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Preface

Welcome to the 16th International Conference on Automated Planning and Scheduling
Doctoral Consortium.

This is the fourth Doctoral Consortium hosted by ICAPS, and it continues the tradi-
tion established by the first Doctoral Consortium in 2003. A total of 36 doctoral students
from 10 countries presented their work, interacted with senior practitioners in the field
and with each other, explored new ideas, experienced criticism and praise, grew as re-
searchers, and enriched our community. These students bring a range of experience
and interests to planning and scheduling, and during the Doctoral Consortium discussed
a wide variety of topics, ideas and techniques for addressing problems of planning and
scheduling. The Doctoral Consortium provides these students a valuable opportunity
not only to present their work, but also to discuss their ideas in depth with a senior
researcher or user of these technologies, who will look at their work as an interested
outsider. We are confident that this year's Consortium will set the stage for more to
come.

The 2006 Doctoral Consortium was funded by DARPA, the National Science Foun-
dation, NASA Ames Research Center, Honeywell, NICTA/Australian National University,
and QSS Group Inc. We would like to thank Subbarao Kambhampati, Adele Howe, Ken
Brown, Francesca Rossi, Wheeler Ruml for assistance in reviewing student applica-
tions. The Doctoral Consortium also owes special thanks to Stephen Smith for addi-
tional fundraising support, and to Carnegie Mellon University for handling the finances.
Finally, special thanks to Blazej Bulka for assistance in tracking and assembiling the final
list of submitted papers.

Marie des Jardins
Jeremy Frank
ICAPS 06 Doctoral Consortium Co-Chairs
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Planning with Temporally Extended Goals using Heuristic Search

Jorge A. Baier and SheilaMcllraith
Deptartment of Computer Science, University of Toronto,
Toronto, ON, M5S 3H5, Canada

Abstract

Temporally extended goals (TEGS) refer to properties that
must hold over intermediate and/or final states of a plan. Cur-
rent planners for TEGs prune the search space during plan-
ning via goal progression. However, the fastest classical
domain-independent planners rely on heuristic search. In this
paper we propose a method for planning with propositional
TEGs using heuristic search. To this end, we translate an in-
stance of a planning problem with TEGs into an equivalent
classical planning problem. With this translation in hand, we
exploit heuristic search to determine a plan. We represent
TEGs using propositional linear temporal logic which is in-
terpreted over finite sequences of states. Our translation is
based on the construction of a nondeterministic finite automa-
ton for the TEG. We prove the correctness of our algorithm
and analyze the complexity of the resulting representation.
The translator is fully implemented and available. Our ap-
proach consistently outperforms existing approaches to plan-
ning with TEGs, often by orders of magnitute.

1 Introduction

In this paper we address the problem of generating finite
plans for temporally extended goals (TEGS) using heuristic
search. TEGs refer to properties that must hold over inter-
mediate and/or final states of a plan. From a practical per-
spective, TEGs are compelling because they encode many
realistic but complex goals that involve properties other than
those concerning the final state. Examples include achieving
several goals in sequence (e.g., book flight after confirming
hotel availability), safety goals (e.g., the door must always
be open), and achieving a goal within some number of steps
(e.g., at most 3 states after lifting a heavy object, the robot
must recharge its batteries).

Planning with TEGs is fundamentally different from us-
ing temporally extended domain control knowledge to guide
search (e.g., TLPLAN [1], and TALPLAN [11]). TEGS ex-
press properties of the plan we want to generate, whereas do-
main control knowledge expresses general properties of the
search for a class of plans [10]. As a consequence, domain
control knowledge is generally associated with an additional
final-state goal.

A strategy for planning with TEGs, as exemplified by
TLPLAN, is to use some sort of blind search on a search
space that is constantly pruned by the progression of the
temporal goal formula. This works well for safety-oriented
goals (e.g., Copen(door)) because it prunes those actions
that falsify the goal. Nevertheless, it is less effective with re-
spect to liveness properties such as ¢at(Robot,Home). Our

Doctoral Consortium

objective is to exploit heuristic search to efficiently generate
plans with TEGs.

To achieve this, we convert a TEG planning problem into
a classical planning problem where the goal is expressed in
terms of the final state, and then we use existing heuristic
search techniques. An advantage of this approach is that we
can use any heuristic planner with the resulting problem.

In contrast to previous approaches, we propose to repre-
sent TEGs in f-LTL, a version of propositional linear tempo-
ral logic (LTL) [14] which can only be interpreted by finite
computations, and is more natural for expressing properties
of finite plans. To convert a TEG to a classical planning
problem we provide a translation of f-LTL formulae to non-
deterministic finite automata (NFA). We prove the correct-
ness of our algorithm. We analyze the space complexity of
our translations and suggest techniques to reduce space.

Our translator is fully implemented and available on the
Web. It outputs PDDL problem descriptions, which makes
our approach amenable to use with a variety of classical
planners. We have experimented with the heuristic planner
FF [9]. Our experimental results illustrate the significant
power heuristic search brings to planning with TEGs. In
almost all of our experiments, we outperform existing (non-
heuristic) techniques for planning with TEGs.

There are several papers that addressed related issues.
First is work that compiles TEGs into classical planning
problems such as that of Rintanen [15], and Cresswell and
Coddington [3]. Second is work that exploits automata rep-
resentations of TEGs in order to plan with TEGs, such as
Kabanza and Thiébaux’s work on TLPLAN [10] and work
by Pistore and colleagues [12]. We discuss this work in the
final section of this paper.

2 Prdiminaries

We represent TEGs using f-LTL logic, a variant of a propo-
sitional LTL [14] which we define over finite rather than in-
finite sequences of states. f-LTL formulae augment LTL for-
mulae with the propositional constant final, which is only
true in final states of computation. An f-LTL formula over
a set P of propositions is (1) final, true, false, or p, for any
peP;or(2) -y, YA x, OW,or yUy,if gand x are f-LTL
formulae.

The semantics of an f-LTL formula over P is defined over
finite sequences of states 0 = %51 - - - Sp, such that s; C P, for
each i € {0,...,n}. We denote the suffix §---s, of o by g;.
Let ¢ be an f-LTL formula. We say that o = ¢ iff o = ¢.
Furthermore,

e 0; = final iffi = n, gj = true, 0j [~ false, and o; = piffpe s



e 0i =9 iff 0 £ ¢, and 0 = YA X iff 0 = Yand o; = X.

e g EO¢iffi <nand giy1 = ¢.

e 0= YUy ff thereexistsa j € {i,...,n} such that gj = x and
forevery ke {i,...,j—1}, ok = .

Standard temporal operators such as always ((J), eventu-
ally (¢), and release (R), and additional binary connectives
such as Vv, D and = can be defined in terms of the basic

elements of the language (e.g., YR x o =(=gpU—x)).

As in LTL, we can rewrite formulae containing U and R
in terms of what has to hold true in the “current” state and
what has to hold true in the “next” state. The following
f-LTL identities are the basis for our translation algorithm.
LyUx=xVYArO(gUy). 3. =O¢ = final v O—¢.
2. yRx=xA(finalvVyvO(PRY)).

Identities 2 and 3 explicitly mention the constant final.
Those familiar with LTL, will note that identity 3 replaces
LTL’s equivalence ~O¢ = O—¢. In f-LTL O¢ is true in a
state iff there exists a next state that satisfies ¢. Since our
logic is finite, the last state of each model has no successor,
and therefore in such states ~O¢ holds for every ¢.

The expressive power of f-LTL is similar to that of LTL
when describing TEGs. Indeed, f-LTL has the advantage
that it is tailored to refer to finite plans, and therefore we
can express goals that cannot be expressed with LTL. Some
examples of TEGs follow.

e [(final D at(Robot,R1)): In the final state, at(Robot,R1)
must hold. This is one way of encoding final-state goals.

o O(pAOOfinal): p must hold true two states before the
plan ends. This is an example of a goal that cannot be
expressed in LTL, since it does not have the final constant.

Planning Problems A planning problem is a tuple
(Z,D,G), where set Z is the initial state, composed by first-
order (ground) positive facts; D is the domain description;
GisaTEG in f-LTL.

A domain description is a tuple D = (C,R), where C is
a set of causal rules, and R a set of action precondition
rules. Intuitively, a causal rule defines when a fluent lit-
eral becomes true after performing an action. We represent
causal rules by the triple (a(X),c(X),¢(X)), where a(X) is an
action term, ¢(X) is a fluent literal, and c(X) is a first-order
formula, each of them with free variables among those in
X. Intuitively, (a(X),c(X),¢(X)) expresses that £(X) becomes
true after performing action a(X) in the current state if con-
dition ¢(X) holds true. As with ADL operators, the condition
¢(X), can contain quantified first-order subformulae. More-
over, ADL operators can be constructed from causal rules
and vice versa [13]. Finally, we assume that for each action
term and fluent term, there exists at most one positive and
one negative causal rule in C. All free variables in rules of C
or R are regarded as universally quantified.
Regression The causal rules of a domain describe the dy-
namics of individual fluents. However, to model an NFA in
a planning domain, we need also know the dynamics of arbi-
trary complex formulae, such as for example, the causal rule
for at(o,R1) A holding(o). This is normally accomplished
by goal regression [18, 13]. For example, if the following
are causal rules for fluents a and S:
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<a1q)z{,ava>7 <av¢;avﬁa>v <a7¢;ﬁvﬁ> <a7cDa_7B7_‘B>7

we would add the causal rule (a, @+, a A B) for a A3, where
P = {Dgg AP, g} V{aA-Dag AP, g}V {BA-P AP}
The size of the resulting causal rule (before simplification)
for a boolean combination of fluents can grow exponentially:
Proposition 1 Let ¢ = fgA fy A ... A f. Then, assuming no
simplifications are made, |7 4| = Q(3"(m* +m™)), where
m* = min; |® ¢ |, and m~ = min; [®_ ¢ |.

Moreover, the simplification of a boolean formula is also ex-
ponential in the size of the formula. Despite this bad news,
below we present a technique to reduce the size of the re-
sulting translation for formulae like these.

3 Trandating f-LTL to NFA

It is well-known that for every LTL formula ¢, there exists
a Buchi automaton Ay, such that it accepts an infinite state
sequence o iff o = ¢ [17, 16]. To our knowledge, there
exists no pragmatic algorithm for translating a finite version
of LTL such as the one we use herel. To this end, we have
designed an algorithm based on the one proposed by Gerth
et al. [7]. The automaton generated is a state-labeled NFA
(SLNFA), i.e. an NFA where states are labeled with formu-
lae. Given a finite state sequence 0 =%. . . Sp, the automaton
goes through a path of states qg. . . qn, iff the formula label of
q; is true in s;. The automaton accepts o iff gy is final.
Space precludes displaying the complete algorithm. Nev-
ertheless, the code is downloadable from the Web?, and the
algorithm is described in detail in [2]. Briefly, there are three
main modifications to the algorithm of Gerth et al [7]. First,
the generation of successors now takes into account the final
constant. Second, the splitting of the nodes is done consid-
ering f-LTL identities in Section 2 instead of standard LTL
identities. Third, the acceptance condition of the automaton
is defined using the constant final and the fact that the logic
is interpreted over finite sequences of states. We prove that
our algorithm is correct:
Theorem 1 Let Ay be the automaton built by the algorithm
from ¢. Then Ay accepts exactly the set of computations that
satisfy ¢.
Simplifying SLNFAsinto NFAs  Our algorithm often pro-
duces automata that are much bigger than the optimal. To
simplify it, we have used a modification of the algorithm
presented in [5]. This algorithm uses a simulation technique
to simplify the automaton. In experiments in [6], it was
shown to be slightly better than LTL2AUT [4] at simplify-
ing Biichi automata. The resulting automaton is an NFA, as
the ones shown in Figure 1. In contrast to SLNFA, in NFA
transitions are labeled with formulae.

Size complexity of the NFA Although simplifications
normally reduce the number of states of the NFA signif-
icantly, the resulting automaton can be exponential in the
size of the formula in the worst case. E.g., for the formula
Op1AOP2A... AOpn, the resulting NFA has 2" states. Be-
low, we see that this is not a limitation in practice.

LIn [8], finite automata are built for a O-free subset of LTL, that
does not include the final constant.

thtp://www.cs.toronto.edquabaier/pIanning_teg/
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{}
{closed(Dy), / e
—at(Robot, Ry)},
{-p.—a} /”

{ﬂat(Roha Ry). ‘
{—p,—q} hat(Robm-Rm *(01Ra)}
@

(b)

Figure 1: Simplified NFA for (a) O(p >Oq) AO(q D> Op),
and (b) O(at(Robot, Ry ) D O¢closed(D1)) A ODat (01, Ry).

4 Compiling NFAsinto a Planning Domain

Now that we are able to represent TEGs as NFAs, we show
how the NFA can be encoded into a planning problem. Once
the NFA is modeled inside the domain, the temporal goal in
the newly generated domain in reduced to a property of the
final state alone. Intuitively, this property corresponds to the
accepting condition of the automaton.

In the rest of the section, we assume the following. We
start with a planning problem L = (Z,D,G), where G is a
TEG in f-LTL. The NFA Ag = (Q,Z,5,Qo,F) is built for
G. We denote by Apq the formula Vg pes AL E.g., in
Fig. 1(b), Ag,.q, = closed(D1) A —at(Robot,Ry). Finally,
we denote by Pred(q) the states that are predecessors of g.

In the planning domain, each state of the NFA is repre-
sented by a fluent. For each state g we add to the domain
a new fluent Eq. The translation is such that if sequence of
actions ajaz---ap is performed in state sg, generating the
succession of states 0 = spS1...Sp, then Eq is true in sy if
and only if there is a run of Ag on o that ends in state g.

For each fluent Eq we generate a new set of causal rules.
New rules are added to the set C’, which is initialized to (.

For each action a, we add to C’ the causal rules
(a,®{g,.Eq) and (a, @, ,~Eq) where:

Pae, = Veeprea(@\ (@) Eo /A (Pay, vV Apa A=, ),
Pog, = ﬂqagEq/\ﬁ(qagA VAggA=®g, ).
where d)+ (resp (O adp ) is the condltlon under which

a makes /\pq true (resp false) Both formulae must be
obtained via regression. Formula Aqq is false if there is no
self transition in q.

The initial state must give an account of which fluents Egq
are initially true. The new set of facts Z’ is the following

={Eql(p,L,q) €3,p€Qo,L CT}.

Intuitively, the automaton Ag accepts iff the temporally

extended goal G is satisfied. Therefore, the new goal, § =
Vper Ep, is defined according to the acceptance condition
of the NFA. The final planning problem L is (ZUZ’,CU
C',R,G").
Size complexity The size of the translated domain has
a direct influence on how hard it is to plan with that do-
main. We can prove that the size of the translated domain
is O(n|Q|2%), where ¢ is the maximum size of a transition in
Ag, n is the number of action terms in the domain, and |Q|
is the number of states of the automaton.

Doctoral Consortium
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Prb.JComp.[No.[[G[[ FF TLPLAN
#| time|Sts. ] 7 T[t-ctd] 7| [Prb. FF TPBA+c
1 02| 2| 6][.02] 6] .07| .01| 6 i 7 4
2 02| 2| 6|.02| 8| .04| .03| 8 11 0.02] 2 024 2
3 09| 15| 21|.04|10 20| .02|10 2| 0.02| 5| 096| 5
4 06| 5| 12|.03| 6 38| .10| 6 3| 0.01| 5 13| 5
5 07| 6| 21|.04|15 5| .19|13 4] 0.02| 7| 3.29| 7
6 49| 37| 71].19|16 51| .17|18 5| 0.02|10| 11.66|10
7 .05| 6] 21|.05| 9| .96| .31|10 6| 0.02|12| 28.87|12
8 .07| 15| 9|.05|10| 1.40| .04|10 7| 0.02|15| 82.57|15
9 .01| 4| 11|.03|18(13.90| .15|14 8| 0.02|19| 35.69|17
10 .04| 6| 12|.07|32|17.52| 40|14 9| 0.02|21| 13.37|20
11 .08| 5| 23|.06|22 m{ m| - 10| 0.23]52|126.25|35
12 .09| 5| 25|.50|25 mf m| - 11| 0.07|54 m| -
13 .09 6|15 m| — m| m| - 12| 0.23|47 m| —
14 32| 5|31 m| - m| m| - 13| 0.54|72 m| —
15 .07| 5| 18|.11|31 mf m| - 14| 4.03|82 m| —
16 .09| 10| 22| m| - m| m| - 15(11.19|95 m| —

@ (0)
Table 1: Our approach compared to TLPLAN (a) and search
control with Biichi automata (b)

Reducing |Q| We previously saw that |Q| can be expo-
nential in the size of the formula. Fortunately, there is a
workaround. Consider for example the formula ¢ = Op1 A
.. A O pn, which we know has an exponential NFA. ¢ is sat-
isfied if each of the conjuncts {p is satisfied. Instead of gen-
erating a unique NFA for ¢ we generate different NFA for
each ¢ p;. Then we plan for a goal equivalent to the conjunc-
tion of the acceptance conditions of each of those automata.
This generalizes to any combination of boolean formulae.

5 Implementation and Experiments

We implemented a compiler that given a domain and a f-
LTL TEG, generates a classical planning problem following
Section 4. The compiler can further convert the new problem
into a PDDL domain/problem, thereby enabling its use with
a variety of available planners.

We conducted several experiments in the Robots Domain
[1] to test the effectiveness of our approach. In each ex-
periment, we compiled the planning problem to PDDL. To
evaluate the translation we used the FF planner.

Table 1(a) presents results obtained for various temporal
goals by our translation and TLPLAN. The second column
shows the time taken by the translation, the third shows the
number of states of the automata representing the goal, and
the fourth shows the size of the goal formula, |G|. The rest
of the columns show the time (t) and length (¢) of the plans
for each approach. In the case of the TLPLAN, two times
are presented. In the first (t) no additional search control
was added to the planner, i.e. the planner was using only
the goal to prune the search space. In the second (t-ctrl)
we added (by hand) additional control information to “help”
TLPLAN do a better search. The character ‘m’ stands for
ran out of memory.

Our approach significantly outperformed TLPLAN.
TLPLAN is only competitive in very simple cases. In most
cases, our approach is one or two orders of magnitude faster
than TLPLAN. Moreover, the number of automata states is
comparable to the size of the goal formula, which illustrates
that our approach does not blow up easily for natural TEGs.
We also observe that FF cannot solve all problems. This is
because FF transforms the domain to a STRIPS problem, and
tends to blow up when conditional effects contain large for-



mulae. This problem, can be overcome if one uses derived
predicates in the translation as proposed in [2].

Table 1(b) compares our approach’s performance to that
of the planner presented in [10] (henceforth, TPBA), which
uses Biichi automata to control search. In this case we used
goals of the form O(p1 AO(Op2A ... AOOPY)...), which
is one of the four goal templates supported by this planner.
Again, our approach significantly outperforms TPBA, even
in the presence of extra control information added by hand
(this is indicated by the ‘+c’ in the table).

The results presented above are not surprising. None of
the planners we have compared to uses heuristic search,
which means they may not have enough information to de-
termine which action to choose during search. The TLPLAN
family of planners is particularly efficient when control in-
formation is added to the planner. Usually this information
is added by an expert in the planning domain. However, con-
trol information, while natural for classical goals, may be
hard to write for temporally extended goals. The advantage
of our approach is that we do not need to write this informa-
tion to be efficient. Moreover, control information can also
be added in the context of our approach by integrating it into
the goal formula.

6 Discussion and Related Work

In this paper we proposed a method to generate plans for
TEGs using heuristic search. We proposed a translation
method that takes as input a planning problem with an f-LTL
TEG and produces a classical planning problem. Experi-
mental results demonstrate that our approach outperforms—
often by several orders of magnitude—existing (non-
heuristic) planners for TEGs in the Robots Domain. [2]. Our
approach is limited to propositional TEGs. In [2] we show
how we can extend it to capture a compelling subset of first-
order f-LTL. We also provide analogous performance results
on multiple domains.

There are several notable pieces of related work. TPBA,
the temporal extension of TLPLAN that uses search control,
and that we use in our experiments [10], constructs a Bichi
automaton to represent the goal. It then uses the automaton
to guide planning by following a path in its graph from an
initial to final state, setting transition labels as subgoals, and
backtracking as necessary.

Approaches for planning as symbolic model checking
have also used automata to encode the goals (e.g. [12]).
These approaches use different languages for extended
goals, and are not heuristic.

In [3] a translation of LTL formulae to PDDL has been
proposed. They translate LTL formulae to a deterministic fi-
nite state machine (FSM). The FSM is generated by succes-
sive applications of the progress operator of [1] to the TEG.
The use of deterministic automata makes it prone to expo-
nential blowup even with simple goals, e.g., O(p A O"q).
The authors’ code was unavailable for comparison with our
work. Nevertheless, they report that their technique is no
more efficient than TLPLAN, so we infer that our approach
has better performance.

Finally, [15] proposes a translation of a subset of LTL into
a set of ADL operators. Their translation does not use au-
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tomata, and therefore is limited to a small subset of LTL.
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Abstract

Because of the complexity of the encountered problems, con-
trolling autonomous satellites is an interesting field for the Al
research community. This document introduces the current
thesis about planning the activities of an agile autonomous
Earth-observing satellite.

Application Domain
Mission
The application domain of the thesis is an ONERA-CNES
project of development of a ground demonstrator of an au-
tonomous satellite (AGATA project, (Charmeau & Bensana

2005)). In this project we consider an Earth-observing mis-
sion. A satellite on a heliosynchronous low circular orbit

These components are not mobile: they are fixed to the satel-
lite. Finally, the satellite has a fixed size mass memory to
save the detection and observation data.

Planning the activities

Currently, the activities of the Spot satellites are plahok
fline, as will be those of the Pleiades satellites: the ground
mission center builds plans over a horizon of 24 hours and
downloads them daily to the satellites. These plans are very
precise: fixed schedule of activities with fixed startingesn
They are executed without any possibility for replanning.

Spacecraft Autonomy
Potential advantages of autonomy

around the Earth aims to acquire images of specified areasPuring a revolution period round the Earth, an Earth-
on the Earth surface, and to download them to one or more observing satellite has limited visibility windows witheth

ground mission centers.

Agile satellite

The satellite that we consider is an agile satellite, like th
Pleiades satellites (Boussarie & Boissin 2006), able ta-ope
ate freely and quickly along the three axes of rolling, lgcin
and pitching (Figure 1) thanks to a cluster of gyroscopic ac-
tuators.

Figure 1:A Pleiades satellite

This satellite is equipped with (1) an optical high-

resolution instrument to acquire images, (2) a cloud cover State

ground stations. Autonomy would allow the satellite to
make decisions between two visibility windows in order to
react to unforeseen events such as:

e subsystem failure The autonomy allows the system to
react immediatly if a failure arises during the execution of
a task.

e unexpected level of resourcesSome actions of the satel-
lite have nondeterministic effects on the consumption or
the production of the onboard resources: for example, it
is impossible to foresee the quality of an image and its
compression rate before its realization, and thus to know
the memory space it will use. Autonomy would make the
satellite able to make decisions by knowing the actual cur-
rent state of the onboard resources.

e unexpected cloud cover The detection instrument may

detect a cloud cover different from that provided by the
weather forecast, authorizing or preventing some obser-
vations. Because the detection can be performed by point-
ing the satellite 30 degrees ahead, it must decide au-
tonomously within a few seconds wether to add or remove
these observations from its actions plan.

of the art

detection instrument, (3) a radio antenna allowing thelsate The EO-1 Autonomous Science Agent This software en-
lite to download the observation data, and (4) solar gen- ables the Earth-Observing One (EO-1) spacecraft to au-

erators and batteries producing and storing electric gnerg
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tonomously detect and respond to science events occuring
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on the Earth. It is organized into a traditional three-layer
architecture. At the highest level of abstraction, the @ont

uous Activity Scheduling Planning Execution and Replan-
ning (CASPER) software is responsible for mission plan-

ICAPS 2006

Some works (Leni#re et al. 2002) deal with the prob-
lem of offline selecting and scheduling observations ofeagil
satellites. They present different methods which have been
investigated in order to solve a simplified version of the eom

ning functions. CASPER uses a local search approach (Ra- plete problem: a greedy algorithm, a dynamic programming

bideauet al. 1999) to develop operations plans. It plans
within limited CPU resources by using a hierarchical, con-
tinuous (Chieret al. 2000) planning paradigm. Rather than
attempt to plan out an entire week of operations in a single
batch timeslice, it utilizes a long-term, more abstracihta

the longest planning horizon (one week), and plans at a de-

tailed level for the next day of operations. As time proceeds
forward, it incrementally replans for the new observations
that fall within this one-day horizon.

Non-agile satellite The work presented by S. Damiani
(Damiani 2005; Damiani, Verfaillie, & Charmeau 2005) al-

lowed us to design, implement and test successfully an au-

tonomous decision mechanism onboard a non-agile satellite
It is supported by a permanently active planning module,
reasoning on more and more complex problems to improve
quality of the proposed decisions, using all the time it Has a
its disposal, but able to provide a realizable decision gt an
time, even if it is not necessarily optimal according to the
principles of the anytime algorithms (Zilberstein 1996).
Application to an agile satellite The observation instru-
ment of a non-agile Earth-watching satellite like Spot is pe
manently pointed under the satellite, and a mobile mirror in
front of it allows it to observe ground areas laterally. The
starting times of observations are thus fixed.

On the contrary an agile satellite is able to bring forward
or delay the starting time of an observation by a simple
change of its attitude; then the observations have starting
time windows which relax planning but make the selection
and scheduling of observations significantly more difficult
due to the larger search space for potential solutions (€igu
2).

satellite orbit

corridor _
boundaries

N

Figure 2:Three possible attitudes of an agile satellite for starting
an observation
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algorithm, a constraint programming approach and a local
search method.

However, these works deal with the planning of the obser-
vations independently of the other activities of the saell
(cloud cover detection, data downloading...). But many ac-
tivities of an agile satellite need to control its attitudkigh
can be seen as a shared resource. For example, an observa-
tion cannot be executed in parallel of a cloud cover detec-
tion which requires an orientation of the satellite 30 degre
ahead. Thus it becomes necessary to plan together all the
activities controlling the attitude of the satellite.

Contribution
Objective

This study aims to extend the work developed by S. Dami-
ani (Damiani 2005) to an agile satellite: permanent plaginin
task of all the activities of the satellite by using as well as
possible the time available to reason.

Satellite State

attitude (position and speed)
energy level

free memory level

ergol level

observation instrument status
detection instrument status
antenna status

set of complex observations
gain

Complex Observation

user
emission date

priority

realization constraints

quality evaluation function
status

quality

downloading ending date

set of elementary observations

1.*

Elementary Observation

area on the Earth surface

realization constraints

quality constraints

status

quality

downloading ending date

estimation of the cloud cover on the ai

Figure 3:Model of the current state of the system

Achieved work

List of possible activities We distinguish two categories
of activities realizable by the satellite: activities witbn-
trolled attitude trajectory during which the attitude okth
satellite, in position and speed, is entirely determineut], a
activities with uncontrolled attitude trajectory whichnclhe
executed parallel with the other activities.

We listed seven activities with controlled attitude trajec
tory: the observationof an area on the Earth surface, the
detectionof the cloud cover in front of the satellite, the
rechargeof the batteries (to point the solar panels to the sun),
the downloadingof observation data (to point the satellite
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to the ground station), ehange in attitudean orbital ma-
noeuvre(to correct the orbit of the satellite if necessary),
a geocentric pointingwhen the satellite “does nothing” or
is in safety mode) and three activities with uncontrolled at
titude trajectory: theparallel downloadingof observation
data, theanalysisof the results of an observation (to eval-

ICAPS 2006

of the satellite. For that, we try to compare two different
methods : an analytical one using a simplified model of the
satellite kinematics, and a learning one based on the use of
neural networks to approximate the quantities of interest.

Future work

uate the quality of an image, compress or delete the saved e plan to solve, initially offline, this problem of planning

image), theanalysisof the results of a detection (to evaluate
the cloud cover).

Model The first step of our work consisted in modelling
the decision problem by using the PDDL language and its
extension to the durative actions (Fox & Long 2003): the
current state of the system (Figure 3), the various actions
realizable by the satellite, their preconditions, thefeetfs
(deterministic or not) on the state of the system and on the
satisfaction of the objectives.

The figure 4 presents the model of the “observe” action
using the PDDL language. The satellite starts watching the
area ?¢at the date 2t

(: durative-action observe

. parameters (76 observation 2t- date)

: duration (= ?duration (observationDuratior 2a.))

: condition (and (at start (= (status;PaotAcquired))
(at start (visible ?9)
(at start (= attitude (obsStartAttitude;721)))
(at start (= obslnstrStatus available))
(at start (not assignedAttitude))
(at start & energy (energyConsum ;?@t,)))
(at start & memory (memoryConsum 7)9)
(over all (visible ?¢))
(over all (= obslInstrStatus used))
(over all (assignedAttitude))
(over all & energy 0))
(over all > memory 0))
(at end (= obsInstrStatus used))
(at end (assignedAttitude))
(at end (visible ?9)
(at end & energy 0))
(at end & memory 0))

. effect (and (at start (decrease energy (energyConsur?t:)))
(at start (decrease memory (memoryConsum)Po
(at start (assign obslnstrStatus used))
(at start (assignedAttitude))
(at end (assign attitude (obsEndAttitude ?Q)))
(at end (assign (status J@cquired))
(at end (assign obslInstrStatus available))
(at end (not assignedAttitude))
(at end (increase energy (energyProd 7))

Figure 4:Model of the “observe” action

Current work

To plan online, we need to estimate (1) the duration of each
activity of the satellite, depending on its starting timealan
on the attitude profile of the satellite and (2) the productio
and the consumption of energy and memory for each activity

Doctoral Consortium

with a dynamic programming approach like this one used
by S. Damiani (Damiani 2005), then with a local search
method. A second step will consist in adapting the algo-
rithms to a mode of anytime reasoning in order to be able to
use them online.
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Abstract

This doctoral research focuses on the analysis
and development of techniques for solving domain-
independent partial satisfaction planning (PSP) prob-
lems and planning problems with preferences. Re-
cently, these areas have gained the attention of the plan-
ning community. This has been underscored by the
recent introduction of preferences to the Fifth Interna-
tional Planning Competition (IPCS5). This extended ab-
stract outlines contributions made to the area of PSP
and shows that planning with “simple preferences”, as
defined in the IPCS5, is can be compiled to PSP. After-
wards, it outlines future steps to be taken for advancing
this line of research.

Introduction

In many real world problems, users prefer some goals over
others. In this sense, they have preferences among specified
“soft” goals. For instance, a user may prefer brown flour
over white flour but if white flour is all that is available, the
user will accept it. Goal preferences like this may also be
balanced with the cost of achieving the goal. For example,
if brown flour costs more than some measurable utility it
brings, and white flour costs less than its utility, then white
flour is the obvious choice despite the preference for brown
flour. This type of problem is called a partial satisfaction
planning (PSP) problem (van den Briel et al. 2004) and
provides a starting point for this work. Work on this type
of planning has been given recent attention (van den Briel
et al. 2004; Do & Kambhampati 2004; Smith 2004; Braf-
man & Chernyavsky 2005; Nigenda & Kambhampati 2005;
Benton, Do, & Kambhampati 2005). The primary focus of
this doctoral research is to extend the expressiveness of this
type of planning by using the current state of the art planning
graph heuristics as a means for solving these problems.

The most recent work on this doctoral thesis has focused
on extending PSP into handling goals with utility dependen-
cies. That is, some goals are worth much more or less in
conjunction with other goals. For instance, having both a left
and right shoe is worth much more than having just one or
the other and having two books on the same subject is worth

*Joint work with Minh Do, Palo Alto Research Center, Palo
Alto, CA and Subbarao Kambhampati, Arizona State University,
Tempe, AZ

16

less than the sum of having either book independently.! An-
other recent extension is the ability to handle “simple pref-
erences” as defined by PDDL3 in the 5" International Plan-
ning Competition. It turns out that planning problems with
preferences defined in this way are very similar to PSP prob-
lems.

The rest of this extended abstract is organized as follows.
First, we motivate the need for representing and handling
goal utility dependencies in PSP and provide a framework of
representing them using the General Additive Independence
(GAI) model (Bacchus & Grove 1995) and give an outline
of heuristic methods for handling them. To show the effec-
tiveness of our framework, we provide empirical results on
some benchmark planning domains. We then briefly outline
the method of generating a PSP problem from “simple pref-
erences” defined in PDDL3. Afterwards, we discuss future
work.

Goal Utility Dependency

Classical planning problems define each goal as a member
of a conjunctive set that must be satisfied at a plan’s end.
In partial satisfaction planning (PSP) we relax the constraint
of ending a plan with every goal satisfied. Instead we de-
fine soft goals and provide each with a numeric utility value.
This allows the planner to solve for a subset of the goals.
We also attribute to each action a numeric cost. The planner
then aims to find a plan with the best net benefit, where net
benefit is defined as the difference between the satisfied goal
utility and the action costs.

The process of finding plans in PSP is complicated by
two types of dependencies between goals: (i) A set of goals
may have cost dependencies in that there are dependencies
among the plans to achieve them (making the cost of achiev-
ing them together significantly more or less than the total
cost of achieving them in isolation) (ii) A set of goals may
have utility dependencies in that achieving the goals together
may lead to significantly different utility than the sum of

'These are examples of mutual dependency. There is also the
idea of conditional dependency, in which the utility of having one
item is conditional on whether we have the other item. The differ-
ence is subtle, but the general idea is that conditional dependency
is based upon an “if” relationship rather than an “and” relation-
ship. Also note that the “and” relationship is more general and can
be used to represent an “if”’ relationship by listing possible goal
combinations.
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achieving individual goals. Part of this dissertation work is
on investigating heuristic approaches to handle both utility
and cost dependencies together in PSP.

We have developed an approach for representing these
utility dependencies between planning goals using the Gen-
eralized Additive Independence (GAI) model (Bacchus &
Grove 1995) and a planning algorithm based on forward
search that solves this extended PSP problem. The algo-
rithm is based on the forward heuristic search described in
the Sapa”® planner (van den Briel et al. 2004). The main
innovation is our heuristic, which is able to take into account
both goal utility and goal achievement cost dependencies.

Problem Formulation & Heuristics

A classical planning problem is a 4-tuple (F,I,G,A)
where: F'is a set of predicate symbols representing state
facts; I is the initial state, completely defined by predicates
in F'; G is a goal state, which is partially defined by a set of
predicates in F'; A is a set of actions with a € A is defined by
pre and post-conditions Precond(a), E f fect(a) C F. The
plan is a sequence of actions in A such that, when executed
from I, will achieve all goals ¢ € G. In PSP (Smith 2004,
van den Briel et al. 2004), goals g € G have utility values
ug > 0, representing how much each goal is worth to a user,
and each action ¢ € A has an associated positive execution
cost ¢,. Moreover, not all goals in G need to be achieved.
Let P be the lowest cost plan that achieves a subset G’ C G
of those goals. The objective is to maximize the tradeoff
between total utility U(G’) of G’ and total cost of actions
a€P.

Work on PSP until now assumed that goals have no utility
dependencies and thus their utilities are additive: U(G’) =
Ygearg. To represent the goal utility dependencies we
adopt the Generalized Additive Independence(GAI) model
(Bacchus & Grove 1995). We named the P.S P problem with
utility dependencies represented by GAI model PSP/ . We
chose this model because it is simple, intuitive and expres-
sive. It also is more general than other commonly used
models such as CP-Net (Brafman & Chernyavsky 2005) or
UCP-Net (Boutilier ef al. 2001). Because of this, repre-
senting goals specified using GAI may result in a problem
size increase in comparison with these other modeling meth-
ods. However, its generality allows problem specification to
be more straightforward for the user (i.e. there are no “in-
ferred” utility values). A cost propagation process is used
on the planning graph to estimate the achievement cost for
each individual goal. After the propagation process is done
we have an estimated cost ¢(g) for each goal g € G. As
shown in (Do & Kambhampati 2001), if we use max prop-
agation, then ¢(g) will underestimate the cost to achieve g
while there is no such guarantee for sum propagation.

The max family of heuristics tend to perform badly in
practice. Therefore, we use an alternative approach of uti-
lizing the relaxed plan employed by Sapa”S for PSP2. For
each state .S explored in a progression planner, after build-
ing the relaxed planning graph and doing forward cost prop-
agation on the graph, we extract a relaxed plan RP to sup-

*Variants of this approach are also used in several other PSP
planners such as AItAI’® (van den Briel e al. 2004; Nigenda &
Kambhampati 2005) or the orienteering planner (Smith 2004).
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Figure 1: Sapaﬁ% and Sapa”® in ZenoTravel domain.

port a subset of goals G’ C G. Let RP(G") be the relaxed
plan with highest net-benefit value among those achieving
G’ C @G, the relaxed plan heuristic for PSP4P  is:

Yoow M

a€ERP(G")

Dretaz = marg ca (’LL(G/) -

To capture the mutual cost dependencies between the goal
achievement costs (i.e. cost dependencies), we find the set
of actions shared between different partial plans achieving
different goals. This allows the generation of GS(a) which
specifies the set of goals for which the action a contributes.

