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Preface

Despite much progress has been made in finding exact and provably optimal solutions
to scheduling problems, many hard scheduling problems are still not solved exactly and
require heuristic methods. In addition, reaching optimal solutions is in some cases
meaningless, as in practice we are often dealing with models that are rough simplifica-
tions of the working domain.

This tutorial introduces methods for solving scheduling problems that combine heuris-
tic search and constraint reasoning. Specifically, its goal is to explain how heuristic
search, in combination with constraint reasoning techniques, has emerged as a ro-
bust methodology to quickly produce good-quality solutions for a variety of schedul-
ing problems. The focus is first put on greedy algorithms based on temporal flexi-
bility heuristics and to local search approaches to scheduling optimization, including
neighborhood structures and heuristics for improving search efficiency. Secondly, some
meta-heuristics will be described, i.e., high level procedures that coordinate and com-
bine simple heuristics to find solutions that are of better quality than those found by the
simple heuristics alone. The tutorial is targeted to researchers and practitioners that
would like to use meta-heuristic techniques for solving scheduling problems. No prior
knowledge on meta-heuristics or constraint reasoning is required.

Angelo Oddi



Instructor

• Angelo Oddi is a research scientist at the Institute of Cognitive Science
and Technology of the Italian National Research Council (ISTC-CNR). He
received his Master Degree in Electronic Engineering from University of
Rome “La Sapienza” in 1993 and his PhD in Medical Computer Science
from the same university in 1997. He has been visiting scholar at the In-
telligent Coordination and Logistics Laboratory of the Robotics Institute at
Carnegie Mellon University in 1995-6. His work focuses on the application
of Artificial Intelligence techniques for scheduling, automated planning and
constraint reasoning. In particular, he has proposed several algorithms for
temporal reasoning and developed both local search and randomized ap-
proaches for schedule optimization. Regarding his professional activities,
he has published more than 40 papers, both in journals and in proceedings
of international conferences, and has a wide experience in the design of
intelligent systems for real world applications. In particular, he has been in-
volved in several projects financed by the Italian and European Space Agen-
cies (ASI/ESA) concerning the development of intelligent mission planning
support software.
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Scheduling Problems

• Scheduling problems arise in many application fields:
manufacturing, transportation, communication, project
management, etc

• Scheduling is an important tool for manufacturing and service
industries, where it can have a major impact on the productivity
of a process

• In manufacturing, the purpose of scheduling is to minimize the
production time and costs, by telling a production facility what to
make, when, with which staff, and on which equipment

• Similarly, scheduling in service industries, such as airlines and
public transport, aims to maximize the efficiency of the operation
and reduce costs

Scheduling

• A scheduling problem is generally formulated as a set of
resources (machines, channels, money, etc) and a set of
activities (or jobs) which  use  the resources. The problem is to
find a temporal assignment to all the activities of the plans which
is consistent with all the time and resource constraints

• In few words, scheduling is the “problem of allocating scarce
resources to activities over time” [Baker 74]

• Within this tutorial we mainly refer to a quite general class of
scheduling problems, the so-called Resource Constraint
Scheduling Problem with Time Windows (RCPSP/max)
[Neumann&Schwindt 97]. We also consider subclasses of
RCPSP/max
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An example of RCPSP/max
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The MCJSSP scheduling problem

H0

job1

job2

job3

job4

mk

r1

r2

resource constraints

An example of scheduling problem [Cesta Oddi&Smith 00] with four

jobs, each job has two activities; “red activities” require resource r1

and  “blue activities” require resource r2 .

c1 =2

c2 =2
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Job Shop Deadline Scheduling Problem

[30,40] [15,35]

750

870

[20,42]

[20,30]
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[15,25]

• An example of scheduling problem [Smith&Cheng 94] with two
jobs, each job has two activities.“Red activities”  require
resource r1 and “blue activities” require resource r2

• Each activity requires only one resource and at any instant a
resource can execute only one activity. The processing time is
an interval of possible values

• Between a couple of successive activities there is an interval
of temporal separation

• Each job has a ready time time and a deadline

Meta-heuristics

• Two fundamental goals in computer science are finding algorithms

with provably good run times and with provably good or optimal
solution quality

• A heuristic is an algorithm that reaches one or both of these goals

• A meta-heuristic is a solving method combining given component

procedures — usually heuristics themselves — in a hopefully
effective and efficient way

• At least two motivations for using meta-heuristics:

– Despite much progress has been made in finding exact and  provably

optimal solutions to scheduling problems, many hard scheduling

problems are still not solved exactly and require heuristic methods

– Reaching optimal solutions  is in some cases meaningless, as in

practice we are often dealing with models that are rough simplifications

of the working domain
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Different heuristic methods

• Constructive methods

– Greedy algorithms

• Deterministic priority rules

– Bounded Systematic Search

• Branch&Bound

• Limited Discrepancy Search (LDS)

– Random Sampling

• Improving methods [Blum&Roli 03]

– Local Search (trajectory-based)

• Tabu search

• Simulated Annealing

• …

– Population-based

• Ant Colonies Optimization

• Genetic Algorithms

• ….

Constraint-based reasoning

• Problem solving = reasoning with constraints
– This solving paradigm clearly separates the constraints (semantics,

pruning algorithms) from the search space exploration (branching
schemes, heuristics)

• What to solve

• How to solve

• A Constraint Satisfaction Problem (CSP) is defined as:

– A set of variables representing elementary decisions

– A set of constraints on the decision variables

• A Constraint  Optimization Problem (COP) is defined as:

– A CSP

– An objective function on the set of solutions

• A solution is un a set of elementary decisions which satisfies all
the constraints

• An optimal solution is a solution which minimize the objective
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The reference framework

PROPAGATION

± DECISION

CSP

META-HEURISTCS

• A meta-heuristic can be seen

as a combinations of basic

heuristic methods

• A basic heuristic method

applies two steps:

– A propagation (inference)
method on the set of decision

variables, which prunes a

subset of infeasible choices

– A decision method

• A single decision can:

– Add a constraint

– Retract a constraint

Contribution of the tutorial

• We define a scheduling problem as:

– a Constraint Satisfaction Problem (CSP) or

– a Constraint Optimization Problem (COP)

• We propose meta-heuristic schemas which combine basic
constructive and local search methods within a CSP reference
framework

• The definition of meta-heuristic schemas is driven by two key
concepts:

– The definition, representation and use of control knowledge to
drive the search (better if domain independent)

– The balancing between intensification and diversification:

• Intensification means to search carefully and intensively around good
solutions found in the past search

• Diversification, on the contrary, means to guide the search to
unvisited regions of the search space
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Outline
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A reference scheduling problem

• Activities

– Non-preemptive

– Constant resource usage

– Start-Time, End-Time

• Temporal constraints

– Simple Temporal Constraints (STP)
[Dechter&al 91]

• Resources constraints

– Discrete resources
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Scheduling problem: activity
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Scheduling model: constraints
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the kind:  aij ! xj - xi ! bij
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A reference scheduling problem
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A reference scheduling problem

• A set of activities A= {a1, a2,…,an}, each activity ai

– has a fixed duration dur(ai)

– requires the use of ruik units of resource rk during its execution

• A set of resource R, each resource rk has an integer capacity
ck " 1

• There are a set of temporal constraints between pairs (ai,aj):
    lbij ! st(aj)-st(ai) ! ubij

• For each time t, the total amount of resource required by the set of
activity in execution must be less or equal to ck

• A solution is an assignment to all activity start times, which
satisfies both the temporal and the resource constraints

• An optimal solution is a solution with minimal makespan
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Schedules and Solutions

• A schedule is an assignment to each activity start-time

• A time feasible schedule satisfies all the temporal constraint. Let

T be the set of all time feasible schedules

• A feasible schedule satisfies both the temporal and the resource

constraints. Let S be the set of all feasible schedules.

