
Linear Logic in Planning

Lukas Chrpa
Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics
Charles University in Prague

chrpa@kti.mff.cuni.cz

Abstract

Linear Logic is a powerful formalism used to manage a
lot of problems with resources. Linear Logic can also
be used to formalize Petri Nets and to solve simple plan-
ning problems (for example ‘Block World‘). Research
goes ahead also in Linear Logic Programming, which
means that we have tools, that can solve Linear Logic
problems. In this paper I will show the possible con-
nection between solving planning problems and Linear
Logic Programming.

Introduction
Planning problems can be solved by translation into another
formalism like SAT, CSP, BDD, etc. Linear Logic is
another formalism to which a planning problem can be
translated. There already exists a planning system based
on Linear Logic called RAPS (K̈ungas 2003). RAPS was
introduced at Doctoral Consortium at ICAPS 2003. The
author of RAPS compared RAPS with the best planners
that participated at IPC 2002. This comparison showed
very interesting results, a Skeleton version of RAPS
showed almost the best computation time in computing
the plans (the typed Depots domain), but on the other
hand the solution length (in the typed Depots domain) was
almost the highest, which means that the plans weren’t
optimal. The Skeleton version of RAPS first converts a
planning problem into propositional Linear Logic (which
means that predicates in a planning operator description
are abstracted to propositional constants by removing
predicates’ arguments) and from that it calculates skeleton
plans, which means that we obtain a sequence of actions
needed to reach the goal. The final plan is obtained from the
skeleton plan by unification with corresponding arguments.
RAPS (including the Skeleton version) exploits the fact
that a planning problem coded into Linear Logic is easily
converted to the problem of Petri Net reachability so the sys-
tem mainly exploits the algorithms for Petri Net reachability.

Instead of coding the planning problems in Linear Logic
and solving the Petri Net Reachability problem like in
RAPS, I propose to study possibilities of solving the plan-
ning problems using Linear Logic Programming tools (de-
scribed bellow). I believe that Linear Logic Programming

tools can achieve better efficiency than ‘classical‘ Logic Pro-
gramming tools and hence might be more appropriate for
solving planning problems (Banbara 2006). Nevertheless I
will also study the possibilities of efficient solving Linear
Logic problems in Prolog. Prolog itself has many exten-
sions which may support some techniques for optimization
of planning problems.

In the next part of this paper I will give a short introduc-
tion to Linear Logic and Linear Logic Programming. Then
I will describe how to solve Petri Net reachability problem
using Linear Logic and how to convert planning problems to
Linear Logic. Finally I will present my future research plans
in this area.

Linear Logic
Linear Logic was introduced by J.Y. Girard at 1987 (Girard
1987; 1995). Unlike the ‘classical‘ logic we can handle re-
sources in Linear Logic. The basic operator in Linear Logic
is a (linear) implication (A (B), which is defined as B
is obtained by using one resource A. Linear Logic defines
more operators (not only implication), but I will describe
here only the multiplicative conjunction⊗ and the addi-
tive disjunction⊕ (the description of other operators can be
found in (Girard 1987; 1995)). The expression(A ⊗ B) (

(C⊗D) means that C and D are obtained using A and B. The
expressionA ((B⊕C) means that B or C (we don’t know
which one) is obtained using A. Proving in Linear Logic is
quite similar to proving in the ‘classical‘ logic (hypotheses
⇒ conclusion) , but the calculus of Linear Logic is more
complicated. To find out more about proving in Linear Logic
and the whole calculus of Linear Logic, see (Girard 1987;
1995).

Linear Logic Programming
Linear Logic Programming is derived from classical logic
programming (Prolog based) by including linear facts
and linear operators. Syntax of common Linear Logic
Languages is quite similar to Prolog syntax (Banbara 2006).
As I mentioned above, the efficiency of these languages
in solving problems describable in Linear Logic is better
than in Prolog. The good efficiency of Linear Logic
Programming languages is reached by using optimization
techniques based on the theory of proving in Linear Logic,

more in (Banbara 2002).