Given the utility dependencies represented by GAI local
functions f* and the goal achievement cost dependencies
represented by goal supporting action set GS(a), we set up
an ILP encoding for h;.¢c;q.. The purpose of this encoding is
to capture the set of goals G’ C G that gives the maximum
tradeoff between utility of G’ and the cost of actions in the
relaxed plan supporting G

Results

‘We have implemented the heuristic search algorithm for PSP
problems discussed in this paper on top of the Sapa”S plan-
ner. We call the new planner Sapaﬁ% and tested it on two
sets of random ZenoTravel and Satellite problems. These
problems were generated on top of the problem sets used in
the Third International Planning Competition (Long & Fox
2003).

All tests were run using a Pentium IV 2.66GHz with 1GB
RAM and a 1200 second time limit. Because A} g p continu-
ously finds better solutions given more time (or the termina-
tion node is found), the results reported in this section repre-
sent the plan with the highest benefit value found within the
time limit. For solving the ILP encoding, we use the C ver-
sion of 1p_solve ver5.5 software, a free solver, with a
Java wrapper.

While Sapaﬁ% is sensitive to both cost and utility depen-
dencies, Sapa”® only accounts for cost dependencies. The
empirical evaluation is designed to test whether Sapa;2
is able to solve the PSP“? problems more effectively (i.e.
with higher net benefit). Figure 1 and 2 show the comparison
between those two planners.

PDDL3 “Simple Preferences” to PSP

The Fifth International Planning Competition defined pref-
erences as a new language feature for PDDL3(Gerevini &
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Figure 2: Sapaﬁ% and Sapa”S in Satellite domain.

Long 2005). This feature allows domain modelers to express
soft constraints on action conditions and goals. Each prefer-
ence is given a name and an associated violation count. This
count can then be used as part of a metric specifying how to
measure the quality of the resulting plan.

In the planning competition, the “simple preferences”
category of domains specifies preferences and plan metrics
in a manner that allows problems to be converted from
PDDL3 to PSP. The domains in this category define prefer-
ences on actions as well as goals. An example is the drive
action of the trucks domain:

(:action drive
:parameters
(?t - truck ?from ?to - place)
:precondition (and
(at 2?2t ?from) (connected ?from ?to)
(preference p-drive (and
(ready-to-load goodsl ?from levelO)
(ready-to-load goods2 ?from levelO)
(ready-to-load goods3 ?from levelOQ))
))
reffect (and (not (at ?t ?from))
(at 2t ?to)))

A plan metric assigns a weight to this preference in
the following manner:

(:metric (+ (x» 10 (is-violated p-drive))

))

A domain specified in this way can be compiled into a
PSP problem (Benton, Kambhampati, & Do 2006). This is
done by generating an action for each preference combina-
tion on the original action. The cost of executing the action
is equal to the cost of not satisfying the preferences excluded
from the action definition. Preferences on goals are handled
similarly except actions provide a “has preference” goal with
a utility that matches the cost of not having the preference.

Conclusion & Future Work

In this extended abstract, we discussed a framework of solv-
ing partial satisfaction planning (PSP) problems with utility
dependencies and a way to handle IPC5 problems with “sim-
ple preferences” by compiling them to PSP problems. The
former methods show that there exists expressive power in
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combining problem heuristics with declarative formulations.
In this case, re-formulating the relaxed plan as an ILP allows
us to impose more constraints that cannot easily be handled
procedurally. Though there exists additional computational
cost for generating the new heuristics, this is offset by the
extra guidance achieved toward better quality plans. This
line of reasoning is especially important to consider as the
planning community’s concerns have begun to focus on find-
ing plans of quality as evidenced with the Fifth International
Planning Competition (Gerevini & Long 2005).

For the future, this dissertation work will extend the
heuristic and search architectures used to solve utility de-
pendencies for dealing with trajectory preferences and con-
straints in PDDL3 (Gerevini & Long 2005). The idea is to
include in the ILP formulation information about the time
points on which actions are executed in the relaxed plan so
that we may find good estimates of the best action order-
ings. We also plan on extending this work to take more
negative information into account, following the example of
AltWIt (Nigenda & Kambhampati 2005).
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Abstract

In this work, we apply heuristic search to conformant prob-
abilistic planning by adapting planning graph heuristics de-
veloped for non-deterministic planning. We consider a
straight-forward application of these planning graph tech-
niques, which amounts to exactly computing the distribution
over reachable relaxed planning graph layers. In reality, com-
puting these distributions is costly, so we apply Sequential
Monte Carlo to approximate them. We demonstrate on sev-
eral domains how our approach enables our planner to far out-
scale existing (optimal) probabilistic planners and still find
reasonable quality solutions.

This work adds to a much broader dissertation on improv-
ing the scalability of planning under uncertainty. We have
designed heuristics for conformant and conditional non-
deterministic planning, in addition to this latest addition
to probabilistic planning. Future work will build on these
heuristic techniques to address conditional probabilistic plan-
ning and devise new search algorithms for probabilistic plan-
ning.

Introduction

We address the problem of conformant probabilistic plan-
ning, where the planning agent has no observability and
must formulate plans with uncertain actions. A conformant
plan is a sequence of actions that will guarantee goal sat-
isfaction with some probability. While agents can poten-
tially improve their success by devising conditional plans
(that use observations), conformant planning is a specid
case that is useful when sensing is too expensive or impos-
sible (e.g., because of broken sensors). As has been seen
in non-deterministic conformant and conditional planning
(Bryce, Kambhampati, & Smith 2006; Brafman & Hoff-
mann 2005), conformant planning heuristics are useful in
conditional planning because ignoring observationsis some-
times areasonablerelaxation. Future application of thework
discussed herein will validate how well conformant proba-
bilistic planning heuristics adapt to conditional probabilistic
planning. Initial experiments indicate the adaptation is ap-
propriate.

Despite long standing interest (Kushmerick, Hanks, &
Weld 1994; Hyafil & Bacchus 2003; 2004), probabilistic
plan synthesis algorithms have a terrible track record in
terms of scalability. The current best conformant probabilis-
tic planners are only able to handle very small problems. In
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contrast, there has been steady progressin scaling determin-
istic planning. Much of this progress has come from the
use of sophisticated reachability heuristics. In thiswork, we
show how to effectively use reachability heuristics to solve
conformant probabilistic planning (CPP) problems. We
use work on planning graph heuristics for non-deterministic
planning (Bryce, Kambhampati, & Smith 2006; Hoffmann
& Brafman 2004) as our starting point.

We investigate an extension of the work by Bryce, Kamb-
hampati, & Smith (2006) that uses a planning graph gener-
alization called the labelled uncertainty graph (LUG). The
LUG isused to symbalically represent a set of relaxed plan-
ning graphs (much like the planning graphs used by Confor-
mant GraphPlan, Smith & Weld, 1998), where each is asso-
ciated with a possible world. While the LUG (as described
by, Bryce, Kambhampati, & Smith, 2006) works only with
state uncertainty, it is necessary in CPP to handle action un-
certainty. Extending the L UG to consider action uncertainty
involves symbolically representing how at each level CGP
creates anew litera layer for each joint outcomes of the un-
certain actions.

With uncertain actions, an explicit or symbolic represen-
tation of planning graphsfor al possible worlds at each time
step is exactly representing an exponentialy increasing set
of literal layers. Since we are only interested in planning
graphs to compute heuristics, it is both impractical and un-
necessary to exactly represent all of the reachable possible
worlds. We turn to approximate methods for representing
the possible worlds. Since we are planning in a probabilis-
tic setting, we can use Monte Carlo techniques to construct
planning graphs.

There are awealth of methods, that fall under the name se-
guential Monte Carlo (SMC) (Doucet, de Freitas, & Gordon
2001) for reasoning about a hidden random variable over
time. SMC applied to “on-line” Bayesian filtering is often
called particle filtering, however we use SMC for “off-line”
prediction. The idea behind SMC isto represent a probabil-
ity distribution as a set of samples (particles), which evolve
recursively over time by sampling a transition function. In
our application, each particle is a (smulated) determinis-
tic planning graph and the transition function describes the
Conformant GraphPlan (Smith & Weld 1998) construction
semantics. By using more particles, we capture more pos-
sible worlds, exploiting the natural affinity between SMC



approximation and heuristic accuracy.

The SMC technique requires multiple planning graphs
(each a particle), but their number is fixed. We could rep-
resent each planning graph explicitly, but they may have
considerable redundant structure. Instead, we generalize the
LUG to symbolically represent the set of planning graph
particles in a planning graph we call the Monte Carlo LUG
(McLUG). We show that by using the McLUG to extract
a relaxed plan heuristic we are able to greatly out-scale
the current best conformant probabilistic planner CPplan
(Hyafil & Bacchus 2004; 2003) in a number of domains,
without giving up too much in terms of plan quality.

This work appears as a full paper with Subbarao Kamb-
hampati and David E. Smith inthe |CAPS 06 Technical Ses-
sion. Our presentation starts by describing a worked exam-
ple of how to construct planning graphsthat exactly compute
the probability distribution over possible worlds versus us-
ing SMC, as well as how one would symbolically represent
planning graph particles. We then present an empirical anal-
ysis of our technique compared to CPplan, and conclusions.
Please consult the full paper for the formal details.

Monte Carlo Planning Graph Construction

We illustrate an example to give the intuition for Monte
Carlo simulation in planning graph construction. Consider
a simple logistics domain where we wish to load a specific
freight package into a truck and loading works probabilis-
tically (because rain is making things dippery). There are
two possible locations where we could pick up the package,
but we are unsure of which location. There are three flu-
ents, FF = { aP1, aP2, inP }, our initial belief state b; is
0.5: s0 = {aP1, ~aP2, —inP }, 0.5: s1 = {-atP1, atP2,
—inP }, and the goa is G ={inP}. The package is at loca-
tion 1 (atP1) or location 2 (atP2) with equal probability, and
is definitely not in the truck (inP). Our actions are LoadP1
and LoadP2 to load the package at locations 1 and 2, respec-
tively. Both actions have an empty enabling precondition { },
so they are always applicable, and have two outcomes. The
first outcome with probability 0.8 loads the package if it is
at the location, and the second outcome with probability 0.2
does nothing. We assume for the purpose of exposition that
driving between locations in not necessary.

Figure 1 illustrates severa approaches to planning graph
based reachability analysis for our simplified logistics do-
main. (We assume we are evaluating the heuristic value
h(br) of reaching G from our initial belief state.) The first
isin the spirit of Conformant GraphPlan, where uncertainty
is handled by splitting the planning graph layers for all out-
comes of uncertain events. CGP creates a planning graph
that resembles a tree, where each branch corresponds to a
deterministic planning graph.

CGP: In Figure 1a, we see that there are two initial literal
layers (denoted by literals in boxes), one for each possible
world at time zero. We denote the uncertainty in the source
belief state by X, which takes on values s0, s1 (for each
state in our belief state). Both load actions are applicable in
both possible worlds because their enabling preconditions
are aways satisfied. The edges leaving the actions denote
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the probabilistic outcomes (each a set of conditional effects).
Whileitispossiblefor any outcome of an action to occur, the
effects of the outcome may or may not have their secondary
precondition supported. Inworld s0, if outcomethefirst out-
come of LoadP1 occurs, then effect denoted by atP1—inPis
enabled and will occur, however even if the first outcome of
LoadP2 occursits effect is not enabled and will not occur.

The set of possible worlds at time one is determined by
the cross product of action outcomes in each world at time
zero. For instance, possible world 200 isformed from world
s0 when outcomes the first outcome of LoadP1 and the
first outcome of LoadP2 co-occur. Likewise, world 212 is
formed from world s1 when outcomes the second outcome
of LoadP1 and the first outcome of LoadP2 occur.
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Figure 1: Variations on planning graph representations.
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CGPisexactly representing thereachableliteral layersfor
all possible worlds. In our example, CGP could determine
the exact distribution over X for every value of X,. We see
that our goal is satisfied in half of the possible worlds at time
1, with atotal probability of 0.8. It is possible to back-chain
on this graph to extract arelaxed plan (by ignoring mutexes)
that satisfiesthe goal with 0.8 probability. However, we note
that this is not efficient because it is exactly representing all
possible worlds (which can increase exponentialy).

McCGP: Next, we illustrate a Monte Carlo simulation ap-
proach we call Monte Carlo CGP (McCGP), in Figure 1b.
The idea is to represent a set of N planning graph parti-
cles. In our example we sample N = 4 states {23}
P(Xp) = by and create an initia literal layer for each. To
simulate a particle we first insert the applicable actions. We
then insert effects by sampling from the distribution of joint
action outcomes. Finally, the subsequent literal layer is con-
structed, given the sampled outcomes. Note that each parti-
cleisadeterministic planning graph.

In our example, the simulation was lucky and the literal
layer for each particle at time 1 satisfies the goal, so we may
think the best one step plan achieves the goal with certainty.
From each of these graphs where the goal is satisfied it's
possible to extract a relaxed plan, which can then be ag-
gregated to give a heuristic as described by Bryce, Kamb-
hampati, & Smith (2006). While McCGP improves memory
consumption by bounding the number of possible worlds, it
still wastes quite a bit of memory. Of the planning graphs
many literal layers are identical. Symbolic methods allow
us to compactly represent these planning graph particles.

McLUG: Using ideas from Bryce, Kambhampati, & Smith
(2006) , we can represent asingle literal layer at every time
step for al samples in a planning graph called the Monte
Carlo LUG (McLUG), in Figure 1c. The ideais to union
the connectivity of multiple planning graphs into a single
planning graph skeleton, and use labels on the actions and
literals to signify the original, explicit planning graphs in
which an action or literal belongs. The contribution in the
MecLUG is to represent a set of particles symbolicaly and
provide a relaxed plan extraction procedure that takes ad-
vantage of the symbolic representation. From the McLUG
we are able to extract a relaxed plan that supports the goal
for every particle that reaches the goal.

Empirical Analysis

We externaly evaluate our planner and its heuristic based
on the McLUG by comparing with the leading approach to
CPP, CPplan (Hyafil & Bacchus 2003; 2004). We also in-
ternally evaluate our approach by adjusting the number of
particles N that we use in each McLUG. We show results
for alogistics domain. CPplan finds the optimal probability
of goa satisfaction for a given plan length, but our plan-
ner, like Buridan (Kushmerick, Hanks, & Weld 1994), finds
plansthat satisfy the goal with probability no lessthan . We
find plans with aforward-chaining A* search in the space of
belief states. To compare with CPplan, we run CPplan on
a problem for each plan length until it exceeds our time or
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Figure 2: Run timein seconds (top), and Plan lengths (bottom) vs.
7 (log scale) for Logistics p4-2-2

memory limit. We record the probability that CPplan satis-
fiesthe goal for each plan length. We then give our planner a
series of problemswith increasing values of  that match the
values found by CPplan (and fixed increments thereafter).
We ran our planner five times on each problem and present
the average run time, and plan length.

The logistics domain has the standard logistics actions of
un/loading, driving, and flying, but adds uncertainty. Hyafil
& Bacchus (2004) enriched the domain to not only include
initial state uncertainty, but also action uncertainty. In each
problem there are some number of packages whose prob-
ability of initial location is uniformly distributed over some
locations and un/loading is only probabilistically successful.
Plans require several loads and unloads for a single package
at several locations, making arelatively simple deterministic
problem avery difficult stochastic problem. We compare on
problem p4-2-2, where there are 4 possible initial locations
for a package, 2 cities, and 2 packages.

The plots in Figure 2 compare the total run time in sec-
onds (top) and the plan lengths (bottom) of our planner with
16/32/64/128 particles in the McLUG versus CPplan. In
this domain we also use helpful actions from the relaxed
plan. We notice that CPplan is able to at best find solu-
tions where 7 < 0.09. In most cases our planner is able
to find plans much faster than CPplan for the problems they
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both solve. It is more interesting that our planner is able
to solve problems for much larger values of 7. Our plan-
ner finds solutions where = < 0.85 which is 9.6 times the
maximum values of 7 solved by CPplan. In terms of plan
quality, the average increase in plan length for the problems
we both solved was 4.2 actions. Where CPplan exactly eval-
uates plan suffixes to find pruning conditions for plan pre-
fixes, we use a heurigtic to estimate plan suffixes. As the
results demonstrate, our heuristic effectively guides search
toward good plans.

Conclusion & Future Work

We have presented an approach called McLUG to inte-
grate Monte Carlo into heuristic computation on planning
graphs. The McLUG enables us to quickly compute effec-
tive heuristics for conformant probabilistic planning. With
the heuristics, our planner is ableto far out-scale the current
best conformant probabilistic planner. At a broader level,
our work shows one fruitful way of exploiting the recent suc-
cess in deterministic planning to scale stochastic planners.

Our future work will concentrate on adapting the heuris-
tics described here to handle conditional probabilistic plan-
ning. We also intend to develop a Monte Carlo based heuris-
tic search algorithm for search in belief space that com-
binesthe work of Thrun (2000) and Barto, Bradtke, & Singh
(1995).
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Introduction In this paper, | propose two approaches to discover fea-
The complexity of a task faced by a planner depends tures of a planning domain. The first one is a preliminary
Strong|y on the search space. The importance of the p|an_ analysis of the domain d_escr_lptlon. A|thOUgh the cost of
ner's search space is reflected in the two main classes of such analysis would be high, it can be amortized over mul-
classical Al plannersstate-spacelanners, which explore tiple planning attempts in the future that would benefit from
the search space by considering totally ordered sequencesit. The second approach includes observing multiple valid
of directly neighboring states of the world, apthn-space  Plans (either produced by the planner itself, other plasiner
planners, which explore the search space by considering in- or humans), and Iearning the features from the observations
complete plans consisting of partially ordered actionse Th ~ This approach may be particularly effective in discovering
search space also depends on the structure of subgoats (theistatistical features of the search space for the domain (e.g
interactions) and on the representation of knowledge used intermediate states that are often included in a plan).
by the planner (e.g., the level of abstraction at which the )
planning is done or the expressiveness of the description Detection of search space features
language). Taking these factors into account can lead to Analysis In my approach, the planner will run a prelimi-
finer-gl’ained classification of planning domains and search nary ana'ysis of the p|anning domain (i.e_’ actions' thesk p
spaces. . . conditions, and their effects) in order to discover depande
Knowing the properties of a search space is useful when cies among the actions. Such dependencies can later be used
a human designer creates a new planner or decides whichto make planning decisions for any specific problem (i.e.,
of the existing planners to use. However, knowledge of the any initial state and goals). This approach is inspired by
properties of a search space may also be useful to the plannefyork of Kambhampati, Parker, and Lambrecht (1997) and
itself. In my research, | plan to eXp|OI’e which features ef th Hoffmann, Porteous’ and Sebastia (2004)
search spaces can be automatically determined or learned by - kambhampati, Parker, and Lambrecht analyzed Graph-
planners (during repeated executions), and how such infor- pjan.  They point out that the planning graph created by
mation may be used by a planner to improve the search pro- Graphplan'is a way of representing the search tree in a com-
cess (e.g., by choosing an appropriate planning technique, pact but approximate manner. Each level represents a set of
abstraction level, or representation). . states in the search space, and the exact path in the state-
This research is still in the idea stage: | am in the pro- gpace can be retrieved, which happens during the extraction
cess of developing my dissertation proposal, and plan ® tak  of the plan produced by the planner. The representation of
the preliminary exam (proposal defense) in July, after the the search tree is approximate because it includes only in-
conference. Attending the doctoral consortium will give me  formation for certain goals interactionsitexes-i.e., sets
the ideal opportunity to receive early feedback that cap hel  of size of two containing mutually exclusive propositians)
guide my dissertation research. | also look forward to the They also show that there are domains where this informa-
opportunity to attend the conference in order to get a bet- tjon’is not sufficient, yet looking for the additional infor-
graduate students and senior researchers. feasible. This would justify preprocessing, which needs to
be done only once since it does not depend on the particular
Overview of the approach In my approach, the planner initial state and goals. An open question remains: how to au-
will discover (either through a preliminary analysis ontea tomatically detect whether a particular domain has theprop
ing) features of the structure of the planning domain. nfor erty that information in a planning graph created by Graph-
mation about these features can improve the planning pro- plan is not sufficient.
cess by using them as heuristics, selecting a more appro- Hoffman, Porteous, and Sebastia also did preprocessing in
priate search method, tuning the parameters of the planner, order to find ordering of subgoals, as described later. Their
or by changing to a different representation of the domain research, however, was dependent on the initial and goal
knowledge (shaping the search space). states, which means that the preprocessing has to be exe-
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cuted during each run of the planner. If a more general anal- Shaping the search space

ysis of the search space’s structure (not dependent on ini- o ino giscovered the features of a planning domain (e.g.,
tial and goal states) could be performed, the preprocessing o\ 7ing the search space or by learning the features
could be performed only once. Moreover, the information from observation of valid plans), a planner may take advan-

obtained duf"‘g such an analysis could be used i_n_ multiple tage of this knowledge by reasoning about planning in this
ways. The first one would be to perform reachability anal- domain (meta-planning) and shaping the search space.

o e e e, ONe Wy o change the shape of e search spac i
. ; : . thange the representation of facts. My idea is partially in-

goals not achievable from certain starting points). Anothe ;

way would be through the identification biib statesstates spired by work by Haslum and Jonsson (2000), who focused

or preconditions theadlwaysor oftenappear in valid plans in on the idea of removing redundant operagiin an initial
the domain. This would improve planning by adding hubs state | believe that planning could be improved by removing

, . articular effects of the operators, while still presegvaor-
as subgoals, or by precomputing actions that lead from one P . ! o
hub staqce to anothyefone. A?\ ext?ansion of this idea would be rectness comparing to the plan with non-modified operators

N g (redundant effec)s It may also be possible to remove op-
treating a group of states as a hub (a minimal group of states ¢ - ' that are rarely used in plans (as learned by the plan-
such that at least one of the states appears in almost all vali

plans) ner). As a resu]t, removing some operators Would'alllpw eas-
' ) _ . ier preprocessing of the domain regardless of the initégdest
Hoffmann, Porteous, and Sebastia also used heuristics (e g., if it would reduce the class of a search space to a sim-
based on parsing techniques (e.g., lookahead). | would also pler one) at the expense of producing less optimal plans in
like to explore the similarities between planning, giveroad  terms of the plan’s length.
main representation, and parsing given a grammar. Many  another possible way of changing the search space is the
efficient parsers do not analyze the grammar while parsing: sejection of an alternative search method for the whole plan
they usually use precomputed information such as a parser o part thereof. (A similar approach was used in the FLECS
table. Most parsers, however, cannot process arbitrarg-gra algorithm (Veloso & Stone 1995), but the selection condi-
mars. Instead, they are limited to a few basic classes like tion in that case was given by the designer, not learned by
context-free or LALR(n) grammars. It would be interest-  ha planner.) For example, it may be possible to learn which
ing to identify and analyze analogous classes of planning search method performs the best given the set of detected
spaces. Such classes of spaces could either be based Ofgatyres of the planning domain. Alternatively, the planne
specific structures of subgoals or relations among planning ¢quId learn a hierarchical representation of the problem (i
states (especially in state-space search). (The relafion 0 gpjred by work by Knoblock (1994)), decide to first solve
planning to context-grammars has already been noticed by e planning problem at a higher level, and then solve the

Erol, Hendler and Nau (1994), but they mostly focused on sy pproblems independently (similar to HTN planning).
HTN planning, which has an explicit structure among ac-

tions.) Related work

The problem of structure and interactions among the goals
) ) , has previously been analyzed by Barrett and Weld (1994).
Learning The search space analysis described above may They described different classes of planning domains, and
be most efficient for features that are present in every valid tested the behavior of both total-order and partial-ortin-p
plan, but an approach that considers only such features mayners on these domains. Hoffmann, Porteous, and Sebas-
be too restrictive (especially if we consider preprocegsin tia (2004) described different kinds of possible orderieg r
the space for all initial states). However, dete_ctlon offea |ations between subgoals. They also introduced the con-
tures that are often (but not always) included in plans may cept of landmarks which can be perceived as a particu-
require enumerating a large part of the search space. There-|ar type of hub states mentioned earlier in this paper. (A
fore, it could be feasible to learn the existence of such hub |gndmark is a subgoal that must be satisfied at some point
nodes by observing multiple generated plans for the same jj everyplan in the domain; my definition of a hub state
domain, instead of analyzing. is slightly broader and also includes the goals or states
Many domains (including benchmark domains for plan- that are included irmostplans in the domain.) Addition-
ning) are reported to have regularities in their local searc ally, Hoffmann in his earlier work described how local fea-
topology. For example, Hoffmann (2003) analyzed heuris- tures of the topology of the search space (as opposed to
tics that ignore delete lists of operations in the context of “global” landmarks and orderings) may influence planning,
phenomena that occur in the local search topology. Simi- and how such features of the space can be detected and
larly, Haslum and Geffner (2000) showed that the successful used in FF planner (Hoffmann 2001; 2003). The work by
use of heuristics to guide the planning process can be linked Smith and Peot (1996) described analyzing the search space
to the regularities in the domains. Learning the local fiesgu by usingoperator graphsto avoid recursion and prune it.
and regularities of the search space can possibly lead to the Preanalysis of the search space is also used in the work
development of good, domain-specific heuristics. Moreover by Fox and Long (1998), which finds state invariants us-
for a search guided by a heuristic, it could also be possible ing type inference. Their later work (Fox & Long 1999;
to incrementally learn a better heuristic. Porteous, Long, & Fox 2004) focuses on finding regularities
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in planning problems (symmetry and almost symmetry).
Other work has explored the appropriate level of abstrac-
tion during planning. This issue is the focal point of HTN
planning (Sacerdoti 1975), where different levels of austr
tion are explicitly represented. Nevertheless, infororati

about an abstract hierarchy may also be used in planners that

do not support hierarchy explicitly: for example, Velos@an
Stone (1995) mention treating some intermediate goals as
milestoneswhich divide states in a plan into independent

groups. Each such group can be treated as a goal at a higher

level of abstraction. Information about these groups is ob-
tained from an external source. (Veloso and Stone mention
work by Knoblock (1994) as a method to generate abstrac-
tions automatically.) In fact, Kambhampati (1995) present
a comparison of “pure” partial-order planners (no use of in-
formation regarding hierarchy) and HTN planning, and dis-

cusses the advantages of having an explicit representation

for abstract or higher-level goals.

Different ways of representing the same domain are also
a popular research topic, especially the tradeoff betwieen t
complexity of planner’s data structures and the size of the
search space (Kambhampati & Yang 1996; Kambhampati,
Parker, & Lambrecht 1997).

There is also a body of work on learning in planning.
Learning appropriate heuristics by planners based on their
previous experiences in planning can be found in work by
Likhachev and Koenig (2005). Boteaal. (2005) presented
an approach that exploits the underlying domain structure,
and learns ordering of operators (actions) and combining
them into groups (macros) by observing plans in the domain.

Status of the work

This paper presents preliminary work done under supervi-
sion of my advisor, Prof. Marie desJardins. | plan to have
the ideas further extended by July 2006 by providing details
of the proposed methods and examples of planning domains
where these methods are applicable. At this time, this work
should be developed far enough to form a Ph.D. thesis pro-
posal.
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Abstract

Linear Logic is a powerful formalism used to manage a
lot of problems with resources. Linear Logic can also
be used to formalize Petri Nets and to solve simple plan-
ning problems (for example ‘Block World‘). Research
goes ahead also in Linear Logic Programming, which
means that we have tools, that can solve Linear Logic
problems. In this paper | will show the possible con-
nection between solving planning problems and Linear
Logic Programming.

Introduction

Planning problems can be solved by translation into another

formalism like SAT, CSP, BDD, etc. Linear Logic is

another formalism to which a planning problem can be
translated. There already exists a planning system based

on Linear Logic called RAPS (#nhgas 2003). RAPS was
introduced at Doctoral Consortium at ICAPS 2003. The

author of RAPS compared RAPS with the best planners
that participated at IPC 2002. This comparison showed
very interesting results, a Skeleton version of RAPS
showed almost the best computation time in computing
the plans (the typed Depots domain), but on the other
hand the solution length (in the typed Depots domain) was
almost the highest, which means that the plans weren't
The Skeleton version of RAPS first converts a

optimal.
planning problem into propositional Linear Logic (which

means that predicates in a planning operator description
are abstracted to propositional constants by removing

predicates’ arguments) and from that it calculates skeleto

plans, which means that we obtain a sequence of actions
needed to reach the goal. The final plan is obtained from the
skeleton plan by unification with corresponding arguments.

RAPS (including the Skeleton version) exploits the fact
that a planning problem coded into Linear Logic is easily
converted to the problem of Petri Net reachability so the sys
tem mainly exploits the algorithms for Petri Net reachaypili

Instead of coding the planning problems in Linear Logic
and solving the Petri Net Reachability problem like in
RAPS, | propose to study possibilities of solving the plan-
ning problems using Linear Logic Programming tools (de-
scribed bellow). | believe that Linear Logic Programming
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tools can achieve better efficiency than ‘classical’ Logig-P
gramming tools and hence might be more appropriate for
solving planning problems (Banbara 2006). Nevertheless |
will also study the possibilities of efficient solving Linea
Logic problems in Prolog. Prolog itself has many exten-
sions which may support some techniques for optimization
of planning problems.

In the next part of this paper | will give a short introduc-
tion to Linear Logic and Linear Logic Programming. Then
| will describe how to solve Petri Net reachability problem
using Linear Logic and how to convert planning problems to
Linear Logic. Finally | will present my future research pgan
in this area.

Linear Logic

Linear Logic was introduced by J.Y. Girard at 1987 (Girard
1987; 1995). Unlike the ‘classical‘ logic we can handle re-
sources in Linear Logic. The basic operator in Linear Logic
is a (linear) implication 4 — B), which is defined as B

is obtained by using one resource A. Linear Logic defines
more operators (not only implication), but | will describe
here only the multiplicative conjunctio® and the addi-
tive disjunctiond (the description of other operators can be
found in (Girard 1987; 1995)). The expressich® B) —o
(C®D) means that C and D are obtained using Aand B. The
expressio — (B® ') means that B or C (we don’t know
which one) is obtained using A. Proving in Linear Logic is
quite similar to proving in the ‘classical’ logic (hypothess

= conclusion) , but the calculus of Linear Logic is more
complicated. To find out more about proving in Linear Logic
and the whole calculus of Linear Logic, see (Girard 1987,
1995).

Linear Logic Programming

Linear Logic Programming is derived from classical logic
programming (Prolog based) by including linear facts
and linear operators. Syntax of common Linear Logic
Languages is quite similar to Prolog syntax (Banbara 2006).
As | mentioned above, the efficiency of these languages
in solving problems describable in Linear Logic is better
than in Prolog. The good efficiency of Linear Logic
Programming languages is reached by using optimization
techniques based on the theory of proving in Linear Logic,
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more in (Banbara 2002).

In my diploma thesis | proposed a Linear Logic Program-
ming language SLLL (Chrpa 2005), which was constructed
as a compiler to Prolog. However, the problem of this lan-
guage is a low computational efficiency caused by emu-
lating the linear facts as lists. Fortunately, there aresioth
Linear Logic Programming languages: Lolli (Hodas 1994;
1992), LLP (Banbara 2002), Lygon (Winikoff 1996), LTL
and more. Lolli is possibly the strongest Linear Logic Pro-
gramming language, which contains almost all of Linear
Logic features. LTL and LLP are possibly the most effec-
tive Linear Logic Programming languages today.

Solving Petri Net reachability problem by
Linear Logic
In the next paragraphs, | will describe how Linear Logic
can be used in solving the Petri Net reachability problem,
that is, the problem of finding whether a given marking is
reachable from the initial marking. To find more about Petri

Nets (and the problem of Petri Net reachability), see (Beisi
1985).

Now | explain how the problem of Petri Net reachabil-
ity can be easily encoded using Linear Logic. Tokens in
places are encoded as linear facts (resources), in particul
the initial marking (in this case: one token in each place
p1,...,pr) is encoded in the following way:

Fpi@p®...Qpk

Transitions are also encoded as axioms. For transi-
tion ¢t and places;,,...,p;,, € IN(¢)...input places and
Doys - - - s Do, € OUT(t)...output places we get:

(i ®...®pi,,) = (Po, ® ... ® Do,)

If the goal (in this case: one token in each plagg . . . , pg,)
(pg, ®...®py, ) is provable (by using the above axioms), the
marking (one token in each plagg,, . . ., p,,) is reachablé.
More about the topic can be found in (Oliet & Meseguer
1989).

Planning with Linear Logic

Problem of using Linear Logic in planning have been stud-
ied by several authors (Masseron, Tollu, & Vauzeilles 1993;
Kanovich & Vauzeilles 2001). Encoding of planning prob-
lems in Linear Logic is quite similar to encoding of Petri
Nets (planning problems can also be encoded directly using
Petri Nets). In planning we have states, that are repregente
by the set of predicates, that are true in the given state. We
can encode these states as a multiplicative conjunction of
(true) predicates, that belong to the corresponding stéie.
encoding of stata:

(P1®P2®...® pp), s ={p1,p2,-.-,Dn}

developed by Dr. Arnost Vecerka, my diploma supervisor
2multiple tokens in places or multiple (input, output) places can
be easily encoded as n-timps ... ® p
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Actions in planning contain preconditions (must be
satisfied before preforming the action), negative effects
e~ (removed after the action), and positive effects(added
after the action). The action= {p,e~, et} is encoded as:

Vie{l,2,...,k}Il; €pUe”
Vie{1,2,....m}rj€etU(p—e)
(l1®lg®®lk) —o0 (’l"l ®T2®---®T7H)

This expression means that the predicates on the left side of
the implication will no longer be true after performing acti

a and the predicates on the right side of the implication will
become true after performing actiean The plan exists if
and only if the encoding of the goal state is provable from

the encoding of the initial state using the actions encoded a
axioms®

Encoding negative predicates

The above formalism worked only with positive predicates.
However sometime we also need to encode negative pred-
icates? We extend the encoding of predicates with sym-
bols for negative predicatep (ill obtain a twinp which
represents a negative form of predicale The encoding

of states, where predicateg, ..., p,, are true ins and
Pma1, - - -, Pn, are false ins:

PR ...0Pm @Pm+1 ® ... 0D
For every actiore = {p,e™, e}, we create an action =
{p,e’~,€'t}, wheree'~ = e~ U{plp € et} and 't =
et U{p|p € e~ }. Now we can encode all action$in the
same way as described above.

Example

Let us present now an example of the conversion (without
negative predicates). Imagine the version of "Block Woyld”
where we have slots and boxes, and every slot may contain
at most one box. We have also a crane, which may carry at
most one box.

Initial state: 3 slots (1,2,3), 2 boxes(b), empty crane, box
ain slot 1, boxd in slot 2, slot 3 is free.

Actions:
PICKUP(Boz, Slot) = {

p = {empty,in(Box,Slot)},
e~ = {empty,in(Box, Slot)},
et = {holding(Box), free(Slot)}
}
PUTDOW N(Box, Slot) = {

D {holding(Boz), free(Slot)},
e~ = {holding(Box), free(Slot)},
et = {empty,in(Box, Slot)}

}

3To obtain a full plan, we must keep information about used
axioms (encoded actions) during proving.
“Negative predicates often appear in preconditions.
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Goal: Boxa in slot 2, Boxb in slot 1, empty crane, free slot
3.

The encoding of the problem:

INIT :

in(a,1) ® in(b,2) ® free(3) ® empty
PICKUP(Bozx, Slot) :

empty ® in(Box, Slot) — holding(Box) ® free(Slot)

PUTDOW N(Box, Slot) :
holding(Box) ® free(Slot) — empty ® in(Box, Slot)

GOAL :
in(b,1) ® in(a,2) ® free(3) ® empty

A solution is a sequence of actions. In this case, this se-
quence looks like:PICKUP(a,1), PUTDOW N (a,3),
PICKUP(b,2), PUTDOWN (b,1), PICKUP(a,3),
PUTDOWN(a,1).

Possible optimizations

ICAPS 2006

Another optimization of the previous example is block-
ing the actionPIC KU P(Bozx, Slot) forever if the pred-
icate in(Boz, Slot) is true in goal state. The action
PICKUP(Boz, Slot) is blocked when both predicates
canpick(Box, Slot) andnopick(Box, Slot) are false. This
is obtained by removing the predicatepick(Bozx, Slot)
from the right side of the linear implication in the encoded
PUTDOW N (Boz, Slot) action.

| showed that Linear Logic can easily encode some opti-
mizations for the planning problems. Using these optimiza-
tions may lead the to better efficiency.