• An earliest start schedule (or semi-active schedule) is a feasible

schedule in which each activity is allocated in its earliest start

time.

T

S

Partial Order Schedule (POS)

• We also pursue the idea of constructing Partially Ordered
Schedule (POS) instead of fixed-time schedule

• A POS can be defined as a set of additional precedence
constraints imposed on the original problem, such that each
activity retains a set of feasible start times and each time feasible
schedule is also a feasible solution

• Algorithms to make POS schedules are described in the following
as components of meta-heuristics procedures

• Fixed-time solutions and POS are equivalent solutions, that is
exist a polynomial transformation to convert one into another

T

S

T=S
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Complexity

• Finding a feasible solutions

– NP-hard [Bartusch&al 88] when there are maximal temporal

constraints: amin ! xj - xi ! bmax

– P otherwise: amin ! xj - xi ! +#

• Finding makespan optimal solutions

– The problem is NP-hard [Garey&Johnson 79] in both cases

• The existence of maximum separation constraints makes the

problem particularly hard, intuition:

ba
[10,30]

c

28

ba
[10,30]

c

28

ba
[10,30]

d

35

ba
[10,30]

d

35

Constraint Satisfaction Problem

• An instance of CSP [Montanari 74] involves

– a set of Decision Variables X= {X1, X2, …., Xn}

– a Domain of possible values Di for each variable

– a set of Constraints C= {C1, C2, …, Cq}, such that
Cj ! D, with D=D1 " D2 " … " Dn

• A solution is an assignment of domain values to
all variables consistent with all the constraints Cj

• Given an objective function f: D # Z+, an optimal
solution is a solution which minimize f
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Constraint-based problem solving

• A solution method applies

two basic steps:

– A propagation (inference)
method on the set of decision

variables, which prunes a

subset of infeasible choices

– A decision (heuristic) method

• A solution is generated by

interleaving propagation and

decision steps

 CSP

Decision

Propagation

Two examples of decision variables

• Start times (ST)

– A decision variable is the start-time of a generic activity ai

– A value is a specific start time assignment

– A solution is an assignment to all activity start times which satisfy
both time and resource constraints

• Minimal Critical Set (MCS)

– A decision variable is a subset of activities competing for the same
resource requiring more than the resource capacity (conflict) and
such that each subset requires no more than
the available capacity

– A value is a single precedence constraints (ai,aj)

– A solution is a set of additional precedence constraints imposed on
the original problem, which admits at least one start-time solution
calculable in polynomial time
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Two examples of decision variables

Capacity = 2

A Minimal Critical Set (MCS) is a resource conflict such that each

proper subset is not a resource conflict.

ai

esti lsti

A4
A5

A6

A3
A2

A1
MCS
1

MCS
2

Set Start-time

A3
A2

A1

An algorithm for solving a CSP

Solve(CSP)

    Propagate(CSP)
    if ($ Di = %)

then Return(failure)
else if (all decision variables Xi are set)

then Return(solution)

else
    Xi & Select-decision-variable(CSP)

    v  & Choose(select-value(Di))

    set(v,Xi)
    Solve(CSP)
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Two basic components

• Given the representation of the scheduling problem as a
CSP = 'X, D, C(: decision variables X, domains D and
constraints C

• Two basic components characterize each solving
algorithm:
– Heuristics

• Variable ordering

• Value ordering

– The set of propagation functionalities to remove infeasible
elements from the domains Di . Two different kind of
constraints:

• Temporal constraints

• Discrete resource constraints

Heuristics

• Variable ordering

– Choose the most constrained variable, the variable that is difficult
to instantiate: “start with the difficult part of the problem before it get
even more difficult!”

• Choose the variables with smallest remaining domain

• Choose the variables with maximal degree in the constraint graph
representation

• Value ordering

– Choose the least constrained value, the value that leaves as
many values as possible for the remaining not instantiated
variables

• Choose the value that participates in the highest number of estimated
solutions (e.g., number of solutions can be estimated on relaxations of
the original problem)

• Choose minimal values
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Propagation

• Propagation procedures make explicit constraints
which are implicitly contained in the current solution
and prune subset of infeasible choices for the decision
variables

• In the following we briefly describe a set of procedures
to propagate temporal and resource constraints
– Temporal constraints are binary constraints among the

activities and the set of temporal constraints imposed on a
scheduling problem represents a so-called Simple Temporal
Problem (STP) [Detcher&al 91]

– Whereas resource constraints are n-ary constraints imposed
on subsets of activities. Propagation methods are able to
deduce new time bounds and/or new precedence constraints

Simple Temporal Problem (STP)

• A Simple Temporal Problem is a special case of CSP. It is a set of
n variables (time points) {tpi} with domain [lbi,ubi] and a set of
constraints {a) tpj* tpi) b}

• There is an additional time point tp0 called time origin with domain
[0,0]

• The problem is consistent when an instantiation of the variables
{tpi} exists such that satisfies all the constraints

• A time-map represents a Simple Temporal Problem

[0,0] tpi

[lbi, ubi]

[a, b]

time map

tp0

ICAPS 2006

Tutorial on Meta-heuristics for Solving Scheduling Problems 21



An example of time-map

[10,30]

[10,50]

[60,100]

[30,40]

[10,20][10,50]

[1
0,2

0]

[20,30]

[0,0]

[10,50] [30,70]

[10,20] [20,70] [30,90]

• Each tpi has domain [lbi,ubi]
• All the constraints are of the kind aij )  tpj* tpi )  bij

• The time point tp0, called time origin, has domain [0,0]

STP as a Shortest Paths Problem

• STP problem can be reduced to a shortest paths
problem on a graph Gd(V,E), where V is the set of

time points and E is the set of  labelled edges such

that:

• An STP is inconsistent iff Gd contains at least a cycle
with negative length [Dechter&al 1991].

[a,b]
tpi tpj +b

-a

tpi tpj
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Inconsistency and negative cycles

[10,30]

[10,50]
[60,100]

[30,40]
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0,2
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[10,20] [20,70] [30,90]

[1
0,1

9] Time-map

3019

-30-20
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The new constraints [10,19] makes the time-map

inconsistent, induces a negative cycle of length -1

Shortest Path Trees (SPT)
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Time-map:

Each tpi has a

domain [lbi,ubi]

Gd(V,E):
Upper bound SPT Lower bound SPT
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ubi = d0i lbi = - di0
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About the Simple Temporal Problem

• The simple temporal problem is a constraint component of many
scheduling and temporal reasoning problems

• Shortest paths [Pallottino 84] and negative cycles
[Cherkassky&Goldberg 96] analysis are sources of information for
driving the search for solving scheduling problems

• Typical procedures for managing time-maps include:

– Computation from scratch of the bounds [lbi,ubi] - include
consistency checking

– Incremental insertion and removal of temporal constraints improve
computation efficiency

– Computation of the minimal network - the tightest set of constraints
aij )  tpj * tpi)  bij which holds the same set of solutions

Incremental insertion of constraints

Q = {s}

while (Q <> nil) {
   u = Dequeue(Q)
   foreach v + out(u)

      if (d0v > d0u + wuv) {

         d0v = d0u + wuv

              pv = u

         if (d0v + dv0 < 0) exit(failure!)

