

ICAPS 2006
Doctoral Consortium

Table of contents

Preface 5

Planning with temporally extended goals using heuristic search 9
Jorge Baier, and Sheila McIlraith

Continuous planning for the control of an autonomous agile satellite 13
Gregory Beaumet

Solving goal utility dependencies and simple preferences in partial
satisfaction planning

16

J. Benton

Sequential Monte Carlo in probabilistic planning reachability heuris-
tics

19

Daniel Bryce

Analyzing, learning, and shaping planning search spaces 23
Blazej Bulka

Linear logic in planning 26
Lukas Chrpa

Generic types and their use in improving the quality of search heuris-
tics

30

Andrew Coles

Integrating macro-operators and control-rules learning 34
Rocio Durán

Techniques for generating optimal, robust plans in the presence of
temporal uncertainty

38

Janae Foss

Controlability and Makespan issues with robot action planning and
execution

42

Matthieu Gallien

Backdoors in planning and scheduling problems 46
Peter Gregory, Derek Long, and Maria Fox

Computing action equivalences for planning 50
Natalia Gardiol, and Leslie Pack Kaelbling

Concurrent planning using Petri Net unfoldings 54
Sarah Hickmott

On the smoothness of linear value function approximations 58
Branislav Kveton, and Milos Hauskrecht

Memory-efficient graph search in planning and model checking 62
Peter Lamborn, and Eric Hansen

A study of process languages for planning tasks 65
Stephen Lee-Urban, and Hector Munoz-Avila

Software tool for the master production schedule conception based
on the Capacitated Lot Sizing Problem

68

M. Gourgand, N. Grangeon, D. Lemoine, and S. Norre

Towards efficient probabilistic temporal planning 72
Iain Little

Challenges for temporal planning with uncertain durations 76
Mausam, and Daniel Weld

Efficient and expressive extensions of constraint-based temporal
reasoning

80

Michael Moffitt

Path planning under uncertainty: Complexity and algorithms (ICAPS
Doctoral Consortium: Thesis abstract)

84

Evdokia Nikolova

Easy and hard conformant planning 87
Hector Palacios, and Hector Geffner

Predictive planning for supply chain management: Adapting to com-
petitor behavior

91

David Pardoe

Integration of constraint-based off-line and on-line approaches to
project scheduling

95

Riccardo Rasconi

Improving planning techniques for web services 99
Francisco Palao Reinés

Exploiting portfolio strategy to explore the interaction of problems
and algorithms in AI planning

103

Mark Roberts

Infeasible search analysis for oversubscribed scheduling problems 107
Mark Rogers

Thesis summary: First-order decision-theoretic planning 111
Scott Sanner

Say ”no” to grounding: An inference algorithm for first-order MDPs 115
Olga Skvortsova

Extending the use of plateau-escaping macro-actions in planning 119
Amanda Smith

Selecting among heuristics by solving thresholded k-armed bandit
problems

123

Matthew Streeter, and Stephen Smith

Collaborative authoring of plan-based interactive narrative 127
James Thomas

Planning with preferences and trajectory constraints by integer pro-
gramming

131

Menkes van den Briel

Scheduling with uncertain durations: Generating beta-robust sched-
ules using constraint programming

134

Christine Wu, Kenneth Brown, and J. Beck

Discrepancy search with reactive policies for planning 138
SungWook Yoon

Planning with soft regular constraints 141
Alessandro Zanarini

http://icaps06.icaps-conference.org/

ICAPS 2006
Doctoral Consortium

Preface

Welcome to the 16th International Conference on Automated Planning and Scheduling
Doctoral Consortium.

This is the fourth Doctoral Consortium hosted by ICAPS, and it continues the tradi-
tion established by the first Doctoral Consortium in 2003. A total of 36 doctoral students
from 10 countries presented their work, interacted with senior practitioners in the field
and with each other, explored new ideas, experienced criticism and praise, grew as re-
searchers, and enriched our community. These students bring a range of experience
and interests to planning and scheduling, and during the Doctoral Consortium discussed
a wide variety of topics, ideas and techniques for addressing problems of planning and
scheduling. The Doctoral Consortium provides these students a valuable opportunity
not only to present their work, but also to discuss their ideas in depth with a senior
researcher or user of these technologies, who will look at their work as an interested
outsider. We are confident that this year’s Consortium will set the stage for more to
come.

The 2006 Doctoral Consortium was funded by DARPA, the National Science Foun-
dation, NASA Ames Research Center, Honeywell, NICTA/Australian National University,
and QSS Group Inc. We would like to thank Subbarao Kambhampati, Adele Howe, Ken
Brown, Francesca Rossi, Wheeler Ruml for assistance in reviewing student applica-
tions. The Doctoral Consortium also owes special thanks to Stephen Smith for addi-
tional fundraising support, and to Carnegie Mellon University for handling the finances.
Finally, special thanks to Blazej Bulka for assistance in tracking and assembling the final
list of submitted papers.

