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Introduction 
 

Production management is a set of decisions that must 
reflect a compromise between customers’ satisfaction and 
production criteria such as cost, delay and quality. The 
goal of production management is to ensure the continued 
success of the firm. Industrial planning plays a central part 
in this one. The latter can be divided into three hierarchical 
decisional levels: 

- the strategic level deals with long-term decisions 
such as opening or closing of factories or 
determining building sites. (horizon is more than 
eighteen months), 

- the tactical level which deals with conception of 
several plans such as Master Production Schedule, 
stock policy on a mid term horizon (six to eighteen 
months), 

- the operational level which relates to the daily 
scheduling of the workshops. 

 
Judging from the literature, the tactical planning is 

composed of two plans: The Sales and Operations Planning 
(S&OP) and the Master Production Schedule. The 
objective of S&OP is to obtain a compromise between 
sales objectives and production capacities. Therefore, it 
constrains the Master Production Schedule which 
determines, for each period, a balance between the capacity 
constraints and the customer’s satisfaction while 
minimizing the production cost. 

 

The mathematical model 
 

Traditionally, the tactical planning models are based 
on Lot-Sizing models which determine the size of batches 
in order to minimize costs (setup cost, holding cost, 
production cost). Among those, there is a basic model: the 
“Capacitated Lot Sizing Problem” (CLSP) which 
elaborates the Master Production Schedule. 

The CLSP can formally be described as a mixed-
programming model: 
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Parameters for the CLSP: 
N  Number of items. 
T  Number of periods. 
dit  External demand for item i at period t. 
Ct  Available capacity of the machine at period t. 
pi  Capacity request for producing one unit of item i. 
si Non-negative setup costs for item i. 
hi Non-negative holding costs for item i. 
ri Non-negative production costs for item i.  
Ii0 Initial inventory for item i. 
 
Decision variables for the CLSP: 
Qit  Production quantity of item i at period t. 
Iit  Inventory of item i at the end of period t. 
Xit  Binary variable which indicates whether a setup 

for item i occurs at period t (Xit=1) or not (Xit=0).
  

(Eq.1) is the objective function: it means the sum of 
the setup, the holding and the production costs 
that we seek to minimize. 

(Eq.2) represents the inventory balances. 
(Eq.3) represents the capacity constraint. 
(Eq.4) represents the setup constraint: due to these 

restrictions, production of an item can only take 
place if the machine is set up for that particular 
item. 

(Eq.5) are the non negativity conditions. 
(Eq.6) the setup variables are defined as binary. 



 

State of art 
 

Solving CLSP is known as NP-Hard (Bitran et al. 1982). 
If positive setup times are added into the model, the 
feasibility problem is NP-complete (Trigeiro and al. 1989). 
In this case, the Eq 3 becomes 
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where zi is the setup time to set the machine up to produce 
the item i at period t. 
 

Many researchers have developed solutions for CSLPs, 
including mathematical programming (Leung et al 1997, 
Eppen et al. 1987, Belvaux et al. 2001 …), heuristic 
solutions (Dogramaci et al. 1981, Trigeiro et al. 1989, 
Diaby et al. 1993, Kirca et al. 1995, Degraeve et al. 2003 
…), and metaheuristics (Gopalakrishnan et al. 2001, 
Özdamar et al. 2002, Karimi et al. 2005 …) 
 
 

Our contribution 
 
Our proposal is divided into two successive axes:  

- The first one concerns the computation of a 
feasible solution, i.e. the design of a tactical plan 
which respects the capacity constraint and the 
customer’s demand, even if setup times are 
considered,  

- The second one is the cost optimization of the 
feasible solution found before. 

 
In each step, we propose a metaheuristic. We encode the 

solution by a matrix representing a production plan. For 
each metaheuristic, we define an objective function and 
neighbouring systems. 

 
Computation of a feasible solution: 

 
So as to, we use the kangaroo algorithm, a metaheuristic 

based on simulated annealing (Fleury, 1993). For this one, 
we propose: 

- a new quadratic objective function which models 
the capacity overshooting, whose minimization 
allows the smoothing of the production in order to 
find a feasible plan. 

- two types of neighbouring systems: the first one 
allows to move a quantity period by period if and 
only if the customer’s demand and capacity 
constraint are respected. The second one, changes 
the current solution, neglects capacity but respects 
demand. 

- We use customer demand as initial solution for this 
method. In most of the cases, this solution is not 
feasible. 

The quadratic function is defined as:  
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where Q is the  proposed planning.  As Shown in Fig.1, 
this latter allows the smoothing of the production.  
 

 
Fig1. Effect of the objective function 

 
 An initial solution Q* is found if and only if k(Q*)=0. 
  
The first neighbouring system is summarised by the 
algorithm Algo1 : 
Input: A solution Q 
Output: A new solution Q* 
1. Q* ← Q 

2. Choose i randomly in {1,..,N}. 

3. Choose randomly tstart and ttarget  in {1..T} 

4. Compute Kmax, the maximal quantity of item i to be 

shifted from tstart to ttarget according to proposition 1 below. 

5. Set α:=0.6, choose randomly β∈[0,1] 

6.  If β≤α then choose randomly K in {0,Kmax} 

 else K=Kmax. 

7. Q*[i,tstart]:= Q*[i,tstart]-K 

8. Q*[i,ttarget]:= Q*[i,ttarget]+K. 

Algo1: Algorithm for the first neighbouring system. 
 

α reflects distribution of two strategies: the K=Kmax 
strategy which tries to remove a maximum of setup time, 
and the other one which allows smaller adjustments. 
 
