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Introduction
The complexity of a task faced by a planner depends
strongly on the search space. The importance of the plan-
ner’s search space is reflected in the two main classes of
classical AI planners:state-spaceplanners, which explore
the search space by considering totally ordered sequences
of directly neighboring states of the world, andplan-space
planners, which explore the search space by considering in-
complete plans consisting of partially ordered actions. The
search space also depends on the structure of subgoals (their
interactions) and on the representation of knowledge used
by the planner (e.g., the level of abstraction at which the
planning is done or the expressiveness of the description
language). Taking these factors into account can lead to
finer-grained classification of planning domains and search
spaces.

Knowing the properties of a search space is useful when
a human designer creates a new planner or decides which
of the existing planners to use. However, knowledge of the
properties of a search space may also be useful to the planner
itself. In my research, I plan to explore which features of the
search spaces can be automatically determined or learned by
planners (during repeated executions), and how such infor-
mation may be used by a planner to improve the search pro-
cess (e.g., by choosing an appropriate planning technique,
abstraction level, or representation).

This research is still in the idea stage: I am in the pro-
cess of developing my dissertation proposal, and plan to take
the preliminary exam (proposal defense) in July, after the
conference. Attending the doctoral consortium will give me
the ideal opportunity to receive early feedback that can help
guide my dissertation research. I also look forward to the
opportunity to attend the conference in order to get a bet-
ter sense of the current state of the field, and to meet other
graduate students and senior researchers.

Overview of the approach In my approach, the planner
will discover (either through a preliminary analysis or learn-
ing) features of the structure of the planning domain. Infor-
mation about these features can improve the planning pro-
cess by using them as heuristics, selecting a more appro-
priate search method, tuning the parameters of the planner,
or by changing to a different representation of the domain
knowledge (shaping the search space).

In this paper, I propose two approaches to discover fea-
tures of a planning domain. The first one is a preliminary
analysis of the domain description. Although the cost of
such analysis would be high, it can be amortized over mul-
tiple planning attempts in the future that would benefit from
it. The second approach includes observing multiple valid
plans (either produced by the planner itself, other planners
or humans), and learning the features from the observations.
This approach may be particularly effective in discovering
statistical features of the search space for the domain (e.g.,
intermediate states that are often included in a plan).

Detection of search space features
Analysis In my approach, the planner will run a prelimi-
nary analysis of the planning domain (i.e., actions, their pre-
conditions, and their effects) in order to discover dependen-
cies among the actions. Such dependencies can later be used
to make planning decisions for any specific problem (i.e.,
any initial state and goals). This approach is inspired by
work of Kambhampati, Parker, and Lambrecht (1997) and
Hoffmann, Porteous, and Sebastia (2004).

Kambhampati, Parker, and Lambrecht analyzed Graph-
plan. They point out that the planning graph created by
Graphplan is a way of representing the search tree in a com-
pact but approximate manner. Each level represents a set of
states in the search space, and the exact path in the state-
space can be retrieved, which happens during the extraction
of the plan produced by the planner. The representation of
the search tree is approximate because it includes only in-
formation for certain goals interactions (mutexes—i.e., sets
of size of two containing mutually exclusive propositions).
They also show that there are domains where this informa-
tion is not sufficient, yet looking for the additional infor-
mation during each generation of a planning graph is not
feasible. This would justify preprocessing, which needs to
be done only once since it does not depend on the particular
initial state and goals. An open question remains: how to au-
tomatically detect whether a particular domain has the prop-
erty that information in a planning graph created by Graph-
plan is not sufficient.

Hoffman, Porteous, and Sebastia also did preprocessing in
order to find ordering of subgoals, as described later. Their
research, however, was dependent on the initial and goal
states, which means that the preprocessing has to be exe-



cuted during each run of the planner. If a more general anal-
ysis of the search space’s structure (not dependent on ini-
tial and goal states) could be performed, the preprocessing
could be performed only once. Moreover, the information
obtained during such an analysis could be used in multiple
ways. The first one would be to perform reachability anal-
ysis of a search space (which would allow the planner to
reject some paths in the search space and to declare some
goals not achievable from certain starting points). Another
way would be through the identification ofhub states: states
or preconditions thatalwaysor oftenappear in valid plans in
the domain. This would improve planning by adding hubs
as subgoals, or by precomputing actions that lead from one
hub state to another one. An extension of this idea would be
treating a group of states as a hub (a minimal group of states
such that at least one of the states appears in almost all valid
plans).

Hoffmann, Porteous, and Sebastia also used heuristics
based on parsing techniques (e.g., lookahead). I would also
like to explore the similarities between planning, given a do-
main representation, and parsing given a grammar. Many
efficient parsers do not analyze the grammar while parsing:
they usually use precomputed information such as a parser
table. Most parsers, however, cannot process arbitrary gram-
mars. Instead, they are limited to a few basic classes like
context-free or LALR(n) grammars. It would be interest-
ing to identify and analyze analogous classes of planning
spaces. Such classes of spaces could either be based on
specific structures of subgoals or relations among planning
states (especially in state-space search). (The relation of
planning to context-grammars has already been noticed by
Erol, Hendler and Nau (1994), but they mostly focused on
HTN planning, which has an explicit structure among ac-
tions.)