Comparing to SAT

Linear Logic itself has some advantages that can be ex-
ploited in the encoding of planning problems. The main

advantage is the linear size of the encoding of the planning
problems. For example the size of a SAT encoding of plan-
ning problems can be exponential. On the other way, SAT
problems are in general NP-complete unlike the undecid-
ability of whole Linear Logic. In planning we are using only

a part of Linear Logic, but we still have no evidence about

In the previous subsections | described the pure encoding decidability and complexity of this restricted problem.

of planning problems to Linear Logic. In this subsection |
will show that we are able to encode some optimizations to
Linear Logic as well.

In the above example we have two actions:
PICKUP(Bozx,Slot) and PUTDOW N(Bowx, Slot).
These actions are inverse, which means that if we perform
these actions with same parametd®sz, Slot consecu-
tively, we obtain the state that we had before performing
these actions. The main idea how to block the consec-
utive performing of inverse actions is an extension of
the encoding of the actions. The encoding of the action
PICKUP(Boz, Slot) from the above example id shown
bellow (encoding of the actio®UT DOW N (Bozx, Slot)
is analogical):

PICKUP(Box, Slot) :

canpick(Box, Slot) ® canput(Box, Slot) ®
nopick(X,Y) ® empty ® in(Box,Slot) —o
holding(Box) ® free(Slot) ® canpick(Box,Slot) ®

noput(Box, Slot) @ canpick(X,Y)

The predicates:anpick(Box, Slot) (canput(Box, Slot))
mean that actions  PICKUP(Box, Slot)
(PUTDOW N (Boz, Slot)) can be performed (allowed).
The predicatesnopick(Box, Slot) (noput(Bozx, Slot))
mean that actions  PICKUP(Boz, Slot)
(PUTDOW N (Boz, Slot)) can't be performed (blocked).
The encoding of the actioR/C KU P(Bozx, Slot) means
that this action can be performed if and only if the
predicatecanpick(Box, Slot) is true. After performing
this action the predicatecanput(Box,Slot) becomes
false, the predicateioput(Box, Slot) becomes true, the
predicatenopick(X,Y) (represents exactly one blocked
action PICKUP(X,Y’)) becomes false and the predicate
canpick(X,Y) becomes true. In the other words this means
that performing some (allowed) action blocks the inverse
action and unblocks the action blocked by the previously
performed inverse action.
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Future Research

In my future research, | will study the problem of efficient
usage of Linear Logic in planning problems (for example en-
coding optimizations). | will study the possibilities ofing
Linear Logic Programming tools and possibilities of emulat
ing Linear Logic in Prolog. | will also make a comparison
to some models (Gelfond & Lifschitz 1993). The following
paragraphs will present my future research plans in more de-
tail:

Using Linear Logic Programming Tools

As | have mentioned above, we have several tools that could
solve Linear Logic problems efficiently. The preliminary ex
periments showed that the existing Linear Logic Program-
ming tools are not powerful enough to solve the planning
problems, because these tools can't still handle the linear
implication well. This means that | am still emulating Lin-
ear Logic in Prolog, which isn't much efficient. Neverthe-
less, | believe that these tools may be useful as a support to
other planning techniques. | also believe that possible im-
provements of these tools may help with solving the plan-
ning problems. | will study the possibilities of using these
tools to solve the planning problems.

Emulating Linear Logicin Prolog

Linear Logic can be easily emulated in Profobinear facts

are in a special list. We must define two predicates, one for
deleting the facts from the listif:_del) and one for adding
the facts to the listi{n_add):

lin_del (V,[VIL],L).
lin_del (V,[HL],[HNL]):-lin_del(V,L,NL).
lin_add(V, L, [V]L]).

SWe don't need whole Linear Logic, we need to emulate only
the support for the operatoss, ®, —.
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Emulation of the multiplicative conjunctio® and the ad-
ditive disjunction® is very easy, because we can replace
them by ‘classical’ conjunction and disjunction which are
presented in Prolog. Emulation of the linear implicatien

is also easy. All linear facts on the left side of the linear im
plication are deleted from the list and all linear facts oa th
right side of the linear implication are added to the list. A
formulaa ® b — ¢ ® d can be written in Prolog like this:

(l'in_del (a, L1, L2),lin_del (b,L2,L3)),
(l'in_add(c, L3, L4);1in_add(d, L3,L4))

Variables L1, L2, L3, L4 represent the list of linear facts,
because we must keep this list consistent and vulnerable to
backtracking.

This emulation isn't very efficient, but we can do some
optimizations. If we have the list of linear facts sorted,
we don't need to use the predicaiés_del n-times conse-
quently. We can improve thién_del predicate such that it
will accept a sorted list of n facts and make the same effect
like using the old predicateén_del n-times consequently.
This approach will result in a fact that the list of lineartiac
can be explored only once. To keep the list sorted we must
also improve théin_add fact. In future | will try to find out
more and better optimizations in emulating Linear Logic in
Prolog.

Temporal Logic extensions

There are also Linear Logic Programming tools that support
Temporal Logic extensions. For example the extension of
LLP is called TLLP (Banbara 2002). This could provide a
formalism to time extensions, especially for qualitativedn
eling of time. With Temporal Logic we can also model fea-
tures like an action that must be performed before another
action. This may lead to PSP (Plan-Space Planning).

Using Linear Logicin probabilistic planning

When performing an action in probabilistic planning we

could reach more states (instead of one like in determin-
istic planning). Reachability of a particular state depend

on probability of obtaining that state after performing the

planned action. The main advantage of Linear Logic is ad-
ditive disjunction, so we are able to encode the actions in
probabilistic planning in the following way(s1, sa, . . ., S,

are statesd is the action):

sx A—{s1,$2,...

asn}

A:is—o(s1Bs2®D... B sy)

This expression means that only one state from
81,82,...,8,, could be reached after performing ac-
tion A from states in a certain step, but we don’t know
which one (depends on probability). Unfortunately the main
disadvantage of Linear Logic is that it can’t handle proba-
bilities directly. Nevertheless, there is still an optiarhich
consists of possible cooperation with other techniquess Th
problem needs to be more studied, so in future | will also
try to find out more about this extension.
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Conclusion

The paper showed that Linear Logic can be used to encode
planning problems. Like for other encodings, the advantage
of this approach is that an improvement of the Linear Logic
solver leads to improved efficiency of the planner based on
Linear Logic. Still, the efficiency of current Linear Logic
solvers applied to planning problems should be explored in
more detail.
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Abstract

This abstract discusses work looking into techniques for im-
proving the quality of the search heuristics used to guide
forward-chaining planning. The improvements in heuris-
tic quality are made by performing a static analysis of the
planning problem to identify commonly occurring ‘generic
types’, and providing additional heuristic guidance based on
their known properties. In doing so, the heuristic is tailored
to the identified properties of the domain and can provide a
more realistic heuristic value and refined relaxed plan. This
can potentially lead to reduction in the time taken to find a
plan, and the generation of shorter plans.

Introduction

Forward-chaining planning guided by a heuristic has proved
to be an effective planning strategy in a range of planning
domains. At recent international planning competitions,
many of the participating planners followed this search ap-
proach; of particular note is FF (Hoffmann & Nebel 2001),
which participated with great success in the 2002 and 2000
competitions. Work on HSP (Bonet & Geffner 2000) and
Downward (Helmert 2004) has explored alternative heuris-
tics. What all these planners share, however, is that the
heuristic goal-distance estimate they provide is obtained
from a ‘relaxed’ version of the original problem, i.e. one
from which some constraints have been removed. The re-
laxation of the original problem in this manner is necessary
to allow a heuristic value to be obtained in a reasonable time
however, it does reduce the accuracy with which the relaxed
problem is able to model certain aspects of the original prob
lem.

Using static analysis techniques, such as those performedtransitions within the property spaces.

by TIM (Long & Fox 2000), it is possible to identify
‘generic types’ of objects within planning problems: for
instance, self-propelled mobile objects capable of moving
from one location to another. These generic types form sub-
problems with known properties with which type-specific
heuristics can be used: for instance, using the Floyd Wal-
shall algorithm to calculate the cost of moving a mobile from
one location to another. HybridSTAN (Fox & Long 2001),
a forward-chaining heuristic planner, took the approach of
isolating these known sub-problems when planning, remov-
ing all predicates pertaining to the location of mobilesrro
the domain. Once a solution plan was found, actions were
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inserted into the plan to move the mobile objects to the lo-
cations needed for the actions used.

The decomposition approach of HybridSTAN relies on
being able to cleanly isolate the sub-problem, which is only
possible if it is wholly described by the generic type. For
example, if the move action for the mobile requires another
condition to be satisfied (such as one defining whether a door
is open between the two locations) then the subsolver cannot
handle the additional constraints imposed. In these c&ses,
not possible to add the missing actions to the plan as ratjuire
once the remainder of the problem has been solved, as it is
no longer clear which actions are needed.

To this end, this work is concerned with investigating
whether the static domain analysis used to discover sub-
problems can be used to improve the quality of the relax-
ation heuristic used, in this case the Relaxed PlanninglGrap
heuristic, without relying on being able to solve the identi
fied subproblems in isolation. By improving the heuristic,
and the guidance it provides through state space, the aim is
to reduce the time taken to find solution plans and to improve
the quality of plans found.

Background
Generic Types

TIM is capable of identifying objects, or groups of objects,
within planning problems as having a recognisable generic
behaviour and thus being of a certain generic type. TIM
first analyses planning problems to discover the ‘property
spaces’ relating to each of the objects. From these, generic
types are identified by looking for hand-coded patterns of
Included in these
generic types are mobiles and resources. Mobiles have a
location property, the value of which is changed by the ap-
plication of ‘move’ actions to move the mobile from one
location value to another. The locations at which the mobile
can be located are arranged into a map; directed edges exist
in the map between pairs of locations where a feasible move
action exists to move the mobile from the source location
to the destination. At no point, either in the initial state o
any sound, reachable, state is is it possible for a mobileto b
located at more than one location.

Resources are a special case of mobiles, whose map con-
sists of a series of linearly interconnected nodes. An edge
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can be drawn from a node A to a node B if there exists an  This over-optimism in the presence of a resource level of
action capable of moving the mobile denoting the resource one by the relaxed planning graph heuristic has a profound
level from A to B; an edge can be drawn from B to A if  effect on search: up to, and including the point, where there
there exists an action capable of moving the resource level is still a non-zero resource level, as much of the resource as
from B to A. Edges in one direction correspond to increasing desired is available so a relaxed solution plan can be found.

the resource level; edges in the other direction correspmnd
decreasing the resource level.

Known generic types can sometimes arise in unexpected
situations, where human intuition might not have expected
them. Any object which has a predicate relating it to one of

However, as soon as an action reduces a resource level to
zero, the nature of the relaxed plan changes dramaticélly: i
that resource is required then actions must be added to-the re
laxed solution plan to increase the resource level (asgymin
such resource-increasing actions are available). Thigesud

a series of other objects and a corresponding action schemachange in relaxed plan can lead to unforeseen dead-ends, or

which changes this assignment is identified as a mobile ob-
ject.

Generic Types and the Relaxed Planning Graph
Heuristic Landscape

The relaxed planning graph heuristic, as first used in FF, has
proved to be a useful heuristic for guiding forward-chagnin
planning. The relaxation used as a basis for the heurigtics i
to ignore the delete lists (negative effects) of the domain a
tions; Graphplan (Blum & Furst 1995) is then used to solve
this relaxed problem, although only a subset of the algarith

needs to be implemented as the planning graph does not con-

tain mutexes due to the removal of delete effects.

When delete lists are ignored, once a fact has been estab-

lished by an action, it is available for use as a precondition
to all the subsequent actions in the plan. This has some in-
teresting effects on how well the relaxed problem is able to
model some aspects of known generic types within planning
problems. When the move actions of mobile objects are in-
voked, the effects of the action normally establish twogact
the mobile is now located at the destination; and the mobile
is no longer located at the source. Similarly, when action
increasing or decreasing resource levels are invokedethe r
source level is now that resulting from the action; and no
longer holds the previous value. Ignoring the delete edfect
of move actions (or resource-level-altering actions),@sed
when forming the relaxed planning problem, removes the
effects that establish that once a mobile has moved it is no
longer at its previous location. Effectively, when execgta
relaxed plan, mobiles are simultaneously available ahall t

a sudden increase in relaxed plan length - both of which have
a negative impact on search performance.

The multi-locatedness of mobiles under the ignore-delete-
lists relaxation—that is, a mobile is available at all thesloc
tions it has ever been at thus far in the relaxed plan—can lead
to some interesting relaxed plans being formed. Consider,
for instance, a logistics problem in which a truck, begignin
in location A, must collect a package from location E and
deliver it to location A. The relaxed plan forwards from the
initial state moves the truck from A to E (via B, C and D),
loads the package into the truck and immediately unloads it
at A: this ‘teleportation’ of the package from E to A, without
the truck having to move back again, occurs because the fact
that the truck is in location A was never deleted and, thus,
the unload action placing the package at A is immediately
applicable.

Relaxed Plan Refinement using Generic Types
Refining Relaxed Plans

In many cases, one can identify actions that are logically
missing from relaxed plans that would need to be inserted in
order to make the plan executable if delete lists were con-
sidered. Through analysis of the behaviour of known-typed
objects in the plan, it is possible to suggest what some of
the missing actions are, and produce a relaxed plan which is
somewhat ‘less relaxed’ than it was previously.

When dealing with mobiles, if a precondition of one ac-
tion demands that a mobile be in one location, and the pre-
condition an action immediately following it demands that i
be in another, then it is clear that actions to move the mobile

locations they have ever been, and resources are avaitable afrom the former location to the latter would be necessary.

all levels they have held.

When dealing with resources, this can have a substantial
impact on how well the relaxed planning problem models
the original: if a resource level is non-zero in the inititzts
from which a relaxed-plan is built, it is available at thabrno
zero level throughout. In FreeCell, for instance, if theye i
one free cell available in a given state, the relaxed plan to
the goal from that state can make use of an effectively un-
limited number of free cells. No action is able to reduce

As the map describing how the mobile can traverse between
its locations is known, a path between all possible pairs of
locations that may arise can be determined, in polynomial
time, using the Floyd Walshall algorithm. The additional
actions corresponding to the mobile moving along this path
can be added to the relaxed plan, making it a closer analogue
of a real solution plan, and increasing the heuristic cost by
number of actions added.

The level of a resource is denoted by an assignment to a

the number of free cells available by subsequent actions, as series of ranked objects. Actions which increase the level

the delete effect that would establish that the free celhtou
is lowered when a card is placed in a free cell has been re-
moved. This can lead, for instance, to relaxed plans which

state that as many cards as necessary should be moved to aanked object.

of the resource change the assignment denoting the resource
level to a higher-ranked object; actions which decrease the
level of the resource change the assignment to a lower-
By starting with the resource level in the

free cell and then the cards should be moved to the home state from which the relaxed plan was built, the cumula-

cells in the correct order.
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tive resource-level effects of the actions in the relaxeahpl
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can be monitored: resource-increasing actions move the cur
rent resource level one place higher up the rank; resource-
decreasing actions move it one place lower. If at any point
an action attempts to move the resource level to off the top
of the rank or off the bottom of the rank, a decreasing or

increasing action needs to be inserted as appropriate. Such

actions are not available in all cases; if they are not, alpena
can be added the heuristic value returned (the plan length) t
dissuade search from considering plans whose relaxed solu-
tions appear to violate resource limits. This is similarte t
adjusted cost heuristic used in Sapa (Do & Kambhampati
2003), but as TIM provides finite bounds on the resource
levels it is possible to penalise resource flows through the
relaxed plan that would take the resource level both below
and above its bounded values.

The effect of relaxed plan extraction on plan
refinement

The process to extract a relaxed plan from a GraphPlan plan-
ning graph is designed to be as efficient as possible, to re-
duce the overhead of heuristic evaluation. When choosing
an achiever for each fact, the first achiever found when build
ing the planning graph is used. The first achiever found,
however, varies between states, and can lead to dramticall
different relaxed plans being built, even if the plan lersgth
are similar.

When refining the relaxed plans built in the conven-
tional manner, the penalty is heavily dependent on the first-
achieving actions found; in this case, adding actions to the
relaxed plan adds noise to the relaxed plan length, making it
difficult to decide which states are the most likely to lead to
a goal. In an attempt to address this problem, two alteraativ
plan extraction approaches are being investigated:

e A stochastic approach, called several times in an attempt
to minimise noise, in which one of the achievers for each
fact is chosen at random, rather than the first one found;

e A guided approach, called once, which uses a heuristic to
choose which successor to use.
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Figure 1: Time Taken To Solve Problems in the DriverLog
Domain with Lookahead on Refined and Non-Refined Plans

attempt is made to find one action that would add the un-
satisfied precondition. Adding action sequences to satisfy
preconditions is not, however, considered: if satisfying a
precondition requires more than one action, lookahead ter-
minates.

Performing lookahead on the less-relaxed plan provided
by the generic-type refinement, rather than the converitiona
relaxed plan, should allow more actions to be applicable in
domains with recognised generic types. Within the refined
plan, move action sequences to satisfy locatedness priecond
tions have been added; something which the lookahead pro-
cedure itself cannot do, as it only considers adding single a
tions to satisfy preconditions. The combination of these tw
techniques allows the low-cost of the lookahead procedure
to be maintained, by it only considering adding single ac-
tions, whilst allowing action sequences to be inserted eher

these can be determined using the generic types analysis.

Using lookahead provides a further possibility: using the
non-refined relaxed plan to provide a heuristic value; but
performing lookahead over the refined plan. Such a con-

These alternatives will lead to differing heuristic values figuration would have two benefits:

being found; which may lead to improved performance
and/or shorter plans.

Using Lookahead with Refined Plans

The heuristics discussed are invariably more expensive tha
the baseline, unrefined, relaxed planning graph heuristic.
The ‘less-relaxed’ plans found are, however, closer to be-
ing solutions to the original planning problem than unreadine

relaxed plans; suggesting that it would be beneficial to use

¢ lookahead can apply more actions than it would have done
otherwise, as action sequences to achieve mobile loca-
tions have been added,;

the low-cost greedy relaxed plan extraction procedure can
still be used, as the length of the non-refined plan (with-
out the aforementioned noise) is taken to be the heuristic
value.

Initial results in the DriverLog domain using this planner

more than just the plan length as a heuristic value to guide configuration, presented in figure 1, suggest that the use of

search.
YAHSP (Vidal 2004), a planner which competed at the

refined plans in this manner increases the effectiveness of
lookahead, providing a reduction in planning time. It can be

2004 international planning competition, uses a lookahead seen that a small overhead is incurred through the analysis
approach to generate an additional successor to each stateof the generic types in the domain, but in larger problems the
The additional successor state is formed by applying as reduction in planning time far outweighs this overhead. In
many of the sequenced actions from the relaxed plan as pos-particular, problems 16 and 19 are solved in less time, and
sible. In YAHSP, in an attempt to satisfy some of the un- problem 18 is solved where previously it was not (within the
satisfied preconditions of the actions in the relaxed plan, a 30 minute time-limit to which the tests were subjected).
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Selectively Introducing Delete Lists based on
Generic Type Information

Another approach to making the relaxed problem more real-
istic would be to introduce some of the delete effects which
are known to have controllable interactions within the prob
lem, forming a ‘partially relaxed’ planning problem. In par
ticular, if the delete effect when mobiles moved was main-

tained, the actions in the relaxed plan could not make use of

a mobile being in two locations at once.

Two approaches are being investigated to use to solve the

partially relaxed problem and return a heuristic measure:

e Using GraphPlan, as with the conventional relaxed plan-
ning problem, but handling the mutexes introduced by the
added delete effects

e Using a simple partial-order approach, dealing with the

mutexes by adding the necessary actions during plan time

- for example, a mutex between two actions requiring a
mobile to be at two locations can be dealt with by adding
actions between the two to move the mobile from one lo-
cation to the other.

Conclusions
This paper presented an overview of work investigating im-

proved search guidance; with a particular focus on the iden-

fication and use of generic type information to provide brette
heuristic knowledge. To date, the relaxed plan extractimh a

lookahead techniques have been implemented and an evalu-

ation is being performed. The implementation of the selec-
tive introduction of delete effects into the relaxed proble
still in progress.
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Abstract

Nowadays, planning is still a computationally unsolved
task and many different learning techniques have been
applied in order to improve its capabilities. In this pa-
per we propose the integration of two learning meth-
ods sequentially: macro-operators and search control
rules. Macro-operators provide us with a sequence of
actions that are often executed in a given order. Thus,
they avoid to plan that sequence each time it is re-
quired. However, the use of macro-operators increases
the branching factor of the planning search tree, so the
complexity of the planning process grows, and may pro-
duce a decrement of the planning performance. Our
goal is to learn control rules that let us know when to
use the macro-operators. Therefore, the search through
the planning tree can be efficiently guided by the con-
trol rules. We show that this combination can be suc-
cessfully applied in classical planning domains.

ber of nodes of the search tree expanded and reducing the
planning time.

In the next section we describe the planner and learn-
ing modules used in the experiments. The third section de-
scribes the method to decide the macro-operators and gen-
erate the control rules. The forth section shows some ex-
periments with a version of the Logistics and the Miconic
domains of the International Planning Competition. Finally,
the last section introduces some conclusions and outlines fu-
ture work.

The ipssplanner

Nowadays there are very different kinds of planners with
different results for each domain. The planner used in this
work is theipssplanner, which provides the two learning
modules we need in this work: macro-operators and control
rules learning modulespssis an integrated tool for plan-

ning and scheduling (Rojuez-Morencet al. 2004), which

. is based orPRODIGY (Velosoet al. 1995) as the planner
Introduction componentPRODIGY s a nonlinear planning algorithm and

Planning is a process that chooses and organizes a set ofit has been used for studying several machine learning tech-

given actions by anticipating their expected outcomes. It niques in the context of planning.

is a task of Artificial Intelligence considered very complex IPSsplanner inputs are the domain and problem descrip-

and computationally hard, in which the search tree reaches tions, generating as output a total-ordered plan, and the plan-

a very big size and makes it difficult to find a solution. To ning search tree. They can be used to learn macro-operators

reduce the difficulty of finding a solution plan, many solvers and seach control rules respectively, as explained next.

employ learning techniques, that acquire macro-operators, ]

heuristics, search control rules, etc, whose results improve Macro-operators learning

noticeably their original behaviour. A macro-operator is an operator composed by several sim-

In this paper, we propose to use two of these learning pler operators. It produces the same result than executing
techniques sequentially that acquire: macro-operators and the simple operators sequentially. Their principal drawback
search control rules. Firstly, we select the most common is the utility problem (Minton 1988; McCluskey & Porte-
macro-operators, composed by two or three simple opera- ous 1997). The addition of macro-operators increases the
tors, obtained from the solution plans of a set of random branching factor and the processing cost per node, which
problems. Secondly, we use the search tree of some prob-can mean that they have worse search performance than not
lems solved with the macro-operators to learn control rules. using them. Some other effects of using the macro-operators
These rules may include the macro-operators used in the can be disadvantageous too: change of the order in which
plans previously generated. Finally, we compare the results the search space is traversed (they change the order in which
of both learning techniques together with both techniques the primitive operators are used for obtaining a solution),
individually. change of the path costs, and increase of redundancy.

None of these two learning techniques are new, but the  However, they can show significant improvement in dif-
sequential use of both provides a novel way of applying the ferent domains (Botea, Mueller, & Schaeffer 2005), by in-
macros in the planning process. This method is much more cluding into the macro-operators a partial ordering of its
selective that without the control rules, reducing the num- simple operators or combining the use of macro-operators
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with techniques such as the relaxed graphplan computation
implemented irFF. Therefore, a key issue consists on find-
ing the good macro-operators, which can find faster a better
plan.

In this work, we have selected the macro-operators using

the frequency of appearance of several simple operators se-

guentially together in a set of obtained solution plamss
provides a module to obtain a macro-operator from solving
a problem in a given domain. It is also possible to select
one operator subsequence from the solution plan to obtain a
smaller macro-operator.

The HAMLET learning module

HAMLET is an incremental learning method basedesn
(Explanation Based Learning) and inductive refinement of
control rules (Borrajo & Veloso 1997). The inputsoim -

LET are a domain, a set of training problems, and other
learning-related parametersdAMLET calls IPSS and re-
ceives as input the search tree expanded by the planner, in
order to decide where and what to leanAMLET output is

a set of control-rules that potentially guide the planner to-
wards good quality solutions. In the context of this work,
we useHAMLET to find a set of control rules that are able to
learn when to use the acquired macro-operators.

Integration of macro-operators and
control-rules

In this work, we have used both learning techniques to-
gether, with the aim of generating control rules that define
when a specific macro-operator shall be used. To show the
effectiveness of this approach, we show the results of using
the two techniques separately and together: control rules in
the original domain, macro-operators in the original domain
and control rules after the macro-operators are acquired.

The first step is to select some macro-operators composed
by two and three simple operators. We providssa set of
random training problems to be solved. From the resulting
total-ordered plans, all the different combinations of two and
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Experiments

This section describes the experiments performed in both the
Logistics and Miconic domains. For each experiment, the
learning parameters are the default ones. The only parameter
modified is the time limit given to learn from the training
problems and to solve the test problems. For both domains
and in both cases, this value is always 30 seconds.

Logistics domain

We use the version of the Logistics domain, as it was first
defined (Veloso 1994). The difference with the version cre-
ated for the first IPC is that the predicates for describing
where packages, trucks and airplanes are, have changed to
at-object, at-truck and at-airplane.

We have used a random problem generator to create dif-
ferent problem sets for learning and test. These sets are the
following:

e Macro-operator learning set (to obtain the most common
macro-operator composed by 2 and 3 simple operators):
30 random problems with 3 cities, 3 objects and a maxi-
mum of 3 goals.

Control-rules learning set: 30 random problems with 3
cities, 3 objects and a maximum of 3 goals.

Test set 1: 30 random problems with 7 cities, 10 objects
and from 1 to 10 goals.

Test set 2: 40 random problems. 10 of them are of type
(3, 5, 5), other 10 are (5, 10, 10), the next 10 problemas
are (8, 15, 15) and the last 10 are (10, 20, 20), where (c,
0, g) refers to number or cities (c), number of objects (0)
and number of goals (g) respectively.

The characteristics of the sets are different because their
different use. For instance, the problems generated for learn-
ing control-rules and macro-operators are “simple” prob-
lems (with small number of cities, goals and objects) to en-
sure that the planner is able to: (i) find solutions from which
to generate macro-operators; and (ii) expand the whole
search tree to obtain control rules. Test sets are also dif-
ferent. We have first created a test set with easy problems
(from 1 to 10 goals), and a more complex set that contains

three operators have been obtained that appear one after theyroplems with up to 10 cities, 20 objects and 20 goals.

other and have, at least, one constant in common. The most
common of them are selected for the second step.

The next step is, for each macro-operator, to insert them
separately into the given domain and let the system learn
control rules, using always the same training set of random
problems. Learning control rules using the original domain

pare the results.

Finally, the same test set is used for each resulting do-
main: (i) the original domain, (ii) the domains with each se-

learned control rules and (iv) the macro-operators and the
control rules together. The main objective of this approach
is to obtain good control-rules for each macro-operator and
S0, better results with this combination than using both tech-
nigues separately.
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1.
(without macro-operators) is also executed, in order to com- 2.

We have learned several macro-operators of different
types, following the approach introduced in the second sec-
tion. The complete list is enumerated next, where we de-
scribe the operators that compose the macro-operator.

Macro m2-1: drive-truck unload-truck
Macro m2-2: fly-airplane unload-airplane
Macro m2-3: load-truck drive-truck

4. Macro m3-1: load-truck drive-truck unload-truck
lected macro-operator, (i) the original domain with its own 5,

Macro m3-2: drive-truck load-truck drive-truck
Macro m3-3: load-airplane fly-airplane unload-airplane

Tables 1 and 2 show the results of solving the problems
of both test files respectively. They present percentages of
solved problem $olved and number of used ruleRq(le3.
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Theipsscolumn shows the results obtained witsswith- Domain IPSS HAMLET
out control rules. ThelAMLET column shows the results _ Solved | Solved | Rules
obtained byipsswhen using the learned control rules. The Logistics 2% | 0% °
different rows describe the results obtained when differ- el o | o | s
ent macro-operators are used. In the first row, no macro- Logisncs+m2_3 0%0 0%0 6
operator is used. In the second one, the m2-1 macro is used, Logistics + m3-1| 0% 0% 4
and so on. Logistics + m3-2 | 3% 3% 9
Logistics + m3-3 | 10% 58% 9
Domain IPSS HAMLET
Solved | Solved | Rules Table 2: Percentage of solved problems of the test set 2.
Logistics 20% 27% 9

Logistics + m2-1 13% 20%
Logistics + m2-2 | 43% 63%
Logistics + m2-3 8% 8%
Logistics + m3-1 | 13% 20%
Logistics + m3-2 13% 13%
Logistics + m3-3 23% 76%

competition to learn the control rules WAMLET and the
rest 140 to test. The first group are problems with two and
four floors, while the second set has problems with from six
up to sixty floors. The learned macro-operators in this do-
main are:

© © b~ O 00 b

Table 1: Percentage of solved problems of the test set 1.
1. Macro m2-1: up board

The results obtained for the first test set are very satis- 2. Macro m2-2: board down
factory in two cases: m2-2 (fly-airplane+unload-airplane) 3. Macro m2-3: down depart
and m3-3 (load-airplane+fly-airplane+unload-airplane). For 4. Macro m3-1: board down depart
both macros, the results are good with and without control
rules. In the first case, the percentage of solved problems is®: Ma&cro m3-2: up board down
43%, more than double when compared withsalone, that 6. Macro m3-3: board up depart
obtains a 20%. If we learn the control rules for that macro, Table 3 shows the results of solving the test problems in
the percentage increases up to 63%. When using control th f tthatin th X tgbl P
rules and the m3-3 macro-operator, this percentage increases € Same format that In the previous tables.
up to 76% of solved problems. However, the table shows

that the results depend on the macro-operator used and, for Domain PSS HAMLET
. kK Solved | Solved | Rules
instance, when using the macros m2-1, m2-3, m3-1 and m3- Vicome % 1% 3
1 i 0,
2 without control rules, the.performance is lower (13%) than Mictm2-1 | 22% 17% 4
when the macro-operator is not used (20%). In two of these Mictm2-2 | 12% | 26% 3
cases (m2-1 and m3-1), their results usiagiLET improve Mic+m2-3 | 51% | 52% 3
the results ofPssalone and, oddly, equal the resultse§s Mic+tm3-1 | 17% | 28% 3
in the original domain. In the other two cases (m2-3 and m3- Mic+m3-2 | 27% | 34% 3
2) their results usinglAMLET are the same than the results Mic+tm3-3 | 51% | 53% 3
of IPSs

The results with the second test set provide a similar read- ~ Table 3: Percentage of solved problems of the test set.
ing as described in Table 2. For macros m2-2 and m3-3 the
performance raises from a 2% of problems solved up t0 15%  gyary macro-operator configuration has better results
and 58% respectively. Thus, the macros that were useful in {4 the original domain, even with control-rulesHam -
the previous test set are useful in this one towsdefault LET. So, except for the first macro-operator (up+board),

uses trucks before airplanes to load and unload objects in ye resylts with both technigues together improve over us-
a location. With these airplane macro-operators it changes ing only one of them or not using them. After analysing the
the preference and it seems to learn control rules that decide ¢ tion plans from the Miconic domain using the macro-

when to use the airplane macro-operators (m2-2 and m3-3). gperators, these solutions are not semantically correct. In

With the macros m2-1, m2-3 and m34Essis not able to Figure 1, we can see the obtained solution plan using the
solve any problem, nor withiAMLET. Finally, the macro  macro-operator up+board for one simple problem. The first

m3-2 keeps its results wittbssequal than withHAMLET, thing we can observe is the unnecessary use of operators.
only 3% solved problems. The second and third actions, for example, could be better

. . . replaced by down and board, instead of down and up+board.
Miconic domain But the real problem is the fact of repeating the actipn

The version of this domain is the one used in the IPC-2000, board fO f2 p1 after boarding already the passenger p1l into
as well as the 150 used problems. In this domain there are the lift and, everup-board fO f1 pO after serving the pas-
two types of objects: passengers and floors. The goal is to senger p0 in the flod2.

bring people using an elevator to different floors. We used  The reason of this behaviour is the definition of the board
the 10 most simple problems of the 150 problems of the simple operator, which does not delete the predioaitgin
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and that their use does not always outperform the results of
IPssalone. However, when learning control rules to guide

the search, the results over using the macro-operator alone
_ . improve.

f2 ipl (destinpO12) Sdmon;upboardfofzpp We show, however, that there are some risks on the appli-
<donn 20> cation of macro-operators: the learned macro-operators may

fl ipO (destin p1 1) <up-board fO 1 po> solve no problem. Thus, to define which kind of macro-

<down f1 0> operators is good for this integration and which training

<up-board f0 f2 p1> problems are good to obtain the right rules, are two of the

fOo <depart f2 po> future research lines. That can include a new method to find

<down 210> good macro-operators.

Goals: (served p0) <Up-board 01 pOo> Also, there are many domains in which this integration
(served p1) <departf1.pL> must be tested and we have to increase even more the
number of simple operators that compose the used macro-

operators.

A side effect of learning control rules on planning do-
mains with macro-operators has also been finding extra
knowledge about macro-operators: after acquiring macro-
operators, we have seen a bug in the Miconic domain de-
scription that would be difficult to detect without using them,
p f. That means that the planner can board a passenger aggiven when not using themsswould always generate valid
many times as it needs, because no operator deletes the oriplans.
gin predicate. So, for example, if we have to go up to the
second floor to leave passenger p0, the planner is going to Acknowledgements

select first the macro-operator up+board, which will try to  Thjs work has been partially supported by the Span-

move the lift up to the second floor, and board someone into g, MCyT project TIC2002-04146-C05-05, MEC project
the lift: passenger pl, who has there the origin. Nothing T)N2005-08945-C06-05 and regional CAM-UC3M project

Figure 1: Example with macro-operator up+board.

in this domain avoids this problem and the solution plan is
incorrect.

In order to solve this problem, we added a new predi-
cate: (at-passenger p f) to know exactly where each pas-
senger is and to avoid boarding them into the lift many times.
This includes changing the definition of the Miconic domain
and generating the correct definition of the macro-operators
again. Finally, the new results for the Miconic domain are
given in the Table 4.

Domain IPSS
Solved
3%
16%
1%
11%
4%
1%
15%

HAMLET

Solved | Rules
10% 2
15%
1%
10%
7%
4%
16%

Miconic

Miconic + m2-1
Miconic + m2-2
Miconic + m2-3
Miconic + m3-1
Miconic + m3-2
Miconic + m3-3

W wWwwwwb

Table 4: Percentage of solved problems of the test set.

Now, the results are not as good as before, but the plans
are valid this time. Only with macro m3-3 we obtain bet-
ter results with both learning techniques together than both
techniques alone.

Conclusions and future work

In this paper, we have shown that the combination of macro-
operators and control rules in the Logistics and Miconic do-
mains can improve the results of tlessplanner alone. We
demonstrate that different macro-operators can be learned,
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Abstract

Planning under uncertainty has been well studied, but
usually the uncertainty is in action outcomes. This work
instead investigates uncertainty in the amount of time
that actions require to execute. In addition to this tem-
poral uncertainty, the problems being studied must have
robust solution plans that are optimized based on an ob-
jective function. This extended abstract details two it-
erative approaches that have been used to solve these
type of problems and discusses future work including
over-subscription of goals and MDP approaches.

Introduction

Uncertainty applies to several aspects of planning problems
and many planners have been built that prepare contingency
plans when actions may affect the world in uncertain ways
(Bresina et al. 2002). However, less work has been done
with planners that assume action durations are uncertain.
One approach to dealing with this type of uncertainty is to
take a pessimistic view of the world, assume a worst case
scenario, and find conservative plans that are likely to exe-
cute to completion regardless of the amount time consumed
by the actions in the plan. This approach is often undesirable
as it leads to missed opportunities and slack time in the plan
when actions complete quickly (Bresina et al. 2002). For
example, assume that a Mars rover has to move from point
ato point b and use either a slow, high resolution camera or
a fast, low resolution camera to take an image of a rock at
point b. Given that travel time is uncertain, a conservative
planner may recognize that in the worst case there will not
be enough time to use the high resolution camera, and thus
choose to always use the low resolution camera. This plan is
robust, but when the rover travels quickly the opportunity of
getting a high resolution image is not realized and the rover
may undesirably be left idle for some period of time. My re-
search focuses on finding ways to create robust plans where
suboptimal actions are taken when time dictates, but optimal
actions are executed when time allows.

