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Abstract

Those in the planning community previously exposed to the
construct of Petri nets, have probably recognised a connec-
tion between the world modelled by these nets and a con-
current planning domain. Work to date however has failed
to sufficiently capture and motivate the possible benefits of
developing and utilising this connection, so the area has re-
mained relatively undeveloped. We believe the factored state
representation and concurrency semantics of Petri nets are so
closely related to that of concurrent planning domains that
cross cultivation between the areas will give theoretical in-
sight and lead to the development of computationally efficient
algorithms for concurrent planning. Our research seeks to de-
velop the theory required to exploit the connection and cre-
ate models and algorithms for optimally solving determinis-
tic and probabilistic concurrent planning problems using low
level Petri nets. Our approach casts the planning problem as
a Petri net reachability problem. Unfolding is an attractive
method for reachbility analysis because it utilises and main-
tains the concurrency and factored state structure of the Petri
net. We capitalise the unfolding process for planning by guid-
ing it with heuristics.

Petri nets are traditionally used for modeling and anal-
ysis of distributed systems. They can be used to exploit
the structure of a planning domain in two beneficial ways.
Firstly Petri nets, like STRIPS and PDDL operators, pro-
vide a non-flat representation of transition systems. They
avoid explicitly enumerating the state space as it is implicit
in their representation of variable -action relationships. This
can be utilised in computation. Secondly Petri nets specifi-
cally represent concurrency and causal relations between ac-
tions. Consequently it is possible to avoid enforcing a total
order on actions; this can have not only computational ad-
vantages via reduction of the policy space but also allows us
to generate partially ordered plans.

We propose a translation from deterministic and proba-
bilistic planning problems to Place-transition (PT) Petri nets.
We then unfold the net in a specific manner. The unfolding
of a Petri net maintains a partial ordering of actions based on
causality, allowing us to search for an optimal solution plan
without considering the unnecessary interleaving of actions
or enumerating the state space entirely. For the determinis-
tic case, we adapt the Esparza-Vogler-Romer (EVR) unfold-
ing algorithm so that either the minimum cost partial plan is
found during the unfolding procedure, or we identify that the

goal is not achievable. We capitalise the unfolding by guid-
ing it with planning heuristic. Note we are not restricted to
unit-cost actions. For the probabilistic case, we unfold the
Petri net up to a finite horizon. We propose a Bellman-like
equation which then uses the unfolded net to determine the
partial plan with the maximum probability of success, or ex-
pected reward, within the finite horizon. This later case does
not require that all rewards be positive, and thus could be
used for over-subscription planning.

Translation of a Planning Problem to a Petri net
A Place Transition (PT) net is a low level Petri net. A PT-
net is a 5-tuplePN = (P, T, F, W, M0) whereP andT
are finite sets of places and transitions respectively;F ⊆
(P × T ) ∪ (T × P ) is the flow relation;W : F →
1, 2.. is the weight function;M0 is the the initial marking;
P ∩ T = ∅ and P ∪ T 6= 0. Figure 1 shows a simple
PT net. The markingM of a Petri net is the mapping of
tokens to places, and represents the state of the modelled
world. The preset of a nodex in the net,•x, is the set
{y ∈ P ∪ T |W (y, x) ≥ 1}. The postset of a node,x•, is
the set{y ∈ P ∪ T |W (x, y) ≥ 1}. A transitiont is enabled
if each of its input placesp is marked with the weight of
the arc connectingp to t. A particular markingM enables a
transitiont if W (p, t) ≤ M(p) ∀p ∈ P . The occurrence of a
transition absorbs the tokens in its input places and produces
tokens in its output places thus moving the net fromM to the
new markingM ′(p) = M(p)−W (p, t) + W (t, p) ∀p ∈ P .
This corresponds to a state transition of the modelled sys-
tem. A set of transitionsT ′ is concurrently enabled at the
markingM if it is possible for allt ∈ T ′ to occur at once,
viz.

