
Exploiting Portfolio Strategy to Explore the Interaction of Problems and
Algorithms in AI Planning ∗

Mark Roberts
Computer Science Department

Colorado State University
Fort Collins, Colorado 80523
mroberts@cs.colostate.edu

It is well known that a problem-specific approach can lead
to an algorithm that does well on one problem but fails on
other problems with a markedly different structure ((Wolpert
& Macready 1997) consider the discrete case). Portfolios are
a general way to overcome algorithm bias and maintain ro-
bustness across a range of problems. A portfolio controls the
run time of a suite of algorithms with a strategy consisting
of: selecting which algorithms to run; ranking the selected
algorithms; and allocating computational time to them. An
ideal strategy maximizes success and minimizes total com-
putation. This means the strategy must be accurate and fast.

Previous portfolios used a variety of strategies. One of
the first formulations calculated the risk of selecting an al-
gorithm (Huberman, Lukose, & Hogg 1997). Gomes and
Selman (1997) explicitly computed the value of multiple
restarts of the same algorithm. The Bus meta-planner (Howe
et al. 1999) used a round robin allocation based on a trade-
off between a simple model of success and expected cost.
Other portfolio approaches (e.g., (Gratch & Chien 1996;
Minton 1996; Fink 1998; Baptista & Silva 2000; Leyton-
Brown et al. 2003; Lagoudakis & Littman 2000)) used eas-
ily extracted features of the problems and solution progress
and rely, for their portfolio strategy, on models generated
off-line from problem instances. Most approaches also
leverage statistical run-time distribution information (e.g.,
(Horvitz et al. 2001; Beck & Freuder 2004)) while some,
such as (Guerri & Milano 2004), focus on extracting fea-
tures that uncover structure of the problem instance.

The goodness or utility of a portfolio strategy can be mea-
sured in different ways. For example, we can examine the
raw number of problems it solves and examine its robust-
ness on unseen problems. We can compare portfolio perfor-
mance against the individual or aggregate performance of
the suite of algorithms. We can examine the selection, rank-
ing, and allocation strength of the portfolio strategy against
the best it could have done. Finally, we can study the port-
folio strategy for clues about why one algorithm is favored
over another and what led the portfolio to make the distinc-
tion. Ultimately, it is this last measure that will foster deeper
insight and explanation.

∗This research was sponsored by the National Science Founda-
tion under grant number IIS-0138690.

My research analyzes portfolio performance on planning
problems from the International Planning Competitions to
uncover algorithmic and problem structure dependencies
through:

1. Modeling planner performance of 23 planners across al-
most 4000 benchmark problems.

2. Constructing portfolio strategies using a principled
methodology based on analysis of and learning from pre-
vious off-line performance.

3. Measuring portfolio strategies to test specific hypotheses
about what constitutes effective selection, ranking, and al-
location.

4. Examining planner performance, models of the perfor-
mance, features used to build those models, domain infor-
mation, and dependencies between these sets to develop
and test specific hypotheses leading to stronger explana-
tions of search performance in planning.
What follows are highlights of some of my findings with

regard to questions (1) and (2) that form the core of a re-
cently submitted AAAI workshop paper. My dissertation
research will address all four of these questions.

Modeling Planner Performance
We study 23 classical planners, and for each planner, we
construct two models: success and time. Success estimates
P (solution found|problem, planner). Time predicts compu-
tation time needed for a given planner to complete a given
problem.

Each problem instance is defined by 57 features that can
be automatically extracted from problem and domain defini-
tions. The set starts with features from (Howe et al. 1999)
and (Hoffmann 2001) and adds others. We divide the fea-
tures into four categories of increasing knowledge and com-
putational cost: domain specific, instance specific, action in-
teraction and Hoffmann’s state space topology1 (Hoffmann
2001). Based on the amount of computation time to com-
pute features, we designate the domain and instance-specific
as ’fast’ features and the action interaction and topological
features as ’expensive’ features.

We run all planners on 3959 STRIPS PDDL problems
from 77 domains. The problems are taken from Hoffmann’s
dataset (Hoffmann 2004), the UCPOP Strict benchmark,

1We thank Jörg Hoffmann for supplying the code.

IPC sets (IPC1, IPC2, IPC3 Easy Typed and IPC4 Strict
Typed) and 37 other problems from two domains (Sodor and
Stek) that have been made publicly available. Each planner
is allowed 30 minutes and 768 Meg. We used 22 identically
configured Pentium 4 3.4Ghz computers.