*Supported by NASA Harriett G. Jenkins Pre-Doctoral Fellow-
ship Program.
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Problem Specification

I am considering a class of problems with solutions that
combine temporal uncertainty, optimality, and robustness,
each of which is difficult to deal with individually and more
so in combination. In this class of problems, action dura-
tions cannot be specified exactly and are represented by a
closed interval [min-d, max-d], specifying the lower and up-
per bounds for the duration. Under this model, the actual
duration required for an action is only known through ob-
servation after the action has executed. These duration in-
tervals complicate the problem because solution plans are
ranked by an objective function and the optimal solution is
only attainable when actions complete quickly. This means
that solutions found with the pessimistic assumption that all
actions require max-d will be suboptimal, but optimal solu-
tions found under the optimistic assumption that all actions
require min-d (or any value less than max-d) are not guaran-
teed to execute to completion. The best solutions for these
problems must be robust plans that are guaranteed to run to
completion regardless of the amount of time actions require
to complete. Plans that are robust in this sense are classi-
fied as safe. Considering all of these attributes, a temporally
uncertain planning problem is defined as a quadruple <D,
I, G, M>, where D is a domain description that lists the
available actions (including interval durations and temporal
constraints), | is a description of the initial state, G is a de-
scription of the goals, and M is a plan metric that represents
the objective function for ranking plans.

Temporal Contingency Planning

One way to create optimal plans that are also robust in the
face of temporal uncertainty is to build temporal contin-
gency plans (i.e., plans with contingency branches that are
taken based on the observed time at execution). At present,
I have developed two related iterative approaches for gen-
erating temporal contingency plans. They differ in that one
is a greedy algorithm and the other is a hill climbing algo-
rithm. These algorithms are implemented in the planners
PHOCUS-G (Foss & Onder 2005) and PHOCUS-HC (Foss &
Onder 2006).

Both approaches follow a Just-In-Case style algorithm
(Drummond, Bresina, & Swanson 1994) where a seed plan
is generated, the points where it is likely to fail are located,
and then contingency branches are inserted (when available)
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at those points (Fig. 2). The two algorithms differ in the
way that repairs are found when failure is possible. To gen-
erate the seed plan (line 1 in Fig. 2), temporal uncertainty is
removed from the problem. This allows generation of plans
using any planner that can handle durative actions, timed
initial literals, and optimize based on an objective function!.
Because it is assumed that the optimal plan is only attain-
able when actions complete quickly, min-d is assigned as
the duration of each action. The resulting seed plan P re-
turned by such a planner is temporally deterministic. My
algorithm factors temporal uncertainty back in by convert-
ing P to a directed, edge-weighted graph called a distance
graph DG, thus expressing P as a simple temporal network
(STN) (Dechter, Meiri, & Pearl 1991). Figure 1 (b) shows
a distance graph for a plan from a simplified rover domain.
This conversion is described in detail in earlier work (Foss
& Onder 2005).

Since DG contains all temporal constraints given in the
domain, it can be used to determine when P becomes unsafe
(line 11) (Dechter, Meiri, & Pearl 1991). In the loop that
contains line 11, the plan is analyzed one step at a time to
find the latest action i which makes the rest of the plan un-
safe. If an action is found to be safe in line 11, the domain
and the corresponding distance graph are updated to provide
topmost flexibility to the earlier actions (lines 12,13), assum-
ing the action requires its maximum duration. Otherwise,
modifications are made so that i minimally uses the dura-
tion that causes the plan to fail and a new plan meeting the
new constraints is sought for in one of the REPAIR-PLAN-*
algorithms.

Figure 1 (c) shows how the distance graph in (b) has
changed after several actions have been analyzed. First,
it was found that the transmt _data action could exe-
cute to completion if it required its maximum duration of
10 time units. The distance graph was then updated to
constrain transmt _data to always take 10 time units by
changing the weight of the arc from end: transmit ~ _data to
start:transnt _data to-10. Next, it was found that even
with the updated transmit _data constraint, high res pic
could execute safely with any duration in its interval. The
figure shows that this action was also then constrained to
require its maximum duration. However, when the drive
action was analyzed, it was found that the shortest path from
start:drive  to end:drive had a weight of 50 (this path
is bolded in the figure). This indicates that high _res pic
and/or transmt _data may not have enough time to com-
plete if drive executes for longer than 50 time units. At this
point, a repair function must be called.

To apply the greedy approach, REPAIR-PLAN-G is called
(Fig. 3). In this version, the initial conditions of the world
are changed to represent the state of the world after all ac-
tions up to and including i are executed, assuming that i re-
quires the amount of time that would cause failure in the

ICurrently LPG-td(Gerevini et al. 2004) is being used for this
step because it handles durational actions and timed initial literals
(used for specifying deadlines), creates parallel plans, and consid-
ers the objective function at planning time. It has also performed
well in the International Planning Competition.
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Figure 1: (a) A seed plan for a problem from the rover do-
main. Note that the times given by the seed plan assume
actions require their minimum durations. (b) The distance
graph for the seed plan in (a), incorporating temporal uncer-
tainty. For clarity, only the most important edges are shown.
(c) The updated version of the distance graph in (b) after the
transmit_data, high_res_pic, and drive actions have been an-
alyzed. The bold arcs show the shortest path from start:drive
to end:drive. (d) The temporal contingency plan generated
by both the greedy and hill-climbing approaches.

original plan. Then, an attempt is made to generate a new
plan which could be added as a temporal contingency branch
on the original plan. If no such plan is found, this algorithm
returns null and thus finds no solution. When applying the
greedy approach, the seed plan is optimal in respect to the
objective function. This optimal plan is never abandoned
and it is augmented with branches that are each optimal,
given the constraints used when generating them.

For the hill-climbing approach, REPAIR-PLAN-HC is
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called (Fig. 4). Instead of modifying initial conditions, in
this case the domain is modified so that i minimally requires
the amount of time that would cause failure in the original
plan. Then, an entire new plan is generated. If the new plan
shares a head with the current plan, a contingency plan is
formed. Otherwise, the new plan is returned and replaces the
seed plan. As with the greedy approach, the initial seed plan
is optimal with respect to the object function. However, the
hill-climbing approach will abandon and replace the original
seed plan either if no branches can be added to the seed plan
to make it safe, or if a new seed plan has higher utility than
the plan created by adding a branch to the old seed plan. In
this way, the safest branch of the plan is optimized.

Both the greedy and hill-climbing versions of the algo-
rithm benefit from the fact that they allow parallelism. This
is especially important when deadlines are taken into con-
sideration. Each approach has individual advantages, also.
Intuitively, the greedy approach is faster when contingency
branches can be added to repair the optimal plan. There
are two related factors that contribute to this. First, the
domain is modified so that the head of the plan will not
be regenerated, restricting the search space. Second, be-
cause a contingency branch is shorter than a full plan, it is
faster to generate it than to regenerate the entire plan as is
done in the hill-climbing algorithm. However, the greedy
approach fails to find any solution when no contingency
branches can be added to the optimal plan. Since the hill-
climbing approach always regenerates the whole plan, it
is able to escape local minima/maxima. Also, the greedy
algorithm may start with an optimal plan that is unlikely
to be executed and augment this plan with very undesir-
able branches that are likely to be executed. In this sit-
uation the hill-climbing algorithm would abandon the op-
timal plan and find a sub-optimal, but likely to succeed
plan that would have higher utility than the branches in
the greedy algorithm’s plan. Each algorithm has been in-
dependently implemented and tested (Foss & Onder 2005;
2006) and more experiments are planned to verify that these
intuitive conclusions hold.

Related Wor k

The main framework of this algorithm is very close to Just-
In-Case (JIC) scheduling (Drummond, Bresina, & Swanson
1994). The JIC scheduler analyzes a seed schedule, finds
possible failure points, and inserts contingency branches so
that valuable equipment time is not lost when an experiment
fails. My work extends this framework to multiple planner
goals, parallel plans, and nontemporal metrics, but does not
currently consider probability of failure.

Several planners dealing with problems similar to those I
am working with have been developed recently. Tempastic
(Younes & Simmons 2004) is a planner that models con-
tinuous time, probabilistic effects, probabilistic exogenous
events and both achievement and maintenance goals. It uses
a generate-test-debug algorithm that generates an initial pol-
icy and fixes the policy after analyzing the failure paths. In
producing a better plan, the objective is to decrease the prob-
ability of failure. Nontemporal resources are not modeled.
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PHoOcus-* (D, I, G, M)

1: Py «+ GENERATE-SEED-PLAN (D, I, G, M)
2: Peurrent — Po
3: loop do

: DG < CONSTRUCT-DISTANCE-GRAPH(Pgyrrent,D,l)
if SAFE-PLAN (Pcyrrent, DG, D, |, G, M) return Peyrrent
Prext < MAKE-PLAN-SAFE (Peyrrent, DG, D, I, G, M)
if Phext is null return failure
Peurrent < Prext

MAKE-PLAN-SAFE (Plan P, DistanceGraph DG, D, I, G, M)

9: fori=downtolinP
10:  maxAllowedDuration «+— SHORTEST-PATH-DISTANCE(S;, §,

PN S

DG)
11: if maxAllowedDuration > max-d of i
12: DG, D « DG, D updated to constrain i to always require
max-d of i
13: DG, D « DG, D updated to constrain i to always start at
latest possible time that allows max-d of i
14: ese
15: return REPAIR-PLAN-*(i,Plan P, D, |, G, M)

Figure 2: The shared PHOCUS-* algorithms.

REPAIR-PLAN-G (i, Plan P, D, I, G, M)

newMinDuration < maxAllowedDuration + 1

Imod < | modified to represent the world after all steps up to i
have completed and i has consumed newMinDuration

3: Phew < generate plan with D, ljy0q,G,M

4: if Phew is not null

5:  return a contingency plan created out of P and Phey

6

7

e

. else
return null

Figure 3: The REPAIR-PLAN-G algorithm. A greedy algo-
rithm for finding temporal contingency branches.

Mausam and Weld (2005) describe a planner that can han-
dle actions that are concurrent, durative and probabilistic.
They use novel heuristics with sampled realtime dynamic
programming in this framework to generate policies that
are highly optimal. The quality metric includes makespan
but nontemporal resources are not modeled in the planning
problem. Prottle (Little, Aberdeen, & Thiebaux 2005) is a
planner that allows concurrent actions that have probabilis-
tic effects and probabilistic effect times. Prottle uses effec-
tive planning graph based heuristics to search a probabilistic
AND/OR graph consisting of advancement and placement
nodes. Prottle’s plan metric includes probability of failure
but not makespan or metric resources. Schaffer, Bradley and
Chien (2005) developed a probabilistic approach for reason-
ing about uncertainty in continuous activity duration and re-
source usage. Their approach does not include contingency
planning. They have shown robustness improvements over
traditional non-probabilistic methods.

Future Work

Temporal contingency planning improves on conservative
planning techniques by including the most conservative plan
as the least desirable contingency branch, executed only
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REPAIR-PLAN-HC (i, Plan P, D, |, G, M)

1: newMinDuration «— maxAllowedDuration + 1

2: Dmod < D modified so that action i requires newMinDuration
3: Phew < generate plan with Dyyog, |, G,M

4: if P and Phgy have the same steps through step i

5:  return a contingency plan created out of P and Phey
6: else

7 return Phay

Figure 4: The REPAIR-PLAN-HC algorithm. A hill-climbing
algorithm for finding temporal contingency branches.

when more desirable options may cause failure. The tech-
niques currently implemented begin with an optimistic as-
sumption that actions complete quickly and assume a uni-
form distribution over the uncertain duration interval. As I
continue to work on these iterative approaches, I plan to con-
sider what happens when the distribution is not uniform. The
most likely case is that action durations will have a Gaus-
sian distribution where most of the probability mass lies in
the center of the interval. Considering this, it does not make
sense to start with the assumption that each action requires
only its minimum duration because that will result in a plan
that is unlikely to execute to completion. Instead, it will be
better to start with a value from the duration that is likely to
occur, based on the given distribution. In this situation, op-
portunity branches can be added for when actions complete
faster than expected, and contingency branches can be added
for when actions run long. This may be a good anytime ap-
proach to be applied when there is a limited amount of time
available for planning. In this circumstance it is important
to spend the time available for planning to generate branches
that will improve the plan in a significant way. By incorpo-
rating non-uniform distributions, I will be able to better de-
termine when to stop branching because the expected utility
gained is too small.

In addition to the rover domain, I have been working with
problems from a travel domain and an evacuation domain.
In the travel domain, the goal is to travel from home to some
destination within a given time constraint. There are several
different ways to reach the destination, but some modes of
transportation are more expensive and the objective function
in this domain is to minimize the amount of money spent.
The challenge is that more expensive options, such as tak-
ing a taxi, are faster than less expensive options, like taking
a bus. Optimally, the bus would be taken, but if this ac-
tion comes after a flight that is running late, there may only
be enough time to take the taxi. In the evacuation domain,
the goal is to evacuate as many people as possible within
a given period of time. This is further complicated by the
fact that there are intermediate deadlines for rescuing differ-
ent groups of people. As such, it is easy to create problems
where it is not possible to evacuate all people, resulting in
over-subscribed goals (Smith 2004).

Over-subscription is also an issue in the rover domain and
most real world problems. I would like to develop tech-
niques that directly address this issue. One approach is to
simply achieve more goals when actions complete quickly
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and only the highest priority goals, otherwise. Another pos-
sibility is that entirely disjoint sets of goals may be attained
on different branches of the plan.

Finally, I would like to investigate MDP approaches to
solving planning problems with temporal uncertainty. Un-
like the iterative planning approaches, MDPs do not natu-
rally allow parallel actions. Even so, MDPs can be useful in
this context because they naturally deal with uncertainty and
take cost and rewards into account. One challenge in using
MDPs to solve these type of problems is how to represent
states when time is a factor. A naive approach is to include
time in the state and thus have one state for each possible
time increment. However, this would very quickly cause a
blow-up in the size of the state space. It is likely that many
states in this naive approach would be identical, only differ-
ing in time stamp. I plan to investigate ways to group states
by time to reduce the number of states without sacrificing
quality in the solution policy.
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Introduction

Nowadays, many robotic applications need autonomous
decision-making capabilities. Among them, some make in-
tensive use of planning. Yet, planning is an activity whose
algorithmic complexity is often incompatible with the reac-
tivity requirement of an exploration rover or a space probe.

In past years, some planners have proven their ability to
handle complex situations required by autonomous systems.
Some of these systems (e.g. RAXPS [Jonsson et al. 2000],
CASPER [Chien et al. 2005]) have been deployed.

The IxTeT planner1 [Ghallab & Laruelle 1994] was de-
veloped to handle such robotic planning problems. It was
extended to handle complex resources [Laborie & Ghal-
lab 1995], continuous domains and constraints between
both atemporal and temporal variables [Trinquart & Ghal-
lab 2001]. Further work [Lemai 2004] added a temporal
executive to IxTeT.

Reasoning about time is necessary to address these plan-
ning problems. The planner must be able to take into ac-
count strict deadlines, temporal windows for some tasks,
durative actions, and durative goals. The STN? [Dechter,
Meiri, & Pearl 1991] formalism is often used in temporal
planning because the requests on these networks are solved
very efficiently by polynomial algorithms. Nowadays, an
extension to uncertain constraints has been studied and a
polynomial algorithm [Morris, Muscettola, & Vidal 2001]
has been proposed.

Actual robotic space exploration missions are very ex-
pensive, with a high requirement for quality scientific re-
turns. During the MER mission, the use of MapGen has
allowed a 25% increase of such returns [Rajan 2004]. In a
fully autonomous planner, optimization can be made in two
ways: finding directly one good plan or searching through
the whole search space several plans to find the optimal one.
Due to limited computational capacity, the second approach
is often unreasonable. So we have to modify the planner to
search for high quality solutions.

New issues were raised while experimenting with IxTeT

*Part of this work has been funded by a grant from the ESF
(European Social Fund)

'IXTeT is a system used for chronicle recognition, planning and
temporal execution.

2STN: Simple Temporal Network
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new executive. Some are related to temporal uncertainty,
thus we decided to experiment another time framework.
Some are related to efficiency, thus we decided to make a
different heuristic to solve this issue. We use a robot simu-
lator to make intensive tests of the proposed solutions. Dur-
ing the tests, it becames apparent that existing plan repair
capabilities in IxTeT were in some cases unacceptably in-
efficient. In this paper, we describe a preliminary solution
and some commented results. Future works will extend this
work to try to make the plan repair mechanism complete and
efficient.

Planning

IxTeT [Ghallab & Laruelle 1994] is a temporal constraint-
based causal link planner using partially instantiated actions.
Its planning algorithm is adapted from SNLP [McAllester &
Rosenblitt 1991]. A time reified logic describes the evo-
lution of state variables across the whole plan. IxTeT uses
CSP techniques? to maintain the consistency of the plan con-
straints. In particular, the planner uses a Simple Temporal
Network [Dechter, Meiri, & Pearl 1991] to represent the
temporal constraint.

Definition 1 A temporal assertion on a state variable v is
either an event or a persistence condition on v.

Definition 2 A plan P(S,®,G,CA, F,T) is described by
the state variables contained in S. ® is a chronicle describ-
ing all the temporal assertions of the plan. F' is the set of
defaults in the plan. CA C ® contains temporal assertions
on variables of S describing the predicted evolution of con-
tingent attributes. The goals are in G C O, they are persis-
tence conditions on state variables of S. T is the set of tasks
in the plan.

The planner begins with a plan describing the initial situ-
ation, the initial goals and the known predicted evolutions
of contingent attributes such as visibility windows. The
search is performed until the plan contains no default. These
defaults are temporal assertions unexplained in the current
plan*, conflicts between two temporal assertions or possible
resource conflicts. At each search step, a default is chosen

3Constraint Satisfaction Problem [Mackworth 1977] (CSP)

*A temporal assertion is not explained by a plan if it is not an
initial condition or if no causal link establishes the assertion.
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according to a given heuristic. One of the resolvants of this
default is then chosen and applied. The planner only needs
to backtrack on resolvant choices and not on default choices
to be complete.

IxTeT uses a least commitment heuristic to evaluate a cost
for each resolvant of each default. Then, a notation Opp(p)
is computed for each one (see Lemai thesis [Lemai 2004] for
more details). The basic idea is to minimize the size of the
search space and to ease the choice between the resolvants
of one default.

In order to make plans with a shorter makespan, we de-
sign a new heuristic. We have implemented it by modifying
two costs of the old heuristic. The first considers one sin-
gle ordering resolvant. The new cost depends on the earlier
date of one of the first timepoint instead of the commitment
of the resolvant. The second cost evaluates one causal link.
Instead of using the maximum duration for computing the
commitment, we now use the minimum duration. The idea
is that the planner will make shorter links and thus makes
shorter plans. This heuristic is called makespan minimizing
heuristic.

Underlying CSPs

IxTeT uses classical CSPs algorithms for managing con-
straints on atemporal variables. It uses an STN for managing
all the temporal constraints, and a general arc-consistency
filtering algorithm for managing symbolic and numeric con-
straints.

In some cases, we want to link the effects of a task to
its duration. For example, you need a mixed constraint be-
tween temporal and atemporal variables if a navigation du-
ration depends on the navigation length and speed of the
robot. IxTeT features a mechanism to propagate these con-
straints [Trinquart & Ghallab 2001].

On the STN, IxTeT always needs the minimal graph to be
computed. If the network is not always propagated, the com-
plexity of a request is not constant (i.e. O(n)). IxTeT makes
a number of requests that is much higher than constraint up-
dates [Vidal 1995]. It uses a path consistency algorithm like
PC-2. An incremental version (only for constraint addition)
is used during planning with a complexity of O(n?). For a
constraint relaxation, the complete one is used in O(n?).

During execution, we will update the plan for example
at each start or end of task. The CSP framework allows
us to do this. A special care is taken to always keep the
STN complete and minimal during execution. In fact the re-
source conflict detection, the plan repair mechanism and the
propagation of mixed constraints need a complete graph. So
the executive does not use a local temporal propagation like
the one in [Muscettola, Morris, & Tsamardinos 1998]. The
atemporal CSP is only kept arc-consistent for computational
reason and because the system can repair or replan.

Simple Temporal Network with Uncertainties

Definition 3 An STNU [Vidal & Fargier 1999] © =
(V. D, Cep, Cerg) with V the set of variables, D the set of
domains. All constraints are in the form b < v; — v; < ub.
The set C.yp, is all the controllable constraints equivalent to
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STN constraints. Ceyq is a set of contingent constraints. The
duration of these constraints can only be observed.

The introduction of a new type of constraint changes the
consistency notion inherited from the STN. Three main lev-
els of controllability have been defined [Vidal & Fargier
1999]. In IxTeT, we use the dynamic controllability. An
STNU is dynamically controllable if the execution controller
must take decisions knowing only the past observations
and timepoint instantiations. The 3DC+ algorithm [Mor-
ris, Muscettola, & Vidal 2001] is known to establish it in
polynomial time. The result is similar to STN’s result (i.e.
the minimal network). It introduces a new ternary constraint
type called “wait" necessary to safely execute the STNU.

We have made two little improvements to this algorithm.
The first is that the STNU in IxTeT are dynamic ones (i.e.
constraints and variables are added during planning). Before
any constraint addition, we remove all existing “waits”. The
second one replaces the complete algorithm used to keep the
STNU minimal during 3DC+ loop by the same incremental
one used on STN.

Execution

IxTeT’s executive runs a classical execution cycle corre-
sponding to a “sense/plan/act”" scheme. The executive be-
gins with an initial plan produced by the planner.

All executable timepoints® are started as soon as possible
except the end of actions labelled as “late preemptible" or
“not preemptible".

The executive receives task reports, new goals or resource
capacity changes. It has to check the validity of the task re-
ports considering the current plan. If the report is not nomi-
nal, the system integrates the report, thus partially invalidate
the current plan and triggers a plan repair if possible. All
causal links possibly in conflict with new inserted tasks are
removed during the relaxation. The execution can continue
interleaved with the plan repair. If the failed plan does not
anymore support the running tasks, all tasks are interrupted
and a complete replanning is made. The new goals and re-
source capacity changes are integrated in the same manner.

Simulation and Results

IxTeT runs on the robot Dala and on a simulator of this
robot. The simulator allows us to perform accurate tests of
the different IxTeT strategies presented in the paper. The en-
vironment and the initial conditions can be exactly the same
between runs.

We illustrate our contributions with an exploration rover
like mission. The robot must acquire scientific data from
several places. During its mission, it must communicates
with an orbiter during visibility windows.

IxTeT now features two different planning heuristics and
two different time management systems. This defines four
IxTeT instantiations and we compare their performances us-
ing the simulator and the robot.

SIxTeT currently executes only a subset of the plan’s time-
points: start and end of actions, goal and contingent timepoints.
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During some missions with an STN, the system has a bad
comportment. Due to multiple faillures, the system repaired
many times the plan. The makespan was the maximum al-
lowed duration for the mission. In that case, the system must
cancel unachievable goals according to their priority. The
system does not make that but due to STN propagations de-
cided to keep a low priority goal instead of cancelling it.
This is due to uncertain durations of tasks that have been
squeezed.

The execution of the tasks to satisfy the low priority goal
makes impossible to satisfy other goals with higher priority.
The system makes exactly the worst case. Thanks to STNU,
it may be impossible because uncertain durations are never
reduced, thus it keeps enough time to execute the remaining
tasks in the plan.

Using an STN and the makespan minimizing heuristic can
produce up to 30% shorter plan. With an STNU, the value is
approximatively 15%. During execution of the mission and
depending on the world, the mission duration can increase
by 15% removing the advantage of the new heuristic.

Results show that the combination of an STN and the
makespan minimizing heuristic makes plans very unstable
and breakable most of the times and sometimes make a very
good and shorter execution. In general, the correct execution
of the mission highly depends on the uncertainties. The new
heuristic gives good results for the initial plan with STN or
STNU, but if some plan repairs are made during execution
the quality decreases significantly. The STNU produces sta-
ble and robust plans. Thanks to this, the whole mission is
executed in a more reliable way.

Improve the Plan Repair Mechanism

We identify a drawback of the current plan repair process
during our tests. Sometimes, a repaired plan contains un-
necessary tasks leading to a suboptimal plan. For example,
during our tests, we add new “take picture" goals. The plan-
ner produces a plan resulting in navigation from an existing
waypoint to a new goal location and back from the new goal
to the old one. This may lead to a very low quality plan.
This situation arises when the planning decision taken to
satisfy a new goal make the old tasks not supported by the
plan. So new tasks are inserted to support these tasks. In
fact the set of tasks added to restore the state variable to
their values before the new goals may be unnecessary, for
example the navigation tasks. A better way is to relax the
existing tasks so that they may be adapted to the new plan.

A preliminary solution

The example is a mission with initially five “take picture"
goals and two communication goals. One “take picture" goal
is added during the first communication. The initial plan is
found in 1.7s. The simulator runs on a Pentium4 at 3GHz.
The problem comes from a limited relaxation of the plan
before the plan repair process. The plan repair solution, de-
scribed in the precedent sections of this paper, removes only
causal links. A POCL planner using partially instantiated
tasks, adds constraints on variables to make causal links
valid. If these constraints remain after the removal of the
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link, the plan repair may produce a suboptimal plan. The
solution is to remove the constraints at the same time than
the link.

We integrated the algorithms described in [Surynek &
Bartak 2004]. We adapt it to continuous domains and use
it to manage the filtering in the atemporal CSP. This permits
to remove the atemporal constraints supporting a causal link.
The current implementation does not remove temporal con-
straints because of the very small benefit. In fact, the number
of temporal constraints added during resolution of conflicts
between temporal assertions is much higher than constraints
added with causal links. The relaxation of causal links tem-
poral constraints does not significantly relax the plan, con-
trary to atemporal constraints.

Our proposition does not remove all removable causal
links anymore. The ones added with task insertions are no
more removed to keep as much as possible satisfiability de-
cisions.

The planner finds a solution containing only necessary
tasks or navigations. This solution is yet limited to sim-
ple cases where actions partial order allows the planner to
find a new solution. The duration is rather similar than for
the initial planning. From initial tests, the answer is that re-
planning may be faster to find a new plan but must interrupt
all running tasks. In our test, the rover is navigating to its
next goal and interleaving it with the plan repair resulting
in zero delay for mission execution. The replanning, will
introduce a delay before the navigation can be made. Yet a
comparison of the duration of the plans produced by repair
or replannning has not been done.

Ongoing and Future Works

The recording of constraints associated to causal links per-
mitts to remove only some constraints before a plan repair.
We will try to generalize this idea to record more explana-
tions inside the plan. In fact, we want to be able to change
task ordering when doing plan repair. By recording not only
feasibility decisions but also the satisfiability decisions, we
may be able to do that in the same way than the precedent
work.

A promising way of research is to be able to explain why
a task is in the plan and why it is in a specific time win-
dow. Using such explanation, one will be able to make local
change on a plan in order to repair or improve it.

Any of these research ways may invalidate some hypothe-
sis of the executive and may need to review all them in order
to be able to use new repair capabilities. Clearly if one want
to use plan repair, it must be globally interesting for the over-
all mission even if plan repair is longer to find a plan or if
the duration of a repaired plan is greater.

We need also to improve the propagation of temporal con-
straint removals. In fact, this is the longest operation made
during an execution cycle. The maximum duration of an ex-
ecution cycle influences the task models and the reactivity
to exogenous events. To safely execute the plan, the value
must always be greater than the real cycle duration.
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Conclusion

We have describe a temporal planner and executive whose
plan execution raises new issues. The first one is to deal
with uncontrollable durations. We use a temporal frame-
work with explicit uncertainties. The second one is the bad
quality of the plans when compared with a duration optimal
plan. We modify the search control of the planner to find
better plans by modifying the planning heuristic.

The integration of an STNU shows that it is usable on a
rover. It shows a better robustness of the mission execution.
If one goal is achievable, with 3DC+, it is executed.

A simulation architecture is used to evaluate the two so-
lutions. During the test, the heuristic has shown a good ro-
bustness. Yet, an identified drawback limits the performance
of this work. A solution using the plan repair ability is de-
scribed in the last part of the paper.

We see that ongoing work improves the plan repair mech-
anism but this work is limited to only some case and may
take more time than a complete replanning. Ongoing work
is made to evaluate the opportunity of using new relaxation
methods before a plan repair and to extend the relaxation.
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Abstract

A backdoor is a set of assignments to a problem that yield the
rest of the problem polynomially determinable. Backdoors
have been shown to have interesting relationships with prob-
lem hardness, backbones and other properties.

We show deeper insight into the relationship between back-
doors and backbones than has previously been shown. The
effect of no-good clause learning on backdoors is also dis-
cussed.

The aim of this work is to find ways to exploit backdoors to
solve problems more efficiently.

Introduction

Boolean Satisfiability (SAT) underlies the optimal STRIPS
planner, Blackbox (Kautz & Selman 1999). It gained the
first place in the ‘optimal track’ of the 2004 International
Planning Competition (Hoffmann & Edelkamp 2004). The
translation is effective because modern SAT-solvers incorpo-
rate sophisticated search features such as rapid-restarts and
clause learning; these features in combination with efficient
data-structures make SAT a high performance general prob-
lem solving framework. This work furthers previous studies
on the relationship between two structures in SAT problems,
the backbone and backdoors. The backbone of a SAT prob-
lem is the variables that are set in the same way in every
solution. A backdoor of a SAT problem, is a set of vari-
ables that lead to the rest of the problem being polynomially
determinable.

The backdoor has recently been seen as an important
structure in SAT problems (Williams, Gomes, & Selman
2003), as it can explain how a rapid restart policy can im-
prove chronological backtracking search. However, there
are many unanswered questions about backdoors.

e How are backdoors distributed across the variable space?

e How exactly are backdoors and backbones related, if at
all?

e How does the amount of symmetry in a problem relate to
backdoor distribution?

e Does no-good clause learning affect the backdoor distri-
bution of a problem?

e Are backdoor properties domain-independent, or are there
specific planning backdoors, etc.
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Figure 1: A blocksworld example to illustrate the major
points in this paper. Can be solved in two time-steps, there
are two different plans that solve the problem at this length.
Note, in the goal, it is not specified that any block is on the
table.

e Can backdoor variables be predicted with enough accu-
racy to directly solve problems with them?

The following example will be used throughout the paper
as illustration of the concepts discussed. It is intentionally
trivial, so that ideas can be clarified; but its structure is not
so trivial that it isn’t representative of harder problems. Fig-
ure 1 is a blocksworld planning problem. The goal is to
reach a state where A is on B. This can be achieved in two
ways: the first being ‘put B on the table and then put A on
B’, the second being ‘put B on C and then put A on B’.

Blackbox encodes STRIPS planning problems by first
representing the problem as a plan-graph. The graph is then
translated to a SAT instance where each variable represents
either a fact (at some layer), a possible actions (including no-
ops). The clauses represent the preconditions, effects, and
mutexes between both facts and actions (Kautz, McAllester,
& Selman 1996). The example SAT instance is the transla-
tion of the plan-graph at the first satisfiable layer.

Motivation

The aim of any academic study into the structure of prob-
lems should be to better understand that problem, and to
develop novel problem solving techniques that exploit this
new understanding. If backdoors can be characterised effec-
tively, then it should be possible to search over small “can-
didate backdoors” at a much lower cost than searching the
entire set of variables.

The challenges involved in this are manifold. A good pre-
diction of the size of backdoor is required. Searching for an
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unreasonably small backdoor would never find one, whilst
searching for a backdoor much larger than the smallest ones
would lead to redundant search. If we are to identify those
variables in a problem that are most likely to be backdoor
variables, then we need to have a good characterisation of
how a backdoor is structurally composed. It is this charac-
terisation that is detailed in this paper, along with some in-
teresting effects that clause learning can have on backdoors.
In previous research on backdoors, the backbone and back-
door sets been shown to be typically disjoint. For example,
(Kilby et al. 2005) shows an empirical distinction between
the two structures. In this work, we show analytically that
there is a certain part of the backdoor that necessarily is not
part of the backbone and that even if all of the backbone
variables were set correctly, that would not be enough infor-
mation to solve the problem (unless all variables are in the
backbone).

SAT and Backdoors

In this work, we are concerned with the problem of Boolean
Satisfiability. Boolean Satisfiability (SAT herein) is a spe-
cial case of CSP. SAT restricts the domains of every vari-
able to two values, true and false. It also restricts the con-
straints to a set of clauses. A clause is a disjunction of lit-
erals. The variables correspond to logical variables, and the
clauses disjunctions of logical literals, rather than writing
x; = true and z; = false, we will use the shorthand x;
and —z; instead. We will also occasionally refer to z; and
—z; as being in positive and negative phase respectively.

A sub-solver is an algorithm that solves a tractable sub-
problem of the general problem class. Paraphrasing Garey
and Johnson (Garey & Johnson 1979), a subproblem of a
general problem is obtained whenever we place additional
restrictions on the allowed instances of that problem class.
A sub-solver is an algorithm that determines only problem
instances of a given subproblem.

The backdoor structure is reliant on the definition of a
sub-solver, A, that has the following properties (given as
input a CSP, C):

Trichotomy A either rejects the input C, or “determines”
C correctly.

Efficiency A runs in polynomial time.

Trivial Solvability A can determine if C is trivially true
(has no constraints) or trivially false (has a contradictory
constraint).

Self-Reducibility If A determines C, then for any variable
x, and value v, then A determines Clv/x]. (Williams,
Gomes, & Selman 2003)

The informal definition of a backdoor is those variables
which lead to a solution in polynomial time, when assigned
correctly, or prove no solution exists for unsatisfiable prob-
lems. A weak backdoor can determine if a problem is sat-
isfiable. That is, a set of variables wBD, for which there
is at least one assignment such that A returns a satifying
assignment. A strong backdoor can determine both satisfi-
ability and unsatisfiability. For an unsatisfiable instance, a
strong backdoor is defined as a set of variables, such that
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each assignment to those variables leads to A determining
the instance unsatisfiable.

The definition of a backdoor requires a polynomial-time
sub-solver (A in the definition). In this work, the sub-solver
is assumed to be unit-propagation, and the CSP is always a
SAT instance. Even when restricted to SAT, the sub-solver
need not be unit propagation, it could be an algorithm that
solves only 2SAT problems, or an algorithm that solves only
horn-SAT problems, for example. The work will be as gen-
eral as possible, as the concepts discussed (backdoors, back-
bones, no-good learning) are ubiquitous in CSP, planning,
scheduling, and all search problems that can be modelled
using constraints. Whenever I refer to backdoors from here,
I refer to minimal backdoors as these are more interesting to
study (The entire set of variables is trivially a non-minimal
backdoor but it isn’t a very interesting one, for example.)

Distribution of Backdoors

If we can find all of the minimal backdoors in a problem,
we can easily calculate the total number of backdoors in the
problem. As this is computationally prohibitive, we can use
a sampling method to find representatives from the global set
of minimal backdoors. The algorithm we use to find these is
as follows:

ALGORITHM: MINIMAL BACKDOORS

1. s <- number of variables

2. while (!cutoff_limit) {

3 BD <- pick random variables (size s)
4 backtrack over BD, 1f backdoor then{
5. minBD <- MinimiseBackdoor (BD)

6 s’ <—= |minBD|

7 if (s’ < s)

8 s <- s’

9 BDlist <- BDlist U {minBD}

The algorithm seeds the size of the backdoor to be the size
of the instance. Then, while a cutoff limit is not reached,
new backdoor candidates are selected. The algorithm back-
tracks over the variables in the candidate, if a solution is
found (or unsatisfiability proven), we minimise the back-
door.

Minimisation is achieved by simply removing each vari-
able, in order, and testing if the remaining structure is a
backdoor. If it is, then the variable is not part of the min-
imal backdoor, and is discarded. If not, then the variable
is reintroduced into the candidate. This is similar to the
MINWEAKBACKDOOR algorithm in (Kilby er al. 2005).
The difference being, that algorithm used literals and not
variables as the constituents of the backdoor. This means
that different instantiation of the variables in their backdoors
could give a smaller weak backdoor. It also means that the
(Kilby et al. 2005) procedure cannot detect (or minimise)
strong backdoors. It would however have better runtime per-
formance than MINIMAL BACKDOORS.
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| Problem || #Backdoors | Variables | Median BD Size | Backbone Size | Median BB Overlap |
qz1-07 8 343 55 189 0
qe2-07 1 343 5 169 0
qg7-09 13 729 2 505 0
bw-medium 30 116 2 97 1
bw-large.a 31 459 3 459 3
bw-huge 38 459 3 459 3
flat30-5 9771 90 5 0 0
flat75-5 141 225 12 0 0

Table 1: Table of statistics for the studied instances.