In my diploma thesis I proposed a Linear Logic Program-
ming language SLLL (Chrpa 2005), which was constructed
as a compiler to Prolog. However, the problem of this lan-
guage is a low computational efficiency caused by emu-
lating the linear facts as lists. Fortunately, there are other
Linear Logic Programming languages: Lolli (Hodas 1994;
1992), LLP (Banbara 2002), Lygon (Winikoff 1996), LTL1

and more. Lolli is possibly the strongest Linear Logic Pro-
gramming language, which contains almost all of Linear
Logic features. LTL and LLP are possibly the most effec-
tive Linear Logic Programming languages today.

Solving Petri Net reachability problem by
Linear Logic

In the next paragraphs, I will describe how Linear Logic
can be used in solving the Petri Net reachability problem,
that is, the problem of finding whether a given marking is
reachable from the initial marking. To find more about Petri
Nets (and the problem of Petri Net reachability), see (Reisig
1985).

Now I explain how the problem of Petri Net reachabil-
ity can be easily encoded using Linear Logic. Tokens in
places are encoded as linear facts (resources), in particular
the initial marking (in this case: one token in each place
p1, . . . , pk) is encoded in the following way:

` p1 ⊗ p2 ⊗ . . . ⊗ pk

Transitions are also encoded as axioms. For transi-
tion t and placespi1 , . . . , pim

∈ IN(t)...input places and
po1

, . . . , pon
∈ OUT(t)...output places we get:

` (pi1 ⊗ . . . ⊗ pim
) ((po1

⊗ . . . ⊗ pon
)

If the goal (in this case: one token in each placepg1
, . . . , pgl

)
(pg1

⊗. . .⊗pgl
) is provable (by using the above axioms), the

marking (one token in each placepg1
, . . . , pgl

) is reachable.2

More about the topic can be found in (Oliet & Meseguer
1989).

Planning with Linear Logic
Problem of using Linear Logic in planning have been stud-
ied by several authors (Masseron, Tollu, & Vauzeilles 1993;
Kanovich & Vauzeilles 2001). Encoding of planning prob-
lems in Linear Logic is quite similar to encoding of Petri
Nets (planning problems can also be encoded directly using
Petri Nets). In planning we have states, that are represented
by the set of predicates, that are true in the given state. We
can encode these states as a multiplicative conjunction of
(true) predicates, that belong to the corresponding state.The
encoding of states:

(p1 ⊗ p2 ⊗ . . . ⊗ pn), s = {p1, p2, . . . , pn}

1developed by Dr. Arnost Vecerka, my diploma supervisor
2multiple tokens in places or multiple (input, output) places can

be easily encoded as n-timesp ⊗ . . . ⊗ p

Actions in planning contain preconditionsp (must be
satisfied before preforming the action), negative effects
e−(removed after the action), and positive effectse+ (added
after the action). The actiona = {p, e−, e+} is encoded as:

∀i ∈ {1, 2, . . . , k}, li ∈ p ∪ e−

∀j ∈ {1, 2, . . . ,m}, rj ∈ e+ ∪ (p − e−)

(l1 ⊗ l2 ⊗ . . . ⊗ lk) ((r1 ⊗ r2 ⊗ . . . ⊗ rm)

This expression means that the predicates on the left side of
the implication will no longer be true after performing action
a and the predicates on the right side of the implication will
become true after performing actiona. The plan exists if
and only if the encoding of the goal state is provable from
the encoding of the initial state using the actions encoded as
axioms.3

Encoding negative predicates
The above formalism worked only with positive predicates.
However sometime we also need to encode negative pred-
icates.4 We extend the encoding of predicates with sym-
bols for negative predicates (p will obtain a twin p which
represents a negative form of predicatep). The encoding
of states, where predicatesp1, . . . , pm are true ins and
pm+1, . . . , pn are false ins:

p1 ⊗ . . . ⊗ pm ⊗ pm+1 ⊗ . . . ⊗ pn

For every actiona = {p, e−, e+}, we create an actiona′ =
{p, e′−, e′+}, wheree′− = e− ∪ {p |p ∈ e+} and e′+ =
e+ ∪ {p |p ∈ e−}. Now we can encode all actionsa′ in the
same way as described above.