      }

}

0

wuv

0

u vd0u

d0v

u
out(u)

5019

30
50

30

30

1208050

9969

30

s

20

70 100

119
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Improving consistency checking

If the node s is inserted twice in Q then the STP is inconsistent

if (d0v + dv0 < 0) exit(failure!)

if (lbi > ubi) exit(failure!)

[10,30]

[10,50]
[60,100]

[30,40]

[10,30][10,50]

[1
0,2

0]

[20,30]

[0,0]

[10,50] [30,80]

[10,20] [20,70] [30,90]

[1
0,1

9]

s

3019

-30-20

-1

70 69 68 67 …

s

Incremental removal of constraints

[10,50]

[10,50]
[60,120]

[30,50]

[10,30][10,50]

[1
0,3

0]

[20,30]

[0,0]

[10,50] [30,80]

[10,30] [20,70] [30,100]

[5
,2

0]

Upper bound SPT

3020

30
50

30

30

1208050

1007030
0

Q = {.}

while (Q <> nil) {
   u = Dequeue(Q)
   foreach v + out(u)

      if (d0v > d0u + wuv) {

         d0v = d0u + wuv

              pv = u

         if (d0v + dv0 < 0) exit(failure!)

      }

}
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Minimal Network

• For each tpi the bounds [lbi,ubi] can be calculated with Single Source
Shortest Path (SSSP) algorithms (e.g., Bellman-Ford [Cormen&al 90])

• A stronger way to deal with STP problems is to consider All-Pairs Shortest
Paths algorithms (APSP) [Cormen&al 90] in order to calculate the set of all
shortest path distances dij between each pair of time points (tpi tpj)

• Given an STP, if any constraints  a)  tpj * tpi)  b is replaced with the
constraints -dji)  tpj * tpi)  dij, the latter set of constraints is called minimal
network and represents an equivalent STP, that is a problem with the
same set of solutions of the first one.

• There are at least two advantages in using APSP Vs. SSSP algorithms:

– Performing incremental consistency checking in O(1):
if (dij + wij < 0) exit(fail!)

– Discovering in O(1) the mutual temporal position of each pair of time points (tpi,
tpj )

SSSP Vs. APSP algorithms

• Scratch propagation
– O(n.e)  Bellman-Ford

[Cormen&al 90]

– O(n.e) [Goldberg&Radzic 93]

• Incremental insertion
– O(n.e) [Cesta&Oddi 96]

– O(min(m,k.,).log(n))
[Frigioni&al 03]

• Incremental removal
– O(n.e) [Cesta&Oddi 96]

– O(e + n.logn) [Oddi 97]

– [Frigioni&al 03]

• Memory: O(n+e)

• Scratch propagation

– O(n.e + n2log(n)) Johnson

[Cormen&al 90]

• Incremental insertion

– O(n2) [Ausiello&al 91,

Cesta&Oddi 01]

– [Demetrescu&al 04]

• Incremental removal

– O(n.e + n2log(n))
[Cesta&Oddi 01]

– [Demetrescu&al 04]

• Memory: O(n2)
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Propagation: resource constraints

• Resource constraints are n-ary constraints imposed on a subset of

activities

• Under the hypothesis that we consider a reference event O, all the

synthesized (explicit) constraints can be represented with the form
a) tpj* tpi) b, in particular:

– Absolute constraints have the form a) tpi - O ) b

– Relative constraints  has the form a ) tpj * tpi ) b

– Set of constraints {a) tpj * tpi ) b} represents the relation between an

activity and a subset of activities (e.g., )

[0,h]

ck

[a,+!]

ck

[0,+!]

Propagation: resource reasoning

• Absolute time positions algorithms (ATPA) - considers the
absolute position of the activities can infer time bounds or
precedence relations, among the literature proposals:

– Time-tabling [Le Pape 94]: new time-bounds, O(n2)

– Disjunctive constraints (unary resource) [Ershler 76]: new
precedence O(n2)

– Edge-finding [Carlier&Pinson 90, Nuijten 94, Baptiste&Le Pape 96]:
new time-bounds, O(n2) and new precedence O(n3)

– Energetic reasoning [Ershler&al 91]: new time-bounds, new
precedence O(n3)

• Relative time positions algorithms (RTPA) - consider both the
absolute positions and the precedence relations among the
activities, among the literature proposals:

– Energy precedence propagation [Laborie 03]: new time-bounds,
O(n2)

– Reservoir Balance Propagation [Laborie 03]: new time-bounds,
O(n2); new precedence O(n3)
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Constructive methods: premise

• Within a meta-heuristic search schema a constructive method is
needed to generate a first input solution or used as component
procedure

• In both cases the complexity of the constructive methods must
be polynomial. A solution can be found without retraction of
previous decisions or  by performing a limited amount of search
to revise previous decisions.  In the latter case the computational
effort have to be a constant factor times the effort spent for
finding a first solution or a first dead-end

• As a consequence, when finding a feasible solution to a
scheduling problem is not a polynomial task, the constructive
method have to perform some constraint violations on the input
problem and in general the solution is only partial feasible
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Constructive methods

• A solution can be found through two modalities:

– A single path of decisions, such that at each step there are two

possibilities: relax  or not some constraints in order to take the next

decision

– Apply a search strategy to revise the previous decisions before to go

to the first modality. Mixed modalities are also possible.

• In principle to revise the previous decisions we can apply several

possible search strategies like:

– Depth First Search (DFS)

– Best First Search (BFS)

– Limited Discrepancy Search (LDS) [Harvey&Ginsberg 95]

• Within the previous schemas we can adopt different branching

schemas like:

– start(A) = est(A) or start(A) > est(A)

– A  before B or B before A

Constructive methods

• We describe four different algorithms to generate

solutions:

– A precedence posting algorithm based on the so-called profile

based approach [Cesta&al 01]

– A precedence posting algorithm to generate relaxed solutions

[Oddi&Cesta 97]

– Start-time based algorithms, inspired to the one presented in

[Le Pape 94]

– A polynomial algorithm to convert a start-time based solution

into precedence based one (Chaining) [Policella&al 04]

• Modified versions of these algorithms are also used as
component of the meta-heuristic strategies described

in the following sections
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ESTA  Algorithm

• A constraint-based algorithm for solving RCPSP/max

problem:

– temporal constraints in a STP constraint network

– resource capacity constraints

• Uses early start time resource profiles to detect
conflicts in resource usage

• Remove conflicts by posting precedence constraint

between pair of activities (aj ,aj)

The profile-based approach

Activity 2

Activity 1
Activity 2

Activity 2

Demand profile

for a resource

Conflict detection

Removing conflicts

by  leveling

cj

Activity 1

Activity 1

Peak
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A greedy algorithm

ESTA(problem, maxHorizon)

Create-CSP-representation

Post(maxHorizon)
loop

Propagate(CSP)

Compute-conflicts(CSP)

if no-conflict then Return(solution)

      else if unresolvable-conflicts then Return(fail)
                 else

        Select-conflict

        Select-precedence

        Post(precedence)

end-loop

Compute Conflicts

1. Analyze the Earliest Start Solution

2. Compute Conflicts (Peaks): there is a conflict peak on

resource rk at time t if the resource requirement of the

activities scheduled in t exceeds the resource

capacity ck of rk

3. Compute MCSs on Peaks: a Minimal Critical Set

(MCS) is a conflict such that each of its proper

subsets is not a conflict

ICAPS 2006

Tutorial on Meta-heuristics for Solving Scheduling Problems 31



Minimal Critical Set (MCS) analysis

Resource capacity = 2

A4
A5

A6

A3

A2

A1

MCS1

MCS2

(Approximate computation of MCS [authors, IJCAI-99] ) 

A Minimal Critical Set (MCS) is a resource conflict such

that each proper subset is not a resource conflict.