∑
t∈T ′ W (p, t) ≤ M(p)∀p ∈ P . A more detailed re-

view of Petri nets can be found in (Murata 1989).
A planning problem is a quadruple〈A, I, O, G〉 whereA

is a set of state variables,I : A → {0, 1} is a state,O is a set
of STRIPS operators, andG is a set of goal literals (Ghal-
lab, Nau, & P.Traverso 2004). The set of literals overA is
L = ∪{¬a|a ∈ A}. The complement̄l of a literal l ∈ L is
defined bȳa = ¬a and¬̄a = a for a ∈ A. A STRIPS oper-
ator 〈p, e〉 is 1-safe if{¬l|l ∈ e} ⊆ p. A STRIPS operator
〈p, e〉 has a positive precondition ifp ⊆ A. The first part
of our translation involves mapping the planning problem to
an equivalent one where every operator is 1-safe one, and
there are no negative preconditions. 1-safety is established
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by circles, transitions
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rently) followed by fir-
ing transition 5, would
result in a single token
each in places f and g.

Figure 1: Example of a Petri net.

by replacing every operator by several 1-safe ones; we define
S(o) as set of operators obtained from someo ∈ O. Nega-
tive preconditions are eliminated by replacing each¬a by a
corresponding positive preconditionâ and forcinĝa anda to
always have opposite values. The reasons for this translation
become clear soon.

Given a deterministic planning problemR = 〈A, I, O, G〉
we create a PTpnet(R) = 〈P, T, F, W, Mo〉 such that:

• the places areP = A ∪ Â,

• the transitions areT = {S(o)|o ∈ O},
• the setF of arcs is obtained fromt0 = 〈p, e〉 ∈ T as

p× {t0}
∪{〈to, a〉|a ∈ A ∪ Â, a ∈ p,¬a /∈ e}
∪{〈to, a〉|a ∈ A, a ∈ e}
∪{〈to, a〉|a ∈ A,¬a ∈ e}

• W (f) = 1 for all arcsf ∈ F ,

• for all a ∈ A, M0(a) = 1 iff I(a) = 1 andM0(â) = 1
iff I(a) = 0, and for alla ∈ A ∪ Â, M0(a) = 0 or
M0(a) = 1 .

The 1-safety of the STRIPS operators has allowed us to cre-
ate 1-safe Petri nets, meaning it is not possible for more than
one token to exist in a place. Without 1-safeness it would be-
come complicated to maintain consistency in the net, as one
would have to consider the semantics of multiple tokens in a
place: if the respective literal becomes false all these tokens
must be removed.

Petri net Unfolding
Unfolding is a method for reachability analysis which ex-
ploits and preserves the factored state representation and
concurrency information in the Petri net. In the planning
context this confers the ability to reason about partially or-
dered sets of actions directly, without having to consider
their interleavings. It also enables the recognition and sep-
arate resolution of independent subproblems. During the
planning process we can reason about the actions and cost
required to assert some subset of state variables, and com-
bine this information with that for another (thus-far) inde-
pendent subset, at a future point when the two sets are no

longer independent. The benefit of this ’divide-and-conquer’
approach depends on the level of concurrency in the domain.

The unfolding of a PT-netN = (P, T, F,W, M0) pro-
duces an occurrence netON = (B,E, F ′), whose node
sets are conditionsB and eventsE. These nodes represent
particular occurrences of the places and transitions, respec-
tively, in possible runs of the original net from the initial
marking. The unfolding achieves this by eliminating cycles
and backward conflicts. Backward conflict is the case when
two transitions output to the same place; by eliminating this
we know exactly which transitions are involved in a partic-
ular marking. In the context of planning, this means that
we know the exact set of actions that, when executed, lead
to a state variable reaching a certain value at some point in
the plan. The labelling functionϕ is a homomorphism from
ON to N .

The main theoretical notions required to understand un-
folding are that of a configuration and local configuration of
an event. A configuration represents a possible partial run
of the net. It is any set of eventsC such that:C is causally
closed, e∈ C ⇒ e′ ∈ C ∀e′ ≤ e; and C contains no
forward conflict,•e1 ∩ •e2 = 0 ∀ e1, e2 ∈ C, e1 6= e2.
We can think about a configuration as a partially ordered
plan. The local configuration of an evente, denoted[e]
is the minimal configuration containing evente. Conse-
quently if we introduce a ’goal’ transitiontg whose prede-
cessors correspond to the set of goal literalsG, then a so-
lution plan is any partially ordered set of operators [e] such
that ϕ(e) = tg. A configurationC can be associated with
a marking Mark(C) of the original net by identifying those
conditions whose tokens are produced but not consumed af-
ter firing the events inC starting from the initial marking:
Mark(C) = ϕ((M0 ∪ C•)\•C), whereC• = {e•|e ∈ C}
and•C = {•e|e ∈ C}.

