DS has been studied (Walsh 1997;
Bedrax-Weiss 1999). The weight setting in these works
were on the level or depth of the tree, and not on the intrin-
sic stochastic nature of the heuristic function or the policy.
So, our suggestion of using stochastic policy in DS will be

Discrepancy-Search(S, π,D)
// D: depth limit,S: problem or state,π: input policy

Q← {(S, 0)}
// search queue: stores pairs of states and depths

s← first(Q)

repeat untilgoal-reached(first(s))
Neighbors(s, π, 0)
s← first(Q)

return Plan(s)

Neighbors(s, π, d)
// d: neighbor depth,s: state,π input policy

if second(s) > D; return // over the discrepancy limit

if d > 1; return // over the neighbor discrepancy limit

N ← Next-States(first(s))
// enumerate direct neighbors

for-each n in N
w ← assign-weight(s, n, π)
Q← add(Q, (n,w + second(s))
// add to search Q a new pair of state and depth
Neighbors((n,w + second(n)), π, d + w)

assign-weight(s′, n, π)
// example assign weight function
//s′: state,n: next state,π: input policy

return (1− p(π, s′, n) + ǫ)

// p(π, s′, n): probability that the given policy moves to
staten from the current states′

Figure 1: Discrepancy Search with a Reactive Policy: The
search algorithm is the same as that of limited discrepancy
search. The discrepancy limit isD. Note that the discrep-
ancy depth is not increased by one. The discrepancy depth
is increased with proportional to the probability that the path
is chosen by the input policy.

an interesting extension of the weighted version of the DS
technique.

Preliminary Experiments
To test the performance of discrepancy search with reac-
tive policies, we conducted experiments on Blocksworld and
Driverlog. We randomly selected a policy learned from our
previous research (Yoon, Fern, & Givan 2005) then we com-
pared the performance of the policy in 3 techniques, policy
as it is, rollout policy and discrepancy search with the policy.
The figure 2 shows the performance of the each technique
on the corresponding planning domains. Column labeled P
shows the success ratio (SR) of the policy as it is. The suc-
cess ratio here is measured as the number of solved problems
in 100 randomly generated problems. Column labeled PR
shows the SR of rollout policy of the given policy. Column
labeled DS(n) shows the SR of discrepancy search with the
policy, where we limit the number of the discrepancies ton.



For Blocksworld, we used 20 blocks problems and for
Driverlog, we used 3 links, 4 drivers, 4 trucks and 8 pack-
age problems. As indicated in the figure 2, the rollout pol-
icy does not improve the performance of the faulty reactive
policy. The faulty selections of actions happen sporadically
across the trajectory, and the rollout policy does not address
these faults. Rather the discrepancy search cures the faulty
choices of the policy efficiently and improves the perfor-
mance of the given policy. Even with discrepancy limit 1,
the DS performs better than PR, and DS effectively correct
the faulty choices while PR could not.

Domains P PR DS(1) DS(2) DS(4)

Blocksworld 0.7 0.7 0.8 0.9 1

Driverlog 0.4 0.4 0.7 0.8 1

Figure 2: Using Reactive Policy

Research Direction
As an extension of the current proposal, we would develop
discrepancy search techniques for stochastic planning do-
mains and multi-agent planning domains, like Hearts or
WarCraft domains. For the stochastic planning domains, the
problem is the outcome distribution of the actions. We will
assume that the reactive policy can designate not only the de-
sired action choices but also the desired outcomes of the ac-
tions among possible outcomes of the actions. Similar idea
of designating the outcome of an action is used in different
purpose by (Boutilier, Dearden, & Goldszmidt 2000). Here
the idea was used in symbolic value iteration. In our pro-
posed work, the idea will reduce the branching factor to be
considered in the AND-OR or ExpectiMax search. For the
multi-agent domains, we would assume a similar situation,
where the reactive policy can designate the expected action
choices of the other agents as well as the current agent. This
will again reduce the branching factor of the MIN-MAX
search tree and will result in an effective and efficient al-
gorithm.

Also we are planning to extend the proposed algorithm in
heuristic based forward search setting in deterministic plan-
ning domains. In the heuristic search, the discrepancy search
will be used in enumerating neighbors of a node. In this ex-
tension, we consider the nodes that are within one discrep-
ancy from the current node with respect to the given pol-
icy, as neighbors of the current node. First, this will make
the planner faster when the policy favors the same actions
as the heuristics, since usually reactive policy’s execution is
faster than heuristic based action choices calculations. Sec-
ond, when the heuristic is in a local minimum, and the policy
favors orthogonal actions to the heuristic’s favorites, this ap-
proach might help in escaping the local minimum, resulting
in improvement on success ratio.

Note
Many of the ideas of this paper derive from joint work with
Robert Givan

Acknowledgement
I thank Alan Fern for the helpful comments on this work.

References
Aler, R.; Borrajo, D.; and Isasi, P. 2002. Using genetic
programming to learn and improve control knowledge.AIJ
141(1-2):29–56.
Bedrax-Weiss, T. 1999.Optimal Search Protocols. Ph.D.
Dissertation, University of Oregon.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996.Neuro-Dynamic
Programming. Athena Scientific.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored represen-
tations.AIJ 121(1-2):49–107.
Breiman, L. 1996. Bagging predictors.Machine Learning
24(2):123–140.
Estlin, T. A., and Mooney, R. J. 1996. Multi-strategy learn-
ing of search control for partial-order planning. InAAAI.
Fern, A.; Yoon, S.; and Givan, R. 2003. Approximate
policy iteration with a policy language bias. InProceedings
of the 16th Conference on Advances in Neural Information
Processing.
Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-
specific control knowledge from random walks. InICAPS.
Huang, Y.-C.; Selman, B.; and Kautz, H. 2000. Learning
declarative control rules for constraint-based planning.In
ICML, 415–422.
Khardon, R. 1996. Learning to take actions. InAAAI/IAAI,
Vol. 1, 787–792.
Khardon, R. 1999. Learning action strategies for planning
domains.AIJ 113(1-2):125–148.
Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning domains using concept languages. In
KRR.
Walsh, T. 1997. Depth-bounded discrepancy search. In
IJCAI, 1388–1395.
William D. Harvey, M. L. G. 1995. Limited discrepancy
search. In Mellish, C. S., ed.,Proceedings of the Four-
teenth International Joint Conference on Artificial Intel-
ligence (IJCAI-95); Vol. 1, 607–615. Montŕeal, Qúebec,
Canada: Morgan Kaufmann, 1995.
Xiang Yan, Persi Diaconis, P. R., and Van Roy, B. 2004.
Solitaire: Man versus machine. InNIPS.
Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. InUAI.
Yoon, S.; Fern, A.; and Givan, R. 2005. Learning measures
of progress for planning domains. InAAAI.