We use the WEKA data mining package (Witten & Frank
2005) to build the models. We tried several different mod-
els from WEKA; to begin with, we focused our work on
two simple models that worked well: OneR and J48. OneR
selects the single feature that yields the highest prediction
value on the training set, while J48 is a simple decision tree
based on Quinlan’s C4.5. By default, we use 10-fold cross
validation.

We distinguish our models based on the data we use to
build them: all data and old data (all but IPC4). The
time3 model divides 30 minutes of possible time into
10 equal sized (three minute) bins. The logTime model
uses 5 bins of time based on the division (in seconds):
{1, 10, 100, 1000, 10000}.

Predicting Success The distribution of results in the raw
data values tends to be skewed. 35.4% of the runs suc-
ceed over all planners and problems. 97.1% (successful)
and 96.4% (failure) of runs complete in under 3 minutes.
The distributions do vary across planners from a range of
5%-70% for success and 65.5%-100% for % successful runs
under 3 minutes and 72.6%-100% for % failed runs under 3
minutes. We found that J48 predicts success for old with
96.7% average accuracy (sd of 3.2) and for all with 96.8%
average accuracy (sd of 2.12).

Predicting Time The run-time distributions (RTDs) are
heavily skewed for each planner. Over all planners, 77.8%
of the runs finish in less than one second and 6.9% finished
in greater than 1000 seconds2. Given these heavy tails, we
found that logTime predictions are much more accurate than
time3 predictions. The average prediction accuracy using
J48 with binned data was 93.52% (sd of 6.55) for logTime.

Which features are informative? To examine if spe-
cific features are informative we constructed OneR mod-
els, which rely on a single feature for classification. For
success on the old problems, the average number of
negations in effects was the best predictor for
nine of the planners; the predicate arity was best for
another four. The first feature may indicate where the of-
ten used h+ heuristic may have trouble; the second roughly
influences branching in the search space.

When we examined the features used for the old data, we
found that fast features had been selected for predicting suc-
cess for 16 of the 23 planners and for predicting time for 5
of the 12 planners. All of the expensive features selected
were from Hoffmann’s set. The mean accuracy for the suc-
cess models was 91.8% using fast features and 93.6% us-
ing expensive features. The mean accuracy for time models
was 96.2% using fast features and 78.2% using expensive
features; however, the skews on the distribution for models
using the expensive features tended to be more extreme.

2We did not construct time models for nine planners that either
always finished in less than 1 second or that too rarely succeeded
in less than 30 minutes.

Do we need all of the features? We noted a considerable
(100 to 1000-fold) difference in computing the feature cost
for the fast features and the expensive features. We won-
dered if we could use only the fast features without sacrific-
ing accuracy. On a subset of the data for which we had all
feature information, a paired sample T-test of using or re-
moving the expensive features was not significant (p < 0.61
for success and p < 0.49 for time3); it appears that expen-
sive features are not necessary for accurate models.

Do models for older problems generalize? To test this
question, we trained models using old and tested with cross-
validation as well as with IPC4. A paired sample T-test com-
paring accuracy of each of the planner models when tested
on old versus IPC4 is highly significant (P < .0001); the
models are statistically significantly more accurate for the
old problems. This suggests that the IPC4 problems must be
classified differently than the older problems.

Portfolio Construction
We construct our portfolio in a principled manner from the
model analyses. To date, we have tried several variants that
are increasingly informed by deeper insight.

Pruning with static allocation We developed and tested
a simple model of portfolio allocation by applying the RTDs.
We noted that the highest median planner time was 5 sec-
onds. Our first strategy selected only those planners to those
that were predicted to succeed, ranked that pruned set by
probability of success, and allocated ten seconds (5 seconds
rounded to the next largest bin) to each planner. We found
that this strategy was not very robust, though it did signifi-
cantly outperform the average planner performance. In hind-
sight, a simple explanation is that the planners were stopped
too soon; we effectively stopped some planners somewhere
between their 50th and 80th percentiles for time-to-success.