The unfolding process involves identifying which transi-
tions are enabled by conditions currently in the occurence
net that can be simultaneously marked. These transitions are
referred to as the possible events. A new instance of each is
added to occurence net, as are instances of the places in each
of their postsets. The question of whether a set of conditions
can be simultaneously marked is answered by determining
whether the union of the local configurations of their pre-
sets forms a configuration. Figure 2 shows an example of
unfolding.

Finite Complete Prefix of Unfolded net
In most cases, the unfoldingβ of a Petri-net is infinite. For
this reason, we seek a complete finite prefixβ′ of β, one
which contains as much information asβ.

The key to obtaining a complete finite prefix is to identify
those events at which we can cease unfolding without loss of
information. Such events are referred to ascut-off eventsand
are defined in terms of anadequate orderon configurations
(McMillan 1992; Esparza, R̈omer, & Vogler 2002):

Definition 1 A partial order≺ on the finite configurations
of a branching process is an adequate order if

1. ≺ is well founded
2. ≺ refines⊂: C1 ⊂ C2 ⇒ C1 ≺ C2
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Figure 2: Prefix of an unfolding of the Petri net in Figure 1.

3. ≺ is preserved by finite extensions: ifC1 ≺ C2 and
Mark(C1) = Mark(C2) thenC1 ⊕ E ≺ C2 ⊕ I2

1 (E),
whereI2

1 (E) is an isomorphism mapping the finite exten-
sionE of C1 onto the extension ofC2.

Without loss of information, we can cease unfolding from an
evente, if e takes the net to a marking which can be caused
by some other evente′ such that[e′] ≺ [e]. This is because
the events (and thus markings) which proceed frome will
also proceed frome′. Relevant proofs can be found in (Es-
parza, R̈omer, & Vogler 2002):

MOLE (http://www.fmi.uni-stuttgart.de/szs/tools/mole/),
is a free-ware unfolder which can be used for 1-safe PT-
nets. It uses an adequate order on configurations,≺, which
is based primarily on comparing their cardinality. The prefix
shown in Figure 2 is the complete finite prefixMOLE returns
for the net in Figure 1.

Deterministic Concurrent Planning
Once the problem is translated to a PT-net, it is easy to let
MOLE produce a partially ordered plan for that problem. It
suffices to augment the STRIPS operator set with a dummy
operator whose precondition is the goal, and to require mole
to stop whenever an event labelled with the corresponding
transition is added to the occurence net. The local configura-
tion of this event is a partially ordered plan for the problem.
Further, owing to the fact thatMOLE orders events by in-
creasing local configuration cardinality, this plan is minimal
in the number of actions.

The cardinality-based ordering relation used byMOLE has
a serious drawback for planning however, as it leadsMOLE
to perform a breadth-first search. If we were to swap the
ordering to prefer events with larger local configurations to

those with smaller ones, we would forceMOLE into a depth-
first search. However, since the resulting ordering is not ade-
quate, there is no guarantee that the resulting planner would
be complete. Checking for loops is not as straightforward
in the unfolding framework as it is in a state-space search
framework, since the markings of local configurations only
have a partial view of the state. Indeed, the main purpose
of an adequate order is to implement a form of loop detec-
tion. A natural idea is to change the ordering to provide
MOLE with better guidance towards the goal, while preserv-
ing, and even generalising from the restricted notion of opti-
mality currently in place. This rejoins the work on directed
model-checking pionneered by Edelkamp et al. (Edelkamp,
Lluch-Lafuente, & Leue 2001).