Marie des Jardins
Jeremy Frank
ICAPS 06 Doctoral Consortium Co-Chairs

Organizers

• Marie desJardins (mariedj@cs.umbc.edu), University of Maryland Baltimore
County

• Jeremy Frank (frank@email.arc.nasa.gov), NASA Ames Research Center

Reviewers

• Ken Brown (k.brown@cs.ucc.ie), University College Cork

• Adele Howe (howe@cs.colostate.edu), Colorado State University

• Subbarao Kambhampati (rao@asu.edu), Arizona State University

• Francesca Rossi (frossi@math.unipd.it), University of Padova

• Wheeler Ruml (ruml@parc.com), Palo Alto Research Center

Planning with Temporally Extended Goals using Heuristic Search

Jorge A. Baier and Sheila McIlraith
Deptartment of Computer Science, University of Toronto,

Toronto, ON, M5S 3H5, Canada
Abstract

Temporally extended goals (TEGs) refer to properties that
must hold over intermediate and/or final states of a plan. Cur-
rent planners for TEGs prune the search space during plan-
ning via goal progression. However, the fastest classical
domain-independent planners rely on heuristic search. In this
paper we propose a method for planning with propositional
TEGs using heuristic search. To this end, we translate an in-
stance of a planning problem with TEGs into an equivalent
classical planning problem. With this translation in hand, we
exploit heuristic search to determine a plan. We represent
TEGs using propositional linear temporal logic which is in-
terpreted over finite sequences of states. Our translation is
based on the construction of a nondeterministic finite automa-
ton for the TEG. We prove the correctness of our algorithm
and analyze the complexity of the resulting representation.
The translator is fully implemented and available. Our ap-
proach consistently outperforms existing approaches to plan-
ning with TEGs, often by orders of magnitute.

1 Introduction
In this paper we address the problem of generating finite
plans for temporally extended goals (TEGs) using heuristic
search. TEGs refer to properties that must hold over inter-
mediate and/or final states of a plan. From a practical per-
spective, TEGs are compelling because they encode many
realistic but complex goals that involve properties other than
those concerning the final state. Examples include achieving
several goals in sequence (e.g., book flight after confirming
hotel availability), safety goals (e.g., the door must always
be open), and achieving a goal within some number of steps
(e.g., at most 3 states after lifting a heavy object, the robot
must recharge its batteries).

Planning with TEGs is fundamentally different from us-
ing temporally extended domain control knowledge to guide
search (e.g., TLPLAN [1], and TALPLAN [11]). TEGs ex-
press properties of the plan we want to generate, whereas do-
main control knowledge expresses general properties of the
search for a class of plans [10]. As a consequence, domain
control knowledge is generally associated with an additional
final-state goal.

A strategy for planning with TEGs, as exemplified by
TLPLAN, is to use some sort of blind search on a search
space that is constantly pruned by the progression of the
temporal goal formula. This works well for safety-oriented
goals (e.g., ¤open(door)) because it prunes those actions
that falsify the goal. Nevertheless, it is less effective with re-
spect to liveness properties such as ♦at(Robot,Home). Our

objective is to exploit heuristic search to efficiently generate
plans with TEGs.

To achieve this, we convert a TEG planning problem into
a classical planning problem where the goal is expressed in
terms of the final state, and then we use existing heuristic
search techniques. An advantage of this approach is that we
can use any heuristic planner with the resulting problem.

In contrast to previous approaches, we propose to repre-
sent TEGs in f-LTL, a version of propositional linear tempo-
ral logic (LTL) [14] which can only be interpreted by finite
computations, and is more natural for expressing properties
of finite plans. To convert a TEG to a classical planning
problem we provide a translation of f-LTL formulae to non-
deterministic finite automata (NFA). We prove the correct-
ness of our algorithm. We analyze the space complexity of
our translations and suggest techniques to reduce space.

Our translator is fully implemented and available on the
Web. It outputs PDDL problem descriptions, which makes
our approach amenable to use with a variety of classical
planners. We have experimented with the heuristic planner
FF [9]. Our experimental results illustrate the significant
power heuristic search brings to planning with TEGs. In
almost all of our experiments, we outperform existing (non-
heuristic) techniques for planning with TEGs.

There are several papers that addressed related issues.
First is work that compiles TEGs into classical planning
problems such as that of Rintanen [15], and Cresswell and
Coddington [3]. Second is work that exploits automata rep-
resentations of TEGs in order to plan with TEGs, such as
Kabanza and Thiébaux’s work on TLPLAN [10] and work
by Pistore and colleagues [12]. We discuss this work in the
final section of this paper.