The studied instances are 3 quasi-group completion problems, 3

blocksworld problems, and 2 graph colouring problems, each from the satlib benchmark suite. The results show the num-
ber of minimal backdoors found in 10 minutes using the above algorithm.

Let us consider the blocksworld instance. Using unit
propagation as the subsolver, there are two minimal back-
doors. These relate to the actions (stack B C) and (move-
to-table B) (both at timepoint 1). This is because, in two
steps, the goal can be achieved by either putting B on the
table or on block C first, then stacking A on B. Once we
have decided which option to take, the mutex between the
two actions causes propagation to imply the other one false.
Everything else then propagates from this decision.

The Backbone and Backdoors

The backbone of a SAT instance is the set of variables that
are implied by the model. More intuitively, it is the set of
variables that take the same assignments in every solution.
There are two variables in the SAT encoding of our example
that are not in the backbone. These variables correspond to
the actions (stack B C) and (move-to-table B). These have
already been identified as the backdoor variables, no back-
bone variables are backdoor variables in this instance.

It has been previously observed that backdoor variables
are not often backbone variables (Kilby er al. 2005). There
is occasionally an intersection between the two structures,
but it appears accidental. So a better question is: what is
the reason that backbones and backdoors appear to be (typi-
cally) disjoint? Let us start by making some observations.

If all of the backbone variables are set correctly, could
this be a backdoor? No. The backbone variables are those
whose assignments are implied by the problem. Thus, if set-
ting the backdoor correctly implied another variable/value
assignment, this other variable must be in the backbone also.
Once we have this piece of information, we can see that par-
tial/ full assignments to backbone variables only have the
capacity to imply other backbone variables. Since a back-
door implies every variable’s value for a given solution, the
backbone variables cannot be a backdoor.

As variables are assigned in search, the sub-spaces that we
move into have monotonically growing backbones. Indeed,
when the problem is solved using assignment and propaga-
tion, all of the variables are trivially in the ’backbone’ (as
in the final state all variables are set). Since we have shown
backbone variables can only imply themselves, it is true that
in any sub-space of the search tree, an algorithm would not
want to make the choice of next variable one which is in the
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augmented backbone, as this can’t imply any variables other
than those in the augmented backbone.

Identifying Unique Solutions

When all variables are in the augmented backbone, then
there is a single solution (in that sub-space). This doesn’t
mean that search is necessarily complete: some problems
with single solutions can be hard to solve. But it does mean
the problem is simplified to a state where it might be possi-
ble to solve the problem using propagation, because there is
now a single solution in the sub-space.

Therefore, we have a necessary, but not sufficient, prop-
erty of any backdoor — assignment of part of the backdoor
must identify a unique solution. The next enquiry naturally
concerns the question: how is the remainder of the back-
door composed? In this situation, several variables have
been assigned such that, in the current sub-space, there is
a unique solution to the studied instance (but the problem
is not solved). However, there is not enough information
in the current clauses to cause propagation of the remaining
variables. One reason this can happen is that there are cyclic
relationships in the clauses. Once a unique solution is found,
if there remain cycles in the constraint graph, it may be nec-
essary to ‘cut’ them in order to finish solving the problem.
This is equivalent to finding the cycle cutset (Dechter 2003)
of the remaining problem after a unique solution has been
identified.

Another conjecture could be posited: if we had enough in-
ferred knowledge of the problem at hand, then no backdoors
would contain any backbone variables. This claim may seem
unlikely, but some preliminary work has been carried out to
suggest that it may not be. The conjecture centres around
inferred knowledge. What exactly has to be inferred from
the problem to reduce the size of backdoors? A “perfect” set
of clauses can be imagined. With these clauses, any partial
assignment that is made would lead to the entire augmented
backbone being propagated. This would mean that the prob-
lem would have a unit clause for each variable in the back-
bone. If we actually had the “perfect” set of clauses, we
could make any assignment in full confidence that the as-
signment led to a solution. Clearly we could never find such
a model in reasonable time. But there are ways of bringing
our model closer to this “perfect” model during search. We
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can infer extra knowledge of a SAT instance using conflict-
clause learning.

Clause Learning and Backdoors

Many SAT solvers make use of conflict clause learning.
What happens to the backdoors in a problem as new clauses
are learnt? It appears that as we learn new information, the
size of a typical backdoor to a problem reduces. To illustrate
how this happens, consider the following tiny SAT instance:

(IV2)ANAV-2V-3)A(-1V2V3)A(-1V2V-3)

In this example 2 is the only backbone member (—2 im-
plies 1 which in turn implies 3 A =3, a contradiction, hence
2 is true in all solutions). There are two minimal backdoors
to the instance, (1) and (2, 3) (this is because 3 alone cannot
cause any propagation).

The effect of choosing —2 as the first decision, causes the
contradiction on variable 3. Using FirstUIP conflict analy-
sis, the generated conflict clause would be simply the unit-
clause (2). With this clause in place, one of the previ-
ous minimal backdoors is now non-minimal. The backdoor
(2,3) need not have 2 in it, as this is already implied by the
conflict clause. Clause learning has reduced the size of the
largest minimal backdoor and removed the backdoor values
from it.

This one example only shows that clause learning can be
used to reduce the size of backdoors.

Results and Discussion

The results in Table 1 were found by running MINIMAL
BACKDOORS on each problem instance for 10 minutes.
There are three classes of problems studied. The first are
quasigroup completion problems. These are partially com-
plete latin squares with additional constraints. These are
useful in experimental design, for example scheduling a
drugs trial. The second class of problem is the blocksworld
planning problem. The third class of problem are graph
colouring instances. The problems are benchmarks picked
from the satlib web resource (Hoos & Sttzle 2000).

It is interesting to note the fact that the planning instances
have very large backbones. This is because of the the fact
that at the first satisfiable plan graph layer, the number of
valid solutions to these blocksworld problems is extremely
limited. The median backdoor sizes for every instance stud-
ied is tiny in proportion to the total number of variables in
the respective problems. This is what was expected, and
further indication that direct exploitation of backdoors is a
promising research avenue.

Conclusions and Future Work

Backdoors and backbones are related structures, even
though they do not often contain the same variables as each
other. A backdoor causes the backbone to “grow” so that it
covers all of the variables. The rest of the backdoor is com-
posed of assignments that “fill-in” the missing information
that renders the problem easily soluble. It also appears that
clause learning can reduce the size of backdoors. Immediate
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future work includes rigourous empirical analysis of the re-
lationship between backdoors and backbones; and between
backdoors and clause learning.

Algorithms that predict which variables are backbone
variables (Dubois & Dequen 2001) have been used previ-
ously to guide DPLL based search. If the algorithm they use
can successfully predict backbone variables, then these vari-
ables are unlikely to be backdoor variables. Once the likely
backdoor variables are found, then candidate backdoor sets
can be generated from these, and tested using backtracking.

In DPLL based search, certain types of learnt clause are
not useful. The decision variables are never used to generate
conflict clauses as the same assignments will never again be
visited in chronological search. However, this changes with
restarts occurring, and will be just as important with search
using backdoors. Which type of clause learning will be most
useful in the development of a solver that exploits backdoors
directly isn’t clear, and is worthy of further work.

The final goal of this work is to create a SAT Solver that
uses analysis of the structure of problems to find backdoors
efficiently, so that problems can be solved faster and and
problems that are currently out of reach of current solvers
can be solved.
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Abstract

In order for autonomous artificial decision-makers to
solve realistic tasks, they need to deal with searching
through large state and action spaces under time pres-
sure. We study the problem of planning in such do-
mains. We show how structured representations of ac-
tion effects can help us partition the action space in to
a smaller set of approximate equivalence classes at run
time. The pared-down action space can be used to iden-
tify a useful subset of the state space in which to search
for a solution. This analysis allows us to collapse the ac-
tion space and yields large gains in planning efficiency.

Introduction

In many logical planning domains, the crux of finding a solu-
tion often lies in overcoming an overwhelmingly large action
space. In the blocks world domain, for example: the number
of ways to make a stack of a certain height grows exponen-
tially with the number of blocks on the table, so this appar-
ently simple task becomes daunting very quickly. We want
planning techniques that can deal with large state spaces and
large, stochastic action sets, since most compelling, realistic
domains have these characteristics.

One way to describe large stochastic domains compactly
is to use relational representations. Such a representation al-
lows dynamics of the domain to be expressed in terms of ob-
ject properties rather than object identities, and, thus, yields
a much more compact representation of a domain than the
equivalent propositional version can.

Even planning techniques that use relational representa-
tions, however often end up operating in a fully-ground state
and action space when it comes time to find a solution, since
such spaces are conceptually much simpler to handle. In this
case, a key insight gives us leverage: often, several action
instances produce similar effects. For example, in a blocks
world it often does not matter which block is picked up first
as long as a stack of blocks is produced in the end. If it were
possible to identify under what conditions actions produce
equivalent kinds of effects, the planning problem could be
simplified by considering a representative action (from each
equivalence class) rather than the whole action space.

This work is about taking advantage of structured, rela-
tional action representations. We want to identify logically
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similar effects in order to reduce the effective size of the ac-
tion space.

Related Work

The idea of exploiting symmetries in a planning prob-
lem in order to reduce the search space has a rich his-
tory. Fox and Long present a notion of symmetric states
that is used to simplify planning (Fox & Long 1999; 2002;
Fox, Long, & Porteous 2005). Two objects are defined to be
equivalent if they have the same initial and final properties
and attributes. In their most recent work, object symme-
try (computed with respect to a pre-specified abstraction of
the object relationships) is used to supplement the FF algo-
rithm (Hoffmann & Nebel 2001) during search.

Guere and Alami (Guere & Alami 2001) also try to re-
strict search by analyzing domain structure. In their ap-
proach, they define the idea of the “shape” of a state. An al-
gorithm is given to try to construct all the “shapes” for a par-
ticular domain instance. To extract a plan/solution, it looks
for an action that connects a state in the starting “shape” to
a state in the goal “shape”. These shapes must be computed
oft-line for any particular domain instance.

The work of Haslum and Jonsson (Haslum & Jonsson
2000) shares a very similar goal: reduce the number of op-
erators in order to reduce the branching factor and speed up
search. They define the notion of redundant operator sets:
intuitively, an operator is redundant to an existing sequence
of operators if it does not add any new effects to the se-
quence. The set of redundant operators are computed before
starting to plan; however, this is a computation that appears
to be PSPACE-hard in general. An approximate algorithm is
also given. Planning efficiency increases when these redun-
dancies are found, but this kind of redundancy may not exist
in all domains.

Additionally, Rintanen (Rintanen 2004) has looked at
equivalence at the level of transition sequences for use in
SAT-based planners.

The approach described in this paper, however, is in-
tended to be a general method for reducing the action space
that can be applied on-the-fly in a domain-independent man-
ner. The equivalence classes of actions that are computed at
each step produce an action set that can be used by any plan-
ning algorithm. We propose one such algorithm below.
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Relational Envelope-based Planning

The Relational Envelope-based Planning algorithm (REBP)
(Gardiol & Kaelbling 2004) is well-suited to address plan-
ning problems with large underlying spaces. It proceeds
in two phases. First, given a domain theory and a prob-
lem instance, an initial plan of action is found quickly using
classical planning techniques. Classical planning produces
a focused search within high-probability sequences of ac-
tions, and yields an initial sequence called an envelope of
states (Dean et al. 1995). Second, with additional time, this
initial plan can be made more robust by considering devia-
tions from the original envelope. Conditioned on a ground
initial state, the number of states we expect to experience
on the way to the goal is relatively small; thus, the effective-
ness of REBP lies in limiting the state space in which policies
searched for to an informative, reachable subset.

A fundamental step, however, is to produce the initial en-
velope efficiently. When the action space is large, however,
this can be hard to do. In this case, a key insight gives us
leverage: different ground action instances often produce
qualitatively similar effects. For example, in a blocks world
it often does not matter which block is picked up first as
long as a stack of blocks is produced in the end. If it were
possible to identify under what conditions actions produce
equivalent kinds of effects, the planning problem could be
simplified by considering a representative action (from each
equivalence class) rather than the whole action space. The
resulting reduction in branching factor can result in huge
planning efficiency gains. Figure 1 shows an example.

Finding the initial envelope

Finding a trajectory of states with which to populate the ini-
tial envelope involves solving a planning problem from the
ground initial state to a state satisfying a logical goal condi-
tion.

We represent planning domains in a subset of the PPDDL
language.! A problem description contains the following el-
ements: P, a set of logical predicates, denoting the proper-
ties and relations that can hold among the finite set of do-
main objects, O; Z, a set of transition schemas; and 7, a set
of object types. A schema z € Z, when applied in a state s,
produces a set of ground actions, z|;.

To find this plan, we execute heuristic-based search using
the FF heuristic. (Hoffmann & Nebel 2001). The algorithm
is shown in Figure 2.

Equivalence in relational domains

We need to properly define action equivalence in order to
execute the steps b) and c) of the planning algorithm in Fig-
ure 2. To that end, we make the following crucial assump-
tion:

Assumption 1 (Sufficiency of Object Properties). A domain
object’s function is determined only by its properties and
relations to other objects, and not by its name.

"We do not consider conditional outcomes.
2What if we are in a setting in which a few objects’ identities
are in fact necessary? One could encode this information via sup-
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. Start with initial ground state, s and empty plan, P
. Find state s', the best successor to s:
a. calculate all ground actions applicable in s
b. partition set of actions into equivalence classes
c. apply a representative action a from each class,
compute the most likely resulting state, s'
evaluate s' using FF heuristic, h(s')
d. if a unique state s' has the lowest h(s') value
add the producing action, a, to P
e. else,
do breadth-first search until lowest h(s') found
add the sequence of actions from s to s' to P
3. If s' is the goal, return the plan P.
4. Else, set s<=s', and return to step 2.

N =

Figure 2: Planning algorithm. Note steps b) and c¢), which com-
pute and make use of the reduced action space given by a partition
over the actions.

For example, consider a blocks world in which the only
two properties are the relation on() and the attribute color().
Then if two blocks block14 and block37 are both red, are
both on the table, and have nothing on them, they would be
considered functionally equivalent. If block37 had another
block on top of it, however, it would not be equivalent to
block14. Intuitively, two objects are equivalent to each other
if they are related in the same way to other objects that are,
in turn, equivalent.

Here is the main contribution. We establish that a plan-
ning procedure that uses only equivalence-class representa-
tives is complete whenever the original planning procedure,
which had access to the whole action space, is complete. We
need the following pieces: first, whenever goal is satisfied in
a particular state s, then it must be satisfied by any state in
s’s equivalence class; second, equivalent actions taken from
equivalent states produce equivalent successor states. These
pieces let us construct an inductive argument to show that,
from a given starting state, the successive substitution of one
ground action by another in its equivalence class leads us to
a state that still satisfies the goal.

Previous work on object equivalence, or symmetry, has
used single, unary relations as a basis for computing sim-
ilarity (Ellman 1993; Fox & Long 1999; 2002). However,
we want to study object equivalence when more complex
relationships are present. To aid our analysis, we view a re-
lational state description as a graph, called the state relation
graph. The nodes in the graph correspond to objects in the
domain, and the binary relations between the objects corre-
spond to the edges. For each pair of related nodes, we con-
struct an edge representing the relation. In addition, nodes
and edges are labeled with a string (or set of strings). Each
node is labeled with the object’s type, and each edge is la-
beled with the relation’s name. If an object also participates
in a unary relation, we augment its label set with that predi-
cate’s name. 3 Thus, we can establish equivalence between

plementary properties, by adding a relation such as block14(X)
that would only be true for block14. Obviously, if identity matters
for a large number of objects, the approach described here would
not be suitable.

3 At present, we consider up to binary relations. In the case of
relations with more than two arguments, we would have to consider
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Figure 1: In this figure, we have an example domain in which the task is to fly each of the three helicopters onto one of two carriers. In a) is
shown a picture of the search tree if we were to enumerate all the ground actions. However, there are only a few qualitatively different states,
as seen on the bottom, in c). If we could eliminate distinguishing between actions that produce equivalent states, our search tree would be

much more compact (b).

a) 2. pickup(?op - Block, 7hot - Object)

. Z|

Equivalence classes for Zi; ¢

b}

|g @1 pickup(o,1),
pickup(3,4), - [ pickup(0,1)]
p!ci(upts.s). [ pickup(2,table) |
pickup(2 tavle) } [ pickup(3,4), pickup(5.6) ]
o) ®, ¢ action | D, (action)
? pickup(0,1) pickup(0,1)
2 pickup(2,table) | pickup(2,table)
5
B pickup(3,4) pickup(s,6)
2 pickup(5,6) pickup(3,4)

[ N Ry Y

Figure 3: The steps involved in computing action equivalence. In part (a), the instantiation of the pickup operator z in a state s produces four
ground actions. In part (b), the state relation graph for s shows we can map blocks 3 and 4 to blocks 5 and 6, respectively. This allows us to
map the instantiation of pickup (3, 4) to pickup (5, 6), and vice-versa. Thus, the four ground actions correspond to three equivalence

classes.

two states by computing an isomorphism between the state
relation graphs.

Definition 1 (State equivalence). Two states are equivalent,
written s; ~ sg, if there exists an isomorphism, ®, between
the respective state relation graphs such that ®(Gs,) = Gs,.

Next, we need to define equivalence for actions. Intu-
itively, two actions should be considered equivalent if they
produce equivalent states. However, this requires propagat-
ing a state through a transition rule for each calculation. A
way to define action equivalence without doing such a prop-
agation is to overload the notion of isomorphism to apply to
sentences (of which actions are a special case).

Definition 2 (Action Equivalence). The applications of ac-

a hypergraph representation to allow for edges of more than two
nodes.
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tion schema z in states s; and ss yield the sets of ground
actions z|s, and z|s,. Two ground actions a; € z|s, and
ay € z|s, are equivalent if and only if there exists a @ such
that ®(Gs, ) = Gs, and @, (a1) = as.

Essentially, we will be grouping two instances of an op-
erator into the same equivalence class if there exists an au-
tomorphism between objects in the state that allows us to
re-write one action instance as the other. Figure 3 shows an
example of this computation.

Now we move to the next important step: we need to guar-
antee that if the goal condition, if satisfied in a particular
state s, can be satisfied by any state equivalent to s. We
prove that if a logical sentence is satisfied in a state s, then
it is satisfied in any state § € [s], where [s] is the equiva-
lence class of s. We must be clear about the logical setting:
we assume that an un-ground sentence (i.e., a goal condi-
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tion) contains no constants, and that a ground state is a fully
ground list of facts (which we can treat as a conjunction or
set of ground relations).

We provide one more definition for an important interme-
diate concept:

Definition 3 (Equivalent Planning Procedures). Let P be
a planning procedure such at at each state s, P selects an
action a. Consider a planning procedure P’ such that at each
state § ~ s, P’ chooses an action @ ~ a. Then P and P’ are
defined to be equivalent planning procedures.

Theorem 1. Let P be a complete planning procedure. Any
planning procedure P’ equivalent fo P is also a complete
planning procedure. That is,*

’7(a17"'7an780)_)g:fY(dla"wa;HSO)_)g

Thus, any serial plan that exists in the full action space
has an equivalent version in the partitioned space. (?)

Experimental Validation

As a check, we did a small study to illustrate the computa-
tional savings of planning with equivalence class sampling.
Figures ?? shows these results. The experiments were done
in the ICAPS 2004 blocks-world domain, varying the num-
ber of blocks from 2 to 7. In each case, the goal was to stack
all of the blocks, and the starting state was with all blocks
on the table. The z-axis of the graphs shows the plan step,
and the y-axis shows the number of actions expanded in the
search at that step. The top graph shows a linear y-axis, and
the bottom graph shows it log-scale. Each curve corresponds
to the performance of each algorithm in each size blocks
world. The dashed lines correspond to the planning algo-
rithm that uses all the actions, and solid lines correspond to
the planning algorithm that uses a representative from each
equivalence class.

With just five blocks in the domain, already the combina-
torial growth in the branching factor is such that searching
in the whole action space is hopeless. The equivalence-class
based planner shows a consistently small branching factor
even with six and seven blocks. The computational savings
of computing the action classes is significant even in this
small test domain. Further experiments are forthcoming in
other domains from the ICAPS planning competition.

Conclusion

This is work explicitly attempts to define what it means for
planning operators to be equivalent in the presence of com-
plex relational structure. We formalize such a definition and
illustrate the benefit of equivalence-class analysis for plan-
ning.

Taking advantage of structured action representations
helps us ignore the distracting complexity and focus in-
stead on the interesting complexity in a problem. We pro-
vide a formal basis for computing action equivalence classes

4Some notation: (a1, ..., an, So) denotes the state that results

from executing the sequence of actions ai, ..., a, starting from
state sg. The arrow denotes entailment.
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that guarantees a complete planning procedure while signif-
icantly reducing the branching factor of the search. While
our original motivation is the REBP algorithm, our findings
are useful for efficient planning in general.
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Abstract

Those in the planning community previously exposed to the
construct of Petri nets, have probably recognised a connec-
tion between the world modelled by these nets and a con-
current planning domain. Work to date however has failed
to sufficiently capture and motivate the possible benefits of
developing and utilising this connection, so the area has re-
mained relatively undeveloped. We believe the factored state
representation and concurrency semantics of Petri nets are so
closely related to that of concurrent planning domains that
cross cultivation between the areas will give theoretical in-
sight and lead to the development of computationally efficient
algorithms for concurrent planning. Our research seeks to de-
velop the theory required to exploit the connection and cre-
ate models and algorithms for optimally solving determinis-
tic and probabilistic concurrent planning problems using low
level Petri nets. Our approach casts the planning problem as
a Petri net reachability problem. Unfolding is an attractive
method for reachbility analysis because it utilises and main-
tains the concurrency and factored state structure of the Petri
net. We capitalise the unfolding process for planning by guid-

goal is not achievable. We capitalise the unfolding by guid-
ing it with planning heuristic. Note we are not restricted to
unit-cost actions. For the probabilistic case, we unfold the
Petri net up to a finite horizon. We propose a Bellman-like
equation which then uses the unfolded net to determine the
partial plan with the maximum probability of success, or ex-
pected reward, within the finite horizon. This later case does
not require that all rewards be positive, and thus could be
used for over-subscription planning.

Translation of a Planning Problem to a Petri net

A Place Transition (PT) net is a low level Petri net. A PT-
net is a 5-tuplePN = (P, T, F,W, M,y) where P andT

are finite sets of places and transitions respectivélyC

(P x T)U (T x P) is the flow relation;WW : F —

1,2.. is the weight function;M; is the the initial marking;
PNT = (0andP UT # 0. Figure 1 shows a simple

PT net. The marking/ of a Petri net is the mapping of
tokens to places, and represents the state of the modelled
world. The preset of a node in the net,*z, is the set

ing it with heuristics. ;
{y e PUT|W(y,x) > 1}. The postset of a node;*, is

Petri nets are traditionally used for modeling and anal- the set{y € PUT|W (x,y) > 1}. A transitiont is enabled
ysis of distributed systems. They can be used to exploit if each of its input placeg is marked with the weight of
the structure of a planning domain in two beneficial ways. the arc connecting to¢. A particular markingl/ enables a
Firstly Petri nets, like STRIPS and PDDL operators, pro- transitiont if W(p,t) < M(p) ¥p € P. The occurrence of a
vide a non-flat representation of transition systems. They transition absorbs the tokens in its input places and produces
avoid explicitly enumerating the state space as it is implicit tokens in its output places thus moving the net frbhto the
in their representation of variable -action relationships. This new markingM’(p) = M (p) — W (p,t) + W (t,p) Vp € P.
can be utilised in computation. Secondly Petri nets specifi- This corresponds to a state transition of the modelled sys-
cally represent concurrency and causal relations between ac-tem. A set of transition§” is concurrently enabled at the
tions. Consequently it is possible to avoid enforcing a total marking M if it is possible for allt € 7" to occur at once,
order on actions; this can have not only computational ad- viz. Y, ., W(p,t) < M(p)¥p € P. A more detailed re-
vantages via reduction of the policy space but also allows us view of Petri nets can be found in (Murata 1989).
to generate partially ordered plans. A planning problem is a quadruplel, I, O, G) where A

We propose a translation from deterministic and proba- is a set of state variables; A — {0, 1} is a stateQ is a set
bilistic planning problems to Place-transition (PT) Petrinets. of STRIPS operators, and is a set of goal literals (Ghal-
We then unfold the net in a specific manner. The unfolding lab, Nau, & P.Traverso 2004). The set of literals oveis
of a Petri net maintains a partial ordering of actions based on L = U{—ala € A}. The complementof a literall € L is
causality, allowing us to search for an optimal solution plan defined bya = —a and—=a = a for a € A. A STRIPS oper-
without considering the unnecessary interleaving of actions ator (p, e) is 1-safe if{-l|l € e} C p. A STRIPS operator
or enumerating the state space entirely. For the determinis- (p, e) has a positive precondition jf C A. The first part
tic case, we adapt the Esparza-Vogler-Romer (EVR) unfold- of our translation involves mapping the planning problem to
ing algorithm so that either the minimum cost partial planis an equivalent one where every operator is 1-safe one, and
found during the unfolding procedure, or we identify thatthe there are no negative preconditions. 1-safety is established
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Places are represented longer independent. The benefit of this 'divide-and-conquer’
by circles, transitions approach depends on the level of concurrency in the domain.
by squares and token The unfolding of a PT-neftv = (P, T, F, W, M,) pro-

by black dots. Firing duces an occurrence néXN = (B, E, F’), whose node
transitions 2 and 3 (in sets are condition® and events). These nodes represent
any order or concur- particular occurrences of the places and transitions, respec-
rently) followed by fir- tivelyz in possible runs of the origin_al net frqm the initial
ing transition 5, would marking. The unfolding achieves this by eliminating cycles
result in a single token and backward conflicts. Backward conflict is the case when
each in places fand g. two transitions output to the same place; by eliminating this
we know exactly which transitions are involved in a partic-
ular marking. In the context of planning, this means that
we know the exact set of actions that, when executed, lead
to a state variable reaching a certain value at some point in

by replacing every operator by several 1-safe ones; we define tOh?thlély\./ The labelling functiop is a homomorphism from

S(o) as set of operators obtained from some O. Nega-

tive preconditions are eliminated by replacing eachby a
corresponding positive preconditiarand forcinga anda to
always have opposite values. The reasons for this translation
become clear soon.

Figure 1: Example of a Petri net.

The main theoretical notions required to understand un-
folding are that of a configuration and local configuration of
an event. A configuration represents a possible partial run
of the net. It is any set of even€s such that:C' is causally
: L . closed, ee C = ¢ € C Ve < e; and C contains no
Given a deterministic planning problef= (A, I, O, G) forward conflict,®e; N ®es = 0V ey, e5 € C, e £ es.
we create a PPpnet(R) = (P, T, F, W, M,) such that: We can think about a configuration as a partially ordered
e the places ar® = A U A, plan. The local configuration of an eveat denoted]e]

h . _ (s 0 is the minimal configuration containing eveat Conse-
o the transitions aré’ = {S(0)[o € O}, quently if we introduce a 'goal’ transitiot;, whose prede-

e the setF’ of arcs is obtained fromy = (p,e) € T as cessors correspond to the set of goal litef@sthen a so-
lution plan is any partially ordered set of operators [e] such
p x {to} thatp(e) = t,. A configurationC can be associated with
U{{to,a)la € AUA,a €p,—a¢ e} a marking MarKC) of the original net by identifying those

conditions whose tokens are produced but not consumed af-

U{{to,alla € A, a € e} ter firing the events i’ starting from the initial marking:

U{(to,a)la € A,—a € e} Mark(C) = ¢((My U C*)\*C), whereC*® = {e*|e € C}
and*C = {%ele € C}.
o W(f)=1forallarcsf € F, The unfolding process involves identifying which transi-
o foralla € A, My(a) = 1iff I(a) = 1 andMy(a) = 1 tions are enabled by conditions currently in the occurence
iff I(a) = 0, and for alla € AU A, My(a) = 0 or net that can be simultaneously marked. These transitions are

My(a) =1. referred to as the possible events. A new instance of each is
added to occurence net, as are instances of the places in each
The 1-safety of the STRIPS operators has allowed us to cre- of their postsets. The question of whether a set of conditions
ate 1-safe Petri nets, meaning it is not possible for more than can be simultaneously marked is answered by determining
one token to exist in a place. Without 1-safeness it would be- \yhether the union of the local configurations of their pre-

come complicated to maintain consistency in the net, as one sets forms a configuration. Figure 2 shows an example of
would have to consider the semantics of multiple tokens ina ynfolding.

place: if the respective literal becomes false all these tokens
must be removed. Finite Complete Prefix of Unfolded net

. . In most cases, the unfoldingof a Petri-net is infinite. For
Petri net Unfolding this reason, we seek a complete finite prefixof 3, one
Unfolding is a method for reachability analysis which ex- which contains as much information ds

ploits and preserves the factored state representation and The key to obtaining a complete finite prefix is to identify
concurrency information in the Petri net. In the planning those events at which we can cease unfolding without loss of
context this confers the ability to reason about partially or- information. Such events are referred taasoff eventand
dered sets of actions directly, without having to consider are defined in terms of amdequate ordeon configurations
their interleavings. It also enables the recognition and sep- (McMillan 1992; Esparza, 8&mner, & Vogler 2002):

arate resolution of independent subproblems. During the Definition 1 A partial order < on the finite configurations

planning process we can reason about the actions and costs o branching process is an adequate order if
required to assert some subset of state variables, and com-

bine this information with that for another (thus-far) inde- 1. < is well founded
pendent subset, at a future point when the two sets are no2. < refinesC: C; C C; = Cy < Cs
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Figure 2: Prefix of an unfolding of the Petri net in Figure 1.

3. < is preserved by finite extensions: @, < C3 and
Mark(C;) = Mark(Cs) thenCy; @ E < Cy @ I3(E),
wherel?(E) is an isomorphism mapping the finite exten-
sion E of C'; onto the extension @f5.

Without loss of information, we can cease unfolding from an
evente, if e takes the net to a marking which can be caused
by some other evenrt such thate’] < [e]. This is because
the events (and thus markings) which proceed fromaill
also proceed from’. Relevant proofs can be found in (Es-
parza, Bmer, & Vogler 2002):

MoLE (http://www.fmi.uni-stuttgart.de/szs/tools/mgle/
is a free-ware unfolder which can be used for 1-safe PT-
nets. It uses an adequate order on configuratiansyhich
is based primarily on comparing their cardinality. The prefix
shown in Figure 2 is the complete finite prefboLE returns
for the net in Figure 1.

Deterministic Concurrent Planning

Once the problem is translated to a PT-net, it is easy to let
MOLE produce a partially ordered plan for that problem. It
suffices to augment the STRIPS operator set with a dummy
operator whose precondition is the goal, and to require mole
to stop whenever an event labelled with the corresponding
transition is added to the occurence net. The local configura-
tion of this event is a partially ordered plan for the problem.
Further, owing to the fact thatoLE orders events by in-
creasing local configuration cardinality, this plan is minimal
in the number of actions.

The cardinality-based ordering relation usedimyLE has
a serious drawback for planning however, as it leads e
to perform a breadth-first search. If we were to swap the
ordering to prefer events with larger local configurations to
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those with smaller ones, we would fore@LE into a depth-
first search. However, since the resulting ordering is not ade-
guate, there is no guarantee that the resulting planner would
be complete. Checking for loops is not as straightforward
in the unfolding framework as it is in a state-space search
framework, since the markings of local configurations only
have a partial view of the state. Indeed, the main purpose
of an adequate order is to implement a form of loop detec-
tion. A natural idea is to change the ordering to provide
MOLE with better guidance towards the goal, while preserv-
ing, and even generalising from the restricted notion of opti-
mality currently in place. This rejoins the work on directed
model-checking pionneered by Edelkamp et al. (Edelkamp,
Lluch-Lafuente, & Leue 2001).

We propose that given an arbitranyonotonicheuristic,
it is possible to build an adequate order which implements
A*, letting the heuristic guide the unfolding towards opti-
mal plans. Monotonic heuristics which, liké" (Haslum
& Geffner 2000), can be automatically generated from a
planning problem description, are equally easily generated
from PT-nets. In planning terms, let c@st be the (pos-
itive) cost of operatown, and rego, s) be the result of ap-
plying o in states. A Heuristic 4 (such thath(s) > 0
everywhere andi(s) = 0 at goal states) is monotonic iff
h(s) < h(reqo,s)) + cos{o) for all non-goal states and
operatorso applicable ins. These definitions easily trans-
fer to the PT-net case, by identifying each operator with the
corresponding transition and considering a set of pldees
as the state in which all state variables but thos& iare
false. We define the following ordering on configurations:

Definition 2 (<) Let h be a monotonic heuristic as de-
fined above. For a configuration”, define g(C)
> ecc cost(p(e)), and f(C) = g(c) +h(Mark(C)). Define
C =<, C'ifand only if f(C) < f(C") or f(C) = f(C")
and|C| < |C].

Proof that this order is adequate will not be shown here.
When runningvoLE with this ordering for some monotonic
heuristich, we obtain a planner which generates partially
ordered plans with the smallest total action cost. As far as
we are aware, only the HSP* family of existing planners
routinely optimise this metric (Haslum, Bonet, & Geffner
2005). In contrast, most state of the art planners optimise
parallel plan length. It is possible our approach could be
modified for concurrent temporal planning, but the full im-
plications of this have not yet been considered.

Experimental Results

Our translation from propositional STRIPS operators to PT-
nets is implemented in Standard ML within a program called
Petrify. Petrify actually parses a large subset of PPDDL
(Youneset al. 2005), and handles non-grounded domains,
conditional, and probabilistic effects. We modifiedLE to
implement a variety of search strategies and heuristics de-
fined by their respective ordering relations. In Figure 3, we
present results for PIPESWORLD and AIRPORT instances,
for some of the variants as they provide a good illustration
of the benefits and problems with our current implementa-
tion. Namely we show results fdi(s) = 0, h(s) = hl

max
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Figure 3: Experimental Result on PIPESWORLD and AlIR-
PORT Instances

andh(s) = hl,,,, where the later is the same A%, but
using the sum instead of the maximum. Out of these, only
<0 and<h3W are adequate orders and thus guarantee com-

pleteness.

As can be seen from the figures, the number of node ex-
pansions performed byoOLE significantly decreases (note
the log scale) when switching froma = 0, to the mono-
tonic k!, ... heuristic, and then to the non-admissiblg,,, .

This is particularly visible in PIPESWORLD whevg,,
andhl,, respectively expand over an order of magnitude
and over three orders of magnitude fewer nodes than0.

However, this improvement in number of expansions does

not carry over to run time. Without heuristic, our AIRPORT

run times are as good as, and in a humber of cases better

than those obtained by the competition optimal planners, ex-
cept SATPLAN. Theh! . heuristic is always slower than
breadth-first andh.,,, only start yielding run-time gains
when the improvement in number of expansions reaches two
orders of magnitude. This is because, in a forward search,

h! heuristics need to be recomputed at each expansion, and

this computation has a complexity quadratic in the number
of nodes of the PT-net. We expect to see a significant im-
provement in run time by switching to other automatically

generated heuristics which can be pre-computed once and

efficiently looked up during the search. Promising candi-

dates include Pattern Database heuristics (Edelkamp 2002;

Haslum, Bonet, & Geffner 2005).
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Probabilistic Concurrent Planning

The translation for the probabilistic case is similar but some-
what more complicated and will not be formalised here. For
probabilistic concurrent planning, we are currently focused
on optimising the maximum expected reward, given a finite
horizon. The Petri net is first unfolded completely, without
generating any cut-off points, until the decided horizon. We
propose a Bellman-like equation which uses the unfolding to
answer the question: given this set of conditions are marked,
what is the maximum expected reward from here and what
event must be chosen to achieve this? This will not be dis-
cussed further here, due to space constraints.

Future Work

Experimental results are not presently entirely conclusive.
They are only competitive with state of the art planners in
some of the domains examined. Our immediate agenda is to
implement pattern databases heuritics. Furthermore we will
consider different translations to PT-nets and to higher level
nets.
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Abstract

Markov decision processes (MDPs) with discrete and contin-
uous state and action components can be solved efficiently by
hybrid approximate linear programming (HALP). The main
idea of the approach is to approximate the optimal value func-
tion by a set of basis functions and optimize their weights by
linear programming. It is known that the solution to this con-
vex optimization problem minimizes th& -norm distance in
between the optimal value function and its approximation. In
this paper, we relate this measure to the max-norm error of the
same value function. We believe that this theoretical analysis
may help to understand the quality of HALP approximations
in continuous domains.

