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Abstract
Even under polynomial restrictions on plan length, confor-
mant planning remains a very hard computational problem
as plan verification itself can take exponential time. This
heavy price cannot be avoided in general although in many
cases conformant plans are verifiable efficiently by means of
simple forms of disjunctive inference. We report an efficient
but incomplete planner capable of solving non-trivial prob-
lems quickly. In this work, we show that this is possible
by mapping conformant into classical problems that are then
solved by an off-the-shelf classical planner. The formulation
is sound as the classical plans obtained are all conformant, but
it is incomplete as the inverse relation does not always hold.
Atoms L/Xi that represent conditional beliefs ’if Xi then L’
are introduced in the classical encoding and combined with
suitable actions when certain invariants are verified. Empiri-
cal results over a wide variety of problems illustrate the power
of the approach. We propose extensions to this formulation.

Introduction
Conformant planning is a form of planning where a goal is
to be achieved when the initial situation is not fully known
and actions may have non-deterministic effects (Goldman
& Boddy 1996). Conformant planning is computation-
ally harder than classical planning, as even under polyno-
mial restrictions on plan length, plan verification remains
hard (Turner 2002). This additional complexity cannot be
avoided in general. This difference in complexity explains
why it is still very easy to come up with simple and small
conformant problems that no general domain-independent
planner can solve, while the same is no longer true for clas-
sical planners. The main motivation of this work is to nar-
row this gap by developing an approach that targets ’sim-
ple’ conformant problems effectively. The approach will
not be complete but it will provide solutions to some non-
trivial conformant planning problems by translating them
intro classical planning problems(Palacios & Geffner 2006).
New problems are fed into a classical planner. The trans-
lation is sound as the classical plans are all conformant,
but it is incomplete as the converse does not always hold.
The translation scheme accommodates ’reasoning by cases’
by means of an ’split-protect-and-merge’ strategy; namely,
atoms L/Xi that represent conditional beliefs ’if Xi then L’
are introduced in the classical encoding that are then com-
bined by suitable actions when certain invariants in the plan
are verified.

While several effective but incomplete formulations of
conformant planning have been formulated before, like 0-
approximation (Baral & Son 1997), none, as far as we know,
can represent these types of plans, while those planners
that can represent them (Cimatti, Roveri, & Bertoli 2004;
Brafman & Hoffmann 2004), are not able to compute them
except for very small problems.

Conformant Planning
For a conformant planning problem, if the number m of pos-
sible initial states s0 ∈ Init is bounded and actions are de-
terministic, the conformant planning problem P with a fixed
horizon n can be mapped in the SAT problem over the for-
mula (Palacios & Geffner 2005)∧

s0∈Init

T s0(P, n) (1)

where if T (P, n) is the propositional theory that encodes the
problem P with horizon n. T s0(P, n) is T (P, n) with two
modifications: first, fluent literals L0 (L at time 0) are re-
placed by true/false iff L is true/false in the (complete) state
s0, and second, fluent literals Li, i > 0, are replaced by
’fresh’ literals Ls0

i , one for each s0 ∈ Init.
Eq. 1 can be thought as expressing m ’classical planning

problems’, one for each possible initial state s0 ∈ Init, that
are coupled in the sense that they all share the same set of
actions; namely, the action variables are the only variables
shared across the different subtheories T s0(P, n) for s0 ∈
Init.

For bounded m, the resulting class of conformant plan-
ning problems with a fixed horizon can be mapped polyno-
mially into SAT, generalizing the SAT encoding of classical
planning problems which corresponds to m = 1 (Kautz &
Selman 1996). Also, for a sufficiently large horizon, this
formulation is complete. In other words, for this interesting
class of problems, the formulation of Eq 1 takes advantage
of the reduced complexity without restricting the inferences
at all. However, expressivity and complexity, however, are
not the only problems; efficiency or control is the other. A
planner using Eq. 1 naively will not scale.

We have already proposed two approaches to optimal
classical conformant planning based on logical formulations
(Palacios et al. 2005; Palacios & Geffner 2005). Both of
them translate the problem into CNF, and obtain a plan by



doing logical operations and search. The logical approach
has been very importan on optimal classical planning (Kautz
& Selman 1996), where they map it into SAT. In vplan
(Palacios et al. 2005) we presented a complete optimal plan-
ner that rejects plan candidate by checking through model
counting that it does not work for some initial state. In
cf2sat (Palacios & Geffner 2005) (for conformant2sat) we
construct a new propositional formula by doing logical op-
erations as forgetting (Lin & Reiter 1994) and condition-
ing. The models of these new formula are all the possible
plan. We feed that formula into a SAT solver to obtain a
plan. Logical operations in both planners became feasible
by compiling the propositional theory into d–DNNF (Dar-
wiche 2002), a formal norm akin to OBDD. We obtained
good results on some very complex domains but failed to
scale in more simple problems.