2 Preliminaries
We represent TEGs using f-LTL logic, a variant of a propo-
sitional LTL [14] which we define over finite rather than in-
finite sequences of states. f-LTL formulae augment LTL for-
mulae with the propositional constant final, which is only
true in final states of computation. An f-LTL formula over
a set P of propositions is (1) final, true, false, or p, for any
p∈P; or (2) ¬ψ , ψ∧χ , ©ψ , or ψ Uχ , if ψ and χ are f-LTL
formulae.

The semantics of an f-LTL formula over P is defined over
finite sequences of states σ = s0s1 · · ·sn, such that si⊆P , for
each i ∈ {0, . . . ,n}. We denote the suffix si · · ·sn of σ by σi.
Let ϕ be an f-LTL formula. We say that σ |= ϕ iff σ0 |= ϕ .
Furthermore,
• σi |= final iff i = n, σi |= true, σi 6|= false, and σi |= p iff p ∈ si

ICAPS 2006

Doctoral Consortium 9

• σi |= ¬ϕ iff σi 6|= ϕ , and σi |= ψ ∧ χ iff σi |= ψ and σi |= χ .
• σi |= ©ϕ iff i < n and σi+1 |= ϕ .
• σi |= ψ Uχ iff there exists a j ∈ {i, . . . ,n} such that σ j |= χ and

for every k ∈ {i, . . . , j−1}, σk |= ψ .

Standard temporal operators such as always (¤), eventu-
ally (♦), and release (R), and additional binary connectives
such as ∨, ⊃ and ≡ can be defined in terms of the basic

elements of the language (e.g., ψ Rχ def
= ¬(¬ψ U¬χ)).

As in LTL, we can rewrite formulae containing U and R

in terms of what has to hold true in the “current” state and
what has to hold true in the “next” state. The following
f-LTL identities are the basis for our translation algorithm.
1. ψ Uχ ≡ χ ∨ψ ∧©(ψ Uχ). 3. ¬©ϕ ≡ final∨©¬ϕ .
2. ψ Rχ ≡ χ ∧ (final∨ψ ∨©(ψ Rχ)).

Identities 2 and 3 explicitly mention the constant final.
Those familiar with LTL, will note that identity 3 replaces
LTL’s equivalence ¬©ϕ ≡ ©¬ϕ . In f-LTL ©ϕ is true in a
state iff there exists a next state that satisfies ϕ . Since our
logic is finite, the last state of each model has no successor,
and therefore in such states ¬©ϕ holds for every ϕ .

The expressive power of f-LTL is similar to that of LTL
when describing TEGs. Indeed, f-LTL has the advantage
that it is tailored to refer to finite plans, and therefore we
can express goals that cannot be expressed with LTL. Some
examples of TEGs follow.
• ¤(final⊃ at(Robot,R1)): In the final state, at(Robot,R1)

must hold. This is one way of encoding final-state goals.
• ♦(p∧©©final): p must hold true two states before the

plan ends. This is an example of a goal that cannot be
expressed in LTL, since it does not have the final constant.

Planning Problems A planning problem is a tuple
〈I,D,G〉, where set I is the initial state, composed by first-
order (ground) positive facts; D is the domain description;
G is a TEG in f-LTL.

A domain description is a tuple D = 〈C,R〉, where C is
a set of causal rules, and R a set of action precondition
rules. Intuitively, a causal rule defines when a fluent lit-
eral becomes true after performing an action. We represent
causal rules by the triple 〈a(~x),c(~x), `(~x)〉, where a(~x) is an
action term, `(~x) is a fluent literal, and c(~x) is a first-order
formula, each of them with free variables among those in
~x. Intuitively, 〈a(~x),c(~x), `(~x)〉 expresses that `(~x) becomes
true after performing action a(~x) in the current state if con-
dition c(~x) holds true. As with ADL operators, the condition
c(~x), can contain quantified first-order subformulae. More-
over, ADL operators can be constructed from causal rules
and vice versa [13]. Finally, we assume that for each action
term and fluent term, there exists at most one positive and
one negative causal rule in C. All free variables in rules of C
orR are regarded as universally quantified.
Regression The causal rules of a domain describe the dy-
namics of individual fluents. However, to model an NFA in
a planning domain, we need also know the dynamics of arbi-
trary complex formulae, such as for example, the causal rule
for at(o,R1)∧ holding(o). This is normally accomplished
by goal regression [18, 13]. For example, if the following
are causal rules for fluents α and β :

〈a,Φ+
a,α ,α〉, 〈a,Φ−

a,α ,¬α〉, 〈a,Φ+
a,β ,β 〉 〈a,Φ−

a,β ,¬β 〉,
we would add the causal rule 〈a,Φ+,α∧β 〉 for α∧β , where
Φ+ = {Φ+

a,α ∧Φ+
a,β}∨{α ∧¬Φ−

a,α ∧Φ+
a,β}∨{β ∧¬Φ−

a,β ∧Φ+
a,α}

The size of the resulting causal rule (before simplification)
for a boolean combination of fluents can grow exponentially:
Proposition 1 Let ϕ = f0∧ f1∧ . . .∧ fn. Then, assuming no
simplifications are made, |Φ+

a,ϕ |= Ω(3n(m+ +m−)), where
m+ = mini |Φ+

a, fi
|, and m− = mini |Φ−

a, fi
|.