Introduction

Markov decision processes (MDPs) (Bellman 1957; Puter-
man 1994) provide an elegant mathematical framework for
solving sequential decision problems in the presence of un-
certainty. However, traditional techniques for solving Ri®

are computationally infeasible in real-world domains, ethi
are factored and represented by both discrete and consnuou
state and action variables. Approximate linear progrargmin
(ALP) (Schweitzer & Seidmann 1985) has recently emerged

Milos Hauskrecht
Department of Computer Science
University of Pittsburgh
milos@cs.pitt.edu

decision problems by exploiting their structure. In thiskyo
we consider hybrid factored MDPs with exponential-family
transition models (Kveton & Hauskrecht 2006). This model
extends discrete-state factored MDPs to the domains of dis-
crete and continuous state and action variables.

A hybrid factored MDP with an exponential-family tran-
sition model (HMDP)Kveton & Hauskrecht 2006) is given
by a 4-tupleM = (X, A, P, R), whereX = {X;,..., X, }
is a state space characterized by a set of discrete and-contin
uous variablesA = {4,,..., A,,} is an action space repre-
sented by action variable®,(X’ | X, A) is an exponential-
family transition model of state dynamics conditioned om th
preceding state and action choice, dik a reward model
assigning immediate payoffs to state-action configuration
In the remainder of the paper, we assume that the quality of a
policy is measured by thiefinite horizon discounted reward
E[>".2,7'r], wherey € [0,1) is adiscount factorandr,
is the reward obtained at the time step

Hybrid ALP

Value iteration, policy iteration, and linear programmarg
the most fundamental dynamic programming (DP) methods

as a promising approach to address these challenges (Kvetorfor solving MDPs (Puterman 1994; Bertsekas & Tsitsiklis

& Hauskrecht 2006).

Our paper centers around hybrid ALP (HALP) (Guestrin,
Hauskrecht, & Kveton 2004), which is an established frame-
work for solving large factored MDPs with discrete and con-
tinuous state and action variables. The main idea of the ap-
proach is to approximate the optimal value function by a lin-
ear combination of basis functions and optimize it by linear
programming (LP). The combination of factored reward and
transition models with the linear value function approxima
tion permits the scalability of the approach.

The quality of HALP solutions inherently depends on the
choice of basis functions. Therefore, it is often assumat th
these are provided as a part of the problem definition, which
is unrealistic. The goal of this paper is to analyze the ¢yali
of HALP approximations. Based on the analysis, we provide
a simple advice for selecting basis functions.

Hybrid factored MDPs

Discrete-state factored MDPs (Boutilier, Dearden, & Gold-
szmidt 1995) permit a compact representation of stochastic
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1996). Unfortunately, none of these methods is suitable for
solving hybrid factored MDPs. First, their complexity grow
exponentially in the number of state variables if the vdeab

are discrete. Second, these methods assume a finite support
for the optimal value function or policy, which may not exist

if continuous variables are present. As a result, any féasib
approach to solving arbitrary HMDPs is likely to be approx-
imate. To compute these approximate solutions, Munos and
Moore (2002) proposed an adaptive non-uniform discretiza-
tion of continuous-state spaces and Fehgl. (2004) used

DP backups of piecewise constant and piecewise linear value
functions.

Linear value function model: Since a factored representa-
tion of an MDP may not guarantee a structure in the optimal
value function or policy (Koller & Parr 1999), we resort to
linear value function approximatiofBellman, Kalaba, &

!General state and action space M¥an alternative name for
a hybrid MDP. The ternhybrid does not refer to the dynamics of
the model, which is discrete-time.
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Kotkin 1963; Van Roy 1998):
X) = w;f;(x)

This approximation restricts the form of the value function
VW to the linear combination dfw| basis functionsf;(x),
wherew is a vector of tunable weights. Every basis function
can be defined over the complete state sgacbut often is
restricted to a subset of state variati¥es(Bellman, Kalaba,

& Kotkin 1963; Koller & Parr 1999).

Similarly to discrete-state ALP (Schweitzer & Seidmann
1985),hybrid ALP (HALP)(Guestrin, Hauskrecht, & Kve-
ton 2004) optimizes the linear value function approxinmatio
(Equation 1). Therefore, it transforms an initially intraicle
problem of estimatindg* in the hybrid state spacX into a
lower dimensional space. The HALP formulation is given
by a linear program:

1)

minimize,, Zwioz,; (2)

subject to: sz x,a) — R(x,a) >0 Vx,a;

wherew represents the variables in the bR ,denotedasis
function relevance weight

a; = By x)[fi(x)]

-2

1(x) is astate relevance density functiereighting the ap-
proximation, andF;(x,a) = f;(x) — vgi(x,a) is the dif-
ference between the basis functifyix) and its discounted
backprojection

®3)

dXC7

gi(x,a) 4)

EP(x’\x a) [fl( /)]

Z/ X' | x,a) fi(x) dx.

Vectorsxp (x),) andxc (x(;) are the discrete and continu-
ous components of value assignments’) to all state vari-
ablesX (X’). The HALP formulation is feasible if the set of
basis functions contains a constant functfg(x) = 1. We
assume that such a basis function is always present.

In the remainder of this paper, we analyze the quality of
HALP approximations. Please refer to Hauskrecht and Kve-
ton (2004), Guestriret al. (2004), Kveton and Hauskrecht
(2005), and Kveton and Hauskrecht (2006) for information
on how to apply and solve HALP formulations.

Existing work

De Farias and Van Roy (2003) analyzed the quality of ALP.
Based on their work, we may conclude that optimization of
the objective functio,,[V™] in HALP is identical to mini-
mizing the£,-norm error||V* — V¥, . This equivalence
can be proved from the following proposition.

Proposition 1 Letw be a solution to the HALP formulation
(2). ThenV¥ > V*,
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Proof: The Bellman operatd? * is a contraction mapping.
Based on its monotonicityy > 7*V impliesV > 7*V >

- > V* for any value functior//. Since constraints in the
HALP formulation (2) enforcd’™™ > T*V%, we conclude
VvV >V*nm
Based on Proposition 1, we know that HALP optimizes the
linear value function model with respect to the weighfad
norm error|[V* — V||, . The following theorem bounds

the quality of a greedy policy for the value functidi’.

Theorem 1 Letw be an optimal solution to the HALP for-
mulation (2). Then the expected error of a greedy policy:

u(x) = argsup [R(x,a) + YEppoia V¥ (X))
can be bounded as:

v =ve, < = v -ve,,

wherel|-||, , and|-||, ,  are we|ghted£‘,1-norms,V“ isa
value function for the greedy poliay, andy,, , denotes the
expected frequency of state visits generated by follovhiag t
policy u given the initial state distributiomn.

Based on Theorem 1, the state relevance density fungtion
should resemble the expected frequency of state yisits
Unfortunately,,, ,, is unknown unles& " is known, which

is optimized with respect to the unknown distributiof .

To break this cycle, de Farias and Van Roy (2003) suggested
an iterative scheme that resolves several LPs and adapts
accordingly. Alternatively, real-world control problero&

ten exhibit a lot of structure, which permits guessing.of,.

Error bounds

This section demonstrates how to bound the max-norm error
|[V* — VY|, ofalinear approximatio®™ in terms of its
Ly-norm error||V* — V¥, . This resultis a step towards
understanding the quality of HALP approximations. For in-
stance, based on the work of Williams and Baird Il (1993),
we can bound the loss of acting greedily with respect to the
value function//™ by its max-norm errof{V* — V¥||__. In
combination with our work (Theorems 2 and 3), we can de-
rive max-norm bounds on the quality of greedy policies for
HALP approximations. Note that Theorem 1 only provides
bounds on the&;-norm errors of greedy policies.

For discrete-state factored MDPs, we can easily prove the
following proposition.

Proposition 2 Let w be an optimal solution to the HALP
formulation (2) with discrete state variables. Then the max
norm error of V% can be bounded as:

[ vl < v -v7
00, 1

where]|-[|, , and||-|| , ,, are £; and infinity norms weighted
by the state relevance density function

Proof: The claim directly follows from the definition of the
norms-, ,, and|||, ;. m
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Figure 1: A graphical representation of the bound from The-
orem 2 in a single dimension. Light and dark gray regions
correspond to the integrallf(|; and|[g||; x; .-

Unfortunately, this bound is loose and not of much practical
interest. In the remainder of this section, we prove a tighte
bound for continuous-state spaces. The notion of conyinuit
is captured through the Lipschitz condition.

Definition 1 The functionf (x) is Lipschitz continuousf:

[f(x) = f(x)] < K [lx = x|, ®)
whereK is referred to as d.ipschitz constant

vV x,x';

In the rest of the paper, it is useful to think of the max-norm
(£1-norm) as being the supremum (integral) of a function.

Theorem 2 Letw be an optimal solution to the HALP for-
mulation (2) with continuous state variables. If the fuanoti

Fx) = () |V () = V¥ (x)

is Lipschitz continuous, and there exists a stagesuch that
f(xs5) < 4, the max-norm error oV can be bounded as:

HV* —V‘*’H <O+ K
00,7

. n
min

wherel|-|, , and||-|, , are £1 and infinity norms weighted

by the state relevance density functioyn is the number of
state variablesK represents the Lipschitz constantfdk),
andC is a problem-specific constant.

Proof: To prove the theorem, we define a function:

V=V g w20V = VY],
oC ’ KC ’

9(x) =0+ K [lx =%, - (6)

It follows that the functiory(x) is an upper bound offi(x)
becausef (xs5) < 6, ||x — x5(; > |Ix — x5/l ., andK is the
Lipschitz constant of (x). Furthermoreg(x) is increasing
faster thanf(x) in every dimension. As a result, there exists
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apointx. such thay(x.) > | f||., and the integral of (x)
betweenx; andx. is smaller or equal t¢) f||,. A graphical
interpretation of this situation in a single dimension iswh
in Figure 1.

In general, the integraJIgHL[xé’xE} can be computed as:

K n
|1,[x(;,x5] = |:5+ 36:| H&v
=1

wheree; = |z.; — x5, € = ||x- — X;5]|;, andn denotes the
number of state variablé$. Sinces = >, ¢;, we rewrite
the equation as:

lg

K n
”ng,[xg,xE] =C |:5 + 55:| S

whereC' = []!'_, (¢;/¢) is a problem-specific constant that
guaranteeg(x.) > || f||... The constant’ is bounded from
above byn~". Finally, we recognize that, ¢, K/, ande are
always nonnegative, which leads to the conclusion:

NITE n+\1/2||f1
<
£ mm{ 50 3 KC

assuming|g|; x, x.; < IIfll;- Direct combination of Equa-
tions 6 and 7 yields our final resui.

To make the bound in Theorem 2 practical, we have to assure
a low Lipschitz factor’ and the existence of a statg such
that f(x5) < . We cannot guarantee the existence of such a
state yet. However, we can affect the fackoiby the choice

of basis functions and state relevance densities. In pdatic

to achieve a low valué&’, we should use basis functions that
yield close approximations tg*. In practice, this condition
cannot be guaranteed unless we kriéiv Furthermore, the
Lipschitz factor of’* may be large itself. To address these
concerns, we generalize Theorem 2 to an arbitrary partition
ing of the state spacX.

Theorem 3 Letw be an optimal solution to the HALP for-
mulation (2) with continuous state variables. If:

Q= {wl,...7w|9|}

is a mutually-exclusive partitioning of the state spatehe
function:

()

Fx) = 6(x) |V (x) = V¥ ()|

is Lipschitz continuous on each partition, and there exasts
statexs,, fgr everyw such thatf(x;_,) < 4, the max-norm
error of V¥ can be bounded as:

v =ve]
00111[)

. n
min

where the explanation of symbols is identical to Theorem 2.
All subscripted symbols are partition-specific.

weN

< max {&, + K,

V=V g a2V =V
0, Cl ’ K,C, ’
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Proof: Based on the definition of the max-noip , ,,, we
conclude:

[ =vell., = mav vl

weQ 00, Yo
wherey,, (x) = ¢¥(x)1xew(x), andlxe, (x) is the indicator
function of the partitionv. The final result is a consequence
of bounding each{V* — v¥|| »», Dy Theorem 2m

Theorem 2 provides an insight into the relation between the
L1-norm objectivel|V* — V"V||1 ,, and the max-norm error

[V —=Vv¥ - The max-norm error can be minimized by

lowering £-norm errors|V* — V¥||, », fthe growth rate

of K, andd,, is controlled. This result leads to an intuitive
advice for choosing basis functions. If the shape of theevalu
functionV* is not known, we should prefer smooth approx-
imations. These are not likely to inflate Lipschitz constant
K, whereV* is smooth.

Conclusions

Development of efficient methods for solving large factored
MDPs is a challenging problem. In this paper, we analyzed
the quality of linear approximations and bounded their max-
norm error by the objective value in HALP. We believe that

this analysis can help us to understand the quality of HALP
approximations in continuous domains.
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Abstract

Graph search plays a central role in both planning and
model checking. We describe how to adapt an approach
to memory-efficient graph search that has been used for
domain-independent STRIPS planning in order to create a
more memory-efficient domain-independent model checker.
We discuss some changes to this approach that are required
by the differences between planning and model checking, and
report preliminary results that indicate its effectiveness.

Introduction

Model checking is a fully-automated formal technique for

verifying that a property is satisfied, or modeled, by a tran-
sition system (Clarke, Grumberg, & Peled 2000). The tran-

sition system is often a protocol, such as a protocol for wire-

less communication or an embedded hardware device. A

violation of the property is an error. For example, in a wire-

less protocol, an error could be starvation of a device. Model

checking can find errors that are difficult to detect by testing
and simulation, and is especially effective in finding errors
with long traces or errors that occur after unusual sequences

of events. Model checking can also verify that no errors ex-

ist, which is impossible using testing and simulation.

There are several important connections between research
in model checking and research in automated planning and
heuristic search. First of all, there is a large body of work
on planning via model checking (Giunchiglia & Traverso
1999). In this work, planning domains are formalized as
transition systems, goals are expressed as temporal formu-
las, and planning is done by using model checking to deter-
mine whether the temporal logic formula is true in the tran-
sition system. Another important connection between au-
tomated planning and explicit-state model checking is that
both rely on state-space exploration using graph search. For
both, scalability is limited by the state explosion problem —
the size of the state space grows exponentially in the num-
ber of variables in its description. Finally, in both plan-
ning and model checking, there is an emphasis on domain-
independent tools; there is a focus on developing domain-
independent model checkers just as there is interest in de-
veloping domain-independent planners.

This short paper describes preliminary work on using an
approach to memory-efficient graph-search originally devel-
oped for domain-independent planning in order to improve
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the scalability of a domain-independent model checker. The
approach we adapt is called breadth-first heuristic search
with layered duplicate detection (Zhou & Hansen 2006).
Layered duplicate detection turns out to be a very effective
approach to reducing the memory requirements of model
checking because it can be easily implemented in a domain-
independent way and works well in searching directed
graphs; model checking always involves directed graphs. In
our adaptation, we use breadth-first search without a heuris-
tic to perform a complete search of a graph, in order to verify
that a property always holds. We report preliminary empiri-
cal results that illustrate that this approach can significantly
improve the range of models that can be verified.

Background
Graph search and model checking

In model checking, a transition system (e.g., for a protocol)
is represented by a directed graph in which the nodes cor-
respond to states of the system and the edges correspond
to state transitions. For example, a state may indicate two
packets in flight, a valid transition could be the reception of
a packet, and the new state would contain just one packet
in flight. The graph has an initial state, and the set of all
possible paths in the graph represents the set of all possi-
ble behaviors of the protocol. Given this representation, a
property can be verified by a complete search of the graph
to make sure that no error states can be reached. If an error
is found, a trace of the error (i.e., a path from the initial state
to the error state) is returned and used to debug the protocol.
The scalability of model checking is limited by the size
of the graph that must be searched. In explicit-state model
checking, every generated state is stored in a hash table that
is used for duplicate detection, which is the process of deter-
mining whether or not a newly-generated state is a duplicate
of a previously-generated state. Since a complete search of
the graph is needed to verify a system, the memory needed
to store all generated states is the bottleneck of model check-
ing. As a result, some approaches to model checking aban-
don verification and merely attempt to detect errors in a
swift manner. Heuristic search algorithms such as A* have
been used to efficiently find paths to error states, which are
treated as goal states (Edelkamp, Lluch-Lafuente, & Leue
2001). Other approaches, such as randomized search, have
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also been used (Jones et al. 2003).

Frontier search and layered duplicate detection

Frontier search is a memory-efficient approach to graph
search that only stores the Open list, and saves memory by
not storing the Closed list (Korf et al. 2005). Instead of the
traceback method of solution recovery, it uses a divide-and-
conquer method that involves finding an intermediate node
along an optimal path and using it to divide the search prob-
lem into two subproblems — the problem of finding an opti-
mal path from the start node to the intermediate node, and
the problem of finding an optimal path from the intermediate
node to the goal node. The subproblems are solved recur-
sively by the same search algorithm until all nodes along an
optimal solution path for the original problem are identified.

Since frontier search only stores nodes on the frontier, it
needs to prevent already-explored nodes that are no longer in
memory from being regenerated. In undirected graphs, Korf
et al. (2005) use a technique called used-operator bits that is
very effective. But directed graphs present more of a chal-
lenge. In the approach proposed by Korf et al., each time a
node is expanded and its successors generated, all predeces-
sors of these successors are also generated, even if no path
has yet been found to these nodes. These dummy nodes are
stored in the Open list with an g-cost of infinity until a path
to them is found, at which point they acquire the g-cost of
that path. Although this guarantees that no node is generated
more than once, the dummy nodes would not be generated
by a standard graph-search algorithm and there is no bound
on the number of dummy nodes that can be generated. In
some cases, the additional overhead for generating dummy
nodes can make search performance worse.

Zhou and Hansen (2006) propose an alternative approach
to duplicate detection that can be used in breadth-first
search. In this approach, called layered duplicate detection,
the Closed list is stored in layers, one for each g-cost, and
earlier layers are deleted to recover memory. In undirected
graphs, they point out that keeping just one previous layer
in memory is sufficient to detect all duplicates. In directed
graphs, they propose keeping one or more previous layers,
where the number needed to prevent all duplicates depends
on the structure of the graph. They also point out that even if
no previous layers are kept in memory, the number of times
a node can be regenerated is bounded by the depth of the
search. In depth-first search, by contrast, the number of node
regenerations can be exponential in the depth of the search.

Layered duplicate detection is easy to implement in a
domain-independent way, in contrast to the approach to du-
plicate detection used in Korf et al.’s implementation of fron-
tier search. Therefore, we use frontier breadth-first search
with delayed duplicate detection to reduce the memory re-
quirements of our domain-independent model checker.

Algorithm and preliminary results

We briefly describe our approach to memory-efficient model
checking and present some preliminary experimental results.
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Algorithm

The starting point for our implementation is the Mur¢ model
checker, a domain-independent tool that takes a description
of a model as input and uses breadth-first search to verify
that the model is correct (Dill 1996). If an error is found, it
returns an error trace.

Since the graphs that are searched in model checking are
directed graphs, we modify the breadth-first search algo-
rithm to use layered duplicate detection. First of all, this
requires indexing the hash table of stored states by layers,
so that individual layers can be deleted as the search pro-
gresses. The breadth-first search proceeds as usual until it
begins to run out of memory. At that point, it recovers mem-
ory by deleting layers of generated states from memory. The
layers it deletes are those that are furthest from the frontier
(i.e., the shallowest layers), since they are less likely to be
useful in duplicate detection. Any closed nodes are eligible
for deletion, if more memory is needed. Thus, as long as
the Open list can fit in memory, the search continues. (If the
Open list does not fit in memory, we could use beam search
to continue to search for an error, but we do not consider this
possibility in this paper.)

If an error is found, the error trace is recovered by using
the traceback method to follow pointers backwards from the
error state through as many layers as still reside in memory.
If some layers are missing, the shallowest state in the error
trace is treated as a goal state, and another search is con-
ducted to find a path from the initial state to this state, in or-
der to finish recovering the error trace. This is a modification
of the divide-and-conquer technique for solution recovery.

Theoretical properties

Because the search is breadth-first, if an error is found, the
error trace is guaranteed to be a shortest path to the error
state. If no error is found, the search terminates when the
Open list is empty and there are no more states of the graph
to explore. If the search terminates in this way without find-
ing an error, the model is verified.

However, when layers of the search graph are deleted to
save memory, the search is no longer guaranteed to termi-
nate with an empty Open list, even if the graph is finite. If
some layers of the search graph are removed from memory,
it is possible for duplicate nodes to be generated during the
search. Zhou and Hansen (2006) give some conditions under
which no duplicates will be generated, but these do not hold
in general. In the worst case, the number of times a node
can be regenerated is bounded by the depth of the search
(d) and the number of of layers stored (1), and no state can
be duplicated more than d/I times. In practice, duplicates
are generated even less frequently than this. But the possi-
bility of regenerating previously explored nodes means that
there is no guarantee the search will terminate with an empty
Open list, since the search can repeatedly regenerate and re-
explore the same parts of the search graph.

If the model contains an error, however, breadth-first
search is guaranteed to terminate by finding a shortest path
to this error, no matter how many duplicates may be gen-
erated. This points to a second way to detect termination
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Model Peak Nodes | Total Nodes Number

in Memory Generated | of Layers
cache32622 14,141 111,335 8
newlist8 3,930,856 | 24,714,307 44
arbiter13 1,521,655 | 11,545,717 17
arbiter14 1,429,446 11,255,853 14
adash1313e 684,946 | 13,480,127 15
ns22110 87,366 173,866 8
dynpart4 2,619,984 | 16,202,474 30

Table 1: Memory savings for seven different models.

and verify a model. If the diameter of the search graph is
known, or can be bounded, and no error is found by the
search algorithm in searching up to this depth, then no er-
rors can be present and the model is verified. (If the search
algorithm generates any nodes past this depth, they must be
duplicates.) This method of detecting termination is similar
to that used in bounded model checking, which uses sat-
isfiability testing to verify that a model does not have any
errors up to depth k& (Clarke et al. 2001). If the model
is verified for a depth that is equal to or greater than the
diameter of the graph, called the completeness threshold,
verification is complete. Various methods for determining
a completeness threshold have been explored in the litera-
ture on bounded model checking, and can be applied in our
approach to model checking.

Preliminary empirical results

Table 1 shows the performance of our modified algo-
rithm in verifying seven different models. They include
a cache coherency protocol with six caches and two disks
(cache32622), a protocol for maintaining a linked list in a
parallel environment with eight parallel nodes (newlist8), a
mutual exclusion protocol with thirteen or fourteen threads
and an arbiter in charge of who gets access (arbiter13 and ar-
biter14), the DASH communications protocol for a network
of three nodes (adash1313e), the Needham-Schroeder pro-
tocol for secure communication for four participants with
two intruders (ns22110), and an algorithm for dynamically
partitioning a search with four processing nodes (dynpart4).

In model checking, the node data structure is typically
very large because the state description includes many vari-
ables that can have a large range of possible values. For
the cache coherency model, for example, the size of a sin-
gle node is 167 bytes. Therefore, even though the models
in Table 1 are relatively small, none can be verified using
1GB of memory without using our layered duplicate detec-
tion technique. The difference between the peak number of
nodes stored and the number of nodes generated during the
search gives a sense of how this approach improves scalabil-
ity by allowing larger models to be verified using the same
amount of memory. Note that because we use blind breadth-
first search, the Open list it typically much smaller than the
Closed list, and deleting the Closed list from memory saves
a substantial amount of memory and significantly improves
scalability.
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Future Work

Besides testing this approach on larger and more varied
models, we hope to eventually extend it in several ways.
When the Open list does not fit in memory, we plan to use
disk to continue the search. While disk provides much more
storage than internal memory, it is also limited, and our ap-
proach will allow complete search of graphs that do not fit
on disk. For example, Korf and Schultze (2005) describe
a complete breadth-first search of the Fifteen Puzzle that
requires 1.4 terabytes of disk just to store the search fron-
tier. Their frontier search algorithm is for undirected graphs
and specialized for the Fifteen Puzzle, whereas our approach
will allow domain-independent search in directed graphs.
We will also consider parallel search algorithms. Our ap-
proach to both external-memory and parallel graph search
will be based on structured duplicate detection, which has
been shown to be very effective in domain-independent
planning (Zhou & Hansen 2004). Thus, we will continue
to leverage the close connections between graph search in
domain-independent planning and model checking.
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Abstract

We present the semantics of processes for planning tasks. We
target Task-Method-Knowledge (TMK) process models, a widely
used formalization of processes. These semantics are formalized
by proving that Task-Method-Knowledge (TMK) process models
can be translated into equivalent Hierarchical Task Networks
(HTNs). We construct a Turing-computable translation function
that maps TMK process model constructs to equivalent HTN
constructs. We leverage well-known results from HTN planning
to define soundness, completeness and complexity results for
TMKs.

Introduction

Processes are an important family of knowledge constructs.
Loosely speaking, a process is the means by which tasks
are accomplished via a series of actions or operations.
Process modeling is important when reasoning by concept
reuse and modification; without such a model, reasoning
takes place at the level of actions, such as STRIPS
operators, and knowledge transfer to new problems is
difficult. Process models ease knowledge transfer by
capturing how to achieve a goal. This yields a flexible
representation for problem solving.

Processes have been used in a wide range of
applications. For example, they have been used to:
represent web services integration (Curbera et al., 2002),
build adaptive agents (Ulam et al,. 2005), build
introspective agents that use models to identify failures in
their reasoning (Murdock, 2001), and build a testbed for
machine learning systems (Molineaux & Aha, 2005). For
our analysis, we use the process language called Task-
Method-Knowledge process models (Murdock, 2001),
which was also used in the latter three applications
mentioned above.

One drawback of Task-Method-Knowledge process
models (TMKs) is that they lack clear semantics, in
particular when viewed as a language for expressing
planning problems as used in REM (Murdock, 2001) and
TIELT (Molineaux & Aha, 2005). In this paper we define
formal semantics for TMKs by demonstrating their
equivalence with Hierarchical Task Networks (HTNs).
This will allow us to state soundness and completeness
results for planning with TMKSs, show that planning with
TMKs is NP-complete, and prove that they are strictly
more expressive than STRIPS plans. Furthermore, we
prove that a Turing-computable translation function exists
from TMKs to HTNs that runs in polynomial time.
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The significance of these results is threefold. First, the
results imply that HTN reasoning capabilities that have
clear semantics can be applied to the growing body of
TMKs knowledge. Second, several advances involving
HTNs, including results on their applicability (Wilkins,
1988) and learning them (Choi & Langley, 2005; Ilghami
et al., 2005), can be applied to a wide range of real-world
applications for which TMKs knowledge is readily
available. Third, TMKs adopt common characteristics of
process languages, including grouping of simple activities
into more complex activities, iteration (e.g., while loops),
variable assignment, and value return. Thus, our results
should also apply to other process languages.

Hierarchical-Task-Network Planning

HTN planning is a form of planning that reasons at the
level of high-level tasks instead of lower-level actions
(Erol et al., 1994). In HTN planning, high-level tasks are
repeatedly decomposed into simpler ones until all tasks
have been reduced to primitive actions.

The main knowledge artifacts in HTN planning are
called methods. A method encodes how to achieve a
compound task. Methods consists of three elements: (1) the
task being achieved, called the sead of the method, (2) the
set of preconditions indicating the conditions that must be
fulfilled for the method to be applicable, and (3) the
subtasks needed to achieve the head. The second set of
knowledge artifacts are the operators. Operators in HTN
planning have the same purpose as in STRIPS planning:
they represent action schemes. Like STRIPS operators, an
HTN operator consists of the primitive task it achieves and
its effects, indicating how the world changes when it is
applied. However, HTN operators have no preconditions
because applicability conditions are determined in the
methods.

Task-Method-Knowledge Planning

TMK planning is another form of planning that, like HTN
planning, reasons at the level of high-level tasks instead of
low-level actions. TMKs capture tasks (what an agent
does), methods (how the agent works), and knowledge (the
information used by the agent). Tasks are accomplished by
methods, which are in turn further decomposed into lower
level tasks as specified by the methods. A hierarchy is
consequentially created where the leaves of the resulting
TMK model tree are primitive tasks (not decomposable)
that explicitly specify their effects, and the non-primitive
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tasks are the internal nodes of the tree (Murdock, 2001).
The set of plans representable TMK models is a superset of
the set of plans representable as HTNs.

As with HTNs, methods are behavioral elements that
encode how a piece of computation works; the overall
function of a method is encoded in the task it addresses.
Methods specify the means of accomplishing a task, and
the applicability of a selected method to a particular task is
determined by the method’s preconditions and the current
situation. A TMK method has three elements:
preconditions that must be true in order to perform the
method, postconditions that represent the consequences of
performing it, and a reference to the first transition in a
state-transition machine that implements the method’s
behavior. A method can be viewed as a state machine,
which is convenient for describing the translation of
statements (e.g., while, for, if). TMK operators have the
same form as in STRIPS planning.

Translating TMKSs into HTNs: A Sketch

Our translator selects each input TMK method and calls a
recursive procedure that traverses its state-transition
machine implementation. This state machine can be
viewed as a sequence of statements sy, .., s,, where each
statement s; can be a complex statement consisting of its
own statements. Our current implementation translates
TMKs from TIELT (Molineaux, & Aha, 2005) into HTNs
for the SHOP HTN planner (Nau et al., 1999).

The procedure HTNs() translates a list of TMK methods
My into an equivalent collection Mt of HTN methods (Fig.
1). For every TMK method mr we call the procedure
toHTNs(), with the body of mr and a dummy task that can
always be accomplished (line 1-2). This procedure returns
the collection M of HTN methods translating the body and
a task tyoay that is accomplished by methods in M (line 3).
We construct a new method m, that decomposes t into tyoqy
(line 4). All these are collected and returned (lines 5-6).

The procedure toHTNs() is also shown in Figure 2. It
receives as input a sequence of TMKs statements E that
must be executed before a task t, (initially called with a
dummy task). This procedure translates a finite state
machine’s statements in the reverse order (s,, ..., ;) in
which they appear in the machine and each statement s is
translated from the most to the least deeply nested. If E
has only one statement sl that has no body, we create a
new task nt accomplished by a new method m that
decomposes into the translation of that statement (lines 5-
7). The task t,., is appended as the last subtask of the
method (line 8). The pair (m,nt) is then returned (line 9). If
E has only one statement sl that has a body (i.e., one or
more nested statements), then we return the result of a
recursive call (lines 3 and 4). If E has more than one
statement, these are translated in reverse order (lines 10-
14). A recursive call is in line 12. We update the task t,ex
for the next iteration to be the task t returned by the
previous recursive call (line 13). During each iteration, the
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resulting HTN methods are collected in My (line 14).
Finally the pair (My,t) is returned (line 15).

Table 1 informally summarizes how the individual
statements are translated in the algorithm toHTNs().

More compact translations are possible if HTN planners
support expressions defined in the planning language
PDDL (Long & Fox, 2002). PDDL is a STRIPS-based
planning language, a subset of which is used in the annual
Al planning competition. However, the mappings
described here are the most direct and suffice to illustrate
the equivalence between TMKs and HTNs.

Procedure HTNs(Mry)

Input: My is a list of TMKs methods

Output: A collection My of HTN methods translating M
1My < {}

2 for every TMKs method mr =(t,body) in Mt do

3 (M,thoay) € toHTNs(body,dummyTask())

4 m € newMethod(t, <tpoqy™)

6 return My

Procedure toHTNs(E, t,)

Input: E is a sequence of TMKSs statements that must be
executed before t ey

Output: A collection My of HTN methods translating E
and the task t that achieve the methods in My

1 LetE= (s, .., 5

2 if (n=1) then

3 if (s, is complex) then

4 return toHTNS (s;,thext)

5 else

6 nt € newTask()

7 m € newMethod(nt, translateAtomicStatement(s;))
8 appendMethod(m, t,cy)

9 return ({m}, nt)

10 else

11 fork €< ntoldo

12 (M,t) € toHTNS(Sy, thext)
13 thext € t

15 return (Mg,t)

Figure 1: Pseudo-code of the TMKs Translation Algorithm

TMKSs HTNs

Return (values from Use an unbound variable as a
functions) parameter in the caller’s
invocation; set same variable in
called method’s preconditions

If-then-else Use HTN method syntax

While (iteration) Use recursion

For (iteration) Change to while, use recursion

Tasks with Add preconditions to methods
preconditions, effects and the effects as new tasks
Call Subtask

Set (variable Split into a new method and
assignment) pass the variables by value

Table 1: Mapping from TMKs to HTNs
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Semantics and Complexity of TMKSs Planning

According to Erol er al. (1994) no well-established
definition of planning language expressivity exists;
expressivity has instead been defined using model-
theoretic semantics, operational semantics, and the
computational complexity of problems representable by the
planning language.

One way to demonstrate the expressive equivalence of
HTNs and TMKs is a presentation like that described in
(Erol et al., 1995), which states that the expressivity of two
languages can be compared by demonstrating that a
polynomial or Turing computable transformation exists
between them. We presented a sketch of this
transformation from TMKs to HTNs in the previous
section. This sketch allows us to assert the following:

Theorem: There exists a Turing-computable function
y from the set of TMK planning problems to the set of
HTN planning problems such that, for any TMK
planning problem P and any plan o, ¢ solves P iff o
solves the HTN planning problem y(P) = Py, under the
assumption that P and Py have the same set of
operators.

We define a TMK planning problem as a triple P = (d, 1,
T), where T = (M1,0) is a TMK process model, 7 is the
initial state, and d is the task network for which a plan is
desired. Therefore, the translation function y defines a
translation from Mt into My because d, I, and O are the
same for both P and Py.

Given the existence of a transformation, both P and o
can apply to HTNs and therefore lend their well-defined
semantics to TMKs. In particular:

e TMK Planning is Sound and Complete. This means
that if a planning problem is solvable, a correct solution
plan will be found. Informally, given a TMK planning
problem P = (d, I, T), a plan that recursively achieves all
tasks in d is called a correct plan of the planning problem
(Nau et al., 1999). Given a TMK problem P = (d, I, T),
where T = (Mr,0), the translation H = (y(Mry),0)
defines an HTN planning domain. The solution plan for
Py = (d, I, H) is a sequence of actions, each an instance
of an operator in O. This same sequence is also a
solution for P.

e TMKSs are more expressive than STRIPS. This means
that, for every Turing-computable function y from the
set of TMK planning problem instances to the set of
STRIPS planning problem instances, there is a TMK
planning problem instance P, for which either y(P) is not
defined or, if it is defined, o does not solve y(P). This
result follows from HTNs being provably more
expressive than STRIPS (Erol et al., 1994) and because
TMKSs can always be represented as equivalent HTNs.

e TMK planning is NP-Complete.
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Conclusions and Future Work

In this paper we described formal semantics for Task-
Method-Knowledge process models by constructing a
Turing-computable translation function that maps TMKSs
into equivalent HTN constructs. This allowed us to state
soundness, completeness, and complexity results for
planning with TMK process models, and prove that TMK
planning is strictly more expressive than STRIPS planning.
Furthermore, we proved that this translation function runs
in polynomial time.

In our future work, we wish to conduct experiments to
confirm the theoretical results. We wish to empirically
show that the overhead of plan generation running time
with a translated domain is linearly correlated to an
equivalent domain natively encoded in an HTN. We will
explore solving project planning problems translated from
TMKSs into HTNs. We also wish to explore our conjecture
that the translation works for other process languages.
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Introduction

Production management is a set of decisions that must
reflect a compromise between customers’ satisfaction and
production criteria such as cost, delay and quality. The
goal of production management is to ensure the continued
success of the firm. Industrial planning plays a central part
in this one. The latter can be divided into three hierarchical
decisional levels:

- the strategic level deals with long-term decisions
such as opening or closing of factories or
determining building sites. (horizon is more than
eighteen months),

- the tactical level which deals with conception of
several plans such as Master Production Schedule,
stock policy on a mid term horizon (six to eighteen
months),

- the operational level which relates to the daily
scheduling of the workshops.

Judging from the literature, the tactical planning is
composed of two plans: The Sales and Operations Planning
(S&OP) and the Master Production Schedule. The
objective of S&OP is to obtain a compromise between
sales objectives and production capacities. Therefore, it
constrains the Master Production Schedule which
determines, for each period, a balance between the capacity
constraints and the customer’s satisfaction while
minimizing the production cost.

The mathematical model

Traditionally, the tactical planning models are based
on Lot-Sizing models which determine the size of batches
in order to minimize costs (setup cost, holding cost,
production cost). Among those, there is a basic model: the
“Capacitated Lot Sizing Problem” (CLSP) which
elaborates the Master Production Schedule.

The CLSP can formally be described as a mixed-
programming model:
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T N
Min Z[Z(%Xn +hl, +;;Qi,)} (Eq.1)
t=1 [ i=1
S.C.
1,=1,,+0,-d, ie{l,.,N}, te{l..T} (Eq2)
N
> p0, <C, te{l,..T} (Eq.3)
i=1
0,<CX,, ie{l,.,N}, te{l,..,T} (Eq4)
1,.0,€N, ie{l,.,N}, te{l,..,T} (Eq5)
Y, €{0,1}, ie{l,..,N}, te{l,..,T} (Eq.6)

Parameters for the CLSP:

N Number of items.