MCS elimination

• Variable ordering: which MCS to
resolve first
– Use estimator K  [Laborie&Ghallab 95]

to order MCSs

– “Select the MCS that is temporally
closest to an unsolvable state”

• Value ordering: how to choose the
precedence (leveling) constraint
– Use slack-based heuristics

[Smith&Cheng 93]

A3

A2

A1

MCS

A3

A2
A1

MCS
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Texture-based heuristics

• The previous proposal represent one possible choice.

Other heuristic methods might be defined, a guiding

idea might be the so-called texture-based heuristics
[Beck&Fox 00]

• A texture measurement is an analysis of the search

state to reveal problem structure

• An heuristic is based on the revealed structure in order
to find the most critical part of the current solution and

take a decision

• The texture measurement and the heuristic to take

decisions are separate

Why MCSs?

Peak 5 5
1

A1 A2 A3 A4

   Pairs of activities:
   {A1 A2} {A1 A3} {A1 A4} {A2 A3} {A2 A4} {A3 A4}

Capacity = 8

1

   MCSs:

   {A1 A2}

ICAPS 2006

Tutorial on Meta-heuristics for Solving Scheduling Problems 33



Approximate Computation of MCSs

• The number of minimal critical sets is

exponential in the general case

• Proposal: sampling them with an approximate

analysis on peaks

– Linear sampling

– Quadratic sampling

– Bounded lexicographic sampling

Linear and quadratic sampling

Peak

A1

44 33 122

A2 A3 A4 A5 A6 A7

   Linear  Sampling:
   {A1 A2}

   {A2 A3}

   {A3 A4 A5}

   {A4 A5 A6}

      Quadratic Sampling:
     {A1 A2} {A1 A3} {A1 A4}

     {A2 A3} {A2 A4}

     {A3 A4 A5} {A3 A4 A6}{A3 A4 A7}

     {A4 A5 A6} 

Resource capacity = 6

M
C

S
s
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Bounded lexicographic sampling

Peak
5

3 3 2 1 1 1

A1 A2 A3 A4 A5 A6 A7

Capacity = 7

Lexicographic order induced by the total order imposed on the peak
activities (Ai[rui] < Aj[ruj] - rui . ruj):

{A1[5], A2[3]}

{A1[5], A3 [3]}

{A1[5],A4[2],A5 [1]}

{A1[5],A4[2],A6 [1]}

{A1[5],A4[2],A7 [1]}

{A2[3],A3[3],A4 [2]}

Selected MCSs

Finding a relaxed solution

• The ESTA algorithm can be also used to find a relaxed solution
when a dead-end is found during the search

• An unsolvable MCS represents a dead-end, that is a MCS where
does not exist the possibility to post any precedence constraint to
solve the conflict

• The introduced sampling techniques can be used to analyze a
subset of unsolvable MCSs and choose one where it possible to
post a precedence constraint with the minimal amount of violation
of the temporal constraints

• When a new precedence is posted, constraints can be violated by
canceling induced negative cycles [Cherkassky&Goldberg 96,
Oddi&Cesta 97]

• Let see an example on a very small problem …
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Heuristic Resolution by Relaxation

• Insertion of the ordering constraints  (10,5) creates two negative

cycles  on Gd with length -3

• These cycles can be canceled by relaxing of 3 time units the

constraints (1,6) (deadline)  and (4,5) (separation constraint).

[0,H]

[0,87+3]

[15,25]

[0,75]

[10,50]

[20,42+3][30,40] [15,35]

[75,75]

[20,30]

[90,90]

[90,H]

3 4 5 6

1 2

108 97

A start-time based algorithm

• A solution S = ('a1 ,est1(, 'a2 ,est2(, …, 'an ,estn()

• Iteratively selects activities on the basis of the

following priority rules (value ordering): selects an
activity which has the minimal feasible esti with regard

to the current resource load profiles (uses the values

lfti to break ties)

• Uses an SSSP-based algorithm to update the
variables esti , efti , lsti , and lfti each time a new activity

is added to the current schedule S

• The algorithm branches with the rule:

– s(ai) = esti  or s(ai) > esti
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SetStartTimes algorithm

SetStartTimes(U,FS,S)

       U : unselected activities {ai1 , ai2 ,… aik }
       FS : failed choices 'ai ,esti( on the current (partial) solution S
       S : current solution ('a1 ,est1(, 'a2 ,est2(, …, 'an ,estn()

    if Propagate(U,S)
       then if (U =%)

   then Return(S)

   else if aSelectableActivityExists(U,FS)
then ai & SelectAcyivity(U,FS)

        S & S / {'ai ,esti(}
        SetStartTimes(U - {ai},FS,S)

        Pop(S)
        FS & FS / {'ai ,esti(}
        SetStartTimes(U,FS,S)

• Propagate(U): updates the variables esti , efti , lsti , and lfti.  Returns T when the current solution

  is time feasible, F otherwise
• aSelectableActivityExists(U,FS): returns T when $ai: ai + U and 'ai ,esti( 0 FS

• SelectAcyivity(U, FS): selects an activity ai + U which has the minimal feasible esti
   with regard to the current resource load profiles. Uses the values lfti to break ties
• The algorithm starts with SetStartTimes(A, %, %)

An algorithm to generate POSs

• We describe an algorithm which transforms a fixed-
times schedule into a Partially Ordered Schedule

• We remember that within a POS, each activity retains a
set of feasible start time and each time feasible
schedule is also a feasible solution

• The algorithm is described in [Policella&al 04] as a way
to  provide a basis for responding to unexpected
disruptions in a schedule and to improve its robustness
(it can be seen as a way to enforce backtracking free
solutions)

• In the following POS schedules are used as a standard
way to represent solutions within different Local Search
procedures
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An algorithm to generate POSs

• Within a POS, activities which require the same

resource units are linked via precedence constraints

into precedence chains

• Each posted constraint represents a producer-

consumer relation. Each time an activity terminates its

execution (producer), it passes its resource unit(s) on

to its successors (consumer) and execution continues
to move forward

• In this way, the resulting network of chains can be

interpreted as a flow of resource units through the

schedule

Chaining algorithm

Chaining (S)

      in: a fixed-time schedule S 

      out: a partial order schedule POS 

   for all resources rk do

 Sort the activities Ak by start-times
 while Ak$Ø do

c & Select-Consumer(Ak)

while (c needs more resource units) do
p & Select-Producer(c)

POS & POS / {(p,c)}

  Return(POS)

ICAPS 2006

5/18 Tutorial on Meta-heuristics for Solving Scheduling Problems



Chaining algorithm

C=4

C=4

Fixed-time solution

Chain-form solution

source sink

Properties of the chain-form

• The resulting partial order is a POS

• Since only simple precedence constraints already

contained in the input solution are added, the
makespan on the output solution will not be greater

than the original one

• Given a fixed-time schedule, generally it has a set of

chain-form solutions
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Two different chain-forms