Moreover, the simplification of a boolean formula is also ex-
ponential in the size of the formula. Despite this bad news,
below we present a technique to reduce the size of the re-
sulting translation for formulae like these.

3 Translating f-LTL to NFA
It is well-known that for every LTL formula ϕ , there exists
a Büchi automaton Aϕ , such that it accepts an infinite state
sequence σ iff σ |= ϕ [17, 16]. To our knowledge, there
exists no pragmatic algorithm for translating a finite version
of LTL such as the one we use here1. To this end, we have
designed an algorithm based on the one proposed by Gerth
et al. [7]. The automaton generated is a state-labeled NFA
(SLNFA), i.e. an NFA where states are labeled with formu-
lae. Given a finite state sequence σ = s0 . . .sn, the automaton
goes through a path of states q0 . . .qn iff the formula label of
qi is true in si. The automaton accepts σ iff qn is final.

Space precludes displaying the complete algorithm. Nev-
ertheless, the code is downloadable from the Web2, and the
algorithm is described in detail in [2]. Briefly, there are three
main modifications to the algorithm of Gerth et al [7]. First,
the generation of successors now takes into account the final

constant. Second, the splitting of the nodes is done consid-
ering f-LTL identities in Section 2 instead of standard LTL
identities. Third, the acceptance condition of the automaton
is defined using the constant final and the fact that the logic
is interpreted over finite sequences of states. We prove that
our algorithm is correct:
Theorem 1 Let Aϕ be the automaton built by the algorithm
from ϕ . Then Aϕ accepts exactly the set of computations that
satisfy ϕ .

Simplifying SLNFAs into NFAs Our algorithm often pro-
duces automata that are much bigger than the optimal. To
simplify it, we have used a modification of the algorithm
presented in [5]. This algorithm uses a simulation technique
to simplify the automaton. In experiments in [6], it was
shown to be slightly better than LTL2AUT [4] at simplify-
ing Büchi automata. The resulting automaton is an NFA, as
the ones shown in Figure 1. In contrast to SLNFA, in NFA
transitions are labeled with formulae.
Size complexity of the NFA Although simplifications
normally reduce the number of states of the NFA signif-
icantly, the resulting automaton can be exponential in the
size of the formula in the worst case. E.g., for the formula
♦p1∧♦p2∧ . . .∧♦pn, the resulting NFA has 2n states. Be-
low, we see that this is not a limitation in practice.

1In [8], finite automata are built for a ©-free subset of LTL, that
does not include the final constant.

2http://www.cs.toronto.edu/˜jabaier/planning teg/

ICAPS 2006

10 Doctoral Consortium

{¬p,¬q}

{¬p,¬q}

q0 q1

q0 q2

q1

{}

{closed(D1),
¬at(Robot, R1),

at(O1 , R4)}

{¬at(Robot, R1),

at(O1 , R4)}

{}

{closed(D1),
¬at(Robot, R1)}

{¬at(Robot, R1)}

(a) (b)

Figure 1: Simplified NFA for (a) ¤(p ⊃©q)∧¤(q ⊃ ©p),
and (b) ¤(at(Robot,R1) ⊃ ©♦closed(D1))∧♦¤at(O1,R4).

4 Compiling NFAs into a Planning Domain

Now that we are able to represent TEGs as NFAs, we show
how the NFA can be encoded into a planning problem. Once
the NFA is modeled inside the domain, the temporal goal in
the newly generated domain in reduced to a property of the
final state alone. Intuitively, this property corresponds to the
accepting condition of the automaton.

In the rest of the section, we assume the following. We
start with a planning problem L = 〈I,D,G〉, where G is a
TEG in f-LTL. The NFA AG = (Q,Σ,δ ,Q0,F) is built for
G. We denote by λp,q the formula

∨
(q,L,p)∈δ

∧
L. E.g., in

Fig. 1(b), λq1,q0 = closed(D1)∧¬at(Robot,R1). Finally,
we denote by Pred(q) the states that are predecessors of q.

In the planning domain, each state of the NFA is repre-
sented by a fluent. For each state q we add to the domain
a new fluent Eq. The translation is such that if sequence of
actions a1a2 · · ·an is performed in state s0, generating the
succession of states σ = s0s1 . . .sn, then Eq is true in sn if
and only if there is a run of AG on σ that ends in state q.

For each fluent Eq we generate a new set of causal rules.
New rules are added to the set C ′, which is initialized to ∅.

