
Scheduling with uncertain durations: generatingβ-robust schedules using
constraint programming

Christine Wei Wu and Kenneth N. Brown
Cork Constraint Computation Center,

Department of Computer Science,
University College Cork, Ireland

{cww1, k.brown }@cs.ucc.ie

J. Christopher Beck
Toronto Intelligent Decision Engineering

Laboratory, Dept. of Mechanical and
Industrial Engineering,University of Toronto,

Canada.jcb@mie.utoronto.ca

Abstract

Many real-world scheduling problems are subject to change,
and scheduling solutions should be robust to those changes.
We consider a single-machine scheduling problem where
the processing time of each activity is characterized by a
normally-distributed random variable, and we attempt to min-
imize flowtime. We develop an initial constraint model for
generating theβ-robust schedule - the schedule that has high-
est probability of producing a flowtime less than a stated
bound. Experiments with this initial model show that a
constraint-based approach is feasible, but that better propa-
gation methods will be required.

Introduction
Many real-world scheduling problems are subject to change:
new jobs arrive, resources fail, or tasks take longer than
expected. If these changes are significant, it may be bet-
ter to generate solutions that are robust to them. A num-
ber of approaches have been proposed to handle uncertain
scheduling problems. Redundancy-based Scheduling gen-
erates schedules with temporal slack so that unexpected
events during execution can be handled by using that re-
served slack (Davenport, Gefflot, & Beck 2001; Gao 1995).
Contingent scheduling anticipates likely disruptive events
and generates multiple schedules which optimally respond
to the anticipated events (Drummond, Bresina, & Swan-
son 1994; Fowler & Brown 2003). Probabilistic schedul-
ing uses probabilities over possible events, and searches for
schedules which optimize the expected value of some per-
formance measure (Daniels & Carrillo 1997; Walsh 2002;
Beck & Wilson 2004; 2005). A number of approaches use
sampling and scenarios, in order to produce robust decisions
(Bent & Hentenryck 2004; Beck & Wilson 2004).

In particular, Daniels and Carrillo (Daniels & Carrillo
1997) introduced the concept of theβ-robust schedule for a
single machine scheduling problem with processing time un-
certainty, which aims to maximize the probability of achiev-
ing a given performance level. They considered flowtime
(the amount of time the tasks remain in the system) as the
performance metric. They solved the problem by a branch-
and-bound method with dominance rules, and heuristics for
branch selection.

Constraint-based methods have proven to be very effec-
tive in a wide range of industrial scheduling problems. The

advantage comes from the flexibility of the modeling lan-
guage, and the ability of the solvers to deliver effective per-
formance despite the presence of a wide range of different
constraints and objectives. For these reasons, we develop an
initial constraint model for solving theβ-robust scheduling
problem. For any given schedule, we will measure the prob-
ability of the total flowtime being less than a target level. We
will then generate a schedule which maximizes the proba-
bility. Also, we will show the benefits of using standard
constraint programming techniques. We introduce another
objective, which is to find a schedule which optimizes the
target level that can be achieved with a given probability.
In this paper, we present a primal CP model to solver those
problems.

The flowtime of a schedule
Before we show the primal model of theβ-robust schedul-
ing problem, we need to go through series of formal def-
initions and mathematical calculations. Those mathemati-
cal formulas will then give us a clear indication of any nec-
essary variables and values for modeling the problem as a
constraint satisfaction problem (CSP). There are several cri-
teria of measuring schedules. In this report, we use the total
flowtime to judge the solutions.

In a single machine scheduling problem, in which each
job consists of a single task, a machine can only process one
job at a time, and a job cannot be interrupted once started, a
solution is a sequence of the jobs, and we assume the jobs are
executed in sequence with no delay between them. Suppose
we have a sequenceJ1, J2, . . . Jn. Each jobJi has an arrival
time Ai (its earliest possible start time), a start timeSTi, a
durationdi, and an end timeEi. We assume that each job
is available for processing at time 0 (i.e.Ai = 0). We note
the following simple relations:Ei = STi + di, ST1 = 0,
STi = Ei−1, and henceEi =

∑i
j=1 dj .

