
Infeasible Search Analysis for Oversubscribed Scheduling Problems

Mark F. Rogers
Computer Science Dept., Colorado State University

Ft. Collins, CO 80523 USA
rogersma@cs.colostate.edu

Introduction
Researchers have expended considerable effort developing
local search neighborhoods and heuristics that restrict search
to feasible space. However, some have discovered that a
variety of problems may be solved efficiently if an algo-
rithm includes both feasible and infeasible solutions in its
search. In a procedure called strategic oscillations (Glover
1989), Glover defined a local search strategy that alternates
a search between feasible and infeasible states and uses a
span to control the number of moves the search makes in ei-
ther region. An algorithm may increase or decrease its span
periodically to vary the search intensity in feasible and in-
feasible regions.

Strategic oscillation algorithms appear to hold two advan-
tages over feasible-only search: first, the oscillations tend
to focus a search around the feasible-infeasible frontier, or
boundary region, where optimal solutions reside for many
constrained optimization problems (Glover 1989; Schoe-
nauer & Michalewicz 1996). Second, some researchers
claim that infeasible search opens new routes to optima
and permits an algorithm to exploit short-cuts in the space
(Glover 1989; LeRiche, Knopf-Lenoir, & Haftka 1995;
Kelly, Golden, & Assad 1993; Michalewicz 1996).

The boundary region is defined as feasible states that have
infeasible neighbors, or infeasible states that have feasible
neighbors. When a search reaches a boundary-region state,
its next move may introduce or resolve constraint viola-
tions as the search moves into the opposite region. Thus
boundary-region search is motivated by the conjecture that
optima for constrained optimization problems frequently in-
clude binding or active constraints. A constraint becomes
active whenever a variable reaches its minimum or maxi-
mum allowed value. Research has verified that boundary
region search finds good solutions for domains such as lam-
inate design (LeRiche & Haftka 1994), numerical optimiza-
tion (Schoenauer & Michalewicz 1996) and single-machine
scheduling (Hurink & Keuchel 2001).

That a search may benefit from short-cuts is an appealing
concept, but until now we have seen no direct established
evidence that infeasible search finds paths that could not be
reached as directly using feasible solutions. In addition, the
concept of short-cuts appears to conflict with the goal of
boundary-region search; to uncover efficient paths through
infeasible space, a search must move away from the bound-

ary region, effectively postponing boundary exploration un-
til the search returns from infeasible space. We have con-
firmed that a strategic oscillation algorithm finds short-cuts
through infeasible space, but it is difficult to justify extensive
infeasible search.

We have experimented with two satellite scheduling do-
mains that each consist of a single oversubscribed satel-
lite: each problem instance has many more requests than
the satellite can accommodate. The first domain is the 2003
ROADEF Challenge problems: satellite scheduling prob-
lems designed for a competition (Cung 2003). We have ap-
plied a strategic oscillation algorithm, TabuCL (Cordeau &
Laporte 2003) to the ROADEF problems and to a synthetic
earth observing satellite (EOS) domain. In both domains
the best solutions are likely to contain tasks with active con-
straints. The search spaces are large: ROADEF has n! · 2n

possible states in a problem with n tasks; for EOS the num-
ber of states is bounded by n! · mn, where n is the number
of tasks and m is the maximum number of time windows
allocated to a task. Both domains include time window con-
straints which we relax in order to introduce infeasible solu-
tions into a search.

Infeasible Path Segments
We define a path segment as any sequence of schedules ex-
plored during a search. A feasible segment is one in which
each schedule is feasible. An infeasible segment is one
where each schedule in the segment contains at least one
constraint violation except for the start and end schedules,
which are feasible. This restriction on the start and end
schedules helps us divide infeasible search into distinct in-
feasible segments.

We further distinguish between infeasible segments that
stay within the boundary region and those that move outside
the boundary region. We define a boundary-region segment
as an infeasible segment whose states all reside along the
boundary. When at least one infeasible state has no feasi-
ble neighbors, we refer to its segment as a deep infeasible
segment. These distinctions allow us to evaluate the rela-
tive merits of large and small oscillation span values, and
provide insights into how likely infeasible search is to yield
significant benefits.