For each action a, we add to C ′ the causal rules
〈a,Φ+

a,Eq
,Eq〉 and 〈a,Φ−

a,Eq
,¬Eq〉 where:

Φ+
a,Eq

=
∨

p∈Pred(q)\{q} Ep ∧ (Φ+
a,λp,q

∨ (λp,q ∧¬Φ−
a,λp,q

)),

Φ−
a,Eq

= ¬Φ+
a,Eq

∧¬(Φ+
q,λq,q

∨λq,q ∧¬Φ−
a,λq,q

).

where Φ+
a,λp,q

(resp. Φ−
a,λp,q

) is the condition under which

a makes λp,q true (resp. false). Both formulae must be
obtained via regression. Formula λq,q is false if there is no
self transition in q.

The initial state must give an account of which fluents Eq
are initially true. The new set of facts I ′ is the following
I ′ = {Eq |(p,L,q) ∈ δ , p ∈ Q0,L⊆ I}.

Intuitively, the automaton AG accepts iff the temporally
extended goal G is satisfied. Therefore, the new goal, G′ =∨

p∈F Ep, is defined according to the acceptance condition
of the NFA. The final planning problem L′ is 〈I ∪ I ′,C ∪
C′,R,G′〉.
Size complexity The size of the translated domain has
a direct influence on how hard it is to plan with that do-
main. We can prove that the size of the translated domain
is O(n|Q|2`), where ` is the maximum size of a transition in
AG , n is the number of action terms in the domain, and |Q|
is the number of states of the automaton.

Prb. Comp. No. |G| FF TLPLAN
time Sts. t ` t t-ctrl `
1 .02 2 6 .02 6 .07 .01 6
2 .02 2 6 .02 8 .04 .03 8
3 .09 15 21 .04 10 .20 .02 10
4 .06 5 12 .03 6 .38 .10 6
5 .07 6 21 .04 15 .5 .19 13
6 .49 37 71 .19 16 .51 .17 18
7 .05 6 21 .05 9 .96 .31 10
8 .07 15 9 .05 10 1.40 .04 10
9 .01 4 11 .03 18 13.90 .15 14

10 .04 6 12 .07 32 17.52 .40 14
11 .08 5 23 .06 22 m m –
12 .09 5 25 .50 25 m m –
13 .09 6 15 m – m m –
14 .32 5 31 m – m m –
15 .07 5 18 .11 31 m m –
16 .09 10 22 m – m m –

(a)

Prb. FF TPBA+c
t ` t `

1 0.02 2 0.24 2
2 0.02 5 0.96 5
3 0.01 5 1.3 5
4 0.02 7 3.29 7
5 0.02 10 11.66 10
6 0.02 12 28.87 12
7 0.02 15 82.57 15
8 0.02 19 35.69 17
9 0.02 21 13.37 20

10 0.23 52 126.25 35
11 0.07 54 m –
12 0.23 47 m –
13 0.54 72 m –
14 4.03 82 m –
15 11.19 95 m –

(b)

Table 1: Our approach compared to TLPLAN (a) and search
control with Büchi automata (b)

Reducing |Q| We previously saw that |Q| can be expo-
nential in the size of the formula. Fortunately, there is a
workaround. Consider for example the formula ϕ = ♦p1 ∧
. . .∧♦pn, which we know has an exponential NFA. ϕ is sat-
isfied if each of the conjuncts♦pi is satisfied. Instead of gen-
erating a unique NFA for ϕ we generate different NFA for
each ♦pi. Then we plan for a goal equivalent to the conjunc-
tion of the acceptance conditions of each of those automata.
This generalizes to any combination of boolean formulae.

5 Implementation and Experiments
We implemented a compiler that given a domain and a f-
LTL TEG, generates a classical planning problem following
Section 4. The compiler can further convert the new problem
into a PDDL domain/problem, thereby enabling its use with
a variety of available planners.

We conducted several experiments in the Robots Domain
[1] to test the effectiveness of our approach. In each ex-
periment, we compiled the planning problem to PDDL. To
evaluate the translation we used the FF planner.

Table 1(a) presents results obtained for various temporal
goals by our translation and TLPLAN. The second column
shows the time taken by the translation, the third shows the
number of states of the automata representing the goal, and
the fourth shows the size of the goal formula, |G|. The rest
of the columns show the time (t) and length (`) of the plans
for each approach. In the case of the TLPLAN, two times
are presented. In the first (t) no additional search control
was added to the planner, i.e. the planner was using only
the goal to prune the search space. In the second (t-ctrl)
we added (by hand) additional control information to “help”
TLPLAN do a better search. The character ‘m’ stands for
ran out of memory.

Our approach significantly outperformed TLPLAN.
TLPLAN is only competitive in very simple cases. In most
cases, our approach is one or two orders of magnitude faster
than TLPLAN. Moreover, the number of automata states is
comparable to the size of the goal formula, which illustrates
that our approach does not blow up easily for natural TEGs.
We also observe that FF cannot solve all problems. This is
because FF transforms the domain to a STRIPS problem, and
tends to blow up when conditional effects contain large for-

ICAPS 2006

Doctoral Consortium 11

mulae. This problem, can be overcome if one uses derived
predicates in the translation as proposed in [2].

