
Planning with Soft Regular Constraints

Alessandro Zanarini
Département de génie informatique
École Polytechnique de Montréal

C.P. 6079, succ. Centre-ville, Montreal, Canada H3C 3A7
azanarini@crt.umontreal.ca

Abstract

We introduce a new approach for encoding STRIPS planning
problems as Constraint Satisfaction Problems: the encoding
makes use of automata for modelling the dynamics of the
objects involved in the domain. We describe a total order
planner based on Constraint Programming that takes advan-
tage of this encoding, using global constraints to model the
automata and to reduce the search space significantly. The
planner can be easily extended, using soft global constraints,
in order to deal with preferences among the goals in infea-
sible problems. The soft planning infrastructure can also be
exploited to build an effective search heuristic and to approx-
imate the plan length.

Introduction
Constraint Programming (CP) is considered an efficient
and effective paradigm for solving classical planning prob-
lems (see (Nareyek et al. 2005)). Several optimal paral-
lel planners based on CP have been proposed by the re-
search community over the years such as CPlan (Van Beek &
Chen 1999), GP-CSP (Do & Kambhampati 2001), CSP-Plan
(Lopez & Bacchus 2003) and they have shown their effi-
ciency compared to other optimal parallel planners based on
SAT or planning graph encodings. The common approach
for CP-based planners is to encode the planning problem as
a Constraint Satisfaction Problem (CSP) and to use well-
known CP techniques to solve the CSP like generalized
arc consistency (GAC) or conflict-based backjumping (CBJ)
(see (Dechter 2003)). Most of the CP based planners encode
the CSP starting from a planning graph representation and
take advantage of this in order to add mutex constraints to
the CSP model.

We propose a new kind of encoding that exploits automata
for modelling the dynamics of the objects that are involved
in the planning problem. We show how easily this model can
be extended in order to take into account preferences on the
goals. We show some experimental results on a preliminary
version of the planner.

The remainder of the paper is organized as follow: in Sec-
tion 2 we introduce the new encoding and the planner. In
Section 3 we show the soft version of the planner that can
handle preferences on the goals, Section 4 shows the bene-
fits that the soft planner can bring also to speed up the search.

In Section 5 we give some experimental results. Finally, in
Section 6 conclusions are given.

Modelling planning problems with automata
The basic idea is to model the planning problem as a set
of automata. Each automaton describes the dynamics of a
single object (or entity) involved in the planning problem;
the states of the automata denote the states of the objects
and transitions between the automata states represent ac-
tions. Intuitively, if you look at the set of current states of the
automata as a whole, this corresponds to the current world
state. The initial state of the world and the goals are repre-
sented by the initial state and the final state of the automata.
A valid (total order) plan is a sequence of actions that is rec-
ognized by each automaton; in other words it is a sequence
of actions that brings every automaton (object) from the ini-
tial state to a final state.

Consider, for example, a simple instance of the
blocks world domain in which you have as the initial
state onTable(a), onTable(b), on(c, b) and as the goal
on(a, b), on(b, c), onTable(c). The problem is modelled
as three automata that describe the state of the blocks. Fig-
ure 1a shows the automaton for block a; automata for block
b and c are analogous.

Figure 1: Automata of blocks world example.

Formally, given a plan of length L, the definition of the



CSP = (X,D,C) is:

• X = (X1, . . . , XL): a sequence of variables that repre-
sents the total order plan;

• D = (D1, . . . , DL): the variable domains, each domain
initially contains all the possible actions.

• C = (Regular1, . . . , Regulark): the set of constraints
defined on the set of variables; each regular constraint rep-
resents an automaton (i.e. object dynamics in the planning
problem).

Given a variable Xi, the instantiation Xi = aj denotes that
the action aj should be performed in the time step i.

Given an action aj with preconditions Pre(aj) and ef-
fects Eff(aj), we denote by Preo(aj) the subset of pre-
conditions that contain the literal (object) o and analogously
with Effo(aj) the subset of effects that contain o. We use
O to denote the set of objects involved in the planning prob-
lem. Given an object o ∈ O, we write P (o) for the set of all
the possible propositions that involve o (i.e. the propositions
that contain the literal o).