The flowtimeis the total time the jobs are in the system:
TFT =

∑n
i=1(Ei − Ai). Because we assumeAi = 0, we

can rewrite the equation for total flowtime as follows:

TFT =
n∑

i=1

Ei =
n∑

i=1

i∑

j=1

dj =
n∑

i=1

(n + 1− i) ∗ di (1)

We now assume that each jobJi’s duration is an indepen-
dent normally distributed random variabledi ∼ N(µi, σ

2
i).

We assume that the jobs will still be executed in the given se-
quence, regardless of the actual values of the durations. We
note that for any two independent random variablesX ∼
N(µx, σ2

x) andY ∼ N(µy, σ2
y), and two constantsa and

b, the sumaX + bY is also a normally distributed random
variable, such thataX +bY ∼ N(aµx +bµy, a2σ2

x +b2σ2
y).

Since the activity durations are independent normally dis-
tributed random variables, and flowtime is a linear combina-
tion of durations, then for any particular sequence of jobs,
the flowtime is also a normal random variable. From (1):
TFT ∼ N(

∑n
i=1(n− i + 1)µi,

∑n
i=1(n− i + 1)2σ2

i).

β-robust schedules
The β-robust schedule is useful because rather than gam-
bling on the expected performance (or the average actual
performance over a number of runs), it gives a lower limit
on the performance, and to state the confidence in being able
to achieve that level.

For example, consider the simple problem consisting
of three jobs{x, y, z}, with uncertain durations{dx ∼
N(9, 2), dy ∼N(5, 1), dz ∼N(8, 7)}. The sequencese =
〈y, z, x〉 has a flowtime which is distributed asN(40, 39).
40 is, in fact, the smallest expected flowtime possible for
this problem. An alternative sequence,sβ = 〈y, x, z〉, has
flowtime∼ N(41, 24), and thus has a higher expected flow-
time. However, suppose we now introduce a desired maxi-
mum flowtime of (for example)51: the scheduler will incur
a penalty if the actual schedule has a flow time greater than
51. Sequencese has a probability of0.04 of producing a
flowtime greater than51, while sβ has a probability of just
0.02 of delivering a flowtime greater than51, and thussβ

is likely to be less expensive.sβ is theβ-robust(Daniels &
Carrillo 1997) schedule for the maximum flowtime of51 -
that is, it has the highest probability of delivering a flowtime
no greater than51. In addition, for the confidence level of
0.98, sβ also delivers the minimal flowtime limit (51).

Definition 1. For the single machine scheduling problem
with n jobs, with normally-distributed uncertain durations,
and with a flowtime limitS, theβ-robust scheduling problem
is to find the sequence,s, which maximizes the probability
of the flowtime being less thanS. That is, find thes that
maximizesProb(flowtime(s) ≤ S) (Daniels & Carrillo
1997).

First, we show how to computeProb(flowtime ≤
S) for an arbitrary sequence of then jobs. Since the
random variables in the problem are normally distributed,
we can use the formula below to compute the probabil-
ity of flowtime ≤ S, where µ is the mean flowtime
of the sequence, andσ2 is its variance: φ(x ≤ X) =

1/σ
√

2π
∫ X

−∝ e
−(x−µ)2

2σ2 dx. An arbitrary normal distribution
can be converted to a standard normal distribution by chang-
ing variables toz = (x − µ)/σ, so the normal distribution
function becomes:

φ(x ≤ X) =
1√
2π

∫ z

−∝
e
−t2
2 dt =

1
2

+ φ(z)

whereφ(z) = 1/
√

2π
∫ z

0
e
−t2
2 dt. Hence, the probability of

flowtime ≤ S can be computed by

Prob(flowtime ≤ S) =
1
2

+ φ(z) (2)

where

z =
S −mean(flowtime)√

var(flowtime)
. (3)

For each possible schedule, we can compute the mean and
variance of the flowtime bymean(flowtime) =

∑n
i=1(n−

i + 1)µi andvar(flowtime) =
∑n

i=1(n− i + 1)2σ2
i as in

equation (1). Then,φ(z) can be obtained by checkingz in
the standard normal distribution table (Z-table).