Proposition1: Let Q a production planning which respects 
the demand.  Q* is another one if and only if:  

- if target≤start: 
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The second neighbouring system uses the same algorithm 
but neglects capacity in the determination of Kmax. By the 
way, we accept worse transitions in term of capacity.  
 
 



Optimization of the feasible solution: 

 

 Concerning the optimization part, we use several 
metaheuristics based on simulated annealing algorithm: 

- The objective function stands for the whole 
production cost for the plan as modelled in the 
CLSP (Eq 1), 

- The neighbouring system allows the quantity 
moves period by period if and only if it respects 
the customer’s demand and doesn't exceed the 
capacity of the target period. Moreover, it 
examines the inventory position in order to 
improve the computation of a new current solution 
while banishing bad tries. 

 
The neighbouring system is based on the (Algo1). 

Indeed, proposition 1 ensures that if Q is feasible for the 
CLSP then Q* deduced from (Ago1.) will keep that 
property.  The major change is in the choice of α. Indeed, 
α is designed as a function of iteration count. Its goal is to 
support the choice of K=Kmax initially in order to remove a 
maximum of setup cost. This function converges gradually 
toward 0,6 because, after many tries, we have determined 
that it is a very good distribution for the two choices. 
Therefore  

α(iter)=0.6-1/ln(1+10
3×iter) 

  
In order to measure the quality of the obtained solution, 

we have implemented a lagrangian relaxation to determine 
a lower bound. This one is inspired by Diaby’s works 
(Diaby et al. 1993). Our relaxation deals with Capacities 
constraints (Eq.3). Indeed, Chen et al. 1990 have shown 
that it provides the best lower bound. The Wagner-Within 
algorithm (Wagner et al. 1958) is used to solve 
subproblems optimally.  

Our method is tuned according to the general formula 
which guides lagrangian coefficients: 
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where, Z is an upper bound of the lagrangian relaxation, Zk 
is the value of objective function for the lagrangian 
relaxation at iteration k: it could be updated during 

algorithm proceeding.  ( ),k k

it itQ X  is the solution of the 

lagrangian relaxation problem at iteration k and 0 2
k

γ< ≤ . 
 
 
Computational results: 

 
Early results of testing our approach are promising. Indeed, 
we have tested these different methods on small instances. 
For each instance, we obtained an optimal solution. We are 

testing these different methods on Trigeiro’s instances 
which are commonly used like benchmark in literature.  
We chose the ones selected by Wolsey in his lotesizelib 
(2000) because they appear to be among the most difficult 
ones (Belvaux et al. 2000) 
 

Tab.1 shows some results about feasibility for these 
instances: 
 

Name N. Items N. periods Success N. Iter 
G30 6 15 Y 14994 
G53 12 15 Y 115336 
G57 24 15 Y 4475 
G62 6 30 Y 4265 
G69 12 30 Y 10650 
G72 24 30 Y 9049 

Tab.1: Feasibility tests 
  

As we say, we obtain very good results for the feasibility 
problem. We also test our optimization metaheuristic on 
these same instances neglecting setup time, in a first time. 

 
Tab.2 shows some results about it:   

 
Kangaroo 

Name Solver 
Sol. N. Iter LB Gap 

G30 37156* 37267 1651164 36939,5 0,89 % 

G53 72831* 71599 1434315 70717,73 1,25 % 

G57 137762* 137659 384215 135938,96 1,27 % 

G62 62058* 62545 1375810 60626,80 3,17 % 

G69 132097* 131839 1224781 129589,97 1,74 % 

G72 295291* 295209 910361 287390,70 2,73 % 

Tab.2: Optimization Tests 
 
 We use Cplex 9.1 as solver for our tests: (*) means that 
it stops with an “overflow error”. We test our metaheuristic 
with 600s time limit.  We calculate our Lower Bound (LB) 
according to our lagrangean relaxation. We can see that we 
obtain very good results even if metaheuristic time limit is 
very weak. However, we can observe that higher is the 
number of items, better is our Kangaroo, compared to the 
Solver.  To conclude, this approach is promising. We are 
still testing it on all Trigeiro’s instances. 
 
The software tool: 

 
In order to test all these methods, we have designed a 

software tool which incorporates all these techniques and 
which allows us to follow, in real time, the evolution of the 
metaheuristics proposed. This software allows us to import 
the Trigeiro’s instances or to create ours by using a 
convivial interface where we can parameterize the 
production system (capacity, cost …) and the customer’s 
demand.  



The main part of it is the optimization tool in which are 
implemented all the optimization methods seen before. On 
the GUI, we can follow the metaheuristic behavior, the gap 
of the best solution found (with the lower bound 
determinated by our lagrangian relaxation), and the best 
plan found, at any time of the optimization.   

 

Our prospect: 

 
 We have proposed a software tool for the deterministic 
CLSP. However, within the framework of industrial 
planning, the managers work with estimated demands, thus 
potentially subjected to strong fluctuations. Therefore, we 
wish to extend our research by taking into account the 
uncertainty in the demand and the production capacities 
(resources into breakdowns etc.) so as to incorporate a new 
dimension: the robustness, in the obtained solution. 
Moreover, the presented model is a single-level model 
which doesn’t take into account the material requirement 
planning (MRP) for the end items’ planning conception. 
Moreover, it doesn’t integrate the multi-sites aspect in the 
current productions systems. Therefore we are considered 
multi-sites models of planning based on the lot-sizing 
model: Multi Level Capacitated Lot Sizing Problem 
(MLCLSP). The next step would be to propose a new 
tactical planning’s model, multi-levels and multi-sites as 
well as resolution approaches which could provide us a 
robust production plan, under an uncertain industrial 
context. 
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