C=4

C=4

source sink

Outline

• Introduction

• Basic Principles

• Meta-heuristics

– Premise

– Iterative Random Sampling

– Basic Local Search

• Tabu Search

• Iterative Flattening

– Composite strategies

• Back-Jump Tracking (BJT)

• Greedy Randomized Adaptive Search (GRASP)

• Variable Neighborhood Search (VNS)

• Iterated Local Search (ILS)

• Conclusions
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Guiding ideas

• A meta-heuristic schema combines basic constructive
and local search methods within a CSP reference
framework

• The definition of a meta-heuristic schema is driven by
two key concepts:

– The definition, representation and use of control
knowledge to drive the search

– The balancing between intensification and
diversification:

• Intensification means to search carefully and intensively
around good solutions found in the past search

• Diversification, on the contrary, means to guide the
search to unvisited regions of the search space (a
strategy for escaping from a local minima)

Guiding ideas

Search space: balancing between intensification and diversification

start

end solution

feasible solution partial solution banned solutions

by propagation 
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Iterative Random Sampling

• Iterative Random Sampling is a meta-heuristic
technique for solving combinatorial problems (both for
optimization or constraint satisfaction)

• Given a CSP formulation of the problem, the algorithm
iteratively generates solutions by a greedy random
sampling procedure

• A greedy random sampling procedure iteratively
applies the following steps:
– Propagation

– Random variable ordering

– Random value ordering

• The algorithm stops either with the best solution found
or with a failure

Iterative Random Sampling

IterativeRandomSampling(CSP)
   in: CSP = 'X, D, C(, termination conditions

   out: best solution S*
      S* & Ø

      while (a termination condition not met) do
S & GreedyRandomSampling(CSP)

UpdateBestSolution(S,S*)

GreedyRandomSampling(CSP)

    Propagate(CSP)
    if ($ Di = %) then Return(failure!)

        else if (all decision variables Xi are set) then Return(solution)

    else
Xi & RndSelectDecisionVariable(CSP)

v  & RndSelectValue(Di))

set(v,Xi)

Solve(CSP)
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Iterative Random Sampling

optimal solutionoptimal solution

banned by propagation partial or feasible solution

Iterative Random Sampling

• In the following we propose two examples:

– An Iterative Random Sampling (IRS) procedure for solving Job

Shop Scheduling Problems with maximal temporal constraints

[Oddi&Smith 97]

– IRS for RCPSP/max: an optimization problem [Cesta

Oddi&Smith 02]

• Two emerging observations

– Both the procedure use stochastic search as a means of

efficiently solving scheduling problems with deadlines and

complex metric constraints

– A key idea underlying the described approach is to

heuristically bias random choices in a dynamic fashion,

according to how (or how poor) the available search heuristics

discriminate among  several alternatives
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Job Shop Deadline Scheduling

[30,40] [15,35]

750

870

[20,42]

[20,30]
[10,50]

[15,25]

• Scheduling problem with two jobs, each job has two activities.
“Red activities”  require resource r1 and “blue activities”
require resource r2

• Each activity requires only one resource and at any instant a
resource can execute only one activity. The processing time is
an interval of possible values

• Between a couple of successive activities there is an interval
of temporal separation

• Each job has a ready time time and a deadline

JSDSP: problem definition

• A set of jobs J={j1...jn}

• A set of resources R={r1...rn}

• The execution of a jobi requires the processing of a sequence ni

activities.

• Each activity  aij in a jobi can requests only one resource and a
resource is requested only once in a job.

• Each activity aij has a time processing constraint:
lbpij) end(aij)-start(aij)) ubpij

• Between the set of activities {ai1...ain} in a jobi are posted a set of
separation constraints:

lbpij ) start(ai(k+1)) - end(aik) ) ubpij  k=1..(n-1)

• Each jobi has an associated  ready time ri and a deadline di .
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JSDSP: propagation

aj

ai

si ei

ejsj

Given a conflict (decision variables) (ai, aj),
two possible values: {aj before ai , ai before aj}

1. unsolvable conflict: d(ei,sj) < 0 and d(ej,si) < 0: no values!
2. solvable conflict:

a. d(si,ej) >= 0: {aj before ai}

b. d(ej,si) >= 0: {aj before ai}

c. d(ei,sj) >= 0 and d(ej,si) >= 0: {aj before ai , ai before aj}

On the basis of the distance d(x,y) on the

time-map, the following propagation rules

are applicable:

Random Variable and Value Ordering

•  1*2 heuristics [Cheng&Smith 94, Oddi&Smith 97]

• Heuristic-Biased Stochastic Sampling (HBSS)
[Bresina 96]
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1-2 value ordering

• This heuristic [Cheng&Smith 94] selects the conflict which can
be  resolved with  the “minimum temporal commitment” on the
current solution.

• It selects the conflict (ai,aj) with the minimun value of  the
function:

TC((ai, aj )) = min{bdij, bdji }

d(ei,sj )

S0.5
bdij =

d(ej,si )

S0.5
bdji = S = 

min{d(ei,sj),d(ej,si)}

max{d(ei,sj),d(ej,si)}

Where:

1-2 variable ordering

Random Variable ordering:

1.   w = min{TC((ai, aj ))}
2.   SC={(ai, aj ): w TC((ai, aj )) w(1+ ß)}
3.   Random select a conflict (ai, aj) in the set SC

w

w(1+ß)
SC

TC
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1-2 variable ordering

aj

ai
ai

aj

0 ! S ! 1

aj before aiai before aj

S  measures  the  “similarity”  in  the  commitment  of  the  two 

possible ways to solve a  conflict  (ai, aj )

When S=1 (0! S ! 1)  both the ordering choices make the same

temporal commitment on the current  solution

1-2 variable ordering

Value Ordering: Following the same criterion [Cheng&Smith 94]

of leaving the maximum degree of temporal flexibility, the

selection of a precedence constraint is done as follows:

• (aj before ai),   when bdij > bdji

• (ai before aj),  otherwise

aj

ai
ai

aj

aj before aiai before aj
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1-2 value ordering

Random value ordering on (ai, aj ):
• deterministic choice  U[0,1] +1  ! S;

• the opposite choice otherwise

1  (0 ! 1 ! 1) is a threshold to avoid to exchange precedence
constraint choices in conflicts with small values of similarity S

aj

ai
ai

aj

aj before aiai before aj

HBSS variable and value ordering

Variable ordering:

• Let C is the set of resolvable conflicts

• Sort the set C according to the TU values and assign and index

r=1,2,3...(rank) to its elements, so that the conflict with minimum value

has rank r =1

• Randomly select  an  element  in C,  where the probability to get a

choice with rank r is:  P(r)=Fb(r) / (Fb(1) + Fb(2)...+ Fb(c))
(Fb  is one of the following bias functions: 1/r 2, 1/r 3 or  exp(-r) )

Value ordering:

• Assign the rank r=1 to the decision proposed by the “deterministic

heuristic” proposed in Cheng & Smith AAAI-94 and the value r=2 to the

complementary decision

• Randomly select one ot the two possible choices, where the probability to

get a choice with rank r is:

    P(r)=Fb(r) / (Fb(1) + Fb(2))
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IRS for RCPSP/max

