
Techniques for Generating Optimal, Robust Plans in the Presence of Temporal
Uncertainty

Janae N. Foss∗
Department of Computer Science

Michigan Technological University
1400 Townsend Drive
Houghton, MI 49931
jnfoss@mtu.edu

Abstract

Planning under uncertainty has been well studied, but
usually the uncertainty is in action outcomes. This work
instead investigates uncertainty in the amount of time
that actions require to execute. In addition to this tem-
poral uncertainty, the problems being studied must have
robust solution plans that are optimized based on an ob-
jective function. This extended abstract details two it-
erative approaches that have been used to solve these
type of problems and discusses future work including
over-subscription of goals and MDP approaches.

Introduction

Uncertainty applies to several aspects of planning problems
and many planners have been built that prepare contingency
plans when actions may affect the world in uncertain ways
(Bresina et al. 2002). However, less work has been done
with planners that assume action durations are uncertain.
One approach to dealing with this type of uncertainty is to
take a pessimistic view of the world, assume a worst case
scenario, and find conservative plans that are likely to exe-
cute to completion regardless of the amount time consumed
by the actions in the plan. This approach is often undesirable
as it leads to missed opportunities and slack time in the plan
when actions complete quickly (Bresina et al. 2002). For
example, assume that a Mars rover has to move from point
a to point b and use either a slow, high resolution camera or
a fast, low resolution camera to take an image of a rock at
point b. Given that travel time is uncertain, a conservative
planner may recognize that in the worst case there will not
be enough time to use the high resolution camera, and thus
choose to always use the low resolution camera. This plan is
robust, but when the rover travels quickly the opportunity of
getting a high resolution image is not realized and the rover
may undesirably be left idle for some period of time. My re-
search focuses on finding ways to create robust plans where
suboptimal actions are taken when time dictates, but optimal
actions are executed when time allows.

∗Supported by NASA Harriett G. Jenkins Pre-Doctoral Fellow-
ship Program.

Problem Specification
I am considering a class of problems with solutions that
combine temporal uncertainty, optimality, and robustness,
each of which is difficult to deal with individually and more
so in combination. In this class of problems, action dura-
tions cannot be specified exactly and are represented by a
closed interval [min-d, max-d], specifying the lower and up-
per bounds for the duration. Under this model, the actual
duration required for an action is only known through ob-
servation after the action has executed. These duration in-
tervals complicate the problem because solution plans are
ranked by an objective function and the optimal solution is
only attainable when actions complete quickly. This means
that solutions found with the pessimistic assumption that all
actions require max-d will be suboptimal, but optimal solu-
tions found under the optimistic assumption that all actions
require min-d (or any value less than max-d) are not guaran-
teed to execute to completion. The best solutions for these
problems must be robust plans that are guaranteed to run to
completion regardless of the amount of time actions require
to complete. Plans that are robust in this sense are classi-
fied as safe. Considering all of these attributes, a temporally
uncertain planning problem is defined as a quadruple <D,
I, G, M>, where D is a domain description that lists the
available actions (including interval durations and temporal
constraints), I is a description of the initial state, G is a de-
scription of the goals, and M is a plan metric that represents
the objective function for ranking plans.

Temporal Contingency Planning
One way to create optimal plans that are also robust in the
face of temporal uncertainty is to build temporal contin-
gency plans (i.e., plans with contingency branches that are
taken based on the observed time at execution). At present,
I have developed two related iterative approaches for gen-
erating temporal contingency plans. They differ in that one
is a greedy algorithm and the other is a hill climbing algo-
rithm. These algorithms are implemented in the planners
PHOCUS-G (Foss & Onder 2005) and PHOCUS-HC (Foss &
Onder 2006).

Both approaches follow a Just-In-Case style algorithm
(Drummond, Bresina, & Swanson 1994) where a seed plan
is generated, the points where it is likely to fail are located,
and then contingency branches are inserted (when available)

at those points (Fig. 2). The two algorithms differ in the
way that repairs are found when failure is possible. To gen-
erate the seed plan (line 1 in Fig. 2), temporal uncertainty is
removed from the problem. This allows generation of plans
using any planner that can handle durative actions, timed
initial literals, and optimize based on an objective function1.
Because it is assumed that the optimal plan is only attain-
able when actions complete quickly, min-d is assigned as
the duration of each action. The resulting seed plan P re-
turned by such a planner is temporally deterministic. My
algorithm factors temporal uncertainty back in by convert-
ing P to a directed, edge-weighted graph called a distance
graph DG, thus expressing P as a simple temporal network
(STN) (Dechter, Meiri, & Pearl 1991). Figure 1 (b) shows
a distance graph for a plan from a simplified rover domain.
This conversion is described in detail in earlier work (Foss
& Onder 2005).