To assess the efficiency gained through infeasible search,
we consider three phenomena: cycles, detours and short-



cuts. When a segment’s start and finish state are identical,
then the segment is a cycle. If there is a cycle contained
within an infeasible segment from one infeasible state to an-
other, then we identify the segment as a detour. Cycles and
detours degrade search performance by wasting moves. The
final infeasible segment we consider is the short-cut: an in-
feasible segment whose length is shorter than any feasible
segment between two feasible states.

We have conducted experiments to test the hypothesis
that infeasible solutions facilitate efficient search by open-
ing short-cuts in a search space. For our oversubscribed
scheduling problems, we have found that short-cuts do exist
for segments that leave the boundary region, but their effi-
ciency may be offset by infeasible segments that yield little
or no benefit to a search.

Tabu Search

The TabuCL implementation uses three neighborhood op-
erators: insert that inserts an image into the schedule;
remove that removes an image from the schedule, and
replace that changes the image that will be acquired. The
insert operator finds the first possible location for an im-
age by examining each possible slot in the schedule. Thus a
schedule is biased towards placing tasks in the earliest pos-
sible slot. This strategy ignores possible time window vio-
lations for images other than those immediately adjacent to
the candidate image, so an insert operation may generate
infeasible schedules.

The replace operator attempts to remove an image
from the schedule and to replace it with an equivalent image
from the same request. Thus the replace operator may
also introduce time window violations whenever the transi-
tion times or the time window for an alternate image differ
from those of the original.

TabuCL strategic oscillations with a simple linear penalty
function and a scale factor, α. For a schedule s, a profit value
p(s), and time window violation count w(s), the evaluation
function f(s) is given by:

f(s) = p(s) − αw(s) (1)

As a search progresses, the value α controls oscillations
about the boundary region. As a search moves through fea-
sible space, α decreases stochastically, thus encouraging the
search to admit infeasible schedules. Once the search enters
infeasible space, α begins to increase and eventually forces
the search back toward feasible schedules.

We applied a modified version of this algorithm to the
EOS problems using the same neighborhood operators.
The EOS problems use a different objective function than
ROADEF, but the strategic oscillation behavior is the same.

To account for the boundary region’s influence, we imple-
mented a restricted version of the tabu search (TabuBR) that
prevents a search from moving away from the boundary. We
compared TabuCL with TabuBR, to see how much a search
benefits from boundary-region search and how much it gains
from traversals away from the boundary.

Infeasible Segment Analysis

During each run, whenever a search transitioned from a
feasible state to an infeasible state, we recorded the fea-
sible state and each move in the infeasible path segment.
When the search transitioned again back to feasible space,
we recorded the ending feasible state and allowed the search
to continue until it started another infeasible segment.

We conducted infeasible path analysis using a separate
program to assess each infeasible segment recorded during a
search. To categorize infeasible segments, we implemented
an algorithm that detects the characteristic infeasible seg-
ment types defined in the previous section. In addition to
categorizing infeasible paths we also differentiate between
boundary region traversals and deep traversals that move be-
yond the boundary region.

Results
We have confirmed the existence of short-cuts for algorithms
that include infeasible states. Our infeasible path statistics
confirm that short-cuts, cycles and detours all occur during
infeasible search. However, the value of deep infeasible tra-
jectories varies between problems.

When we use strategic oscillations to allow a search to
probe deeply into infeasible regions, we find that in most
cases, deep traversals generate a higher proportion of im-
proving moves than boundary-region search. At the same
time, they tend to enter fewer cycles, and they uncover a
higher proportion of short-cuts in the space. Each of these
attributes implies that deep infeasible traversals have the po-
tential to make a search highly efficient.

However, when we compare TabuBR with TabuCL on
the ROADEF problems we do not find consistent perfor-
mance improvements. Possibly this is because short-cuts
still comprise a minority of deep traversals (roughly 20-
40%), while deep traversals themselves consume more it-
erations than boundary-region traversals. Thus while deep
traversals may occasionally yield promising short-cuts, this
benefit is offset by the number of iterations squandered on
non-improving deep path segments. To address this issue,
we have begun exploring ways to eliminate unproductive
segments.