Let o be an object of the planning problem: the related
automaton Ao contains one state for each possible combi-
nation of the propositions in P (o); in order to simplify the
notation, given a state sk of Ao, we use sk to denote also the
conjunction of propositions represented by the state itself.
A transition (action ask,sq

) is present between two states sk

and sq iff Preo(ask,sq
) ⊆ sk and sq = sk ⊕ Effo(ask,sq

)
(where A ⊕ B is defined as the operation that adds to A all
the positive effects of B and deletes from A all the negative
effects of B).
The global constraint Regularo is used to model the au-
tomaton Ao. Note that the variable set is constrained by
several Regular constraints; this implies that an action aj

for a given time step can be performed iff it is consistent for
each regular constraint i.e. the preconditions of aj are met
in each automaton; formally,

⋃

o∈O Preo(aj) = Pre(a).
Intuitively, the regular constraints filter the domains in such
a way that only the actions for which the preconditions are
met, are kept in the domains. Moreover the global nature of
the regular constraints allows to filter also the actions that
can be hypothetically instantiated in a given time step (i.e.
the action precondition are met in that time step) but that do
not lead to the final states within the given plan length hori-
zon. This kind of reasoning restricts the search space and
effectively guides the search towards the goals.

Generally, the automata built in such a way, have a high
number of states; since the regular constraint propagation al-
gorithm has a complexity that is proportional to the number
of the state of the underlying automaton hence it is worth
minimizing the number of states of the automata.

Description of the algorithm Given a lower bound (even-
tually equal to 1) and an upper bound on the plan length, the
search for a valid plan is performed, following these basic
steps:

• set the plan length L to the associated lower bound;

• solve the related CSP problem with a plan length equal to
L;

– if a solution is found then stop and return the optimal
total order plan

– if no solution is found then increase the plan length and
solve the new CSP problem; the iteration is stopped
when no valid plan is found with a length equal to the
upper bound.

Softening the planner
Soft constraints (see (Petit, Régin, & Bessière 2001) for fur-
ther explanation) are a convenient modeling feature to find
plans that can lead us ”close” to the goal, to express prefer-
ences among the goals, or in general to deal with unsatisfi-
able planning problems. The presented model and planner
can be easily extended in order to introduce soft constraints.

In each automaton we introduce a set of transitions t =
(si, sf ) ∈ Tfake that go from each state to the final state;
these transitions represent fake actions and are exploited to
compute the violations. To do that, we introduce a cost func-
tion f : Tfake → R

+. In order to deal with the quantitative
approach proposed with the planning description language
PDDL 3.0, in which a goal is either satisfied or unsatisfied,
we can use the following function:

∀ t ∈ Tfake : f(t) =











0 if the transition starts from
a final state

1 if the transition starts from
a non final state

Another interesting violation function can be the distance
to a goal expressed as the number of remaining actions we
should perform to reach it without considering the interac-
tion with the other goals; this is equivalent to the number of
states that are present in the automaton between a state and
the final state. Given the function d : S → N that represents
the shortest sequence of action to achieve the goal then

∀ t = (si, sf ) ∈ Tfake : fd(t) = d(si)

The CSP model and the planner are adapted in the following
way:

• Violation variables: for each automaton (regular con-
straint) we associate a cost variable that represents the
violation. A total violation variable TotalV iolation is
added to the model as a function of the previously defined
variables.

• Cost Regular Constraints: we use cost regular constraints
to deal with automata in which there is the notion of cost
associated to the transitions.

• Objective: a minimization objective is added to the model
for the total violation variable.

• Slack Variable: given a plan of length L we add a variable
XL+1 instantiated to the fake action. Clearly if all the
goals are achieved within L time steps, then all the final
transitions will be from final states to final states so the
violation will be null. In the case in which there is at least
one unachieved goal, the fake action will lead to the final
states but with a corresponding violation cost.



Note that the function that relates TotalV iolation to the
violations of single automata can be seen as a way to ex-
press preferences among the goals. Obviously if we want
to give more importance to a given goal we should give it
more weight in the function. The underlying CP framework
also allows us to define more complex relationships between
violation variables: for example, assuming we are using the
distance violation function fd, we can use a constraint that
states that the absolute value of the difference between each
pair of variables must be less than a given threshold: this can
be seen as a way to express fairness (we do not allow a goal
to be reached while another is very far from being achieved).

Further Advantages of this (soft) planner
Building a search heuristic from the soft planner
In many traditional planners every time a valid plan is
not found, the plan length is increased and the search is
restarted. Clearly, with this approach, we revisit a large part
of the search space at each iteration. However, we can ex-
ploit soft planning infrastructure to build a heuristic to speed
up the search in soft and also traditional planning problems.