• RCPSP/max: a complex optimization problem

• ISES an iterative sampling framework

– an  heuristically guided greedy algorithm to solve

– approximate computation of  MCSs to avoid computational
burden

– use of randomization, linked to heuristic bias

• The ISES algorithm
– Basic randomized greedy strategy

– Meta-heuristic schema for optimization

• Experimental Evaluation

Randomized basic search procedure

• To expand the search and take advantage of multiple executions of the

basic greedy algorithm: we insert a random choice in the MCSs selection

• After ordering MCSs  according to estimator K,  we consider values in the
interval Kmax (1- 2) ) K(MCS) ) Kmax as equivalent.  Where 2 + [0,1] is an

acceptance band

• In this way the resolution procedure is transformed into a random search

process biased with heuristic information

MCS2

SC

A4
A5

A6

A3
A2

A1

MCS1

Kmax(1-ß)

K

Kmax
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Random MCS elimination

• Variable ordering: which MCS to resolve
first
– Use estimator K  [Laborie&Ghallab 95] to order

MCSs

– Randomly select an MCS within the set SC(2)

• Value ordering: how to choose the
precedence (leveling) constraint
– Use slack-based heuristics

[Smith&Cheng 93]

A3

A2

A1

MCS

A3

A2
A1

MCS

Multi-Pass ISES Procedure (NbrRestarts, UpperBound)

if (a solution with maxHorizon = UpperBound exists) then

repeat

Apply randomized ESTA NbrRestarts times 

Set maxHorizon to the best makespan found

until (the makespan is improved)

Return(best solution)

The ISES algorithm

mk0 UB

...
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Experimental evaluation

• From the OR repository of RCPSP/max problems we
have selected two sets of problems.

– Problem set A.  [Kolisch&al. 98].  3 sets of 270
problems each, named J10, J20 and J30, with
problems of 10, 20 and 30 activities respectively

– Problem set B.  [Schwindt 98].  It consists of 1080
problems of 100 activities

• In all experiments,

– NbrRestarts = 10.

– Acceptance Band 2 = 0.1 (i.e., MCSs within 10% of
highest ranked considered as equivalent)

– UpperBound = 5 mk0

Set A (a sample network)

J30
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Set B (a sample network)

J100

Comparing resource profiles

Set A

(J30)

Set B

(J100)

C=5

C=5
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Experimental Results on Set A
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ISES (avg)

ISES (best)

J10 J30
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(ISES with quadratic sampling)
(CPU bound 100 seconds)

Experimental Results on Set A (2)
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0,76

1,54 1,52

1,17

0

1

2
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ISES (avg)

ISES (best)

Average and best deviation (wrt B&B)Number of improved solutions (wrt B&B)

(ISES with quadratic sampling)

(CPU bound 100 seconds)
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Experimental Results on Set B

Lower bound percentage deviation
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Experimental Results on Set B (2)
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Experimental Results on Set B (3)
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ISES (best)
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Percentage of feasible solutions
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Overview

• Introduction

• Basic Principles

• Meta-heuristics

– Premise

– Iterative Random Sampling

– Basic Local Search

• Tabu Search

• Iterative Flattening

– Composite strategies

• Back-Jump Tracking (BJT)

• Greedy Randomized Adaptive Search (GRASP)

• Variable Neighborhood Search (VNS)

• Iterated Local Search (ILS)

• Conclusions
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Tabu Search: introduction

• Tabu search is a meta-heuristic approach to find a near-optimal
solution s* + S of combinatorial optimization problems

• It needs a fundamental notion called the move. A move is a
function which transforms a solution into another m: S # S

• A move m induces the so-called neighborhood structure N of a
solution s, which is a function N: S# 2S.  N(s) is the neighborhood

of s

• Tabu search starts from an initial solution s0, and at each step i
the neighborhood N(si) of a given solution is searched in order to

find a neighbor si+1 with the best value fobj(si+1)

• In order to prevent cycling, it is not allowed to turn back to the

previous visited MaxSt solutions. Where MaxSt is the max length

of the so-called tabu-list which is a queue with limited length

Tabu Search template

Tabu Search(CSP)
   in: s0, MaxSt, termination conditions
   out: best solution s*
      Tabu-list & Ø

      while (termination conditions not met) do
S & ChooseBestOf (N(s) \ Tabu-list)

UpdateBestSolution(s,s*)
Update(Tabu-list)
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Tabu Search: improving efficiency

• Generally the implementation the short time memory
mechanism as a tabu-list that contain the previous
MaxSt complete solutions is not practical for efficiency
reasons

• The most common solution is to store solutions
attributes in the Tabu-list. Attributes are usually
components of solutions, moves, or differences
between two solutions

• The set of attributes and the corresponding tabu lists
define the tabu conditions, which are used to  filter the
neighborhood of a solution and generate the allowed
set of solutions

Tabu Search: improving efficiency

• Storing attributes instead of complete solutions is much more

efficient, but it introduces a loss of information

• In fact, forbidding an attribute means assigning the tabu status to

probably more than one solution. Thus, it is possible that unvisited

solutions of good quality are excluded from the allowed set

• To overcome this problem, aspiration criteria are defined, which

allow to include a solution in the allowed set even if it is forbidden

by tabu conditions

• Aspiration criteria define the aspiration conditions that are used to

construct the allowed set

• The most commonly used aspiration criterion selects solutions

which are better than the current best one
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Two different algorithms for scheduling

• One for solving a classical optimization problem: the

Job Shop Scheduling Problem (JSSP)

• Another one for solving the Job Shop Scheduling

Problem (JSSP) with relaxable metric constraints, an

NP-hard satisfaction scheduling problems

The JSSP scheduling problem

H0

job1

job2

job3

job4

mk

r1

r2

Scheduling problem with four jobs, each job has three activities; “red

activities” require resource r1, “green activities” require resource r2 ,

and “blue activities” require resource r3

r3
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Move

0 H

Critical Path

• A move is defined as the swap of two consecutive

activities (ai,aj) on the critical path which require the

same resource

• In addition, (ai,aj) is the last pair or the first pair of

activities within the so-called critical path blocks

[Grabowsky&al 86]

Critical path and blocks

• The set of activities on the critical path can be

partitioned in a set of nb blocks B1, B2, … Bnb

• Each block Bi is a sequence of activities on the critical
path which require the same resource

• (ai,aj) is either

– the last pair or the first pair of activities within the  blocks

B2, … Bnb-1, or

– the first pair of Bnb or the last pair of B1
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Main properties of N(s)

• Properties of N(s):

– All the elements in the set N(s) are feasible solutions, that is

are represented with dag graphs

– For any processing order obtained by swapping the pair (ai,aj),
which does not hold the previous block condition, the

corresponding makespan is greater or equal to each

makespan associated to the solutions in N(s)

– If N(s) is empty, then s is an optimal processing order

• We observe that the main effect of using the additional

condition of blocks is the reduction of the size of N(s)
with great benefits in the computational efficiency

A problem with violable constraints

• A Relaxable Metric Scheduling Problem (RMSP) extends the
classical Job-Shop Scheduling Problem with the use of complex
temporal metric constraints and with the possibility of making
the distinction between relaxable and not- violable constraints

• We briefly describe a tabu-search which uses the  idea of
relaxing some temporal constraints to navigate the search
space and to find a solution where there are no violations or
only the constraints classified as relaxable are violated

• Two motivation for RMSP

– It may be the case that there is no solution which satisfies all the
original constraints, but at the same time some constraints are
relaxable and the only possible solution is to find an agreement on
the  operated violations

– In many practical applications a scheduling problem can be defined
where it is possible to relax some of the temporal constraints in
order to find a solution, even if this is not strictly desirable
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Finding a feasible solution

• Violated Solution: a solution where are relaxed violable and not-
violaable constraints

• Feasible Solution: a solution where are relaxed only violable
constraints

Violated Solutions

Feasible Solutions

An example of scheduling problem

[30,40] [15,35]

750

870

[20,42]

[20,30]
[10,50]

[15,25]

• Scheduling problem with two jobs, each job has two activities.
“Red activities”  require resource r1 and “blue activities”
require resource r2

• Each activity requires only one resource and at any instant a
resource can execute only one activity. The processing time is
an interval of possible values

• Between a couple of successive activities there is an interval
of temporal separation

• Each job has a ready time time and a deadline
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Time Map

[0,H]

[0,87]

[15,25]

[0,75]

[10,50]

[20,42][30,40] [15,35]

[45,75]

[20,30]

[65,87]

[65,H][0,0]

[30,40] [15,35]

750

[20,42]

[20,30]
[10,50]

[15,25] 870

Heuristic Resolution tion

• Insertion of the ordering constraints  (10,5) creates two negative cycles

on Gd with length -3.