Infeasible Tabu List

Our first approach was to augment TabuCL with a tabu list
for infeasible paths. With this enhancement we have been
able to eliminate most of the cycles and detours found in
infeasible traversals. We hoped that an infeasible tabu list
would also force a search to explore a more diverse selec-
tion of infeasible paths than the original search and thus
exploit more shortcuts. Although the enhanced algorithm
nearly doubled the proportion of shortcuts for the ROADEF
problems, we saw little improvement for most problems and
the new tabu list tended to degrade performance overall.

For the EOS problems we found that an infeasible tabu
list made the search more efficient than the original search
in some cases, but made little difference in others. Evidently
it is not sufficient merely to increase the proportion of short-



cuts: in addition we need to consider where a shortcut begins
in a space, and whether it finds an improving path.

Future Work
Infeasible path metrics should give us new ways to assess
strategic oscillation search. By creating tools that enable us
to measure infeasible search attributes, we obtain more com-
prehensive algorithm performance metrics than we would by
merely charting an objective function during a run. By ex-
amining the relationships between algorithm features and in-
feasible search metrics, we should be able to improve these
algorithms further or demonstrate that improvements are un-
likely. Ultimately our goal is to identify a “best” algorithm
for a given problem domain, but there are still questions we
want to answer regarding the ROADEF and EOS domains.

Although an infeasible tabu list yielded good results for
some problems, it provides little insight into search behavior
that leads to unimproving shortcuts. We want to examine the
states where we find cycles, detours and unproductive short-
cuts to see if there are trends common to these phenomena
that will allow us to eliminate a proportion of wasted moves.
As our results show, the difference between boundary region
search and deep infeasible search can be subtle; eliminating
even a small number of detrimental moves could improve
search performance.

“Jump” Tabu
Our TabuCL ROADEF results revealed that for many infea-
sible paths longer than two moves, the best moves in each
neighborhood changed little as the search proceeded into
infeasible space. We are investigating the possibility we
could make TabuCL more efficient simply by eliminating
the neighborhood searches for some initial infeasible steps.
By sorting the best moves in the initial infeasible step and
then applying several of them at once, we could “jump”
ahead in the search by generating the same infeasible path
using fewer evaluations.

A naı̈ve approach is simply to apply k of these moves at
the start of each infeasible path to make a jump. The av-
erage infeasible path length for ROADEF problems ranges
from 2 to 5 moves and of these, approximately half will
be insert or replace moves at the start of an infeasi-
ble segment. Thus the simplest implementation applies the
first k = 2 moves from an initial infeasible neighborhood,
skipping one set of evaluations. A more sophisticated ap-
proach will attempt to predict an optimal number of moves
to make in a single jump as a function of the penalty param-
eter value, the current gain and the violation counts for the
best infeasible moves.

The “jump” approaches may allow us to reduce wasted
evaluations by applying multiple moves at once. We also
wish to determine whether it is possible to predict when an
infeasible traversal is likely to produce a productive short-
cut. At this point, our infeasible path statistics do not reveal
any obvious trends. Currently we are investigating whether a
machine learning tool such as a C4.5 classifier could identify
subtle indications that lead to productive infeasible paths. If
we can construct such a classifier, then we may gain further

insight into what causes unproductive infeasible paths, or
incorporate the classifier directly into a search.

Neighborhoods and Algorithms
To date, our work has focused on TabuCL and its per-
formance with two oversubscribed scheduling problems.
Our results hint that an algorithm’s neighborhood operators
may dictate shortcuts’ frequency and influence during local
search. Thus we want to expand our investigation to exam-
ine shortcut behavior with different neighborhood operators
and algorithms.

In TabuCL, neighborhood operators are not symmetric: it
may not be possible to undo a move in a single step. For ex-
ample, if we remove a task and immediately insert the
same task, the resulting schedule may change. The algo-
rithm greedily schedules tasks at the earliest possible time,
so a task that is removed and reinserted may move to an ear-
lier slot in the schedule. We hypothesize that this kind of
asymmetry may explain the large number of shortcuts we
find with TabuCL. Thus we would like to know how rel-
evant symmetry is for finding shortcuts whether algorithms
that use symmetric neighborhoods can find shortcuts as well.