T  Number of periods.

d;  External demand for item i at period ¢.

C, Available capacity of the machine at period .

p;  Capacity request for producing one unit of item i.
s;  Non-negative setup costs for item i.

h;  Non-negative holding costs for item i.

r;  Non-negative production costs for item i.

I,y Initial inventory for item i.

Decision variables for the CLSP:

Q;; Production quantity of item i at period .

I; Inventory of item i at the end of period 7.

X;, Binary variable which indicates whether a setup
for item i occurs at period 7 (X;=1) or not (X;=0).

(Eq.1) is the objective function: it means the sum of
the setup, the holding and the production costs
that we seek to minimize.

(Eq.2) represents the inventory balances.

(Eq.3) represents the capacity constraint.

(Eq.4) represents the setup constraint: due to these
restrictions, production of an item can only take
place if the machine is set up for that particular
item.

(Eq.5) are the non negativity conditions.

(Eq.6) the setup variables are defined as binary.
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State of art

Solving CLSP is known as NP-Hard (Bitran et al. 1982).
If positive setup times are added into the model, the
feasibility problem is NP-complete (Trigeiro and al. 1989).

In this case, the Eq 3 becomes
N

> (p0,+2X,)<C, ie{l..N}, te{l,..T} (Eq3)

i=1
where z; is the setup time to set the machine up to produce
the item i at period t.

Many researchers have developed solutions for CSLPs,
including mathematical programming (Leung et al 1997,
Eppen et al. 1987, Belvaux et al. 2001 ...), heuristic
solutions (Dogramaci et al. 1981, Trigeiro et al. 1989,
Diaby et al. 1993, Kirca et al. 1995, Degraeve et al. 2003
...), and metaheuristics (Gopalakrishnan et al. 2001,
Ozdamar et al. 2002, Karimi et al. 2005 ...)

Our contribution

Our proposal is divided into two successive axes:

- The first one concerns the computation of a
feasible solution, i.e. the design of a tactical plan
which respects the capacity constraint and the
customer’s demand, even if setup times are
considered,

- The second one is the cost optimization of the
feasible solution found before.

In each step, we propose a metaheuristic. We encode the
solution by a matrix representing a production plan. For
each metaheuristic, we define an objective function and
neighbouring systems.

Computation of a feasible solution:

So as to, we use the kangaroo algorithm, a metaheuristic
based on simulated annealing (Fleury, 1993). For this one,
we propose:

- a new quadratic objective function which models
the capacity overshooting, whose minimization
allows the smoothing of the production in order to
find a feasible plan.

- two types of neighbouring systems: the first one
allows to move a quantity period by period if and
only if the customer’s demand and -capacity
constraint are respected. The second one, changes
the current solution, neglects capacity but respects
demand.

- We use customer demand as initial solution for this
method. In most of the cases, this solution is not
feasible.
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The quadratic function is defined as:

2

T N

k (Q) = Z{M“x(o’[z piQit + Zzer \J - C, j}
t=1 i=1

where Q is the proposed planning. As Shown in Fig.1,

this latter allows the smoothing of the production.

Kk(@)=91 > K@) =28

asolution @ a second solution Q'

Figl. Effect of the objective function

An initial solution Q* is found if and only if k(Q*)=0.

The first neighbouring system is summarised by the
algorithm Algol :
Input: A solution Q
Output: A new solution Q*
1. Q*¥—Q
2. Choose i randomly in {1,..,N}.
3. Choose randomly tyg. and tyyee in {1..T}
4. Compute K, the maximal quantity of item i to be
shifted from t,,, 10 e according to proposition 1 below.
5. Set a:=0.6, choose randomly Be[0,1]
6. If p<sathen choose randomly K in {0,K,..}

else K=K,,,,.
7. O*[i,tyan] := O*[i,tyen]-K
8. O*[i, ttarget]-'= O*[i, ttarget]"'K-

Algol: Algorithm for the first neighbouring system.

«a reflects distribution of two strategies: the K=K«
strategy which tries to remove a maximum of setup time,
and the other one which allows smaller adjustments.

Propositionl: Let Q a production planning which respects
the demand. Q* is another one if and only if:
- if target<start:

N
Kmax = min {\‘(C[urgel - (p/ Qjmrger - Z_; ijrgt‘l ))/ pi J ) Qixlarr }
j=1

- if start>target:
N
K max = min Cmrger - (p J ermger - Z./ ijrgcr ) / P i’ Qixrarr ? "m_/rgigrw 1 it
Jj=1 T

The second neighbouring system uses the same algorithm
but neglects capacity in the determination of K,,,,. By the
way, we accept worse transitions in term of capacity.

69



Optimization of the feasible solution:

Concerning the optimization part, we use several

metaheuristics based on simulated annealing algorithm:

- The objective function stands for the whole
production cost for the plan as modelled in the
CLSP (Eq 1),

- The neighbouring system allows the quantity
moves period by period if and only if it respects
the customer’s demand and doesn't exceed the
capacity of the target period. Moreover, it
examines the inventory position in order to
improve the computation of a new current solution
while banishing bad tries.

The neighbouring system is based on the (Algol).
Indeed, proposition 1 ensures that if Q is feasible for the
CLSP then Q* deduced from (Agol.) will keep that
property. The major change is in the choice of . Indeed,
ais designed as a function of iteration count. Its goal is to
support the choice of K=K, initially in order to remove a
maximum of setup cost. This function converges gradually
toward 0,6 because, after many tries, we have determined
that it is a very good distribution for the two choices.
Therefore

oAiter)=0.6-1/In(1+10° xiter)

In order to measure the quality of the obtained solution,
we have implemented a lagrangian relaxation to determine
a lower bound. This one is inspired by Diaby’s works
(Diaby et al. 1993). Our relaxation deals with Capacities
constraints (Eq.3). Indeed, Chen et al. 1990 have shown
that it provides the best lower bound. The Wagner-Within
algorithm (Wagner et al. 1958) is used to solve
subproblems optimally.

Our method is tuned according to the general formula
which guides lagrangian coefficients:

N
(Z_Zk)z(thtI; +ZiXi];)_CI
ltkﬂ =Max O,Atk 4+ 7/’( i=1

Z(Z(P,Q,]; +ZiXi1t( )_Czj

t=1 \_i=l

where, Z is an upper bound of the lagrangian relaxation, Z;
is the value of objective function for the lagrangian
relaxation at iteration k: it could be updated during

algorithm proceeding. (Qf,X,) is the solution of the

lagrangian relaxation problem at iteration k and 0< y, <2.

Computational results:
Early results of testing our approach are promising. Indeed,

we have tested these different methods on small instances.
For each instance, we obtained an optimal solution. We are
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testing these different methods on Trigeiro’s instances
which are commonly used like benchmark in literature.
We chose the ones selected by Wolsey in his lotesizelib
(2000) because they appear to be among the most difficult
ones (Belvaux et al. 2000)

Tab.1 shows some results about feasibility for these
instances:

Name N. Items | N. periods | Success | N. Iter
G30 6 15 Y 14994
G53 12 15 Y 115336
G57 24 15 Y 4475
G62 6 30 Y 4265
G69 12 30 Y 10650
G72 24 30 Y 9049

Tab.1: Feasibility tests
As we say, we obtain very good results for the feasibility
problem. We also test our optimization metaheuristic on

these same instances neglecting setup time, in a first time.

Tab.2 shows some results about it:

Kangaroo
N 1
ame | Solver o T N ter | LB Gap
G30 | 37156° | 37267 | 1651164 | 369395 | 0,89 %

G53 728317 71599 | 1434315 | 70717,73 | 1,25 %

G57 1377627 | 137659 | 384215 | 13593896 | 1,27 %

G62 62058" 62545 | 1375810 | 60626,80 | 3,17 %

G69 132097° | 131839 | 1224781 | 12958997 | 1,74 %

G72 2052917 | 295209 | 910361 | 287390,70 | 2,73 %

Tab.2: Optimization Tests

We use Cplex 9.1 as solver for our tests: (*) means that
it stops with an “overflow error”. We test our metaheuristic
with 600s time limit. We calculate our Lower Bound (LB)
according to our lagrangean relaxation. We can see that we
obtain very good results even if metaheuristic time limit is
very weak. However, we can observe that higher is the
number of items, better is our Kangaroo, compared to the
Solver. To conclude, this approach is promising. We are
still testing it on all Trigeiro’s instances.

The software tool:

In order to test all these methods, we have designed a
software tool which incorporates all these techniques and
which allows us to follow, in real time, the evolution of the
metaheuristics proposed. This software allows us to import
the Trigeiro’s instances or to create ours by using a
convivial interface where we can parameterize the
production system (capacity, cost ...) and the customer’s
demand.
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The main part of it is the optimization tool in which are
implemented all the optimization methods seen before. On
the GUI, we can follow the metaheuristic behavior, the gap
of the best solution found (with the lower bound
determinated by our lagrangian relaxation), and the best
plan found, at any time of the optimization.

Our prospect:

We have proposed a software tool for the deterministic
CLSP. However, within the framework of industrial
planning, the managers work with estimated demands, thus
potentially subjected to strong fluctuations. Therefore, we
wish to extend our research by taking into account the
uncertainty in the demand and the production capacities
(resources into breakdowns etc.) so as to incorporate a new
dimension: the robustness, in the obtained solution.
Moreover, the presented model is a single-level model
which doesn’t take into account the material requirement
planning (MRP) for the end items’ planning conception.
Moreover, it doesn’t integrate the multi-sites aspect in the
current productions systems. Therefore we are considered
multi-sites models of planning based on the lot-sizing
model: Multi Level Capacitated Lot Sizing Problem
(MLCLSP). The next step would be to propose a new
tactical planning’s model, multi-levels and multi-sites as
well as resolution approaches which could provide us a
robust production plan, under an uncertain industrial
context.
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Introduction

Many real-world planning problems involve a combination
of both time and uncertainty (Bresina et al. 2002). For in-
stance, Aberdeen et al. (2004) investigate military opera-
tions planning problems that feature concurrent durative ac-
tions, probabilistic timed effects, resource consumption, and
competing cost measures. It is the potential for such practi-
cal applications that motivates this research.

Probabilistic temporal planning combines concurrent du-
rative actions with probabilistic effects. This unification
of the disparate fields of probabilistic and temporal plan-
ning is relatively immature, and presents new challenges in
efficiently managing an increased level of expressiveness.
Some of our techniques for solving probabilistic temporal
planning problems could be applied beyond the context they
were developed in, and may prove useful in efficiently solv-
ing the simpler subproblems.

The most general probabilistic temporal planning frame-
work considered in the literature is that of Younes and Sim-
mons (2004). It is expressive enough to model generalised
semi-Markov decision processes (GSMDPs), which allow
for exogenous events, concurrency, continuous-time, and
general delay distributions. This expressiveness comes at a
cost: the solution methods proposed in (Younes & Simmons
2004) lack convergence guarantees and significantly depart
from the traditional algorithms for both probabilistic and
temporal planning. Concurrent Markov decision processes
(CoMDPs) are a much less general model that simply allows
instantaneous probabilistic actions to execute concurrently
(Guestrin, Koller, & Parr 2001; Mausam & Weld 2004). Ab-
erdeen et al. (2004) and Mausam and Weld (2005) have
extended this model by assigning actions a fixed numeric
duration. They solved the resulting probabilistic tempo-
ral planning problem by adapting existing MDP algorithms,
and have devised heuristics to help manage the exponential
blowup of the search space.

The ultimate goal of this research is to produce plan-
ners that are expressive enough to support: concurrent dura-
tive actions, probabilistic effects, metric resources, and cost
functions; while being efficient enough to solve interesting-
sized (real-world) problems.

We currently have two separate avenues of research with
the aim of achieving this goal. The first approach is to
combine a forward-chaining search with effective heuris-
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tics. We have developed a probabilistic temporal planner
called Prottle using this approach (Little, Aberdeen, &
Thiébaux 2005). Prottle uses a (deterministic) trial-
based search algorithm with a heuristic that is based on an
extension of the planning graph data structure.

Another approach to planning is the Graphplan frame-
work (Blum & Furst 1997). While Prottle makes use
of the planning graph—a data structure that originates from
this framework—it does not use the framework’s other key
features; in particular, Prottle does not use a backward
search. The Graphplan framework has previously been
successfully applied to temporal planning (concurrent dura-
tive actions) (Smith & Weld 1999), but had not been success-
fully applied to probabilistic planning (actions with prob-
abilistic effects) in its entirety. Extensions of this frame-
work for probabilistic planning had been developed (Blum
& Langford 1999), but either dispense with the techniques
that enable concurrency to be efficiently managed, or are un-
able to produce optimal contingency plans.

As a way of investigating approaches to compressing the
search space for probabilistic temporal planning, our other
avenue of research has the goal of implementing a proba-
bilistic temporal planning in the Graphplan framework.
As the issues relating to probabilistic planning had not been
adequately solved, and as a way of managing the complex-
ity, we started by developing a (concurrent) probabilistic
planner (Little & Thiébaux 2006). Paragraph, the result-
ing planner, is competitive with the state of the art, produc-
ing acyclic or cyclic plans that optionally exploit a prob-
lem’s potential for concurrency. We are confident that this
approach can be extended to the probabilistic temporal con-
text.

This paper gives a brief overview of both Prottle and
Paragraph, and concludes with remarks about our future
research intentions. For more detailed descriptions and ex-
perimental results, please refer to the respective papers (Lit-
tle, Aberdeen, & Thiébaux 2005; Little & Thiébaux 2006).

Prottle

Prottle is a probabilistic temporal planner that allows
effects, the time at which they occur, and action durations
to all be probabilistically determined. Its input language is
the temporal STRIPS fragment of PDDL2.1 (Fox & Long
2003), but extended so that effects can be probabilistic, as
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in PPDDL (Younes & Littman 2004). We also allow effects
to occur at any time within an action’s duration. The prob-
abilistic and temporal language constructs interact to allow
effect times and action durations to vary probabilistically.
For clarity, each probabilistic alternative is given a descrip-
tive label.

(:durative-action jump
:parameters (?p - person ?c - parachute)
:condition (and (at start (and (alive ?p)
(on ?p plane)
(flying plane)
(wearing ?p 2c)))
(over all (wearing ?p ?2c)))
teffect (and (at start (not (on ?p plane)))
(at end (on ?p ground))
(at 5
(probabilistic
(parachute-opened 0.9 (at 42 (standing ?p)))
(parachute-failed 0.1
(at 13 (probabilistic
(soft-landing 0.1
(at 14 (bruised 2p)))
(hard-landing 0.9
(at 14 (not (alive ?p)))))))))))

Figure 1: An example of an action to jump out of a plane.

Figure 1 shows an example action that represents a per-
son jumping out of a plane with a parachute. After 5
units of time, the person makes an attempt to open the
parachute. The case where this is successful has the label
parachute—-opened, and will occur 90% of the time; the
person will gently glide to safety, eventually landing at time
42. However, if the parachute fails to open, then the per-
son’s survival becomes dependent on where they land. The
landing site is apparent at time 13, with a 10% chance of it
being soft enough for the person to survive. Alive or dead,
the person then lands at time 14, 28 units of time sooner
than if the parachute had opened. But regardless of the out-
come, or how long it takes to achieve, the action ends with
the person’s body on the ground.

Prottle’s search space is defined in terms of an
AND/OR graph. In the interpretation that we use, an AND
node represents a chance, and an OR node a choice. We
associate choice nodes with the selection of actions, and
chance nodes with the probabilistic event alternatives.

Each node is used in one of two different ways: for selec-
tion or advancement. This is similar to what some tempo-
ral planners do, where states are partitioned between those
that represent action selection, and those that represent time
advancement (Bacchus & Ady 2001). This sort of optimisa-
tion allows forward-chaining planners to be better guided by
heuristics, as action sets are structured into linear sequences.

The rules for node succession are defined by Figure 2.
They can be summarised as: every successor of a node must
either be a selection node of the same type, or an advance-
ment node of the opposite type. Our choice of a search
space structure is intended to be used with a ‘phased’ search,
where action selection and outcome determination are kept
separate. It might seem that it would be more efficient to
have only a single selection phase, where an action’s prob-
abilistic branching is dealt with immediately after it is se-
lected, but consider what this does to the problem: we would
be assuming that an action’s outcome is known as soon as
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o advancement

choice
selection / advancement

choice N chance

selection
chance

Figure 2: A state machine for valid node orderings. Time
may only increase when traversing bold face arcs.

the action starts execution. In contrast, the phased approach
allows the time at which this knowledge is available to be
accurately represented, by deferring the branching until the
appropriate time. This issue of knowledge becomes rele-
vant when concurrency is combined with probabilistic ef-
fects. The conservative assumption — that we wait until
actions terminate — breaks down when an action’s duration
can depend on its outcome.

Using the graph structure that we have established, we
define a state of the search space as a node in an AND/OR
graph that is identified by a time, model and event queue.
The time of a state is generally the same as its predecessors,
but may increase when advancing from choice to chance
(see Figure 2). The model is the set of truth values for
each of the propositions, and the event queue is a time-
ordered list of pending events. An event can be an effect
e.g. (on ?p ground), a probabilistic event, or an action
execution condition that needs to be checked. When the time
is increased, it is to the next scheduled event time.

We associate states with both lower and upper cost
bounds. As the search space is explored, the lower bounds
will monotonically increase, the upper bounds monotoni-
cally decrease, and the actual cost is sandwiched within an
ever-narrowing interval. We say that a state’s cost has con-
verged when, for a given € > 0: U(s) — L(s) < e where
U is the upper bound and L the lower bound of state s. A
state’s cost bounds are initially determined using a planning
graph-based heuristic, and are updated by comparing its cur-
rent values with those of its successors.

In addition to a cost, we also associate each state with
a label of either solved or unsolved. A state is labelled as
solved once the benefit of further exploration is considered
negligible; for instance, once its cost has converged for a suf-
ficiently small e. The search algorithm ignores a state once
it has been labelled as solved, and confines its exploration to
the remaining unsolved states.

Prottle uses a search algorithm that combines a deter-
ministic search with the convergence and labelling optimisa-
tions used by LRTDP (Bonet & Geffner 2003). As with pre-
vious probabilistic temporal planners (Aberdeen, Thiébaux,
& Zhang 2004; Mausam & Weld 2005), this algorithm is
trial-based, and explores the search space by performing re-
peated depth-first probes starting from the initial state.

Paragraph

Paragraph is a probabilistic planner that finds contin-
gency plans that maximise the probability of reaching the
goal within a given time horizon. These solutions are op-
timal in the non-concurrent case, and optimal for a re-
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Figure 3: An action-outcome-proposition dependency graph
and search space for an example problem.

stricted model of concurrency. A detailed description of this
model—and of Paragraph in general—is given in (Little,
Aberdeen, & Thiébaux 2005).

Paragraph extends the Graphplan framework to the
probabilistic setting. To do this, it is necessary to extend
the planning graph data structure to account for uncertainty.
We do this by introducing a node for each of an action’s
possible outcomes, so that there are three different types of
nodes in the graph: proposition, action, and outcome. Ac-
tion nodes are then linked to their respective outcome nodes,
and edges representing effects link outcome nodes to propo-
sition nodes. Each persistence action has a single outcome
with a single add effect. We refer to a persistence action’s
outcome as a persistence outcome. This extension is func-
tionally equivalent to that described in (Blum & Langford
1999), except that we also adapt the planning graph’s mutex
propagation rules from the deterministic setting.

The solution extraction step of the Graphplan algo-
rithm relies on a backward search through the structure of
the planning graph. In classical planning, the goal is to find a
subset of action nodes for each level such that the respective
sequence of action sets constitutes a valid trajectory. The
search starts from the final level of the graph, and attempts
to extend partial trajectories one level at a time until a solu-
tion is found.

Paragraph uses this type of goal-regression search with
an explicit representation of the expanded search space. This
search is applied exhaustively, to find all trajectories that the
Graphplan algorithm can find. An optimal contingency
plan is formed by linking these trajectories together. This
requires some additional computation, and involves using
forward simulation through the search space to compute the
possible world states at reachable search nodes.

As observed by Blum and Langford (1999), the difficulty
with combining probabilistic planning with Graphplan-
style regression is in correctly and efficiently combining the
trajectories. Sometimes the trajectories will ‘naturally’ join
together during the regression, which happens when search
nodes share a predecessor through different ‘joint outcomes’
(sets of outcomes) of the same action set.

Unfortunately, the natural joins are not sufficient to find
all contingencies. Consider the problem shown in Fig-
ure 3, which we define as:! the propositions pl, p2 and pg;

!This problem was used by Blum and Langford (1999) to il-
lustrate the difficulty of using goal-regression for probabilistic
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so = {pl,p2}; G = {pg}; the actions al and a2; and the
outcomes ol to o4. al has precondition pl and outcomes
{01,02}; a2 has precondition p2 and outcomes {03,04}.
Both actions always delete their precondition; ol and 03
both add pg. To simplify the example, we prohibit al and
a2 from executing concurrently. The optimal plan for this
example is to execute one of the actions; if the first action
does not achieve the goal, then the other action is executed.

The backward search will correctly recognise that exe-
cuting al-ol or a2-03 will achieve the goal, but it fails to
realise that al-02,a2-03 and a2-04,al-ol are also valid
trajectories. The longer trajectories are not discovered be-
cause they contain a ‘redundant’ first step; there is no way
of relating the effect of 02 and the precondition of a2, or the
effect of 04 with the precondition of al. While these undis-
covered trajectories are not the most desirable execution se-
quences, they are necessary for an optimal contingency plan.
In classical planning, it is actually a good thing that trajec-
tories with this type of redundancy cannot be discovered, as
redundant steps only hinder the search for a single shortest
trajectory. Identifying the missing trajectories requires some
additional computation beyond the goal regression search.
We refer to trajectories that can be found using unadorned
goal regression as natural trajectories.

The solution we have developed is based on constructing
all ‘non-redundant’ contingency plans by linking together
the trajectories that goal regression is able to find. This is
sufficient to find an optimal solution, as there always exists
at least one non-redundant optimal plan. Paragraph com-
bines pairs of trajectories by linking a node in one trajectory
to a node in the other. This can be done when a possible
world state of the earlier node has a resulting world state
that subsumes the goal set of the later node.

A detailed description of Paragraph’s acyclic search
algorithm follows.”? The first step is to generate a plan-
ning graph from the problem specification. This graph is
expanded until all goal propositions are present and not mu-
tex with each other, or until the graph levels off to prove that
no solution exists. Assuming the former case, a depth-first
goal regression search is performed from a goal node for the
graph’s final level. This search exhaustively finds all natu-
ral trajectories from the initial conditions to the goal. Once
this search has completed, the possible world states for each
trajectory node are computed by forward-propagation from
time 0, and the node/state costs are updated by backward-
propagation from the goal node. Potential trajectory joins
are detected each time a new node is encountered during
the backward search, and each time a new world state is
computed during the forward state propagation. Unless a
termination condition has been met, the planning graph is
then expanded by a single level, and the backward search is
performed from a new goal node that is added to the exist-
ing search space. This alternation between backward search,
state simulation, cost propagation, and graph expansion con-
tinues until a termination condition is met. An optimal con-

planning, and to explain their preference of a forward search in

PGraphplan.
2We have another algorithm for extracting cyclic solutions.

Doctoral Consortium



[ Horizon | PRTTL Time [ NA-PG Time [ Cost |

10 14.0 0.23 0.728
15 21.6 0.73 0.607
20 25.1 12.5 0.486
25 36.0 52.2 0.429
30 40.6 103 0.429
(a) g-tire
[ Horizon | PRTTL Time [ CA-PG Time | PRTTL Cost [ CA-PG Cost
5 4.38 0.08 0.272 0.204
6 14.9 0.13 0.204 0.193
7 168 0.26 0.178 0.156
8 554 0.71 0.151 0.149
15 — 613 - 0.078
(b) maze

tingency plan is then extracted from the search space by
traversing the space in the forward direction using a greedy
selection policy.

Example Results

We give a sample of our experimental results for Prottle
and Paragraph. For more detailed comparative re-
sults, see (Little & Thiébaux 2006). Additional results for
Prottle can be found in (Little, Aberdeen, & Thiébaux
2005). Prottle and Paragraph are implemented in
Common Lisp, and were both compiled using CMUCL ver-
sion 19c. These experiments were performed on a machine
with a 3.2 GHz Intel processor and 2 GB of RAM.

Figure shows comparative results for two problems, g-
tire and maze. Their PDDL definitions are available at nttp:
//rsise.anu.edu.au/~thiebaux/benchmarks/pddl/. The plan-
ner configurations used in these experiments are: Prottle
with € = 0 and its cost-based planning graph heuristic
(PRTTL), and Paragraph with its acyclic search using ei-
ther the restricted concurrency model (CA-PG) or no con-
currency (NA-PG).

The objective of the g-tire problem is to move a vehicle
from one location to another, where each time the vehicle
moves there is a chance of it getting a flat tire. There are
spare tires at some of the locations, and these can be used
to replace flat tires. This problem is not concurrent. The
results compare Prottle to Paragraph’s acyclic search;
Paragraph is faster for the earlier horizons, but Prottle
scales better.

The maze problem involves a number of connected
rooms and doors, some of which are locked and require
a specific key to open. This problem has some potential
for concurrency, although mostly of the type not allowed in
composite contingency plans. None of the planner configu-
rations fully expoit it. Paragraph scales much better than
Prottle this time.

We have found that Paragraph usually out-performs
Prottle. Paragraph has the best comparative perfor-
mance on problems with a high forward branching factor
and relatively few paths to the goal.

Conclusion and Future Work

In Paragraph and Prottle, we have made significant
progress towards our goal of producing an efficient planner
that can deal with all of: concurrent durative actions, proba-
bilistic effects, metric resources, and cost functions. We be-
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lieve that both planning approaches show promise, and have
a strong potential for future improvement.

The most important future improvements for Prottle
include: reducing the implementation’s memory usage, de-
vising ways of efficiently extracting a greater amount of
heuristic information from the planning graph, and adding
support for metric resources and cost functions. Another
intriguing possibility is extending Prottle’s effect model
(as a decision tree) to the more general graph. This might be
an effective way of modelling exogenous processes.

We have many ideas for improving Paragraph’s per-
formance, in particular by adapting optimisations developed
for the Graphplan framework in the deterministic setting.
For example, we have observed that a small amount of con-
trol knowledge in the form of mutex invariants can make
a substantial impact on efficiency. This suggests that there
would also be a benefit in investigating ways of strengthen-
ing the planning graph’s mutex reasoning and in incorpo-
rating explanation-based learning. But the most important
future direction of this research is extending Paragraph
to the probabilistic temporal setting, which will allow us to
compare our two approaches in the context of probabilistic
temporal planning.
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Abstract

We investigate the problem of temporal planning with con-
current actions having stochastic durations, especially in the
context of extended-state-space based planners. The problem
is challenging because stochastic durations lead to an explo-
sion in the space of possible decision-epochs, which exacer-
bates the familiar challenge of growth in executable action
combinations caused by concurrency. We present various ob-
servations and insights into different variations of this prob-
lem that form the basis of our future research.

Introduction

Recent progress in temporal planning (JAIR Special Issue
2003) raises hopes that this technology may soon apply to a
wide range of real-world problems. However, concurrent ac-
tions with stochastic durations characterise many real-world
domains. While both concurrency and duration uncertainty
have independently received some attention by planning re-
searchers, very few systems have addressed them in concert,
and all of these systems have used an extended-state-space
method (as opposed to a constraint-posting approach). In
this paper we step back from specific algorithms and analyse
the broader problem of concurrent temporal planning with
actions having stochastic durations, especially in the context
of extended-state-space planners.

We find that the problem is challenging in novel ways and
opens interesting avenues for future research. The stochas-
tic durations lead to an explosion in the space of possible
decision-epochs, which exacerbates the familiar challenge
of growth in executable action combinations caused by con-
currency. The rate of decision-epoch growth increases with
greater expressiveness in the action language, and we char-
acterise the challenges along several dimensions, e.g., the
possible times for which action preconditions and effects
may be specified, duration distributions of actions.

Expressiveness of Action Models

The action models handled by different temporal planners
vary in complexity. Figure 1 lists different representations
along two dimensions (ignoring continuous change). The
simplest temporal model is used in TGP (Smith & Weld
1999). TGP-style actions require preconditions to be true
throughout execution; the effects are guaranteed to be true
only after termination; and actions may not execute concur-
rently if they clobber each other’s preconditions or effects.
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[ [ Simple [ Boundary [Metric]
Deterministic duration TGP PDDLs 1 Zeno
Prob. but independent || Prob. TGP | Prob. PDDL> 1

Joint distrib: dur xeffects Prottle

Figure 1: Action models for temporal planning (ignoring continu-
ous change). The horizontal axis varies the times at which precon-
ditions and effects may be specified. The vertical axis varies the
uncertainty in effects and its correlations with durations.

Along the horizontal axis, we vary the temporal ex-
pressiveness in the precondition and effect representations.
PDDLs ; (Fox & Long 2003) is more expressive than TGP’s
representation as it can represent preconditions that are re-
quired to be true just at start, over whole action execution
or just at the end. Where PDDL, ; allows effects to ap-
pear only at boundaries, Zeno’s representation (Penberthy
& Weld 1994) allows effects (preconditions) to appear at ar-
bitrary intermediate points (and intervals).

Along the vertical axis, we vary the representation of un-
certainty in the model. PDDL; ; doesn’t support probabilis-
tic action effects or durations. “Probabilistic PDDLs ;" ex-
tends PDDLs ; along this direction, associating a distribu-
tion with each action duration; the distribution for durations
is independent of that for effects. “Probabilistic TGP ex-
tends the TGP action representation similarly. Even more
expressive representations may use a single joint distribu-
tion — enabling action durations that are correlated with ef-
fects. Indeed, the representation language of Prottle (Little,
Aberdeen, & Thiebaux 2005) contains all these features: ef-
fects at intermediate points, action durations correlated with
probabilistic effects. Tempastic (Younes & Simmons 2004)
uses probabilistic TGP-style actions, but because it also sup-
ports exogenous events, it is at least as expressive as Prottle.
The blank entries in Figure 1 denote action languages that
have not yet been discussed in the literature.

Planning with TGP-style Actions

We first study TGP-style actions in the context of uncertain
durations (Smith & Weld 1999). TGP-style actions require
preconditions to be true throughout execution; the effects
are guaranteed to be true only after termination; and actions
may not execute concurrently if they clobber each other’s
preconditions or effects.

We find that planning, even with these simplified action
models, suffers significant computational blowup. All the
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Figure 2: Planning with expected durations leads to a sub-optimal
solution.

examples in this section apply regardless of whether effects
are deterministic or stochastic. We investigate extensions to
richer representations in the next sections.

We focus on problems whose objective is to achieve a goal
state, while minimising total expected time (make-span), but
our observations apply to cost functions that combine make-
span and resource usage. This raises the question of when
a goal counts as achieved. We require that all executing ac-
tions terminate before the goal is considered achieved.

A naive way to solve our problem is by ignoring duration
distributions. We can assign each action a constant dura-
tion equal to the mean of its distribution, and then apply a
deterministic-duration planner such as that of Mausam and
Weld (2005). Unfortunately, this method may not produce
an optimal policy, as the following example illustrates.
Example: Consider the planning domain in Figure 2, in
which the goal can be reached in two independent ways —
executing the plan (ag; a1), Le., ag followed by a;, or the
plan (bg;b1). Let ag, a; and by have constant durations 3,
1, and 2 respectively. Let by have a uniform distribution
between lengths 1, 2 and 3. It is clear that if we disregard
bo’s duration distribution and replace it by the mean 2, then
both these plans have an expected cost of 4. However, the
truly optimal plan has duration 3.67 — start both ag and by;
if by finishes at time 1 (prob. 0.33) then start b, else (prob.
0.67) wait until ag finishes and execute a; to reach the goal.
In this policy, the expected cost to reach the goal is 0.33x3
+ 0.67x4 = 3.67. Thus for optimal solutions, we need to
explicitly take duration uncertainty into account. O

Definition Any time point when a new action is allowed to
start execution is called a decision epoch. A happening is
either 0 or a time when an action actually terminates.

For TGP or probabilistic TGP-style actions with deter-
ministic durations, restricting decision epochs to happenings
suffices for optimal planning (Mausam & Weld 2005). Un-
fortunately, the same is not true for problems with duration
uncertainty.

Temporal planners may be classified as having one of two
architectures: constraint-posting approaches, in which the
times of action execution are gradually constrained during
planning (e.g., Zeno and LPG (Penberthy & Weld 1994;
Gerevini & Serina 2002)), and extended-state-space meth-
ods (e.g., TP4 and SAPA (Haslum & Geffner 2001; Do &
Kambhampati 2001)). The following example has impor-
tant computational implications for state-space planners, be-
cause limiting attention to a subset of decision epochs can
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Figure 3: Intermediate decision epochs are necessary for optimal
planning.

speed these planners.

Example: Consider Figure 3, in which the goal can be
reached in two independent ways — executing both {ag, a1 }
followed by as (i.e. effects of both ag and a; are precondi-
tions to as); or by executing action by. Let aq, as, and by
have constant durations 1, 1, and 7 respectively. Suppose
that ag finishes in 2 time units with 0.5 probability and in
9 units the other half of the time. Furthermore, by is mutex
with aq, but no other pairs of actions are mutex.

In such a domain, following the first plan, i.e.,
({ao, a1}; az), gives an expected cost of 6.5 = 0.5 x 2 +
0.5 x 9 + 1. The second plan ({by)) costs 7. The optimal
solution, however, is to first start both a¢ and a; concur-
rently. When a; finishes at time 1, wait until time 2. If ag
finishes, then follow it with ay (total length 3). If at time 2,
ag doesn’t finish, start by (total length 9). The expected cost
of this policyis6 = 0.5 x 3+ 0.5 x 9. O

Notice above that the optimal policy needs to start action
by at time 2, even when there is no happening at 2. Thus
limiting the set of decision epochs to happenings does not
suffice for optimal planning with uncertain durations. It is
quite unfortunate that non-happenings are potentially nec-
essary as decision epochs, because even if one assumes that
time is discrete, there are many interior points during a long-
running action; must a planner consider them all?

Definition An action has independent duration if there is no
correlation between its probabilistic effects and its duration.
An action has monotonic continuation if the expected time
until action termination is nonincreasing during execution.

Actions without probabilistic effects have independent
duration. Actions with monotonic continuations are com-
mon, e.g., those with uniform, exponential, Gaussian, and
many other duration distributions. However, actions with
bimodal or multi-modal distributions don’t have monotonic
continuations.

We believe that if all actions have independent dura-
tion and monotonic continuation, then the set of decision
epochs may be restricted to happenings without sacrificing
optimality; this idea can be exploited to build a fast plan-
ner (Mausam & Weld 2006).

Timing Preconditions & Effects

Many domains require more flexibility concerning the times
when preconditions and effects are in force: different effects
of actions may apply at different times within the action’s
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raction a

:duration 4

:condition (over all P) (at end Q)

ceffect (at end Goal)
raction b

:duration 2

:effect (at start Q)
Figure 4: A domain to illustrate that an expressive action model
may require arbitrary decision epochs for a solution. In this exam-
ple, b needs to start at 3 units after a’s execution to reach Goal.

(at end (not P))

execution, preconditions may be required only to hold for
part of execution, and executing two actions concurrently
might lead to different results than executing them sequen-
tially. Note that the decision epoch explosion is even more
pronounced for such problems. Moreover, this not only af-
fects optimality, but also affects the completeness of the al-
gorithms. The following example with deterministic dura-
tions demonstrates this further.

Example: Consider the deterministic temporal planning
domain in Figure 4 that uses PDDLs ; notation (Fox & Long
2003). If the initial state is P=true and ()=false, then the
only way to reach Goal is to start ¢ at time 0, and b at time 3.
Clearly, no action could terminate at 3, still it is a necessary
decision epoch. O

Intuitively, two actions may require a certain relative
alignment within them to achieve the goal. This alignment
may force an action to start somewhere in the midst of the
other’s execution thus requiring a lot of decision epochs to
be considered.

This example clearly shows that additional complexity in
planning is incurred due to a more expressive action repre-
sentation. It has important repercussions on existing plan-
ners. For instance, popular planners like SAPA and Prot-
tle (Little, Aberdeen, & Thiebaux 2005) will not be able to
solve this simple problem, because they consider only a re-
stricted set of decision epochs. This shows that both these
planners are incomplete (i.e., problems may be incorrectly
deemed unsolvable). Indeed, these planners can be naively
modified by considering each time point as a decision epoch
to obtain a complete algorithm. Unfortunately, such a mod-
ification is bound to be ineffective in scaling to any reason-
able sized problem. Intelligent sampling of decision epochs
is, thus, the key to finding a good balance between the two.
Finding the exact modalities of such an algorithm is an im-
portant open research problem.