Table 1(b) compares our approach’s performance to that
of the planner presented in [10] (henceforth, TPBA), which
uses Büchi automata to control search. In this case we used
goals of the form ♦(p1 ∧©(♦p2 ∧ . . .∧©♦pn) . . .), which
is one of the four goal templates supported by this planner.
Again, our approach significantly outperforms TPBA, even
in the presence of extra control information added by hand
(this is indicated by the ‘+c’ in the table).

The results presented above are not surprising. None of
the planners we have compared to uses heuristic search,
which means they may not have enough information to de-
termine which action to choose during search. The TLPLAN
family of planners is particularly efficient when control in-
formation is added to the planner. Usually this information
is added by an expert in the planning domain. However, con-
trol information, while natural for classical goals, may be
hard to write for temporally extended goals. The advantage
of our approach is that we do not need to write this informa-
tion to be efficient. Moreover, control information can also
be added in the context of our approach by integrating it into
the goal formula.

6 Discussion and Related Work
In this paper we proposed a method to generate plans for
TEGs using heuristic search. We proposed a translation
method that takes as input a planning problem with an f-LTL
TEG and produces a classical planning problem. Experi-
mental results demonstrate that our approach outperforms—
often by several orders of magnitude—existing (non-
heuristic) planners for TEGs in the Robots Domain. [2]. Our
approach is limited to propositional TEGs. In [2] we show
how we can extend it to capture a compelling subset of first-
order f-LTL. We also provide analogous performance results
on multiple domains.

There are several notable pieces of related work. TPBA,
the temporal extension of TLPLAN that uses search control,
and that we use in our experiments [10], constructs a Büchi
automaton to represent the goal. It then uses the automaton
to guide planning by following a path in its graph from an
initial to final state, setting transition labels as subgoals, and
backtracking as necessary.

Approaches for planning as symbolic model checking
have also used automata to encode the goals (e.g. [12]).
These approaches use different languages for extended
goals, and are not heuristic.

In [3] a translation of LTL formulae to PDDL has been
proposed. They translate LTL formulae to a deterministic fi-
nite state machine (FSM). The FSM is generated by succes-
sive applications of the progress operator of [1] to the TEG.
The use of deterministic automata makes it prone to expo-
nential blowup even with simple goals, e.g., ♦(p∧©nq).
The authors’ code was unavailable for comparison with our
work. Nevertheless, they report that their technique is no
more efficient than TLPLAN, so we infer that our approach
has better performance.

Finally, [15] proposes a translation of a subset of LTL into
a set of ADL operators. Their translation does not use au-

tomata, and therefore is limited to a small subset of LTL.

Acknowledgments We are extremely grateful to Frodu-
ald Kabanza, who provided the TPBA code for comparison.
We also wish to thank Sylvie Thiébaux, Fahiem Bacchus,
and the anonymous reviewers for insightful comments on
this work. Finally, we gratefully acknowledge funding from
NSERC Research Grant 229717-04.

References
[1] F. Bacchus and F. Kabanza. Planning for temporally extended

goals. Ann. of Math Art. Int., 22(1-2):5–27, 1998.

[2] J. A. Baier and S. McIlraith. Planning with first-order tempo-
rally extended goals using heuristic search. Forthcoming.

[3] S. Cresswell and A. Coddington. Compilation of LTL goal
formulas into PDDL. In ECAI-04, pages 985–986, 2004.

[4] M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved au-
tomata generation for linear temporal logic. In Proc. CAV-99,
volume 1633 of LNCS, pages 249–260, Trento, Italy, 1999.

[5] K. Etessami and G. J. Holzmann. Optimizing büchi automata.
In Proc. CONCUR-2000, pages 153–167, 2000.

[6] C. Fritz. Constructing Büchi automata from ltl using simula-
tion relations for alternating büchi automata. In Proc. CIAA
2003, volume 2759 of LNCS, pages 35–48, 2003.

[7] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-
the-fly automatic verification of linear temporal logic. In
PSTV-95, pages 3–18, 1995.

[8] Dimitra Giannakopoulou and Klaus Havelund. Automata-
based verification of temporal properties on running pro-
grams. In Proc. ASE-01, pages 412–416, 2001.

[9] J. Hoffmann and B. Nebel. The FF planning system: Fast
plan generation through heuristic search. Journal of Art. Int.
Research, 14:253–302, 2001.

[10] F. Kabanza and S. Thiébaux. Search control in planning for
temporally extended goals. In Proc. ICAPS-05, 2005.

[11] J. Kvarnström and P. Doherty. Talplanner: A temporal logic
based forward chaining planner. Ann. of Math Art. Int., 30(1-
4):119–169, 2000.