Using unique planners We first examined how we might
reduce the number of algorithms that the portfolio uses. Let
A be the entire set of algorithms under consideration. In
general, we seek to find the minimum covering of unique
planners,U ⊂ A , such that all problems solved byA remain
solved by U . A minimum covering is equivalent to a set cov-
ering, which is NP-Complete, but has a known polynomial
algorithm, Greedy-Set-Cover, that has an approximation ra-
tio ρ(n) = ln |A|+1 (Cormen et al. 2003). We implemented
Greedy-Set-Cover and found that at least 14 planners could
be removed.

Quiting with confidence A closer look at the RTDs
showed us that we could set a reasonable pausing time for
the planners on each iteration of a round robin portfolio. In
this way, we start with a higher confidence than the median,
and we gradually increase the confidence in each pass of the
algorithm. For the unique planners, all but one achieve the
80th percentile at 10 seconds. At 100 seconds, one plan-
ner achieves each of the 89th, 94th, and 97th percentiles,
five reach the 98th percentile, and three achieve the 99th
percentile. At 200 seconds, six have reached the 99th per-
centile. This observation suggests a stepped approach for
allocating time.

The current portfolio begins with the set of planners under
consideration (either A or U); it does not itself perform any

selection. For these planners, the portfolio ranks the plan-
ners according to the learned models in decreasing probabil-
ity of success then in increasing probability of failure. This
ensures that the portfolio tries the planner most likely to suc-
ceed first and the planner most likely to fail last.

The portfolio allocates time to the planners in a series of
round robin stages. The first stage tries the first five planners
for ten seconds each; we chose the first five because it is half
of |U|. The second stage starts at the top of the ranking and
runs all planners up to 100 seconds. Every stage thereafter
adds 100 seconds. The portfolio stops when 1) a planner
succeeds, 2) no planners are alive to run, or 3) max-time is
exceeded.

We trained the models for this portfolio using a random
sampling of 90% of the problems and tested it on the re-
maining 10% (394). Of this 394 problems, 371 (94.2%)
were solved by at least one planner. The best single planner,
SGPlan-04 solved 291 (73.9%) of these problems. To exam-
ine the impact of using the culled set, we compare the per-
formance of the portfolio using all planners (Aport) against
the portfolio using the unique planners (Uport). In terms of
robustness, Aport solved 307 (77.9%) problems while Uport

solved 325 (82.5%). Both portfolios significantly perform
faster than the average planner run time (by about 6 seconds)
according to a paired sample T-test.

Future Work
Incorporating learning from prior experience into a portfo-
lio yielded some promising results. But there still remains
much work toward the primary goal of linking the search
bias of various planners with their performance on specific
problems. In this section, we present several key points of
continuing work that we hope will reveal deeper insight into
understanding specific planning approaches.

Features To date, we have examined three basic fea-
ture types: domain/problem instance, action interaction, and
topological. The OneR and J48 models provide some evi-
dence linking particular features to performance prediction.
Already, we have begun to examine other features for im-
pact on performance prediction. We expect to identify new
features that help explain less direct action interactions as
we perform richer domain analysis. Further, we hope to ex-
amine the feature set for overlap and uniqueness similar to
what we have done for planners.

Planners We began our research with the widest set of
planners possible. We plan to examine the data for interac-
tions based on planner type (such as SAT-based, POCL-base,
Graphplan, Relaxed Graphplan, or Hybrid). We use the de-
fault settings of all planners; our work can easily be extended
to include some limited parameter tuning of the planners by
viewing each change in parameters as a new planner. Most
of the planners we used came from the IPCs. This com-
ing IPC5 will provide another set of planners to extend our
work. Attending ICAPS during an IPC year will also pro-
vide direct interaction (and possible collaboration with) the
authors of these planners to aid in gaining deeper insight.

Problems This work is based in the classical planning
paradigm. Recent extensions to PDDL were intended to

push the community toward more realistic problems (Hoff-
mann & Edelkamp 2005); our work indicates that there is
a significant difference between the old and new problems.
My hope is to fully develop a principled methodology for
portfolio construction and then extend it to the newer Tem-
poral and Probabilistic tracks of the IPC. Another potential
area for understanding the planner behavior is through the
problem generators from the IPCs - these could be used to
test specific hypotheses about the dependencies we notice.

Classifiers We mined our data with two simple classifiers
to predict success and run time. We conjecture that there
is a wealth of information beyond this utilitarian approach,
so we hope to extend these analyses by incorporating more
sophisticated classification techniques (such as Bayesian or
k-nearest neighbor clustering) to mine relationships between
the features, the problems, and the algorithms.