• These cycles can be canceled by relaxing of 3 time units the

constraints (1,6) (deadline)  and (4,5) (separation constraint).

[0,H]

[0,87+3]

[15,25]

[0,75]

[10,50]

[20,42+3][30,40] [15,35]

[75,75]

[20,30]

[90,90]

[90,H]

3 4 5 6

1 2

108 97
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Tabu Search with STP: definition of move

• Tabu search “navigates” in the space of the violated solutions.

• The definition of move implies relaxation and restoration of temporal

constraints.

• The objective function is a linear function where the components

represent the sum of the relaxation values on specific types of constraint.

• Given a current solution, a move m on a resource r is defined as:

- a couple of activities (ai,aj ) which have to be swapped;

- a set of violations of the time constraints;

- a set of possible restorations operated after the swap.

• Previous definition does not specify methods to violate and restore

constraints, this is a matter of the specific heuristics adopted. Instead the

previous definition is quite general to be applied with the STP temporal

model.

Remarks on the definition of move

• A move m can create a circular chain of activities which induces a

time inconsistency which can be resolved only by introducing

negative durations.

• As it is proved in [Oddi&Cesta 97] to avoid the previous problem it

is sufficient to choose moves which hold the following conditions:

- (ai,aj) are consecutive on the resource r;

 - (ai,aj) are on a shortest path in the graph Gd.
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The objective function

• We assume there are two types of constraints considered in the tabu

search procedure: deadlines and separation constraints. Deadlines are

relaxable,  separation constraints are not relaxable.  A solution is feasible

if there is no violation on the separation constraints

• The objective function has two weighted components: the sum   of the

relaxation on the deadline constraints (RLXdl) and the sum on the

separation constraints between activities (RLXsp).
With the values assigned to the values 1dl and 1sp, it is possible to focus

the tabu search on a specific type of  constraints

Fobj(S)= 1dl RLXdl(S) + 1sp RLXsp(S)

Example: feasible solution after the swap

[0,H]

[0,87+3]

[15,25]

[0,75]

[10,50]

[20,42+3][30,40] [15,35]

[75,75]

[20,30]

[90,90]

[90,H]

[0,H]

[0,87]

[15,25]

[0,75+5]

[10,50]

[20,42][30,40] [15,35]

[80,80]

[20,30]

[65,87]

[80,H][0,0]
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Outline

• Introduction

• Basic Principles

• Meta-heuristics

– Premise

– Iterative Random Sampling

– Basic Local Search

• Taboo Search

• Iterative Flattening

– Composite strategies

• Back-Jump Tracking (BJT)

• Greedy Randomized Adaptive Search (GRASP)

• Variable Neighborhood Search (VNS

• Iterated Local Search (ILS)

• Conclusions

Iterative Flattening Search

• Premise

– Iterative Flattening is a iterative improvement search procedure

for solving multi-capacitated scheduling problems with makespan
minimization as the objective

– The concept of iterative flattening search is quite general and

provides a framework for designing effective procedures for

scheduling optimization

• Three different algorithms:

– iFlat - first version of Iterative Flattening [Cesta,Oddi &Smith 00]

– iFlatRelax - improvement of iFlat [Michel&Van Hentenryck, 04]

– STRand - variation of iFlat [Godard, Laborie &Nuitjen 05]
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The MCJSSP scheduling problem

H0

job1

job2

job3

job4

mk

r1

r2

resource constraints

Scheduling problem with four jobs, each job has two activities; “red

activities” require resource r1 and  “blue activities” require resource r2

c1 =2

c2 =2

Greedy strategy: example (1)

peak

peak
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Greedy strategy: example (2)

peak

peak

leveling constraint

Greedy strategy: example (3)

peak

leveling constraint
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Greedy strategy: example (4)

peak

leveling constraint

Greedy strategy: example (5)

leveling constraint
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Finding better solutions

critical path

A greedy solution

A better solution

• A Greedy solution is not necessarily optimal
• A better solution will necessarily have a shorter critical path

• Implies change to one or more constraints along critical path

Iterative Flattening

random perturbation on

the solution critical path

resource leveling (greedy algorithm)

resource

constraint

solution critical path

random removal of

a leveling constraint
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IFlat (Solution, Prem, MaxFail) {

     while (the makespan is improved within MaxFail iterations) {

Randomly retract a percentage Prem of

   leveling constraints on the solution critical

  path (removal step)

Re-apply the ESTAM to level (flatten) the new

  introduced resource conflicts (flattening step)

     }

     return(Solution);

}

The iFlat algorithm

iFlat cycle: critical path analysis

levelling

constraint

retracted

critical path

makespan
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iFlat cycle: shrinking step

peak

iFlat cycle: Flattening step

critical path

makespan
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The improved iFlat: IFlatRelax

IFlatIRelax (Solution, Prem, MaxFail, MaxRelaxations)

     while (the makespan is improved within MaxFail iterations) {

for (i = 1 to MaxRelaxations) {

Randomly retract a percentage Prem of

    leveling constraints on the solution critical

   path (removal step)

}

Re-apply the ESTAM to level (flatten) the new

  introduced resource conflicts (flattening step)

    }

    return(Solution)

 MCJSSP: experimental setting

• The benchmark set is partitioned in four subsets of 20
problems:

– Set A: (LA1-10) 100 - 225 activities;

– Set B: (LA11-20)  200 - 300 activities;

– Set C: (LA21-30) 300 - 600 activities;

– Set D: (LA31-40) 450 - 900 activities.