One way to trade off completeness for efficiency in con-
formant planning results from approximating belief states
(Bonet & Geffner 2000). For example, the 0-approximation
introduced in (Baral & Son 1997) represents belief states bel
by means of two sets: the set of literals that are true in bel,
and the set of literals that are false in bel. Variables which
do not appear in either set are unknown.

Conformant planning under the 0-approximation is thus
no more complex, theoretically, than classical planning. The
problem however is that the 0-approximation is strongly in-
complete, as it does not capture any non-trivial form of dis-
junctive inference. For example, given a disjunction p ∨ q
and an action a that maps either p or q into r, the seman-
tics will not validate a as a conformant plan for r. Indeed,
disjunctions that are not tautologies are thrown away.

Translation
The translation scheme maps a conformant planning prob-
lems P into a classical planning problems K(P ). We de-
scribe the contents of K(P ) in two parts, starting with the
basic core K0(P ). We assume that P is given by tuples of
the form 〈F,O, I, G〉 where F stands for the fluent symbols
in the problem, O stands for a set of actions a, I is a set
of clauses over F defining the initial situation, and G is a
set of literals over F defining the goal. In addition, every
action a has a precondition given by a set of fluent literals,
and a set of conditional effects C → L where C is a set of
fluent literals and L is a literal. We assume that actions are
all deterministic and hence that all uncertainty lies in the ini-
tial situation. We will usually refer to the conditional effects
C → L of an action a as the rules associated with a, and
sometimes write them as a : C → L. Also, we use the ex-
pression C ∧X → L to refer to rules with literal X in their
bodies. In both cases, C may be empty. Last, when L is a
literal, we take ¬L to denote the complement of L.

Definition 1 (Core Translation) 1 The core translation
maps the conformant problem P into the classical problem
K0(P ) = 〈F ′, O′, I ′, G′〉 where

1We will present a simplified subset of the transformation rules
due to lack of space. In particular, we will assume that every action
only has one rule and no preconditions. The general translation
appears in (Palacios & Geffner 2006).

• F ′ = {KL, K¬L | L ∈ F}
• I ′ = {KL,¬K¬L | L ∈ I}∪ {¬KL′,¬K¬L′ | L′ 6∈ I}
• G′ = {KL | L ∈ G}
• O′ = O but with conditional effect a : C → L replaced

by a : KC → KL and a : ¬K¬C → ¬K¬L.

For any literal L in P , KL denotes its ’epistemic’ coun-
terpart in K0(P ) whose meaning is that L is known. We
write KC for C = L1 ∧ L2 . . . as an abbreviation for
KL1 ∧KL2 . . ., and ¬K¬C for ¬K¬L1 ∧ ¬K¬L2 . . ..

The intuition behind the translation is simple: first, com-
plementary literals L and ¬L whose status is not known in
the initial situation in P are ’negated’, by mapping them into
the literals ¬KL and ¬K¬L that are jointly consistent. This
mapping removes all uncertainty from K0(P ). In addition,
to ensure soundness, each conditional effect a : C → L in
P maps, not only into the ’supporting’ rule a : KC → KL
but also into the ’cancellation’ rule a : ¬K¬C → ¬K¬L
that guarantees that literal K¬L is deleted (prevented to per-
sist) when action a is applied except when C is known to be
false.

We extend the translation further so that the disjunctions
in P are taken into account in a form that is similar to the
Disjunction Elimination inference rule used in Logic

If X1 ∨ · · · ∨Xn, X1 ⊃ L, . . . , and Xn ⊃ L then L (2)

For this, we will create new atoms in K(P ), written L/Xi,
that aim to capture the conditional beliefs Xi ⊃ L. Then,
the resulting classical encoding will be such that once these
atoms are ’achieved’ for each i = 1, . . . , n, and when they
are suitably ’protected’, the literal L will be made ’achiev-
able’ by an extra ’dummy’ action with conditional effect
similar to (2). In principle, any rule a : C ∧ Xi → L in P
with Xi uncertain can be used to produce a rule a : KC →
L/Xi in K(P ), meaning that if KC is known and a is ap-
plied, then if Xi was true, L will become true.