Unified Model Work by (Kambhampati, Knoblock, &
Yang 1995) and (Kautz & Selman 1999) unifying planning
approaches under the same framework provides a founda-
tion for exploring deeper analysis of planners.

On-line learning Our current system uses prior, off-line
learning to inform the portfolio strategy. It seems reasonable
to consider that we could extend the models into an on-line
learning paradigm.

Computational Trade-offs Our preliminary research in-
dicates we may be able to use only fast features to predict
success and time. But we need to examine this hypothesis in
light of newer domains and problems (especially since the
models built on old models didn’t generalize). If we do find
that expensive features are necessary, we expect to examine
in more detail the question of determining the appropriate
level of computational effort for a strategy. Classifiers that
incorporate feature cost into classification would be helpful
determining an appropriate trade-off point.

The focus of incorporating these extensions is to identify
dependencies between the domains, heuristics, algorithms,
and run time dynamics in classical planning. The main di-
rections of this research are 1) in providing a principled
methodology for portfolio construction and 2) in providing a
framework for exploiting the portfolio strategy to refine our
understanding of planning approaches.

Acknowledgments
I want to thank Adele Howe, my dissertation adviser, and
the reviewer of this paper who both provided feedback and
ideas for further directions for this work. Finally, a thanks to
all the authors who make their planners available for study.

References
Baptista, L., and Silva, J. P. M. 2000. Using randomization
and learning to solve hard real-world instances of satisfia-
bility. In Principles and Practice of Constraint Program-
ming, 489–494.
Beck, J. C., and Freuder, E. C. 2004. Simple rules for low-
knowledge algorithm selection. In Proc. of 1st CPAIOR.
Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2003.
Introduction to Algorithms. MIT press, Cambridge, MA,
second edition.
Fink, E. 1998. How to solve it automatically: Selection
among problem solving methods. In Proc. of 4th AIPS,
128–136.
Gomes, C. P., and Selman, B. 1997. Algorithm portfolio
design: Theory vs. practice. In Proc. of 13th UAI. Linz,
Austria.: Morgan Kaufman.
Gratch, J., and Chien, S. 1996. Adaptive problem-solving
for large-scale scheduling problems: A case study. JAIR
4:365–396.
Guerri, A., and Milano, M. 2004. Learning techniques for
automatic algorithm portfolio selection. In Proc. of 16th
ECAI, 475–479.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. JAIR 24:519–579.
Hoffmann, J. 2001. Local search topology in planning
benchmarks: An empirical analysis. In Proc. of 17th IJCAI,
453–458.
Hoffmann, J. 2004. Utilizing Problem Structure in
Planning: A local Search Approach. Berlin, New York:
Springer-Verlag.
Horvitz, E.; Ruan, Y.; Gomes, C. P.; Kautz, H.; Selman,
B.; and Chickering, D. M. 2001. A bayesian approach
to tackling hard computational problems. In Proc. of 17th
UAI, 235–244.
Howe, A. E.; Dahlman, E.; Hansen, C.; von Mayrhauser,
A.; and Scheetz, M. 1999. Exploiting competitive planner
performance. In Proc. of 5th ECP.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economics approach to hard combinatorial problems. Sci-
ence 275:51–54.
Kambhampati, S.; Knoblock, C. A.; and Yang, Q. 1995.
Planning as refinement search: A unified framework for
evaluating design tradeoffs in partial-order planning. Arti-
ficial Intelligence 76(1-2):167–238.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Proc. IJCAI-99.
Lagoudakis, M. G., and Littman, M. L. 2000. Algo-
rithm selection using reinforcement learning. In Proc. 17th
ICML, 511–518.
Leyton-Brown, K.; Nudelman, E.; Andrew, G.; McFadden,
J.; and Shoham, Y. 2003. A portfolio approach to algorithm
selection. In Proc. of 18th IJCAI.
Minton, S. 1996. Automatically configuring constraint
satisfaction programs: A case study. Constraints 1(1/2):7–
43.

Witten, I. H., and Frank, E. 2005. Data Mining: Practical
machine learning tools and techniques. Number ISBN 0-
12-088407-0. San Francisco: Morgan Kaufmann, 2nd edi-
tion.
Wolpert, D. H., and Macready, W. G. 1997. No free lunch
theorems for optimization. IEEE Trans./ on Evolutionary
Comp. 1(1):67–82.