If we are able to identify search characteristics that lead
to productive infeasible search, a related goal will be to
apply our results to other search algorithms such as simu-
lated annealing or genetic algorithms. Research has shown
that strategic oscillation strategies are compatible with tem-
perature schedules in simulated annealing (Anagnostopou-
los et al. 2003). In addition, researchers have applied
strategic oscillations successfully to genetic algorithms in a
number of domains (for example, (Joines & Houck 1994;
Coit, Smith, & Tate 1996; Eiben & Ruttkay 1996; Bean &
Hadj-Alouane 1997)).

Strategic oscillations can be an effective method for solv-
ing constrained optimization problems by relaxing problem
constraints to introduce infeasible solutions into a search.
Infeasible space provides access to both sides of the bound-
ary region and allows a search to focus its attention on good
solutions that may reside there. However if we want to de-
velop efficient search algorithms, then we need to under-
stand what characteristics make infeasible search successful.
By studying infeasible path statistics, we hope to uncover
the infeasible search features that yield insights into how a
search behaves and may thus allow us to exact the benefits
while avoiding the unproductive forays.

References
Anagnostopoulos, A.; Michel, L.; Hentenryck, P. V.; and
Vergados, Y. 2003. A simulated annealing approach to the
traveling tournament problem. In Proceedings of CPAIOR
2003.
Bean, J. C., and Hadj-Alouane, A. B. 1997. A genetic algo-
rithm for the multiple-choice integer program. Operations
Research 45(1):92–101.
Coit, D. W.; Smith, A. E.; and Tate, D. M. 1996. Adaptive
penalty methods for genetic optimization of constrained
combinatorial problems. INFORMS Journal on Comput-
ing 8(2):173–182.



Cordeau, J. F., and Laporte, G. 2003. Maximizing the value
of an earth observation satellite orbit. Technical Report
CRT-2003-27, Centre de recherche sur les transports.
Cung, V.-D. 2003. ROADEF’2003: Results of the final
stage (base X) of the challenge. http://www.prism.
uvsq.fr/˜vdc/ROADEF/CHALLENGES/2003/
results030203_final.html.
Eiben, A. E., and Ruttkay, Z. 1996. Self-adaptivity for con-
straint satisfaction: Learning penalty functions. In Interna-
tional Conference on Evolutionary Computation, 258–261.
Glover, F. 1989. Tabu search–Part I. ORSA Journal on
Computing 1(3):190–206.
Hurink, J. L., and Keuchel, J. 2001. Local search algo-
rithms for a single-machine scheduling problem with posi-
tive and negative time-lags. Discrete Applied Mathematics
112(1-3):179–197.
Joines, J. A., and Houck, C. R. 1994. On the use of non-
stationary penalty functions to solve nonlinear constrained
optimization problems with GA’s. In International Con-
ference on Evolutionary Computation, 579–584.
Kelly, J. P.; Golden, B. L.; and Assad, A. A. 1993. Large-
scale controlled rounding using tabu search with strategic
oscillation. Annals of Operations Research 41:69–84.
LeRiche, R., and Haftka, R. T. 1994. Improved genetic
algorithm for minimum thickness composite laminate de-
sign. In Proceedings of the International Conference on
Composite Engineering, Aug 28–31.
LeRiche, R.; Knopf-Lenoir, C.; and Haftka, R. T. 1995. A
segregated genetic algorithm for constrained structural op-
timization. In Proceedings of the Sixth International Con-
ference on Genetic Algorithms, 558–565. Morgan Kauf-
mann Publishers Inc.
Michalewicz, Z. 1996. Genetic Algorithms + Data Struc-
tures = Evolution Programs. London: Springer.
Schoenauer, M., and Michalewicz, Z. 1996. Evolutionary
computation at the edge of feasibility. In Parallel Problem
Solving from Nature IV, 245–254. Berlin: Springer.