Rule 2 (Split) For each rule a : C ∧ Xi → L in P where
Xi is a literal that appears in a disjunction X : X1 ∨ · · · ∨
Xn, then add to K(P ) the atoms L/Xj , j = 1, . . . , n, all
initialized to false, and the rules a : KC → L/Xi. 2

The combinations of the conditional beliefs represented by
the atoms L/Xi is achieved by means of extra actions added
to the classical encoding K(P ) that generalize (2) slightly,
allowing some of the cases Xi to be disproved:3

Rule 3 (Merge) For each disjunction X : X1 ∨ · · · ∨ Xn

and atom L in P such that L/Xi is an atom in K(P ), add
to K(P ) a new action aX,L with conditional effect

(L/X1∨K¬X1)∧· · ·∧(L/Xn∨K¬Xn)∧FLAGX,L → L

where FLAGX,L is a fluent initialized to true. If L = Xi

for some i ∈ [1, n], remove the conjunct (L/Xi ∨ K¬Xi)
from the rule body.

2If we want L/Xi to mean exactly that ’right after the action a,
if Xi is true, then L is true’, some additional care is needed about
the other rules of the action. Details in the full paper.

3When using the classical plans obtained from K(P ) as con-
formant plans in P , such ’dummy’ actions must be removed.



cf2cs(ff) CFF
Problem Time Length Time Length
Bomb-100-1 0,84 199 96,2 199
Bomb-100-60 9.64 140 23,53 140
Cube-7-Ctr 0,02 24 38,2 39
Cube-9-Ctr 0,05 33 —- —-
Cube-11-Ctr 0,09 42 —- —-
Sqr-8-Ctr 0,03 22 140,5 50
Sqr-12-Ctr 0,04 32 —- —-
Sqr-64-Ctr 9,66 188 —- —-
Grid-4-4 0,06 25 0,11 25
Grid-4-5 0,05 30 0,14 30
Safe-50 0,05 50 134,4 50
Safe-70 0,08 70 561,8 70
Safe-100 0,28 100 —- —-

Table 1: Plan times and lengths obtained by a classical planner
(FF) over K(P ) translation (cf2cs(ff)) in relation to Confor-
mant FF for various conformant problems P . Times in seconds.
The symbol ’—-’ means cutoff exceeded (30 mins or 800Mb)

A key distinction from Logic is that the disjunction X1 ∨
· · · ∨ Xn and the conditional beliefs ’if Xi then L’ repre-
sented by the atoms L/Xi need all be preserved until they
are combined together to yield L. This is the purpose of
the boolean FLAGX,L that is initially set to true, but which
is deleted when an action is taken in a context where it is
not possible to prove that 1) L is preserved (if true), 2) the
disjunction X ∨ L is preserved, and 3) the conditional be-
liefs represented by the atoms L/Xi achieved are preserved.
This is accomplished by extending K(P ) with the rules that
delete FLAGX,L when it is necessary.

These rules more detailed and other rules can be read in
(Palacios & Geffner 2006). They yield expressivity with-
out sacrificing efficiency, as they manage to accommodate
non-trivial forms of disjunctive inference in a classical the-
ory without having to carry disjunctions explicitly in the be-
lief state: some disjunctions are represented by atoms like
L/Xi, and others are maintained as invariants enforced by
the resulting encoding.

Theorem 2 (Soundness K(P )) Any plan that achieves the
literal KL in K(P ) is a plan that achieves L in the confor-
mant problem P .

Experimental Results
We have implemented the translation program cf2cs that
takes a conformant planning problem P as input and outputs
a classical problem K(P ). Table 1 shows the plan times and
lengths obtained by Conformant FF (Brafman & Hoffmann
2004) vs. cf2cs(ff) (FF planner fed with the problem
generated by cf2cs). Translations only require a few sec-
onds. Among the existing benchmarks, not included in the
table, there are three domains, Sorting-Nets, (Incomplete)
Blocks, and Ring, which cannot be handled by our transla-
tion scheme.

Discussion & Future Work
In vplan (Palacios et al. 2005) we presented a complete op-
timal planner that reject plans candidate that does not work
for some initial state. In cf2sat (Palacios & Geffner 2005)

we proposed to generate a propositional formula that en-
codes all the possible conformant planners, and called a SAT
solver over it. In both cases we require an exponential pro-
cess step of compiling into d–DNNF.