Since DG contains all temporal constraints given in the
domain, it can be used to determine when P becomes unsafe
(line 11) (Dechter, Meiri, & Pearl 1991). In the loop that
contains line 11, the plan is analyzed one step at a time to
find the latest action i which makes the rest of the plan un-
safe. If an action is found to be safe in line 11, the domain
and the corresponding distance graph are updated to provide
topmost flexibility to the earlier actions (lines 12,13), assum-
ing the action requires its maximum duration. Otherwise,
modifications are made so that i minimally uses the dura-
tion that causes the plan to fail and a new plan meeting the
new constraints is sought for in one of the REPAIR-PLAN-*
algorithms.

Figure 1 (c) shows how the distance graph in (b) has
changed after several actions have been analyzed. First,
it was found that the transmit data action could exe-
cute to completion if it required its maximum duration of
10 time units. The distance graph was then updated to
constrain transmit data to always take 10 time units by
changing the weight of the arc from end:transmit data to
start:transmit data to -10. Next, it was found that even
with the updated transmit data constraint, high res pic
could execute safely with any duration in its interval. The
figure shows that this action was also then constrained to
require its maximum duration. However, when the drive
action was analyzed, it was found that the shortest path from
start:drive to end:drive had a weight of 50 (this path
is bolded in the figure). This indicates that high res pic
and/or transmit data may not have enough time to com-
plete if drive executes for longer than 50 time units. At this
point, a repair function must be called.

To apply the greedy approach, REPAIR-PLAN-G is called
(Fig. 3). In this version, the initial conditions of the world
are changed to represent the state of the world after all ac-
tions up to and including i are executed, assuming that i re-
quires the amount of time that would cause failure in the

1Currently LPG-td(Gerevini et al. 2004) is being used for this
step because it handles durational actions and timed initial literals
(used for specifying deadlines), creates parallel plans, and consid-
ers the objective function at planning time. It has also performed
well in the International Planning Competition.

Execution Time Action
30 drive to target
76 take high res pic
107 transmit data

(a)

(b)

(c)

Temporal Contingency Plan
at time 30: drive
if time < 81

high res pic
transmit data

else
low res pic
transmit data

(d)

Figure 1: (a) A seed plan for a problem from the rover do-
main. Note that the times given by the seed plan assume
actions require their minimum durations. (b) The distance
graph for the seed plan in (a), incorporating temporal uncer-
tainty. For clarity, only the most important edges are shown.
(c) The updated version of the distance graph in (b) after the
transmit data, high res pic, and drive actions have been an-
alyzed. The bold arcs show the shortest path from start:drive
to end:drive. (d) The temporal contingency plan generated
by both the greedy and hill-climbing approaches.

original plan. Then, an attempt is made to generate a new
plan which could be added as a temporal contingency branch
on the original plan. If no such plan is found, this algorithm
returns null and thus finds no solution. When applying the
greedy approach, the seed plan is optimal in respect to the
objective function. This optimal plan is never abandoned
and it is augmented with branches that are each optimal,
given the constraints used when generating them.

For the hill-climbing approach, REPAIR-PLAN-HC is

called (Fig. 4). Instead of modifying initial conditions, in
this case the domain is modified so that i minimally requires
the amount of time that would cause failure in the original
plan. Then, an entire new plan is generated. If the new plan
shares a head with the current plan, a contingency plan is
formed. Otherwise, the new plan is returned and replaces the
seed plan. As with the greedy approach, the initial seed plan
is optimal with respect to the object function. However, the
hill-climbing approach will abandon and replace the original
seed plan either if no branches can be added to the seed plan
to make it safe, or if a new seed plan has higher utility than
the plan created by adding a branch to the old seed plan. In
this way, the safest branch of the plan is optimized.

Both the greedy and hill-climbing versions of the algo-
rithm benefit from the fact that they allow parallelism. This
is especially important when deadlines are taken into con-
sideration. Each approach has individual advantages, also.
Intuitively, the greedy approach is faster when contingency
branches can be added to repair the optimal plan. There
are two related factors that contribute to this. First, the
domain is modified so that the head of the plan will not
be regenerated, restricting the search space. Second, be-
cause a contingency branch is shorter than a full plan, it is
faster to generate it than to regenerate the entire plan as is
done in the hill-climbing algorithm. However, the greedy
approach fails to find any solution when no contingency
branches can be added to the optimal plan. Since the hill-
climbing approach always regenerates the whole plan, it
is able to escape local minima/maxima. Also, the greedy
algorithm may start with an optimal plan that is unlikely
to be executed and augment this plan with very undesir-
able branches that are likely to be executed. In this sit-
uation the hill-climbing algorithm would abandon the op-
timal plan and find a sub-optimal, but likely to succeed
plan that would have higher utility than the branches in
the greedy algorithm’s plan. Each algorithm has been in-
dependently implemented and tested (Foss & Onder 2005;
2006) and more experiments are planned to verify that these
intuitive conclusions hold.