Alternatively, there is a simple approximation ofφ(z)
which is good to two decimal places (Weisstein 2006), given
by

φ(z) ≈ ϕ(z)

{ 0.1z(4.4− z) (0 ≤ z ≤ 2.2)
0.49 (2.2 < z < 2.6)
0.50 (z ≥ 2.6)

(4)

The β-robust schedule is one of those alternative se-
quences of the jobs, such that it has the maximum probabil-
ity of flowtime ≤ S. To find aβ-robust schedule, we need
to have an objective function to maximize the probability.
We use the approximation ofφ(z) to compute the probabil-
ity, becauseϕ(z) increases on[0, +∞) that simplifies the
calculation (the proof is straightforward and omitted here).
By using that simplification, maximizing the probability of
flowtime ≤ S is the same as maximizingz.

objective = max(
1
2

+ φ(z))

≈ 1
2

+ max(ϕ(z)) =
1
2

+ ϕ(max(z)).

With above analysis and calculations, we are ready to in-
troduce our constraint models for theβ-robust scheduling
problem.

Primal model
The primal model is shown in Figure 1. We assume a set
{J1, J2, . . . Jn} of jobs, each with a normally-distributed
random variable durationDi ∼ N(µi, σ

2
i). Differing

from the previous sections, we now do not assume that the
jobs are scheduled in the given sequence. With each job
Ji, we associate a position variable,Posi, with domain
{1, 2, . . . , n}. The position variablePosi represents the po-
sition of Ji in the sequence: for instance,Pos2 = 3 states
that J2 is scheduled to be the third job to start on the ma-
chine. Besides position variables, we also introduce ad-
ditional variables for computing flowtime mean and vari-
ance and then the probability. The formula (1) indicates
that flow time can be viewed as the sum of the contribu-
tions from all jobs. We define flowtime contribution ofJi as
FTContribi = (n−Posi +1)Di. meanFTContribi and
varFTContribi are the mean and variance of the flowtime
contributions fromJi. The former has an integer value in
[µi, nµi], and the latter has a value in[σ2

i , n2σ2
i]. The goal

is to sequence those jobs, i.e. assign a distinct value to each
Posi, such that the likelihood of the sequence (schedule) to

Figure 1: Primal Model
Variables:
Job positions:Pos1, ..., Posn

Job mean flowtime contributions:
meanFTContrib1, ..., meanFTContribn

Job variance flowtime contributions:
varFTContrib1, ..., varFTContribn

Constraints:
allDifferent (Job positions)
meanFTContribi = (n− Posi + 1)µi

varFTContribi = (n− Posi + 1)2σ2
i

mean(flowtime) =
∑n

i=1 meanFTContribi

var(flowtime) =
∑n

i=1 varFTContribi

Dominance constraints:
for 0 < i < j ≤ n,
µi ≤ µj andσ2

i ≤ σ2
j ⇒ Posi < Posj

µi ≥ µj andσ2
i > σ2

j ⇒ Posi > Posj

µi > µj andσ2
i = σ2

j ⇒ Posi > Posj

objective = max(z) = max(S−mean(flowtime)√
var(flowtime)

)

achieve a fixed system performance levelS is optimized, i.e.
max(probability(flowtime ≤ S)).

Firstly, we have a permutation constraint that ensures each
job takes a different position in the sequence. This can be
implemented as a global all-different constraint on all the
Posi. Also if we consider the flowtime as a sum of contri-
butions from each job, from formula (1), we have

mean(flowtime) =
n∑

i=1

meanFTContribi

=
n∑

i=1

(n− Posi + 1)µi,

var(flowtime) =
n∑

i=1

varFTContribi

=
n∑

i=1

(n− Posi + 1)2σ2
i .

With those additional variables, we can use formula (2), (3)
and (4) to compute the probability of a schedule’s actual
flowtime being less thanS.

We are also able to impose some dominance constraints
as in figure 1, using the properties of theβ-robust schedule.