Learning The search space analysis described above may
be most efficient for features that are present in every valid
plan, but an approach that considers only such features may
be too restrictive (especially if we consider preprocessing of
the space for all initial states). However, detection of fea-
tures that are often (but not always) included in plans may
require enumerating a large part of the search space. There-
fore, it could be feasible to learn the existence of such hub
nodes by observing multiple generated plans for the same
domain, instead of analyzing.

Many domains (including benchmark domains for plan-
ning) are reported to have regularities in their local search
topology. For example, Hoffmann (2003) analyzed heuris-
tics that ignore delete lists of operations in the context of
phenomena that occur in the local search topology. Simi-
larly, Haslum and Geffner (2000) showed that the successful
use of heuristics to guide the planning process can be linked
to the regularities in the domains. Learning the local features
and regularities of the search space can possibly lead to the
development of good, domain-specific heuristics. Moreover,
for a search guided by a heuristic, it could also be possible
to incrementally learn a better heuristic.

Shaping the search space
Having discovered the features of a planning domain (e.g.,
by analyzing the search space or by learning the features
from observation of valid plans), a planner may take advan-
tage of this knowledge by reasoning about planning in this
domain (meta-planning) and shaping the search space.

One way to change the shape of the search space is to
change the representation of facts. My idea is partially in-
spired by work by Haslum and Jonsson (2000), who focused
on the idea of removing redundant operatorsgiven an initial
state. I believe that planning could be improved by removing
particular effects of the operators, while still preserving cor-
rectness comparing to the plan with non-modified operators
(redundant effects). It may also be possible to remove op-
erators that are rarely used in plans (as learned by the plan-
ner). As a result, removing some operators would allow eas-
ier preprocessing of the domain regardless of the initial state
(e.g., if it would reduce the class of a search space to a sim-
pler one) at the expense of producing less optimal plans in
terms of the plan’s length.

Another possible way of changing the search space is the
selection of an alternative search method for the whole plan
or part thereof. (A similar approach was used in the FLECS
algorithm (Veloso & Stone 1995), but the selection condi-
tion in that case was given by the designer, not learned by
the planner.) For example, it may be possible to learn which
search method performs the best given the set of detected
features of the planning domain. Alternatively, the planner
could learn a hierarchical representation of the problem (in-
spired by work by Knoblock (1994)), decide to first solve
the planning problem at a higher level, and then solve the
subproblems independently (similar to HTN planning).

Related work
The problem of structure and interactions among the goals
has previously been analyzed by Barrett and Weld (1994).
They described different classes of planning domains, and
tested the behavior of both total-order and partial-order plan-
ners on these domains. Hoffmann, Porteous, and Sebas-
tia (2004) described different kinds of possible ordering re-
lations between subgoals. They also introduced the con-
cept of landmarks, which can be perceived as a particu-
lar type of hub states mentioned earlier in this paper. (A
landmark is a subgoal that must be satisfied at some point
in everyplan in the domain; my definition of a hub state
is slightly broader and also includes the goals or states
that are included inmostplans in the domain.) Addition-
ally, Hoffmann in his earlier work described how local fea-
tures of the topology of the search space (as opposed to
“global” landmarks and orderings) may influence planning,
and how such features of the space can be detected and
used in FF planner (Hoffmann 2001; 2003). The work by
Smith and Peot (1996) described analyzing the search space
by usingoperator graphsto avoid recursion and prune it.
Preanalysis of the search space is also used in the work
by Fox and Long (1998), which finds state invariants us-
ing type inference. Their later work (Fox & Long 1999;
Porteous, Long, & Fox 2004) focuses on finding regularities



in planning problems (symmetry and almost symmetry).
Other work has explored the appropriate level of abstrac-

tion during planning. This issue is the focal point of HTN
planning (Sacerdoti 1975), where different levels of abstrac-
tion are explicitly represented. Nevertheless, information
about an abstract hierarchy may also be used in planners that
do not support hierarchy explicitly: for example, Veloso and
Stone (1995) mention treating some intermediate goals as
milestones, which divide states in a plan into independent
groups. Each such group can be treated as a goal at a higher
level of abstraction. Information about these groups is ob-
tained from an external source. (Veloso and Stone mention
work by Knoblock (1994) as a method to generate abstrac-
tions automatically.) In fact, Kambhampati (1995) presents
a comparison of “pure” partial-order planners (no use of in-
formation regarding hierarchy) and HTN planning, and dis-
cusses the advantages of having an explicit representation
for abstract or higher-level goals.

Different ways of representing the same domain are also
a popular research topic, especially the tradeoff between the
complexity of planner’s data structures and the size of the
search space (Kambhampati & Yang 1996; Kambhampati,
Parker, & Lambrecht 1997).

There is also a body of work on learning in planning.
Learning appropriate heuristics by planners based on their
previous experiences in planning can be found in work by
Likhachev and Koenig (2005). Boteaet al. (2005) presented
an approach that exploits the underlying domain structure,
and learns ordering of operators (actions) and combining
them into groups (macros) by observing plans in the domain.

Status of the work
This paper presents preliminary work done under supervi-
sion of my advisor, Prof. Marie desJardins. I plan to have
the ideas further extended by July 2006 by providing details
of the proposed methods and examples of planning domains
where these methods are applicable. At this time, this work
should be developed far enough to form a Ph.D. thesis pro-
posal.
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