[12] U. Dal Lago, M. Pistore, and P. Traverso. Planning with a
language for extended goals. In Proc. AAAI/IAAI, pages 447–
454, 2002.

[13] E. P. D. Pednault. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Proc. KR-89,
pages 324–332, 1989.

[14] A. Pnueli. The temporal logic of programs. In Proc. FOCS-
77, pages 46–57, 1977.

[15] J. Rintanen. Incorporation of temporal logic control into plan
operators. In Proc. ECAI-00, pages 526–530, 2000.

[16] M. Y. Vardi. An automata-theoretic approach to linear tem-
poral logic. In Banff Higher Order Workshop, volume 1043
of LNCS, pages 238–266. Springer, 1995.

[17] M. Y. Vardi and Pierre Wolper. Reasoning about infinite com-
putations. Information and Computation, 115(1):1–37, 1994.

[18] R. Waldinger. Achieving several goals simultaneously. In
Mach. Intel. 8, pages 94–136. Ellis Horwood, 1977.

ICAPS 2006

12 Doctoral Consortium

Continuous Planning for the Control of an Autonomous Agile Satellite

Grégory Beaumet
Supáero, ONERA, CNES

2, avenuéEdouard Belin 31055 Toulouse cedex 4 FRANCE
gregory.beaumet@onera.fr

Abstract

Because of the complexity of the encountered problems, con-
trolling autonomous satellites is an interesting field for the AI
research community. This document introduces the current
thesis about planning the activities of an agile autonomous
Earth-observing satellite.

Application Domain
Mission
The application domain of the thesis is an ONERA-CNES
project of development of a ground demonstrator of an au-
tonomous satellite (AGATA project, (Charmeau & Bensana
2005)). In this project we consider an Earth-observing mis-
sion. A satellite on a heliosynchronous low circular orbit
around the Earth aims to acquire images of specified areas
on the Earth surface, and to download them to one or more
ground mission centers.

Agile satellite
The satellite that we consider is an agile satellite, like the
Pleiades satellites (Boussarie & Boissin 2006), able to oper-
ate freely and quickly along the three axes of rolling, lacing
and pitching (Figure 1) thanks to a cluster of gyroscopic ac-
tuators.

Figure 1:A Pleiades satellite

This satellite is equipped with (1) an optical high-
resolution instrument to acquire images, (2) a cloud cover
detection instrument, (3) a radio antenna allowing the satel-
lite to download the observation data, and (4) solar gen-
erators and batteries producing and storing electric energy.

These components are not mobile: they are fixed to the satel-
lite. Finally, the satellite has a fixed size mass memory to
save the detection and observation data.

Planning the activities
Currently, the activities of the Spot satellites are planned of-
fline, as will be those of the Pleiades satellites: the ground
mission center builds plans over a horizon of 24 hours and
downloads them daily to the satellites. These plans are very
precise: fixed schedule of activities with fixed starting times.
They are executed without any possibility for replanning.

Spacecraft Autonomy
Potential advantages of autonomy
During a revolution period round the Earth, an Earth-
observing satellite has limited visibility windows with the
ground stations. Autonomy would allow the satellite to
make decisions between two visibility windows in order to
react to unforeseen events such as:

• subsystem failure. The autonomy allows the system to
react immediatly if a failure arises during the execution of
a task.

• unexpected level of resources. Some actions of the satel-
lite have nondeterministic effects on the consumption or
the production of the onboard resources: for example, it
is impossible to foresee the quality of an image and its
compression rate before its realization, and thus to know
the memory space it will use. Autonomy would make the
satellite able to make decisions by knowing the actual cur-
rent state of the onboard resources.

• unexpected cloud cover. The detection instrument may
detect a cloud cover different from that provided by the
weather forecast, authorizing or preventing some obser-
vations. Because the detection can be performed by point-
ing the satellite 30 degrees ahead, it must decide au-
tonomously within a few seconds wether to add or remove
these observations from its actions plan.

State of the art
The EO-1 Autonomous Science Agent This software en-
ables the Earth-Observing One (EO-1) spacecraft to au-
tonomously detect and respond to science events occuring

ICAPS 2006

Doctoral Consortium 13

on the Earth. It is organized into a traditional three-layer
architecture. At the highest level of abstraction, the Contin-
uous Activity Scheduling Planning Execution and Replan-
ning (CASPER) software is responsible for mission plan-
ning functions. CASPER uses a local search approach (Ra-
bideauet al. 1999) to develop operations plans. It plans
within limited CPU resources by using a hierarchical, con-
tinuous (Chienet al. 2000) planning paradigm. Rather than
attempt to plan out an entire week of operations in a single
batch timeslice, it utilizes a long-term, more abstract plan for
the longest planning horizon (one week), and plans at a de-
tailed level for the next day of operations. As time proceeds
forward, it incrementally replans for the new observations
that fall within this one-day horizon.
Non-agile satellite The work presented by S. Damiani
(Damiani 2005; Damiani, Verfaillie, & Charmeau 2005) al-
lowed us to design, implement and test successfully an au-
tonomous decision mechanism onboard a non-agile satellite.
It is supported by a permanently active planning module,
reasoning on more and more complex problems to improve
quality of the proposed decisions, using all the time it has at
its disposal, but able to provide a realizable decision at any
time, even if it is not necessarily optimal according to the
principles of the anytime algorithms (Zilberstein 1996).
Application to an agile satellite The observation instru-
ment of a non-agile Earth-watching satellite like Spot is per-
manently pointed under the satellite, and a mobile mirror in
front of it allows it to observe ground areas laterally. The
starting times of observations are thus fixed.