Theorem 1. In a β-robust schedule, if jobi with Di ∼
N(µi, σ

2
i) precedes jobj with Dj ∼ N(µj , σ

2
j) , then ei-

ther the mean duration of jobi, µi, is no greater than the
mean duration of jobj, µj , or the duration variance of job
i, σ2

i , is no greater than the duration variance of jobj, σ2
j ,

that isµi ≤ µj or σ2
i ≤ σ2

j . (see Appendix for the proof)

With this property, we post further constraints: for jobi
and jobj (0 < i < j ≤ n), if µi ≤ µj andσ2

i ≤ σ2
j , then

Posi < Posj ; if µi ≥ µj andσ2
i > σ2

j thenPosi > Posj ;

if µi > µj andσ2
i = σ2

j thenPosi > Posj . Note that for
the jobs have the same duration mean and the same duration
variance, we take the lexicographical order on their indexes,
i.e. if µi = µj andσ2

i = σ2
j andi < j, thenPosi < Posj .

As stated before, modeling theβ-robust scheduling prob-
lem as a standard CSP enable us to change the objectives
easily for different purposes. In particular, we can gener-
ate a schedule which optimizes the target level that can be
achieved with a given probability.

Instead of maximizing the probability with a given sys-
tem performanceS, we might want to minimizeS such that
there exists a schedule that can achieveS with a fixed prob-
ability. That isMin(S) such thatProbability(X ≤ S) ≥
C, whereC is the fixed probability. Using the same pri-
mal model, we can getz value from formula (2) and (4)
z = ϕ−1(C − 1

2). Then, from formula (3), we have a new
objective functionmin(S) = min(z∗

√
var(flowtime)+

mean(flowtime)). Note thatϕ−1 is not a one-to-one cor-
respondence function (i.e. there are more than onez values
for each value ofC) at C = 0.99 andC = 1.0. For not
over estimatingS, we select the smallestz from all possible
values. That is we setz = 2.21 whenC = 0.99 andz = 2.6
whenC = 1.0.

Besides those constraints we discussed above, we also
implement a variable ordering heuristic to guide search.
From formula (3), we can see that theβ-robust schedule
has the optimized combination ofmean(flowtime) and
var(flowtime). In order to find theβ-robust schedule more
quickly, we prefer to first schedule a jobi, which has shorter
mean processing timeµi and smaller varianceσ2

i . We use
a family of variable ordering heuristics, ordering the jobs
by increasingµi + q ∗ σ2

i , selecting a value forq based on
the problem characteristics (probability levels). For higher
probabilities, we expect the variance to be more significant,
and so we choose higher values ofq which give increas-
ing weight to the duration variance in the variable ordering.
Note that this variable ordering heuristic does not improve
the total solving speed (i.e. the time of finding the schedule
and proving it is the optimal), but does shorten the time to
find the optimal solution.

Experimental results
We implemented theβ-robust scheduling problem as a
constraint satisfaction problem using ILOG Scheduler and
Solver 6.0. Our first aim is to verify our initial constraint
model, and so we expect to see the same pattern of results as
obtained by (Daniels & Carrillo 1997). Secondly, we want
to determine whether or not a constraint model is feasible
for such problems, and so we hope to see runtimes of a sim-
ilar order of magnitude. If we succeed in both aims, we will
then investigate more sophisticated constraint models.

We consider problems with either 10 or 15 jobs, using the
same experimental setup as (Daniels & Carrillo 1997). Ta-
ble 1 contains the results for our constraint methods and the
corresponding figures taking directly from (Daniels & Car-
rillo 1997). The CPU is the computation time for finding and
proving theβ-robust schedule. It also shows the differences
(in average and in maximum deviation) between the mean

Table 1: Computational performance ofβ-robust solution
procedure.

Constraint model Branch-and-bound
total prob. CPU Avg. Max. CPU Avg. Max.

abv. abv. abv. abv.
jobs level (sec.) SEPT SEPT (sec.) SEPT SEPT

(%) (%) (%) (%)
10 0.85 0.1 0.1 0.4 0.2 0.1 0.8

0.95 0.1 0.3 1.7 0.2 0.3 1.9
0.99 0.1 0.5 1.9 0.3 0.6 2.5

15 0.85 2.3 0.1 0.3 1.0 0.1 0.5
0.95 2.4 0.2 0.7 1.7 0.2 1.0
0.99 3.0 0.3 1.5 2.1 0.4 1.9