We use the distance based violation function and we
search for a plan that is as close as possible to the goals,
that is it minimizes the total violation variable. For this
variable we propose two functions: TotalV iolationsum =
∑

i V iolationi, the sum of the violations from individual
automata, and TotalV iolationmax = maxi(V iolationi),
the greatest individual violation. Once we prove that there
is no valid plan of length L (i.e. TotalV iolation > 0) we
store the best solution found and exploit it for the next itera-
tion, in two ways:

• heuristic: we branch first on the same values as in the
stored solution, in order to quickly arrive to a promis-
ing region of the search space. Note that the proposed
heuristic slightly differs from the one proposed in (Bonet
& Geffner 2001); in that approach the chosen action is
the one that leads to a state that is as close as possible
to the goal but with the strong assumption of considering
the goals independent and without considering the inter-
ference among the actions. In our approach the stored
solution brings us as close as possible to the goal consid-
ering the goal interations and the interference among the
actions. Even though we have not compared experimen-
tally the two heuristics with this planner, we believe that
our solution should be more effective.

• violation bound: the violation cost of the best solution
found in the previous iteration is a valid upper bound on
the violation variable. Clearly this will help to prune the
search space better during the current iteration.

Plan length increase approximation
In the basic algorithm, when no solution is found for a given
plan length, the plan length is increased by 1. Again, the soft
planner gives us some information that we can use to get a
closer approximation of the plan length.

Consider the soft planner with the distance based viola-
tion function and total violation equal to the max of the au-

tomata violations. Since we are minimizing the total viola-
tion, the cost of the best solution found indicates the min-
imum number of additional actions we should perform to
achieve the goals. Hence, given a plan length Li in iteration
i and the best total violation found TotalV iolation∗

i at iter-
ation i, we can set the plan length of the following iteration
to Li+1 = Li + TotalV iolation∗

i .

Proposition 1. The planner with the plan length increase
approximation is optimal.

Proof. Let Li be the length of the plan at iteration i, P ∗

i the
best plan at iteration i with TotalV iolation∗

i > 0 where the
total violation is computed using the max function over the
distance based violations. Suppose that there exists an opti-
mal valid plan P ∗ of length L∗ < Li + TotalV iolation∗

i .
Consider then the partial plan P ∗

partial in which the first Li

actions are equal to the plan P ∗. With P ∗

partial all the goals
can be achieved with a number of actions at most equal to
L∗ − Li < TotalV iolation∗

i . So P ∗

partial has a violation
strictly less than P ∗

i , hence P ∗

i is not the best plan with
length Li.

Experimental results
The planner was implemented in ILOG Solver 6.1. To illus-
trate its behavior, we report preliminary experiments on re-
duced instances of the Zeno Travel problem (see (ICAPS06
2006)) in which two airplanes (A1 and A2), two persons (P1
and P2) and four cities (C1, C2, C3 and C4) are present. The
instance has been modelled with four automata representing
the two airplanes and the two persons. The violation func-
tion used is fd that considers the distance to the final state of
the automata. We consider different goals in order to test the
soft and hard planners; the following table shows the differ-
ent instances in terms of initial state and final state:

A1 A2 P1 P2
Instance 1 C3→C2 C3→C3 C3→C1 C3→C2
Instance 2 C3→C4 C3→C3 C3→C1 C3→C2
Instance 3 C3→C2 C1→C3 C2→C1 C3→C2

The tests were performed on a Pentium-M 1.6GHz with
1GB RAM; the following table shows the results (plan
length and the time expressed in seconds for finding a fea-
sible plan) for solving the instances with the soft planner
and the hard (traditional) planner; some basic techniques for
breaking the symmetries have been introduced in the plan-
ners.

Plan Length Hard Planner Soft Planner
Instance 1 6 1.6 1.5
Instance 2 7 23.4 3.9
Instance 3 8 23.2 5.2

We tested the impact of the different features of the soft
planner on an instance with a feasible plan of length 9. The
following table show the results (B: violation bound, P: plan



length increase approximation, S: basic symmetry breaking
techniques, H: search heuristic, Back: backward search):

Planner features Time Planner Features Time
Basic 153.3 +B+P+S+H 34.7
+B 160.0 +B+P+H+Back 28.9
+B+P 141.3 +P+S+H+Back 25.3
+B+P+S 123.8 +B+P+S+H+Back 24.3

In these preliminary tests, we can see that the search
heuristic allows an interesting performance boost and in
general each proposed feature brings some performance in-
crease.