Related Work

The main framework of this algorithm is very close to Just-
In-Case (JIC) scheduling (Drummond, Bresina, & Swanson
1994). The JIC scheduler analyzes a seed schedule, finds
possible failure points, and inserts contingency branches so
that valuable equipment time is not lost when an experiment
fails. My work extends this framework to multiple planner
goals, parallel plans, and nontemporal metrics, but does not
currently consider probability of failure.

Several planners dealing with problems similar to those I
am working with have been developed recently. Tempastic
(Younes & Simmons 2004) is a planner that models con-
tinuous time, probabilistic effects, probabilistic exogenous
events and both achievement and maintenance goals. It uses
a generate-test-debug algorithm that generates an initial pol-
icy and fixes the policy after analyzing the failure paths. In
producing a better plan, the objective is to decrease the prob-
ability of failure. Nontemporal resources are not modeled.

PHOCUS-* (D, I, G, M)
1: P0 ← GENERATE-SEED-PLAN (D, I, G, M)
2: Pcurrent ← P0
3: loop do
4: DG← CONSTRUCT-DISTANCE-GRAPH(Pcurrent ,D,I)
5: if SAFE-PLAN (Pcurrent , DG, D, I, G, M) return Pcurrent
6: Pnext ← MAKE-PLAN-SAFE (Pcurrent , DG, D, I, G, M)
7: if Pnext is null return failure
8: Pcurrent ← Pnext

MAKE-PLAN-SAFE (Plan P, DistanceGraph DG, D, I, G, M)
9: for i = downto 1 in P

10: maxAllowedDuration← SHORTEST-PATH-DISTANCE(si, ei,
*** DG)

11: if maxAllowedDuration ≥ max-d of i
12: DG, D← DG, D updated to constrain i to always require

************ max-d of i
13: DG, D← DG, D updated to constrain i to always start at

************ latest possible time that allows max-d of i
14: else
15: return REPAIR-PLAN-*(i,Plan P, D, I, G, M)

Figure 2: The shared PHOCUS-* algorithms.

REPAIR-PLAN-G (i, Plan P, D, I, G, M)
1: newMinDuration← maxAllowedDuration + 1
2: Imod ← I modified to represent the world after all steps up to i

******** have completed and i has consumed newMinDuration
3: Pnew← generate plan with D, Imod ,G,M
4: if Pnew is not null
5: return a contingency plan created out of P and Pnew
6: else
7: return null

Figure 3: The REPAIR-PLAN-G algorithm. A greedy algo-
rithm for finding temporal contingency branches.

Mausam and Weld (2005) describe a planner that can han-
dle actions that are concurrent, durative and probabilistic.
They use novel heuristics with sampled realtime dynamic
programming in this framework to generate policies that
are highly optimal. The quality metric includes makespan
but nontemporal resources are not modeled in the planning
problem. Prottle (Little, Aberdeen, & Thiebaux 2005) is a
planner that allows concurrent actions that have probabilis-
tic effects and probabilistic effect times. Prottle uses effec-
tive planning graph based heuristics to search a probabilistic
AND/OR graph consisting of advancement and placement
nodes. Prottle’s plan metric includes probability of failure
but not makespan or metric resources. Schaffer, Bradley and
Chien (2005) developed a probabilistic approach for reason-
ing about uncertainty in continuous activity duration and re-
source usage. Their approach does not include contingency
planning. They have shown robustness improvements over
traditional non-probabilistic methods.