We propose that given an arbitrarymonotonicheuristic,
it is possible to build an adequate order which implements
A*, letting the heuristic guide the unfolding towards opti-
mal plans. Monotonic heuristics which, likehm (Haslum
& Geffner 2000), can be automatically generated from a
planning problem description, are equally easily generated
from PT-nets. In planning terms, let cost(o) be the (pos-
itive) cost of operatoro, and res(o, s) be the result of ap-
plying o in states. A Heuristic h (such thath(s) ≥ 0
everywhere andh(s) = 0 at goal states) is monotonic iff
h(s) ≤ h(res(o, s)) + cost(o) for all non-goal statess and
operatorso applicable ins. These definitions easily trans-
fer to the PT-net case, by identifying each operator with the
corresponding transition and considering a set of placesP
as the state in which all state variables but those inP are
false. We define the following ordering on configurations:

Definition 2 (≺h) Let h be a monotonic heuristic as de-
fined above. For a configurationC, define g(C) =∑

e∈C cost(ϕ(e)), andf(C) = g(c)+h(Mark(C)). Define
C ≺h C ′ if and only if f(C) < f(C ′) or f(C) = f(C ′)
and|C| < |C ′|.

Proof that this order is adequate will not be shown here.
When runningMOLE with this ordering for some monotonic
heuristich, we obtain a planner which generates partially
ordered plans with the smallest total action cost. As far as
we are aware, only the HSP* family of existing planners
routinely optimise this metric (Haslum, Bonet, & Geffner
2005). In contrast, most state of the art planners optimise
parallel plan length. It is possible our approach could be
modified for concurrent temporal planning, but the full im-
plications of this have not yet been considered.

Experimental Results
Our translation from propositional STRIPS operators to PT-
nets is implemented in Standard ML within a program called
Petrify. Petrify actually parses a large subset of PPDDL
(Youneset al. 2005), and handles non-grounded domains,
conditional, and probabilistic effects. We modifiedMOLE to
implement a variety of search strategies and heuristics de-
fined by their respective ordering relations. In Figure 3, we
present results for PIPESWORLD and AIRPORT instances,
for some of the variants as they provide a good illustration
of the benefits and problems with our current implementa-
tion. Namely we show results forh(s) = 0, h(s) = h1

max
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Figure 3: Experimental Result on PIPESWORLD and AIR-
PORT Instances

andh(s) = h1
sum, where the later is the same ash1

max but
using the sum instead of the maximum. Out of these, only
≺0 and≺h1

max
are adequate orders and thus guarantee com-

pleteness.

As can be seen from the figures, the number of node ex-
pansions performed byMOLE significantly decreases (note
the log scale) when switching fromh = 0, to the mono-
tonic h1

max heuristic, and then to the non-admissibleh1
sum.

This is particularly visible in PIPESWORLD whereh1
max

andh1
sum respectively expand over an order of magnitude

and over three orders of magnitude fewer nodes thanh = 0.
However, this improvement in number of expansions does
not carry over to run time. Without heuristic, our AIRPORT
run times are as good as, and in a number of cases better
than those obtained by the competition optimal planners, ex-
cept SATPLAN. Theh1

max heuristic is always slower than
breadth-first andh1

sum only start yielding run-time gains
when the improvement in number of expansions reaches two
orders of magnitude. This is because, in a forward search,
h1 heuristics need to be recomputed at each expansion, and
this computation has a complexity quadratic in the number
of nodes of the PT-net. We expect to see a significant im-
provement in run time by switching to other automatically
generated heuristics which can be pre-computed once and
efficiently looked up during the search. Promising candi-
dates include Pattern Database heuristics (Edelkamp 2002;
Haslum, Bonet, & Geffner 2005).

Probabilistic Concurrent Planning
The translation for the probabilistic case is similar but some-
what more complicated and will not be formalised here. For
probabilistic concurrent planning, we are currently focused
on optimising the maximum expected reward, given a finite
horizon. The Petri net is first unfolded completely, without
generating any cut-off points, until the decided horizon. We
propose a Bellman-like equation which uses the unfolding to
answer the question: given this set of conditions are marked,
what is the maximum expected reward from here and what
event must be chosen to achieve this? This will not be dis-
cussed further here, due to space constraints.

Future Work
Experimental results are not presently entirely conclusive.
They are only competitive with state of the art planners in
some of the domains examined. Our immediate agenda is to
implement pattern databases heuritics. Furthermore we will
consider different translations to PT-nets and to higher level
nets.
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