• IFlatIRelax is implemented in COMET on a Pentium 4
2.4 Ghz [Michel&Van Hentenryck 04]
– Prem = 20%, MaxFail = 5000

– Set A and B: NumRestarts=100

– Set C and D: NumRestarts=20 (10 in some cases)
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Makespan: "% from the best UB

0

5

10

15

20

25

30

set A set B set C set D All

ESTA

IFlat

N-Relax=2

N-Relax=4

N-Relax=6

STRand (SPOS, Prem, MaxFail)

     while (the makespan is improved within MaxFail iterations) do

- Randomly retract a percentage Prem of precedence

   constraints on the solution in POS-form (removal step)

- Make a start-time solution S (e.g., apply SetStartTime)

   (flattening step)

- Generate a new POS-form from S

- UpdateBestSolution(S*POS)

     end-while

     Return(S*POS)

A variation of iFlat: STRand
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About STRand

• The removal step is performed on a POS-form solution, such that

each precedence constraint is a candidate to be removed

• The removal is performed in one step

• The flattening algorithm is a start-time based algorithm (ESTA is

precedence constraint based)

• The new fixed-time solution is converted to a POS-form before the

next removal step

C=4

POS-form solution

source sink

Interleaving Diversification & Intensification

• Back-Jump Tracking (BJT)

• Greedy Randomized Adaptive Search (GRASP)

• Variable Neighborhood Search (VNS)

• Iterated Local Search (ILS)
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Back-Jump Tracking

• Given a local search strategy (e.g., tabu-search), BJT

works as a diversification mechanism by including a

further long-term memory mechanism to the local
search strategy (see for example [Glover 90])

• The idea: during the local search a list of search

contexts (s, state(s)) is stored in a list with max

length lmax

• Each time the basic local search is trapped in a local

minima, the search jumps to the last  context stored in

the list

• For example, for in the case of Tabu Search, a context

is given by the 3-tupla (s, N(s), tabu-list)

Back-Jump Tracking

• In [Nowicki&Smutnicki 96] the basic strategy for solving JSSP
instances (see above) is used within a BJT strategy: TSAB
algorithm

• The use of the BJT strategy gave very valuable results. TSAB is
one of the most effective compromise between quality and
computational efficiency, included scalability (problem sizes up
to 2000 activities)

L = ((sk, N(sk), TLk),…, ((s1, N(s1), TL1))

fobj

search space
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Greedy Randomized Adaptive Search

• GRASP [Festa&Resende 02] is a meta-heuristic

which combines random constructive heuristics and

local search

• The idea: the procedure iteratively composes two

phases: construction and improvement. The best

solution found is returned upon termination

• GRASP can be effective when the following
conditions are satisfied:

– The construction mechanism samples the most promising
regions of the search space

– The constructed solutions belong to basin of attractions of

different locally minimal solutions

GRASP
GRASP(CSP)
   in: CSP = 'X, D, C(, termination conditions

   out: best solution S*
      S* & Ø

      while (termination conditions not met) do
S & GreedyRandomSampling(CSP)

S* & ApplyLocalSearch(S)

UpdateBestSolution(S,S*)

GreedyRandomSampling(CSP)

    Propagate(CSP)
    if ($ Di = %) then Return(failure)

        else if (all decision variables Xi are set) then Return(solution)
    else  RCL & GenerateRestrictedCanditateSet(CSP)

Xi & RndSelectDecisionVariable(RCL)

v  & RndSelectValue(Di))

set(v,Xi)

GreedyRandomSampling(CSP)
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Variable Neighborhood Search (VNS)

• A meta-heuristic proposed in [Hansen&Mladenovic 01], the basic
idea is to apply a strategy based on dynamically changing of
neighborhood structures

• The strategy considers a set Nk (k=1 … kmax) of neighborhood
structures, given a solution s, VNS applies the following steps
until a termination conditions is met:

– k = 1

– while (k < kmax)

• A solution s’ is randomly selected in Nk(s)

• s’’ & LocalSearch(s’)

• If s” improves s then s’’ replaces s and k= k+1; otherwise k=1

• The process of changing neighborhoods in case of no
improvements corresponds to a diversification mechanism.
A “bad place” on the search landscape given by one
neighborhood could be a “good place” for another one, that is a
place where a good local minimum can be reached

Variable Neighborhood Descent

• A similar strategy to VNS is Variable Neighborhood
Descent (VND), which basically tries in sequence the

neighborhood structures Nk k=1, …, kmax until find an
improved solution or a termination condition is met

• Given a solution s, VND applies the following steps

until a termination conditions is met:

– k = 1

– while (k < kmax)

• s’’ & LocalSearch(s’)

• If s” improves s then s’’ replaces s and k= k+1; otherwise k=1
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Solving MCJSSP instances

• A variation of the VND strategy TSAB-MC is proposed in

[Oddi 98] for solving MCJSSP instances as an extension of the

algorithm TSAB proposed in [Nowicki&Smutnicki 96]

• The procedure is evaluated on 28 MCJSSP instances (see

above) taken from [Nuijten&Aarts 96] (included 3 instances of

modified JSSP from [Muth&Thompson 63])

• The algorithm produced quite comparable results to the one
presented in [Nuijten& Aarts 96]

• In the following we just give a sketch of the two different

neighborhood structures proposed

Two types of move

0
H

ri+1

Critical Path

chainj

chaini

ri

0
H

Critical Path

ri

ri+1horizontal move

vertcal move
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Iterated Local Search

fobj

search space

Iterated Local Search

Iterated Local Search(CSP)
   in: CSP = 'X, D, C(, termination conditions

   out: best solution S*
      s0 & GenerateInitialSolution(CSP)

      s* &  LocalSearch(s0)

      while (termination conditions not met) do
s’  & Perturbation(s*)
s*’ & LocalSearch(s’)
s* & UpdateBestSolution(s*,s*’)

      end-while
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Iterated Local Search

• Iterated Local Search (ILS) [Lourenco&al 02 ]  is a general meta-

heuristic schema. It applies a local search to an initial solution

until finds a local optimum; then it perturbs the solution and it

restarts the local search

• We observe the importance of the perturbation: a too small

perturbation might be unable to escape from a local minimum; on

the other hand, a too strong one would make the algorithm

similar to random restart local search

• The acceptance criterion acts as a counterbalance, as it filters

and gives feedback to the perturbation action, depending on the

characteristic of the new local minimum (new local minimum

should be closer to s than a local minimum produced by random

restart)

A variation of ISL for MCJSSPs

Iterated Local Search(MCJSSP)

   in: MCJSSP, termination conditions
   out: best solution s*

      s & GenerateInitialSolution(MCJSSP)

     while (termination conditions not  met) do

1. Apply IFlatRelax, with probability p
    returns the  last solution found with

    probability (1-p) the best solution found

2. Apply the previously described tabu search

    TSAB-MC with probability p returns the last

    solution found, with probability (1- p) the one

3. UpdateBestSolution(s*)

      end-while
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Comparing meta-heuristic strategies

• MCJSSP benchmarks -
sets A, B, C and D (80
instances)

• ,UB% with respect to sets
A, B, C and D

• Three different meta-
heuristics
– iFlatRelax

– ILS

– STRand
-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

Ifl
atR

elax
IL

S

STRand

Set A Set B Set C Set D All

Outline

• Introduction

• Basic principles

• Constructive methods

• Meta-heuristics

• Conclusions
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Conclusions

• Meta-heuristic strategies are successful in practice, they provide

a methodology  to trade problem generality, computational costs

(time and space) and solution quality

• Effective meta-heuristic strategies relay on:

– efficient core component algorithms (e.g., temporal reasoning

algorithms), and incremental algorithms can play an important role

in solving real world problems

– the balancing between intensification and diversification

– the representation of heuristic control knowledge to drive the search

within the component procedures and to control the composite

schema

Conclusions

• We describe meta-heuristic schemas which combine basic

constructive and local search methods within a CSP reference

framework

• CSP solving paradigm clearly separates the constraints
(semantics, pruning algorithms) from the search space exploration
(branching schemes, heuristics) giving valuable benefits both from

an algorithmic and implementative point of view

• Despite we have presented a set of search procedures for solving

multi-capacitated scheduling problems with makespan

minimization as the objective, many of the proposed procedures

are applicable to a wider range of scheduling problems
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