Future Work
Temporal contingency planning improves on conservative
planning techniques by including the most conservative plan
as the least desirable contingency branch, executed only

REPAIR-PLAN-HC (i, Plan P, D, I, G, M)
1: newMinDuration← maxAllowedDuration + 1
2: Dmod ← D modified so that action i requires newMinDuration
3: Pnew← generate plan with Dmod , I,G,M
4: if P and Pnew have the same steps through step i
5: return a contingency plan created out of P and Pnew
6: else
7: return Pnew

Figure 4: The REPAIR-PLAN-HC algorithm. A hill-climbing
algorithm for finding temporal contingency branches.

when more desirable options may cause failure. The tech-
niques currently implemented begin with an optimistic as-
sumption that actions complete quickly and assume a uni-
form distribution over the uncertain duration interval. As I
continue to work on these iterative approaches, I plan to con-
sider what happens when the distribution is not uniform. The
most likely case is that action durations will have a Gaus-
sian distribution where most of the probability mass lies in
the center of the interval. Considering this, it does not make
sense to start with the assumption that each action requires
only its minimum duration because that will result in a plan
that is unlikely to execute to completion. Instead, it will be
better to start with a value from the duration that is likely to
occur, based on the given distribution. In this situation, op-
portunity branches can be added for when actions complete
faster than expected, and contingency branches can be added
for when actions run long. This may be a good anytime ap-
proach to be applied when there is a limited amount of time
available for planning. In this circumstance it is important
to spend the time available for planning to generate branches
that will improve the plan in a significant way. By incorpo-
rating non-uniform distributions, I will be able to better de-
termine when to stop branching because the expected utility
gained is too small.

In addition to the rover domain, I have been working with
problems from a travel domain and an evacuation domain.
In the travel domain, the goal is to travel from home to some
destination within a given time constraint. There are several
different ways to reach the destination, but some modes of
transportation are more expensive and the objective function
in this domain is to minimize the amount of money spent.
The challenge is that more expensive options, such as tak-
ing a taxi, are faster than less expensive options, like taking
a bus. Optimally, the bus would be taken, but if this ac-
tion comes after a flight that is running late, there may only
be enough time to take the taxi. In the evacuation domain,
the goal is to evacuate as many people as possible within
a given period of time. This is further complicated by the
fact that there are intermediate deadlines for rescuing differ-
ent groups of people. As such, it is easy to create problems
where it is not possible to evacuate all people, resulting in
over-subscribed goals (Smith 2004).

Over-subscription is also an issue in the rover domain and
most real world problems. I would like to develop tech-
niques that directly address this issue. One approach is to
simply achieve more goals when actions complete quickly

and only the highest priority goals, otherwise. Another pos-
sibility is that entirely disjoint sets of goals may be attained
on different branches of the plan.

Finally, I would like to investigate MDP approaches to
solving planning problems with temporal uncertainty. Un-
like the iterative planning approaches, MDPs do not natu-
rally allow parallel actions. Even so, MDPs can be useful in
this context because they naturally deal with uncertainty and
take cost and rewards into account. One challenge in using
MDPs to solve these type of problems is how to represent
states when time is a factor. A naive approach is to include
time in the state and thus have one state for each possible
time increment. However, this would very quickly cause a
blow-up in the size of the state space. It is likely that many
states in this naive approach would be identical, only differ-
ing in time stamp. I plan to investigate ways to group states
by time to reduce the number of states without sacrificing
quality in the solution policy.

References
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.;
Smith, D.; and Washington, R. 2002. Continuous time and
resource uncertainty: A challenge for AI. In 18th Confer-
ence on Uncertainty in Artificial Intelligence.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. AI 49:61–95.
Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-case scheduling. In Proc. 12th National Conf. on Artifi-
cial Intelligence, 1098–1104.
Foss, J., and Onder, N. 2005. Generating temporally con-
tingent plans. In IJCAI 2005 Workshop on Planning and
Learning in A Priori Unknown or Dynamic Domains.
Foss, J., and Onder, N. 2006. A hill-climbing approach
for planning with temporal uncertainty. In FLAIRS 2006
Conference. To appear.
Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P. 2004.
Planning in PDDL2.2 domains with LPG-TD. In Interna-
tional Planning Competition booklet (ICAPS-04).
Little, I.; Aberdeen, D.; and Thiebaux, S. 2005. Prottle:
A probabilistic temporal planner. In Proc. 20th National
Conf. on Artificial Intelligence (AAAI-05).
Mausam, and Weld, D. S. 2005. Concurrent probabilistic
temporal planning. In Proc. 15th International Conf. on
Automated Planning and Scheduling (ICAPS-05).
Schaffer, S. R.; Clement, B. J.; and Chien, S. A. 2005.
Probabilistic reasoning for plan robustness. In Proc. IJCAI
2005.
Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proc. 14th International Conference on Auto-
mated Planning and Scheduling (ICAPS-04), 393–401.
Younes, H. L., and Simmons, R. G. 2004. Policy gen-
eration for continuous-time stochastic domains with con-
currency. In Proc. 14th International Conf. on Automated
Planning and Scheduling (ICAPS-04).