Continuous Action Durations

Previously, we assumed that an action’s possible durations
are taken from a discrete set. We now investigate the effects
of dealing directly with continuous uncertainty. Let f (t)dt
be the probability of action a; completing between times ¢ +
T and t + T + dt, if we know that action a; did not finish
until time 7. Similarly, define F¥'(¢) to be the probability
of the action finishing after time ¢t + T'.

Example: Consider the extended state (X, {(a1,T)}),
which denotes that action a; started 7" units ago in the world
state X. Let as be an applicable action that is started in this
extended state. Define M = min(Aps(a1) — T, Ap(az)),
where Aj; denotes the maximum possible duration of exe-
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cution for each action. Intuitively, M is the time by which at
least one action will complete. Also, let J,, and @,, denote
the n'" revision to the expected cost to reach a goal starting
from a state or a state-action pair respectively (Mausam &
Weld 2005). @,, may be computed as follows:

Qur1 (X, {(a1,T)}), a2) =
/ fl F2 )[t+Jn(<X1,{a2,t}>)]dt+

/O T3 [t +

Here X; and X, are world states obtained by applying
the deterministic actions a; and as respectively on X. Re-
call that J,11(s) = min, Qn+1(s,a). For a fixed point
computation of this form, we desire that .J,,;; and J,, have
the same functional form'. Going by the equation above this
seems very difficult to achieve, except perhaps for very spe-
cific action distributions in some special planning problems.
For example, if all distributions are constant or if there is no
concurrency in the domain, then these equations are easily
solvable. But for anything mildly interesting, solving these
equations is a challenging open question.

In (Xo, far, t +TH)]dt (1)

Non-Monotonic Duration Distributions

Dealing with continuous multi-modal distributions worsens
the decision epochs explosion. We illustrate this below.
Example: Consider the domain of Figure 3 except that let
action ag have a bi-modal distribution, the two modes being
uniform between 0-1 and 9-10 respectively as shown in Fig-
ure 5(a). Also let a; have a very small duration. Figure 5(b)
shows the expected remaining termination times if a¢ termi-
nates at time 10. Notice that due to bi-modality, this time
increases between 0 and 1. The expected time to reach the
goal using plan ({ag, a1 };asz) is shown in the third graph.

Now suppose that, we have started {ag, a1 }, and we need
to choose the next decision epoch. It is easy to see that the
optimal decision epoch could be any point between 0 and 1
and would depend on the alternative routes to the goal. E.g.,
if duration of b is 7.75, then the optimal time-point to start
the alternative route is 0.5 (right after the expected time to
reach the goal using first plan exceeds 7.75). O

We have shown that the choice of decision epochs de-
pends on the expected durations of the alternative routes.
But these values are not known in advance, in fact these are
the ones being calculated in the planning phase. Therefore,
choosing decision epochs ahead of time does not seem pos-
sible. This makes the optimal continuous multi-modal dis-
tribution planning problem mostly intractable for any rea-
sonable sized problem.

Correlated Durations and Effects

‘When actions’ durations are correlated with the effects, then
failure to terminate provides additional information regard-
ing an action’s effects. For example, non-termination at a

!This idea has been exploited in order to plan with continuous
resources (Feng et al. 2004).
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Figure 5: If durations are continuous (real-valued) rather than discrete, there may be an infinite number of potentially important decision
epochs. In this domain, a crucial decision epoch could be required at any time in (0, 1] — depending on the length of possible alternate plans.

point may change the probability of the action’s eventual ef-
fects, and this may prompt new actions to be started. Thus,
these points need to be considered for decision epochs, and
cannot be omitted, even with TGP-style actions.

Notion of Goal Satisfaction

Different problems may require slightly different notions of
when a goal is reached. For example, we have assumed thus
far that a goal is not “officially achieved” until all executed
actions have terminated. Alternatively, one might consider a
goal to be achieved if a satisfactory world state is reached,
even though some actions may be in the midst of execution.
There are intermediate possibilities in which a goal requires
some specific actions to necessarily end.

Interruptible Actions

We have assumed that, once started, an action cannot be ter-
minated. However, a richer model may allow preemptions,
as well as the continuation of an interrupted action. The
problems in which all actions could be interrupted at will
have a significantly different flavour. To a large extent, plan-
ning with such actions is similar to finding different concur-
rent paths to the goal and starting all of them together, since
one can always interrupt all the executing paths as soon as
the goal is reached. For instance, example in Figure 3 no
longer holds, since by can be started at time 1, and later ter-
minated as needed to shorten the make-span.

Conclusions

This paper investigates planning problems with concurrent
actions having stochastic durations, focussed primarily on
extended-state-space planners. We identify the explosion in
the number of decision epochs as the main cause of com-
putational blowup. No longer can a planner limit action-
initiation times to points when a different action has ter-
minated. The rate of decision-epoch growth increases with
greater expressiveness in the action language, and we char-
acterise the challenges along several dimensions.

Even with simple probabilistic TGP-style actions, many
more decision epochs must be considered to achieve opti-
mality. However, if all durations are unimodal and uncor-
related with effects, we conjecture that one can bound the
decision epochs in terms of times of action terminations.

We show that for PDDL, ; and richer action represen-
tations, the currently employed extended state space based
methods are incomplete, and the straightforward ways to en-
sure completeness are highly inefficient. Developing an al-
gorithm that achieves the best of both worlds is an important
research question.
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Additionally, we discuss the challenges posed by contin-
uous time, observing that techniques employing piecewise
constant/linear representations, which are popular in dealing
with functions involving continuous variables, may be inef-
fective for our problem. These techniques rely on the same
functional forms for successive approximations of the value
function — and this does not hold in our case. Other potent
directions for future research include multi-modal distribu-
tions, interruptibility, and correlated durations and effects.
We develop algorithms to handle some of these issues in
(Mausam & Weld 20006).
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Abstract

In this extended abstract, | present a brief overview of sev-
eral proposed extensions to the field of constraint-based tem-
poral reasoning. Combined, these extensions allow one to
reason efficiently and simultaneously about overconstrained
problems, preferences, finite-domain constraints, and uncer-
tain situations within the context of Temporal CSPs. | also de-
scribe a particularly exciting application of these techniques
to an areaof research outside the usual scope of temporal rea-
soning.

Introduction

In the field of artificial intelligence, a great deal of effort
has been extended toward improving existing methods for
temporal constraint satisfaction. Temporal Constraint Sat-
isfaction Problems (TCSPs) (Dechter et al. 1991) are espe-
cially suited to express constraints regarding the time, or-
der, and duration of events, and as a result, it is common
to find TCSPs applied in problems relating to planning and
scheduling. Recent work has begun to extend the TCSP
to handle uncontrollable events (Vida & Fargier 1999;
Morris & Muscettola 2005; Venable & Yorke-Smith 2005)
and preferences (Khatib et al. 2001; Peintner & Pollack
2004).

However, there are certain situations where existing tem-
pora representations and reasoning systems remain inade-
guate. First, it may be the case that a given TCSP is over-
constrained, and thus admits no solution. If one instead de-
sires a partial solution, where as many constraints can be
satisfied as possible, traditional DTP solving algorithms are
insufficient. Second, there are some scenarios in which the
congtraints of a given CSP contain a mixture of both finite-
domain and temporal constraints. The problem of construct-
ing such hybrid representations and a gorithms has, until re-
cently, been largely overlooked. Finaly, there may be cases
where the constraints of the problem are themselves uncer-
tain. When such decisionslie outside the control of the con-
straint engine, it may be valuable to model the manner in
which this information becomes known in an online envi-
ronment, or to efficiently precompute a set of potential solu-
tionsin advance.

The objective of my thesis is to extend the particu-
larly expressive Disjunctive Temporal Problem (DTP) along
with traditional meta-CSP algorithms in order to cope with
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overconstrained problems, preferences, finite-domain con-
straints, and uncertain situations. To achieve these goals
while maintaining efficiency requires both the creation of
novel methods as well as the integration of well-established
techniques that have proven effective in prior literature. An
additional goal is to expand the range of applications to
which TCSPs can be applied, demonstrating their useful-
ness outside the typical planning and scheduling domains
that have been the focus of previous work.

Background

A Digunctive Temporal Problem (DTP) (Stergiou &
Koubarakis 1998) is a type of TCSP defined by a pair
(X,C), where each element X; € X designates a time
point, and each element C; € C isaconstraint of the form:

Ci1 vV Ci2 V..V Cin
wherein turn, each ¢;; is of the form:
aij < Tij — Yij < byj

with Tij,Yij € X and Qg bij € R. A solutionto aDTP
can be defined in one of two ways. The first of these is
as an object-level assignment of a numeric value to each of
the time points in X, such that all the constraints in C' are
satisfied. A second type of solution is a meta-CSP assign-
ment. Here, instead of directly considering assignments to
the time pointsin X, a meta-variable C; is created for each
congtraint in the DTP. The domain D(C;) is simply the set
{ci1, ¢ia, ..., cin }, representing the various disjuncts one can
chooseto satisfy that disjunctive constraint. A meta-CSP so-
lution is thus a selection of a single diunct for each meta-
variable such that the resulting set of inequalities is consis-
tent.

Temporal Constraint Relaxation

A significant portion of my thesis deals with the problem
of constraint relaxation in Disjunctive Temporal Problems.
In this section | describe both systematic and approximate
methods for handling overconstrained problems, and sug-
gest how these can be applied to the more interesting issue
of temporal preference optimization.
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Partially-Solve-DTP(A, U, cost, upperbound)
If (cost > upperbound) return
If (U =0)
best-solution-so-far — A
upperbound « cost
return
Endif
C; «— select-variable(U), U’ +— U — {C;}
For each disiunct ¢;; of D(C5)
A — AU {C»L — Cz‘j}
If (consistent(A"))
Partially-Solve-DTP(A’, U’, cost, upperbound)
EndIf
EndFor
A — AU{C; « €}
Partially-Solve-DTP(A’, U’, cost + 1, upperbound)

Figure 1: A PCS algorithm for DTPs

Partial Constraint Satisfaction of DTPs

Existing packages for solving DTPs, such as Epilitis
(Tsamardinos & Pollack 2003) and TSAT++ (Armando et
al. 2004), are sufficient for problems that admit one or more
consistent solutions. However, in the event that agiven DTP
is overconstrained, these solvers are unable to provide any-
thing other than a notice of failure. In some situations, one
may instead desire a partial solution, in which as many con-
straints are satisfied as possible.

My thesis work extends traditional meta-CSP-based
search algorithms in order to achieve partial constraint sat-
isfaction of DTPs (Moffitt & Pollack 2005a). To accomplish
this, the domain of each meta-variable (or constraint) in the
DTP must be implicitly augmented with an empty disunct,
labeled ‘¢’. This mechanism alows constraints to be vio-
lated explicitly during the meta-CSP search, a nuance that
sets the algorithm apart from previous applications of partial
constraint satisfaction to classical CSPs (Freuder & Wallace
1992). A solver, named Maxilitis, applies a branch-and-
bound search (outlined in Figure 1) to minimize the total
number of so-called e-relaxations.

Applying Local Search to DTPs

One drawback to the systematic algorithm is that it can be-
come rather expensive for extremely overconstrained prob-
lemsthat require alarge number of constraint violations. Al-
though Maxilitis has the anytime property (meaning that it
can be interrupted at any time to extract a suboptimal solu-
tion), one may wonder whether there are more efficient ways
of obtaining such solutions.

To address this question, my thesis work includes an ap-
plication of local search to overconstrained temporal prob-
lems (Moffitt & Pollack 2005b). In contrast to previous
work on DTPs, the approach works within a total assign-
ment space at the object-level, and thus abandons the meta-
CSP and corresponding graph-based consistency algorithms
that have been employed in prior DTP literature. This par-
ticular search space presents several interesting challenges,
such as the presence of infinitely many neighbors at each
search node.
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Revisiting Temporal Preference Optimization

One of the more active subjects in recent TCSP literature is
the problem of preferential optimization. In this line of re-
search, traditional temporal constraints (Dechter et al. 1991)
are augmented with local preference functions that express
how well a particular assignment satisfies the correspond-
ing constraint. Early versions of this research focused on
the problem of maximizing the minimum such preference
value (Khatib et al. 2003; Peintner & Pollack 2004), al-
though later developments have begun to address the more
challenging problem of utilitarian optimization (Morriset al.
2004), where the sum of the individual preference valuesis
maximized. Unfortunately, existing CSP-based methods for
this objective (Peintner & Pollack 2005) have been shown to
suffer in performance compared to more general SAT-based
approaches (Sheini et al. 2005).

My thesis work explores a new means of obtaining util-
itarian optimal solutions to Disgjunctive Tempora Problems
with Preferences (DTPPs) (Moffitt & Pollack 2006a). | de-
part from the SAT encoding and instead introduce the Val-
ued DTP (VDTP). In contrast to the traditional semiring-
based formalism (Bistarelli, Montanari, & Rossi 1997) that
annotates legal object-level tuples of a constraint with pref-
erences, the framework | develop instead assigns elementary
costs to the constraints themselves, as is commonly donein
finite-domain Valued CSP literature (Schiex et al. 1995).
While this reformulation provides no increase in expressive
power, it simplifies some of the computational difficulties
related to temporal optimization, since (as mentioned ear-
lier) search strategies for DTP solving rarely invoke object-
level assignments directly. After proving that the VDTP
can express the same set of utilitarian optimal solutions as
the DTPP with piecewise-constant preference functions, |
develop a method for achieving weighted constraint satis-
faction within the meta-CSP search space that has tradition-
ally been used to solve DTPs without preferences. This al-
lows the application of well-established strategies that have
proven effective in previous literature on both temporal rea-
soning and constraint optimization. As shown in Figure 2,
empirical results suggest that an implementation of this ap-
proach (named WeicHTWATCHER) consistently outperforms
prior DTPP solvers — including GAPD (Peintner 2005) and
the SAT-based solver ARIO (Sheini et al. 2005) — by several
orders of magnitude.

Temporal/Finite-Domain Hybrid CSPs

There are some cases where the constraints of a given prob-
lem contain a mixture of both finite-domain and temporal
components. For instance, consider the task of scheduling
a set of meetings, where each meeting must be held in one
of finitely-many locations. Temporal CSPs can quite easily
capture temporal aspects of the problem such as start and
end times, but a finite-domain network may be needed to
reason about the locations. If these separate constraint net-
works exhibit any degree of interaction (e.g., if the physical
locations of two meetings have an effect on their pairwise
temporal relationship), then some kind of hybrid approach
isrequired.

My thesis work considers the problem of constructing a
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Figure 2: Median running times for GAPD, ARIO, and
WEeiGHTWATCHER for DTPPs of varying sizes (Timeout set
at 300s)

hybrid constraint system capable of managing both finite-
domain CSPs and temporal constraints (Moffitt et al. 2005),
an endeavor that poses two formidable challenges. The first
of these is that a more flexible representation is required to
express both the individual constraint systems and their in-
teraction. The second is that a new algorithm for establish-
ing consistency of the hybrid problem is needed. In particu-
lar, | am in the process of developing a least-commitment
algorithm especially suited for cases in which the finite-
domain network islarge but relatively underconstrained.

Dealing with Uncertainty

Uncertainty is a common element in many real-world sce-
narios. Within the context of temporal reasoning, prior work
on uncertainty has focused on the presence of uncontrollable
events (Vidal & Fargier 1999; Morris & Muscettola 2005;
Venable & Yorke-Smith 2005), where the values of some
subset of time points are decided on by nature. The prob-
lem is then no longer one of consistency, but rather one of
controllability.

My thesis work examines a different dimension of uncer-
tainty; specifically, how to deal with situations in which the
congtraints of the problem are themselves uncertain. For
instance, if it is unknown whether a pair of activities must
share the same resource, there may or may not exist a non-
overlap constraint between them. Such uncertainty could
exist even if the the object-level temporal variables are them-
selvesfully controllable. Inthe presence of such uncertainty,
severa optionsare available. First, one can attempt to model
the manner in which these constraints become known in an
online environment, allowing the various notions of control-
[ability to be generalized. Second, one can alternatively rea-
son about the possible individua realizations of the prob-
lem, where each of these correspondsto asingle DTP whose
constraints are fixed. As an example, a precomputed set of
potential solutions to the original problem, known as a cov-
ering set closurein classical CSP literature (Yorke-Smith &
Gervet 2003), could be constructed. This might be done in
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asequential enumerative fashion; or, since these realizations
will likely share asignificant amount of structure, some kind
of paralelized approach may prove more efficient. Opti-
mization variants exist as well, where a single solution is
generated that maximizes the likelihood of feasibility. This
work is largely in development, and | am still in the pro-
cess of comparing my approaches to a wide body of related
literature.

An Application to Optimal Rectangle Packing

So far, we have explored ways in which temporal repre-
sentations and reasoning methods can be extended in or-
der to handle overconstrained problems, preferences, finite-
domain constraints, and uncertainty with respect to the con-
straints of the problem. While no single application has been
used exclusively to motivate these extensions, one can imag-
ine how the domains of planning and scheduling would ben-
efit most directly, asthey are popular areas to which tempo-
ral reasoning has traditionally been applied.

However, there are other problems that have attracted re-
cent interest where TCSP techniques have yet to be consid-
ered. For instance, consider the topic of rectangle packing, a
problem that has drawn attention from several diverse fields
of computer science (e.g., VLSI/CAD) in addition to some
areas of operations research. The current state-of-the-art
(Korf 2003; 2004) has cast optimal rectangle packing as a
CSPinwhich avariableis created for each rectangle, whose
legal values are the positions that rectangle could occupy
without exceeding the boundaries of the enclosing space. In
addition, there is a binary constraint between each pair of
rectangles, requiring that they do not overlap. To solve this
CSP, Korf developed a backtracking algorithm, where each
partial assignment is defined to be the fixed placement of
a subset of rectangles. By obtaining lower bounds on the
amount of wasted space at each node in the search, an algo-
rithm was constructed that is the fastest known for optimal
rectangle packing.

My thesis work addresses the problem of optimal rectan-
gle packing (Moffitt & Pollack 2006b) in away that departs
from the aforementioned search space. Specifically, | cast
the problem of optimally packing a set of rectangles with
fixed orientations as a meta-CSP, in which a meta-variable
is created for each pair of rectangles, whose values are the
four pairwise relationships (i.e., above, below, left of, right
of) that prevent that pair from overlapping. As such, com-
mitment to the exact placement of any rectangleis not estab-
lished until a consistent solution has been generated. | show
how to apply several powerful DTP-solving techniques to
this problem, and also develop a suite of new methods that
exploit both the symmetry and geometry present in this par-
ticular domain. Despite its many differences with the fixed-
placement formulation, the meta-CSP algorithm is shown to
be quite competitive in performance, as evidenced in Fig-
ure 3 on a set of benchmarks fully explained in (Moffitt &
Pollack 2006b).

Motivation for Other Extensions

The domain of rectangle packing proves to be an extremely
interesting application of not only existing TCSP methods,
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N | Opt. Dimen. [| Korf 04 | Moffitt ‘06 |

14 23 x 45 0 0
15 23 X 55 1 1
16 27 x 56 2 3
17 39 x 46 10 10
18 31 x 69 1:08 1:29
19 47 x 53 8:15 411
20 34 x 85 13:32 15:03
21 38 x 88 1:35:08 1:32:01
22 39 x 98 6:46:15 4:51:23
23 64 x 68 36:54:50 29:03:49
24 56 x 88 213:33:00 | 146:38:48

Figure 3: Experimental results for minimum-arearectangles
than contain all consecutive sguares from 1x1 upto N x N.
Runtime is reported in hours, minutes, and seconds.

but also of the other extensions proposed in this thesis. For
instance, although the current formulation cannot represent
rotatabl e rectangles, these could be handled by encoding the
rectangles’ orientations as finite-domain variables, and ex-
ploiting the hybrid representation discussed earlier. In addi-
tion, | have collaborated with researchersin VLSI to develop
the floorplan repair problem, and proposed ameansto solve
it using a variation of the e-relaxation (Moffitt et al. 2006).

I ntegration of Techniques

Within each of the extensions described in this paper, there
are a number of issues that remain to be addressed. How-
ever, one of the more challenging tasks is to combine these
extensionsinto asingle, unified framework that elegantly in-
tegrates all techniques. The development of aunified frame-
work is crucia for handling complicated real-world scenar-
ios, such as calendar management and meeting scheduling,
that require each of these extensionsto some degree. A sys
tem based on this framework will be implemented and com-
pared in both design and performance to other related recent
developments.
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I ntroduction

Finding shortest paths is a classic and fundamental
problem in theoretical computer science which has in-
fluenced a wide array of other elds. Finding stochastic
shortest paths has also been extensively studied though
it has proven harder to formalize and yield classic re-
sults. What is the right way to de ne stochastic short-
est paths, when we only know random distributions for
the edge weights? Is it shortest paths on average, or
shortest paths minimizing a combination of mean and
variance, or minimizing some other speci ed criterion?
Are they found adaptively or non-adaptively? A vari-
ety of problem variants have appeared in the literature,
and most have ended up minimizing the expected length
of paths, or a combination of expected lengths and ex-
pected costs such as bicriterion problems (Pallottino &
Scutella 1997). Adaptive formulations have prevailed,
perhaps because a non-adaptive minimization of the ex-
pected path length trivially reduces to the deterministic
shortest path problem.

Few researchers have considered optimizing a non-
linear function of the path length. Some notable
work includes that of Loui (Loui 1983) who de nes a
decision-theoretic framework, where the optimal path
maximizes the expected utility of the user for a class
of monotonically increasing utility functions. Fan et al.
(Fan, Kalaba & Moore) present an adaptive heuristic
for paths that maximize the probability of arriving on
time. Formulations of this type with nonlinear objec-
tive, though perhaps most useful in practice, have been
sparse, because the hardness of the problem arises and
accumulates from many levels: combinatorial, distribu-
tional, analytic, functional, to list a few. We elaborate
on these sources below.

We focus on stochastic shortest paths models which
can effectively factor the sources of dif culty and
whose solution draws from a variety of areas underly-
ing the problem. In addition our solutions contain tech-
niques that may be useful in solving other combinatorial
problems and more generally, a number of nonconvex
optimization problems.
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Related Work

A lot of the related work on shortest paths in stochastic
networks has focused on the notion of shortest paths in
expectation, e.g., (Bertsekas & Tsitsiklis 1991). Other
models have added costs on the edges in addition to
travel times (Chabini 2002), (Miller-Hooks & Mahmas-
sani 2000) where the costs depend on the realized travel
times and in this way can capture a measure of uncer-
tainty.

Finding the path of smallest expected length trivially
reduces to a deterministic shortest path problems and
does not take into account risk in predicting the optimal
route. Since most real world applications care about a
tradeoff between risk and expectation, we consider non-
linear objectives that capture more information about
the edge distributions. Closest to this model, Loui
(Loui 1983) considered a decision analytic framework
for optimal paths under uncertainty, however he only
studied monotone increasing cost functions and his al-
gorithm has running time O(n") in the worst case. Mir-
chandani and Soroush (Mirchandani & Soroush 1985)
extended his work to a quadratic cost function of the
path length, however their algorithm is also an exhaus-
tive search over all potentially optimal paths, and thus
exponential in the worst case.

Another branch of the stochastic shortest path liter-
ature has focused on adaptive algorithms (Fan, Kal-
aba & Moore), (Gao & Chabini 2002), (Boyan &
Mitzenmacher 2001), which compute the optimal next
edge in light of lengths or travel times already real-
ized en route to the current node. Another direction has
been to give approximations and heuristics for expected
shortest paths in stochastic networks with nonstationary
(time-varying) edge length distributions (Miller-Hooks
& Mahmassani 2000), (Fu & Rilett 1998), (Hall 1986),
to list a few. In this proposal, we only consider station-
ary edge length distributions, that do not change with
time; time-varying distributions will be the subject of
future work.
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Problem Statement

The offline stochastic shortest path problem takes as in-
put a graph and independent probability distributions
for all its edge weights. It asks for the optimal path
between a given source and a destination, which mini-
mizes the expectation of a speci ed objective function.
The term offline is used to emphasize that we seek a
nonadaptive algorithm for an optimal path, before we
observe any of the realized edge weights. When the
cost function is linear, the problem becomes equivalent
to a deterministic shortest path with edge weights equal
to the expectations of their corresponding random vari-
ables. Thus, the challenge is when the objective is non-
linear, which is also the case that most often occurs in
practical applications.

Notation. We denote the graph G = (V, E), with
|[V| = n and |E| = m. Let the source and destination
be S and T respectively. Denote the random weight
of edge e by X.. The objective functionis C' : R —
R. Strictly speaking, C'(X) is a function of the random
path length X = > X,. Thus, our problem is to solve

n;inE[C(Z X.)] (0

for paths m between the source and destination.

The meaning of a non-linear cost function of the path
length is not as intuitive as the notion of penalty for be-
ing late. Thus, we provide an equivalent formulation
of the objective function, by including the extra param-
eter ¢ for the clock time relative to a deadline at time
0. The penalty for arriving at the destination at time
tis C’(t) (t is negative for early arrivals and positive
for late arrivals). The expected cost of a path is then
fDOO f(x)C(t + x)dx where f(.) is the probability den-
sity of the length X of the path and ¢ is the departure
time. Fora xed departure time ¢, the cost of the path is
Cy(X) = C(t+X), simply a horizontal shift by ¢ units,
and the minimization of its expectation over the set of
paths is equivalent to the problem (1). When it is clear
from the context, the parameter dependence C(X) will
be suppressed and we will write C'(X). This richer
framework allows us to solve an additional problem:
what is the optimal path and the optimal departure time
t? This question is well de ned for non-monotone cost
functions with a global minimum.

We sometimes distinguish the cost functions by call-
ing C (t) the penalty function (since it explicitly speci-

es a penalty for being late), and E[C'(X)] the objective

function.

Note that we may not expect to solve the problem (1)
in full generality for several reasons.

e Combinatorial dif culty. Even in the absence of ran-
domness, when the edge weights are fully determin-
istic, a wide class of cost functions reduce to nding
the longest path in the graph, which is NP-hard and
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inapproximable within a reasonable factor (Karger,
Motwani & Ramkumar 1997).

e Distributional dif culty. The distributional assump-
tions on the edge lengths may bring a dif culty on
their own, to the extent that we cannot even com-
pute the distribution of the total length of a path
X =5 X, let alone evaluate the function E[C(X)]
and minimize it. For example, Kleinberg et al.
show that computing the distribution of the sum of n
non-identical Bernoulli random variables is #P-hard
(Kleinberg, Rabani & Tardos).

e Analytic dif culty. Even with additive edge length
distributions such as the Normal distribution, with
which we can readily compute the sum X = }_ X,
we might not be able to get a closed analytic form
of the objective function E[C(X)] = [ f(z)C(z)dx
and thus cannot optimize it ef ciently. This is a com-
mon problem in decision theory and related elds,
which therefore focus attention on conjugate pairs
of function and distribution families (more precisely,
conjugate priors), i.e., function-distribution pairs for
which the integral can be computed in a closed form
and the Expected Cost function lies in the same fam-
ily as the original Cost function C'(X). For exam-
ple, standard conjugate pairs are (Beta, Binomial)
and (Gamma, Exponential).

e Functional dif culty. Having computed the distribu-
tion of the path length X and a closed form expres-
sion for the objective function E[C(X)], we are left
with an integer optimization problem, to minimize a
function over the collection of ST-paths of graph G.
Relaxing the integer constraint, we have to optimize
the function E[C(X)] over the path polytope in R™.
The path polytope likely does not have any nice de-
scription with fewer than exponentially many linear
constraints. Thanks to the separability of a linear ob-
jective into the graph edges, the deterministic shortest
path problem has an ef cient combinatorial solution.
However, other than the linear and exponential ob-
jectives, no other cost function is separable into the
edges (Loui 1983) and thus we might not hope to nd
exact optimal solutions in the general case. In special
cases, convex and quasi-convex objective functions
may admit greedy approaches that are equivalent to
gradient descent on the path polytope, or they may
admit ef cient enumeration of a small set of candi-
date paths, which would contain the optimum. Non-
convex functions in the relaxed problem may achieve
an optimum anywhere in the path polytope, and as
there are no general ef cient methods for non-convex
programming, it might not be tractable to nd the
relaxed optimum, nor approximate the integer opti-
mum.

In addition to looking foref cient and approximation
algorithms, we would like to understand the degree of
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dif culty each factor above contributes with.

For the case of general objective, we prove hard-
ness and inapproximability results for objectives with
a global minimum. We then describe approximations
based on a combination of problem substructure and
discretization. This method applies to non-separable
objectives which have a separable term, and the solution
idea is similar to partial minimization of a multivariate
function.

We also study several speci c¢ but fundamental cost
functions together with several different distributions,
and offer hardness results, exact and approximation al-
gorithms based on a variety of techniques.
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Abstract

Even under polynomial restrictions on plan length, confor-
mant planning remains a very hard computational problem
as plan verification itself can take exponential time. This
heavy price cannot be avoided in general although in many
cases conformant plans are verifiable efficiently by means of
simple forms of disjunctive inference. We report an efficient
but incomplete planner capable of solving non-trivial prob-
lems quickly. In this work, we show that this is possible
by mapping conformant into classical problems that are then
solved by an off-the-shelf classical planner. The formulation
is sound as the classical plans obtained are all conformant, but
it is incomplete as the inverse relation does not always hold.
Atoms L/X; that represent conditional beliefs *if X; then L’
are introduced in the classical encoding and combined with
suitable actions when certain invariants are verified. Empiri-
cal results over a wide variety of problems illustrate the power
of the approach. We propose extensions to this formulation.

Introduction

Conformant planning is a form of planning where a goal is
to be achieved when the initial situation is not fully known
and actions may have non-deterministic effects (Goldman
& Boddy 1996). Conformant planning is computation-
ally harder than classical planning, as even under polyno-
mial restrictions on plan length, plan verification remains
hard (Turner 2002). This additional complexity cannot be
avoided in general. This difference in complexity explains
why it is still very easy to come up with simple and small
conformant problems that no general domain-independent
planner can solve, while the same is no longer true for clas-
sical planners. The main motivation of this work is to nar-
row this gap by developing an approach that targets ’sim-
ple’ conformant problems effectively. The approach will
not be complete but it will provide solutions to some non-
trivial conformant planning problems by translating them
intro classical planning problems(Palacios & Geffner 2006).
New problems are fed into a classical planner. The trans-
lation is sound as the classical plans are all conformant,
but it is incomplete as the converse does not always hold.
The translation scheme accommodates ‘reasoning by cases’
by means of an ’split-protect-and-merge’ strategy; namely,
atoms L /X that represent conditional beliefs *if X; then L’
are introduced in the classical encoding that are then com-
bined by suitable actions when certain invariants in the plan
are verified.
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While several effective but incomplete formulations of
conformant planning have been formulated before, like O-
approximation (Baral & Son 1997), none, as far as we know,
can represent these types of plans, while those planners
that can represent them (Cimatti, Roveri, & Bertoli 2004;
Brafman & Hoffmann 2004), are not able to compute them
except for very small problems.

Conformant Planning

For a conformant planning problem, if the number m of pos-
sible initial states s € Init is bounded and actions are de-
terministic, the conformant planning problem P with a fixed
horizon n can be mapped in the SAT problem over the for-
mula (Palacios & Geffner 2005)

N TPn) (1)

so€EInit

where if T'( P, n) is the propositional theory that encodes the
problem P with horizon n. T*°(P,n) is T'(P,n) with two
modifications: first, fluent literals L (L at time 0) are re-
placed by true/false iff L is true/false in the (complete) state
so, and second, fluent literals L;, ¢ > 0, are replaced by
fresh’ literals L0, one for each sg € Init.

Eq. 1 can be thought as expressing m ’classical planning
problems’, one for each possible initial state sg € Init, that
are coupled in the sense that they all share the same set of
actions; namely, the action variables are the only variables
shared across the different subtheories 7°°( P, n) for so €
Init.

For bounded m, the resulting class of conformant plan-
ning problems with a fixed horizon can be mapped polyno-
mially into SAT, generalizing the SAT encoding of classical
planning problems which corresponds to m = 1 (Kautz &
Selman 1996). Also, for a sufficiently large horizon, this
formulation is complete. In other words, for this interesting
class of problems, the formulation of Eq 1 takes advantage
of the reduced complexity without restricting the inferences
at all. However, expressivity and complexity, however, are
not the only problems; efficiency or control is the other. A
planner using Eq. 1 naively will not scale.

We have already proposed two approaches to optimal
classical conformant planning based on logical formulations
(Palacios et al. 2005; Palacios & Geffner 2005). Both of
them translate the problem into CNF, and obtain a plan by
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doing logical operations and search. The logical approach
has been very importan on optimal classical planning (Kautz
& Selman 1996), where they map it into SAT. In vplan
(Palacios et al. 2005) we presented a complete optimal plan-
ner that rejects plan candidate by checking through model
counting that it does not work for some initial state. In
cf2sat (Palacios & Geffner 2005) (for conformant2sar) we
construct a new propositional formula by doing logical op-
erations as forgetting (Lin & Reiter 1994) and condition-
ing. The models of these new formula are all the possible
plan. We feed that formula into a SAT solver to obtain a
plan. Logical operations in both planners became feasible
by compiling the propositional theory into d-DNNF (Dar-
wiche 2002), a formal norm akin to OBDD. We obtained
good results on some very complex domains but failed to
scale in more simple problems.

One way to trade off completeness for efficiency in con-
formant planning results from approximating belief states
(Bonet & Geftner 2000). For example, the 0-approximation
introduced in (Baral & Son 1997) represents belief states bel
by means of two sets: the set of literals that are true in bel,
and the set of literals that are false in bel. Variables which
do not appear in either set are unknown.

Conformant planning under the 0-approximation is thus
no more complex, theoretically, than classical planning. The
problem however is that the O-approximation is strongly in-
complete, as it does not capture any non-trivial form of dis-
junctive inference. For example, given a disjunction p V ¢
and an action a that maps either p or ¢ into r, the seman-
tics will not validate a as a conformant plan for r. Indeed,
disjunctions that are not tautologies are thrown away.

Translation

The translation scheme maps a conformant planning prob-
lems P into a classical planning problems K (P). We de-
scribe the contents of K (P) in two parts, starting with the
basic core Ko(P). We assume that P is given by tuples of
the form (F, O, I, G) where F stands for the fluent symbols
in the problem, O stands for a set of actions a, I is a set
of clauses over F' defining the initial situation, and G is a
set of literals over F' defining the goal. In addition, every
action a has a precondition given by a set of fluent literals,
and a set of conditional effects C' — L where C'is a set of
fluent literals and L is a literal. We assume that actions are
all deterministic and hence that all uncertainty lies in the ini-
tial situation. We will usually refer to the conditional effects
C — L of an action a as the rules associated with a, and
sometimes write them as a : C' — L. Also, we use the ex-
pression C' A X — L to refer to rules with literal X in their
bodies. In both cases, C' may be empty. Last, when L is a
literal, we take —L to denote the complement of L.

Definition 1 (Core Translation) ' The core translation

maps the conformant problem P into the classical problem
Ko(P)=(F',O",I' G') where

"We will present a simplified subset of the transformation rules
due to lack of space. In particular, we will assume that every action
only has one rule and no preconditions. The general translation
appears in (Palacios & Geftner 2006).
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e FF={KL,K-L|L€F}

o I'={KL,-K-L|LellU{-KL ,-K-L'|L ¢1I}

e G'={KL|LeG}

e O' = O but with conditional effect a : C — L replaced
bya: KC— KLanda : -K-C — -K-L.

For any literal L in P, KL denotes its ’epistemic’ coun-
terpart in Ko(P) whose meaning is that L is known. We
write KC for C = Ly A Lo... as an abbreviation for
KLy ANKLsy...,and ~K—C for ~-K—L; A —~K-Ls....

The intuition behind the translation is simple: first, com-
plementary literals L and —L whose status is not known in
the initial situation in P are 'negated’, by mapping them into
the literals - K L and —K — L that are jointly consistent. This
mapping removes all uncertainty from K (P). In addition,
to ensure soundness, each conditional effect ¢ : C' — L in
P maps, not only into the ’supporting’ rule a : KC — KL
but also into the ’cancellation’ rule @ : ~-K—-C' — —-K-L
that guarantees that literal K —L is deleted (prevented to per-
sist) when action « is applied except when C' is known to be
false.

We extend the translation further so that the disjunctions
in P are taken into account in a form that is similar to the
Disjunction Elimination inference rule used in Logic

ftx,v.---vX,, XiDL,...,and X,, DL then L (2)

For this, we will create new atoms in K (P), written L/ X,
that aim to capture the 