processing time of theβ-robust schedule and the shortest
expected processing time (SEPT). Table 1 indicates that we
do have a similar pattern in term of the mean flowtime of
the β-robust schedule compared to the SEPT schedule. In
addition, our CPU time is comparable for the smaller prob-
lems, but is poorer for the larger problems. This indicates
that a constraint-based approach may be feasible, but that
a more sophisticated model with better propagation will be
required. Moreover, we set up a further experiment to deter-
mine the effort require to prove that the solution is optimal.
The results shows that the program takes little time (e.g. 7%
of total) to find the best solution but usually a long time (e.g.
93% of total) to prove if it is theβ-robust schedule. We be-
lieve that a problem is hard for our model if it has many jobs
with similar duration mean and variance. The program is
able to do little propagation, and thus spends a lot of time
trying different permutations of the jobs for no benefit.

With the general model, we can also give the minimum
system performanceS for a problem, so that the jobs in the
problem can be scheduled to achieve the minimizedS with a
desired probability level. The details of experimental results
have been abridged.

Future work
In constraint programming, it is sometimes very useful to
change view points to study the same problem. Particularly,
for a permutation problem (a constraint satisfaction prob-
lem in which each decision variable takes an unique value),
we can transpose the roles of the variables and the values
in presenting the underlying problem to give a new dual
model which is also a permutation problem (Hnich, Smith,
& Walsh 2004).

We are currently working on the dual model of the pri-
mal model, and a third model which channels between the
primal model and its dual. We believe using the combined
model will help us to improve the solving speed. We also
plan to investigate better bounds for pruning branches at the
top of the search tree, better heuristics to guide the search,
and the construction of a global constraint for achievingβ-

robustness. We are also conducting an investigation into the
characteristics of the problems which make some of them
much harder to solve than others. Finally, we plan to extend
this work to consider problems with multiple machines and
with non-zero arrival times, for which the probability calcu-
lations reported here will not apply.

Conclusion
In this paper, we presented a general constraint model for the
β-robust scheduling problem, which allows us to produce
schedules which are robust to uncertainty in the durations of
tasks. With flowtime as the performance measure, we can
optimize the probability and find a most promising schedule
to satisfy the system performance requirement; or we can
optimize the performance level for a fixed probability. Our
initial model demonstrates that a constraint-based approach
is feasible for this problem, but that more more sophisticated
models are required for good performance.

References
Beck, J. C., and Wilson, N. 2004. Job shop scheduling
with probabilistic durations.Proceedings of the Sixteenth
European Conference on Artificial Intelligence652–656.
Beck, J. C., and Wilson, N. 2005. Proactive algorithms
for scheduling with probabilistic durations.Proceedings of
the Nineteenth International Joint Conference on Artificial
Intelligence1201–1206.
Bent, R., and Hentenryck, P. V. 2004. Online stochastic
and robust optimization.Ninth Asian Computing Science
Conference286–300.
Daniels, R. L., and Carrillo, J. E. 1997. Beta-robust
scheduling for single-machine systems with uncertain pro-
cessing times.IIE Transactions29:977–985.
Davenport, A. J.; Gefflot, C.; and Beck, J. C. 2001. Slack-
based techniques for robust schedules.Proceedings of the
Sixth European Conference on Planning7–18.
Drummond, M.; Bresina, J. L.; and Swanson, K. 1994.
Just-in-case scheduling.Proceedings of the 12thNational
Conference on Artificial Intelligence (AAAI)1098–1104.
Fowler, D. W., and Brown, K. N. 2003. Branching con-
straint satisfaction problems and markov decision problems
compared.Annals of Operations Research118:85–100.
Gao, H. 1995. Building robust schedules using temporal
protectionan empirical study of constraint-based schedul-
ing under machine failure uncertainty.Masters thesis, De-
partment of Industrial Engineering, University of Toronto,
Toronto, Canada.
Hnich, B.; Smith, B.; and Walsh, T. 2004. Dual modelling
of permutation and injection problems.Journal of Artificial
Intelligence Research21:357–391.
Walsh, T. 2002. Stochastic constraint programming.Pro-
ceedings of 15th European Conference on Artificial Intelli-
gence111–115.
Weisstein, E. W. 2006. Normal distribution function.
Mathworld, Wolfram Research, Inc.http:// mathworld.
wolfram. com/ Normal Distribution Function. html.