Example
Let us present now an example of the conversion (without
negative predicates). Imagine the version of ”Block World”,
where we have slots and boxes, and every slot may contain
at most one box. We have also a crane, which may carry at
most one box.

Initial state: 3 slots (1,2,3), 2 boxes (a, b), empty crane, box
a in slot 1, boxb in slot 2, slot 3 is free.

Actions:

PICKUP (Box, Slot) = {

p = {empty, in(Box, Slot)},

e− = {empty, in(Box, Slot)},

e+ = {holding(Box), free(Slot)}

}

PUTDOWN(Box, Slot) = {

p = {holding(Box), free(Slot)},

e− = {holding(Box), free(Slot)},

e+ = {empty, in(Box, Slot)}

}

3To obtain a full plan, we must keep information about used
axioms (encoded actions) during proving.

4Negative predicates often appear in preconditions.

Goal: Box a in slot 2, Boxb in slot 1, empty crane, free slot
3.

The encoding of the problem:

INIT :
in(a, 1) ⊗ in(b, 2) ⊗ free(3) ⊗ empty

PICKUP (Box, Slot) :
empty ⊗ in(Box, Slot) (holding(Box) ⊗ free(Slot)

PUTDOWN(Box, Slot) :
holding(Box) ⊗ free(Slot) (empty ⊗ in(Box, Slot)

GOAL :
in(b, 1) ⊗ in(a, 2) ⊗ free(3) ⊗ empty

A solution is a sequence of actions. In this case, this se-
quence looks like:PICKUP (a, 1), PUTDOWN(a, 3),
PICKUP (b, 2), PUTDOWN(b, 1), PICKUP (a, 3),
PUTDOWN(a, 1).

Possible optimizations

In the previous subsections I described the pure encoding
of planning problems to Linear Logic. In this subsection I
will show that we are able to encode some optimizations to
Linear Logic as well.

In the above example we have two actions:
PICKUP (Box, Slot) and PUTDOWN(Box, Slot).
These actions are inverse, which means that if we perform
these actions with same parametersBox, Slot consecu-
tively, we obtain the state that we had before performing
these actions. The main idea how to block the consec-
utive performing of inverse actions is an extension of
the encoding of the actions. The encoding of the action
PICKUP (Box, Slot) from the above example id shown
bellow (encoding of the actionPUTDOWN(Box, Slot)
is analogical):

PICKUP (Box, Slot) :
canpick(Box, Slot) ⊗ canput(Box, Slot) ⊗
nopick(X,Y) ⊗ empty ⊗ in(Box, Slot) (

holding(Box) ⊗ free(Slot) ⊗ canpick(Box, Slot) ⊗
noput(Box, Slot) ⊗ canpick(X,Y)

The predicatescanpick(Box, Slot) (canput(Box, Slot))
mean that actions PICKUP (Box, Slot)
(PUTDOWN(Box, Slot)) can be performed (allowed).
The predicatesnopick(Box, Slot) (noput(Box, Slot))
mean that actions PICKUP (Box, Slot)
(PUTDOWN(Box, Slot)) can’t be performed (blocked).
The encoding of the actionPICKUP (Box, Slot) means
that this action can be performed if and only if the
predicatecanpick(Box, Slot) is true. After performing
this action the predicatecanput(Box, Slot) becomes
false, the predicatenoput(Box, Slot) becomes true, the
predicatenopick(X,Y) (represents exactly one blocked
actionPICKUP (X,Y)) becomes false and the predicate
canpick(X,Y) becomes true. In the other words this means
that performing some (allowed) action blocks the inverse
action and unblocks the action blocked by the previously
performed inverse action.