We have introduced a translation scheme that enables a
wide class of conformant planning problems to be solved by
an off-the-shelf classical planner. The translation accounts
for a limited form of ’reasoning by cases’ by means of an
’split-protect-and-merge’ strategy; namely, atoms L/Xi that
represent conditional beliefs ’if Xi then L’ are introduced,
and when certain invariants are verified, they are combined.
This translation is incomplete because it is equivalent to a
transformation like cf2sat, but considering only simple dis-
junctions of fluents instead of every initial state.

We want to explore allowing combinations of disjunctions
by introducing atoms L/XiYj . For rules a : C ∧ L → M ,
we can add a : KC ∧ L/Xi → M/Xi, but in many cases
it can lead to an exponential number of added atoms. How-
ever, we hope that some domains such as the Rings can be
solved by a combination of these new rules, even when the
new transformation will not be complete. We want to de-
tect whether a problem is suitable for doing those additional
transformations by using causal graphs. It will allow us, for
instance, to see how many labels we need to consider for a
variable.

The results presented here suggest to look for new propo-
sitional theories similar to Eq. 1. We can split on atoms
that really need to be considered for solving the problem.
We also can combine cf2cs, for easy problems, with cf2sat,
for more complex problems, and obtain an hybrid planner
that scales in a broader set of benchmarks. Moreover, as the
plans obtained by cf2cs do not appear to be suboptimal, we
want to identify when optimality holds and guarantee that.
We also want to look for similar rules that allow transforma-
tions of other kinds of non-probabilistic uncertain planning,
such as contingent planning.

Related Work

We did not compare the performance of cf2cs with many
of the planners available because our goal is to map some
conformant problems into classical planning. We compare
with CFF (Brafman & Hoffmann 2004) as a way to show
that our results are encouraging with respect to the state
of the art. Most of them try to give a suboptimal solution
to any conformant problem (Brafman & Hoffmann 2004;
Cimatti, Roveri, & Bertoli 2004; Ferraris & Giunchiglia
2000). FragPlan (Kurien, Nayak, & Smith 2002) try to solve
the general problem, but it can be used in more realistic en-
vironments where a partially conformant plan are needed.

Acknowledgements

We thank Blai Bonet for the PDDL parser and Joerg Hoff-
mann for providing FF and CFF.



References
Baral, C., and Son, T. C. 1997. Approximate reasoning
about actions in presence of sensing and incomplete infor-
mation. In Proc. ILPS 1997, 387–401.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proc. of
AIPS-2000, 52–61. AAAI Press.
Brafman, R., and Hoffmann, J. 2004. Conformant planning
via heuristic forward search: A new approach. In Proc.
ICAPS-04.
Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Confor-
mant planning via symbolic model checking and heuristic
search. Artificial Intelligence 159:127–206.
Darwiche, A. 2002. On the tractable counting of the-
ory models and its applications to belief revision and truth
maintenance. J. of Applied Non-Classical Logics.
Ferraris, P., and Giunchiglia, E. 2000. Planning as satisfia-
bility in nondeterministic domains. In Proceedings AAAI-
2000, 748–753.
Goldman, R. P., and Boddy, M. S. 1996. Expressive plan-
ning and explicit knowledge. In Proc. AIPS-1996.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of AAAI-96, 1194–1201. AAAI Press / MIT
Press.
Kurien, J.; Nayak, P.; and Smith, D. 2002. Fragment-
based conformant planning. In Proc. 13th Int. Conf. on
Automated Planning and Scheduling (ICAPS-2002).
Lin, F., and Reiter, R. 1994. Forget it! In Working Notes,
AAAI Fall Symposium on Relevance, 154–159. American
Association for Artificial Intelligence.
Palacios, H., and Geffner, H. 2005. Mapping conformant
planning to sat through compilation and projection. In 1st
Workshop on QCSP - CP-2005.
Palacios, H., and Geffner, H. 2006. Compiling uncertainty
away: Solving conformant planning problems using a clas-
sical planner (sometimes). In Proc. of (AAAI-06).
Palacios, H.; Bonet, B.; Darwiche, A.; and Geffner, H.
2005. Pruning conformant plans by counting models on
compiled d-DNNF representations. In Proc. of the 15th
Int. Conf. on Planning and Scheduling (ICAPS-05). AAAI
Press.
Turner, H. 2002. Polynomial-length planning spans the
polynomial hierarchy. In JELIA ’02: Proc. of the European
Conference on Logics in AI, 111–124. Springer-Verlag.