In order to experiment with preferences, we defined some
preferences on the goals of the first 3 instances: particularly,
we expressed the total violation as TV = VA1 + VA2 + 2 ∗

VP1 + 2 ∗ VP2 where VA1, VA2, VP1 and VP2 are the viola-
tions of the airplanes and of the persons; with this objective
function the preference is clearly given to the persons. We
used the distance based violation function for the single vio-
lations and we searched for the best plan with a tighter plan
length upper bound:

Plan Length Time Violations
Instance 1 4 2.2 4
Instance 1 5 4.4 2
Instance 2 5 8.8 3
Instance 2 6 6.1 1
Instance 3 6 2.0 2
Instance 3 7 3.9 1

With a tighter upper bound on the plan length, it was
not possible to satisfy all the goals hence the plan with the
minimum violation has been found. The time for solving
the instances with preferences is comparable to the time for
solving instances without preferences (with the same plan
length). Note that the flexibility of the framework allowed us
to introduce preferences among the goals simply by adding
an ad hoc objective function.

Discussion and open issues
The presented encoding raises one main challenge: it is not
always obvious how to choose the set of objects to fully
and correctly model the problem (actually we could choose
each entity of the planning problem but then the number of
automata would become intractable). Furthermore, the ter-
mination condition for the soft planner is actually given by
achieving all the goals or reaching the upper bound on the
plan length. Both issues are currently under investigation.

An interesting aspect that we are currently studying, is the
introduction of no-goods recording in the planner. Most of
the current state-of-the-art planners showed that it is a very
powerful method to improve the performance of the planner.

Another aspect to investigate in future studies is the in-
troduction of stronger symmetry breaking techniques. It is
well known that total order plans present a lot of symmetries
(two or more actions can be executed in whatever order) and

this can degrade the performance in cases where there is no
valid plan for a given plan length. In order to prove the in-
feasibility of a problem for a given plan length, the actual
planner explores all the search space while symmetry break-
ing methods can help to reduce it significantly.

To the best of our knowledge, no proposed CP-based plan-
ner exploits global constraints that are commonly known as
a powerful tool to speed up the search. The contributions of
this paper are:

• a new encoding for the planning problem;

• use of global constraints for solving planning problems;

• a new violation measure for the soft regular constraint;

• a CP-based planner that provides tools to express prefer-
ences on goals;

• exploitation of the soft planning infrastructure for build-
ing an effective heuristic.

The implementation of the planner in ILOG Solver (proba-
bly the best CP framework commonly used by the research
community and by industry) will allow us to introduce and
exploit several of the sophisticated techniques that the CP
community has proposed. Even if the proposed planner has
some limitations, the actual implementation and the possible
improvements that can be introduced to speed up the search
seem promising.

References
Bonet, B., and Geffner, H. 2001. Planning as Heuristic
search. Artificial Intelligence 129:5–33.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann Publishers.
Do, M. B., and Kambhampati, S. 2001. Planning as con-
straint satisfaction: Solving the planning garph by compil-
ing it into CSP. Artificial Intelligence 132:151–182.
ICAPS06. 2006. Workshop on Pref-
erences and Soft Constraint in Planning.
http://www.cis.strath.ac.uk/derek/PSCinP.html.
Lopez, A., and Bacchus, F. 2003. Generalizing Graph-
Plan by Formulating Planning as a CSP. International Joint
Conference on Artificial Intelligence IJCAI-2003 954–960.
Nareyek, A.; Freuder, E. C.; Fourer, R.; Giunchiglia, E.;
Goldman, R. P.; Kautz, H.; Rintanen, J.; and Tate, A. 2005.
Constraints and AI Planning. IEEE Intelligent Systems
20:62–72.
Petit, T.; Régin, J.-C.; and Bessière, C. 2001. Specific
Filtering Algorithms for Over Constrained Problems. In
Principles and Practice of Constraint Programming – CP-
2001: Proceedings of the Seventh International Confer-
ence. Springer-Verlag LNCS 2239.
Van Beek, P., and Chen, X. 1999. CPlan: A Constraint
Programming Approach to Planning. Proceedings of the
16th National Conference on Artificial Intelligence 585–
590.