Another optimization of the previous example is block-
ing the actionPICKUP (Box, Slot) forever if the pred-
icate in(Box, Slot) is true in goal state. The action
PICKUP (Box, Slot) is blocked when both predicates
canpick(Box, Slot) andnopick(Box, Slot) are false. This
is obtained by removing the predicatenopick(Box, Slot)
from the right side of the linear implication in the encoded
PUTDOWN(Box, Slot) action.

I showed that Linear Logic can easily encode some opti-
mizations for the planning problems. Using these optimiza-
tions may lead the to better efficiency.

Comparing to SAT
Linear Logic itself has some advantages that can be ex-
ploited in the encoding of planning problems. The main
advantage is the linear size of the encoding of the planning
problems. For example the size of a SAT encoding of plan-
ning problems can be exponential. On the other way, SAT
problems are in general NP-complete unlike the undecid-
ability of whole Linear Logic. In planning we are using only
a part of Linear Logic, but we still have no evidence about
decidability and complexity of this restricted problem.

Future Research
In my future research, I will study the problem of efficient
usage of Linear Logic in planning problems (for example en-
coding optimizations). I will study the possibilities of using
Linear Logic Programming tools and possibilities of emulat-
ing Linear Logic in Prolog. I will also make a comparison
to some models (Gelfond & Lifschitz 1993). The following
paragraphs will present my future research plans in more de-
tail:

Using Linear Logic Programming Tools
As I have mentioned above, we have several tools that could
solve Linear Logic problems efficiently. The preliminary ex-
periments showed that the existing Linear Logic Program-
ming tools are not powerful enough to solve the planning
problems, because these tools can’t still handle the linear
implication well. This means that I am still emulating Lin-
ear Logic in Prolog, which isn’t much efficient. Neverthe-
less, I believe that these tools may be useful as a support to
other planning techniques. I also believe that possible im-
provements of these tools may help with solving the plan-
ning problems. I will study the possibilities of using these
tools to solve the planning problems.

Emulating Linear Logic in Prolog
Linear Logic can be easily emulated in Prolog.5 Linear facts
are in a special list. We must define two predicates, one for
deleting the facts from the list (lin del) and one for adding
the facts to the list (lin add):

lin_del(V,[V|L],L).
lin_del(V,[H|L],[H|NL]):-lin_del(V,L,NL).
lin_add(V,L,[V|L]).

5We don’t need whole Linear Logic, we need to emulate only
the support for the operators⊗,⊕, (.

Emulation of the multiplicative conjunction⊗ and the ad-
ditive disjunction⊕ is very easy, because we can replace
them by ‘classical‘ conjunction and disjunction which are
presented in Prolog. Emulation of the linear implication(

is also easy. All linear facts on the left side of the linear im-
plication are deleted from the list and all linear facts on the
right side of the linear implication are added to the list. A
formulaa ⊗ b (c ⊕ d can be written in Prolog like this:

(lin_del(a,L1,L2),lin_del(b,L2,L3)),
(lin_add(c,L3,L4);lin_add(d,L3,L4))

VariablesL1, L2, L3, L4 represent the list of linear facts,
because we must keep this list consistent and vulnerable to
backtracking.

This emulation isn’t very efficient, but we can do some
optimizations. If we have the list of linear facts sorted,
we don’t need to use the predicateslin del n-times conse-
quently. We can improve thelin del predicate such that it
will accept a sorted list of n facts and make the same effect
like using the old predicateslin del n-times consequently.
This approach will result in a fact that the list of linear facts
can be explored only once. To keep the list sorted we must
also improve thelin add fact. In future I will try to find out
more and better optimizations in emulating Linear Logic in
Prolog.

Temporal Logic extensions

There are also Linear Logic Programming tools that support
Temporal Logic extensions. For example the extension of
LLP is called TLLP (Banbara 2002). This could provide a
formalism to time extensions, especially for qualitative mod-
eling of time. With Temporal Logic we can also model fea-
tures like an action that must be performed before another
action. This may lead to PSP (Plan-Space Planning).

Using Linear Logic in probabilistic planning

When performing an action in probabilistic planning we
could reach more states (instead of one like in determin-
istic planning). Reachability of a particular state depends
on probability of obtaining that state after performing the
planned action. The main advantage of Linear Logic is ad-
ditive disjunction, so we are able to encode the actions in
probabilistic planning in the following way (s, s1, s2, . . . , sn

are states,A is the action):

s × A → {s1, s2, . . . , sn}

A : s ((s1 ⊕ s2 ⊕ . . . ⊕ sn)

This expression means that only one state from
s1, s2, . . . , sn, could be reached after performing ac-
tion A from states in a certain step, but we don’t know
which one (depends on probability). Unfortunately the main
disadvantage of Linear Logic is that it can’t handle proba-
bilities directly. Nevertheless, there is still an option,which
consists of possible cooperation with other techniques. This
problem needs to be more studied, so in future I will also
try to find out more about this extension.

Conclusion
The paper showed that Linear Logic can be used to encode
planning problems. Like for other encodings, the advantage
of this approach is that an improvement of the Linear Logic
solver leads to improved efficiency of the planner based on
Linear Logic. Still, the efficiency of current Linear Logic
solvers applied to planning problems should be explored in
more detail.

Acknowledgements
I thank to my supervisor Roman Bartak for help with writing
this paper. The research is supported by the Czech Science
Foundation under the contract no. 201/04/1102 and by the
Grant Agency of Charles University (GAUK) under the con-
tract no. 326/2006/A-INF/MFF.

References
Banbara, M. 2002.Design and Implementation of Linear
Logic Programming Languages. Ph.D. Dissertation, The
Graduate School of Science and Technology, Kobe Uni-
versity.
Banbara, M. 2006. http://bach.istc.kobe-u.ac.jp/llp/.
Chrpa, L. 2005. Linearni logika. Master’s thesis, Depart-
ment of Computer Science, Palacky University, Olomouc.
(in Czech).
Gelfond, M., and Lifschitz, V. 1993. Representing actions
and change by logic programs.Journal of Logic Program-
ming 17(2,3,4):301–323.
Girard, J.-Y. 1987. Linear logic.Theoretical computer
science 50:1–102.
Girard, J.-Y. 1995.Linear Logic: Its Syntax and Semantics.
Cambridge University Press.
Hodas, J. 1992. Lolli: An extension of lambdaprolog with
linear logic context management.Proceedings of the 1992
Workshop on the lambdaProlog Programming Language.
Hodas, J. 1994.Logic Programming in Intuitionistic Lin-
ear Logic: Theory, Design, and Implementation. Ph.D.
Dissertation, University of Pennsylvania, Department of
Computer and Information Science.
Kanovich, M., and Vauzeilles, J. 2001. The classical ai
planning problems in the mirror of horn linear logic: Se-
mantics, expressibility, complexity.Mathematical Struc-
tures in Computer Science 11(6).
Küngas, P. 2003. Linear logic for domain-independent ai
planning.Proceedings of Doctoral Consorcium ICAPS.
Masseron, M.; Tollu, C.; and Vauzeilles, J. 1993. Generat-
ing plans in linear logic i-ii.Theoretical Computer Science.
Oliet, N. M., and Meseguer, J. 1989. From petri nets to
linear logic.Springer LNCS 389.
Reisig, W. 1985. Petri Nets, An Introduction. Springer
Verlag, Berlin.
Winikoff, M. 1996. Hitch hiker’s guide to lygon 0.7. Tech-
nical Report 96/36, The University of Melbourne, Aus-
tralia.