On the contrary an agile satellite is able to bring forward
or delay the starting time of an observation by a simple
change of its attitude; then the observations have starting
time windows which relax planning but make the selection
and scheduling of observations significantly more difficult,
due to the larger search space for potential solutions (Figure
2).

corridor
boundaries

an area to observe

satellite orbit

Figure 2:Three possible attitudes of an agile satellite for starting
an observation

Some works (Lemâıtre et al. 2002) deal with the prob-
lem of offline selecting and scheduling observations of agile
satellites. They present different methods which have been
investigated in order to solve a simplified version of the com-
plete problem: a greedy algorithm, a dynamic programming
algorithm, a constraint programming approach and a local
search method.

However, these works deal with the planning of the obser-
vations independently of the other activities of the satellite
(cloud cover detection, data downloading...). But many ac-
tivities of an agile satellite need to control its attitude which
can be seen as a shared resource. For example, an observa-
tion cannot be executed in parallel of a cloud cover detec-
tion which requires an orientation of the satellite 30 degrees
ahead. Thus it becomes necessary to plan together all the
activities controlling the attitude of the satellite.

Contribution
Objective
This study aims to extend the work developed by S. Dami-
ani (Damiani 2005) to an agile satellite: permanent planning
task of all the activities of the satellite by using as well as
possible the time available to reason.

realization constraints
quality evaluation function
status
quality
downloading ending date
set of elementary observations

area on the Earth surface
realization constraints

status
quality
downloading ending date
estimation of the cloud cover on the area

0..*

Complex Observation

1..*

quality constraints

Satellite State

attitude (position and speed)

Elementary Observation

priority
emission dateenergy level

free memory level
ergol level
observation instrument status
detection instrument status
antenna status

gain
set of complex observations

user

Figure 3:Model of the current state of the system

Achieved work
List of possible activities We distinguish two categories
of activities realizable by the satellite: activities withcon-
trolled attitude trajectory during which the attitude of the
satellite, in position and speed, is entirely determined, and
activities with uncontrolled attitude trajectory which can be
executed parallel with the other activities.

We listed seven activities with controlled attitude trajec-
tory: the observationof an area on the Earth surface, the
detectionof the cloud cover in front of the satellite, the
rechargeof the batteries (to point the solar panels to the sun),
the downloadingof observation data (to point the satellite

ICAPS 2006

14 Doctoral Consortium

to the ground station), achange in attitude, anorbital ma-
noeuvre(to correct the orbit of the satellite if necessary),
a geocentric pointing(when the satellite “does nothing” or
is in safety mode) and three activities with uncontrolled at-
titude trajectory: theparallel downloadingof observation
data, theanalysisof the results of an observation (to eval-
uate the quality of an image, compress or delete the saved
image), theanalysisof the results of a detection (to evaluate
the cloud cover).

Model The first step of our work consisted in modelling
the decision problem by using the PDDL language and its
extension to the durative actions (Fox & Long 2003): the
current state of the system (Figure 3), the various actions
realizable by the satellite, their preconditions, their effects
(deterministic or not) on the state of the system and on the
satisfaction of the objectives.

The figure 4 presents the model of the “observe” action
using the PDDL language. The satellite starts watching the
area ?oi at the date ?ts.

(: durative-action observe
: parameters (?oi - observation ?ts - date)
: duration (= ?duration (observationDuration ?oi ?ts))
: condition (and (at start (= (status ?oi) notAcquired))

(at start (visible ?oi))
(at start (= attitude (obsStartAttitude ?oi ?ts)))
(at start (= obsInstrStatus available))
(at start (not assignedAttitude))
(at start (≥ energy (energyConsum ?oi ?ts)))
(at start (≥ memory (memoryConsum ?oi)))
(over all (visible ?oi))
(over all (= obsInstrStatus used))
(over all (assignedAttitude))
(over all (≥ energy 0))
(over all (≥ memory 0))
(at end (= obsInstrStatus used))
(at end (assignedAttitude))
(at end (visible ?oi))
(at end (≥ energy 0))
(at end (≥ memory 0))

: effect (and (at start (decrease energy (energyConsum ?oi ?ts)))
(at start (decrease memory (memoryConsum ?oi)))
(at start (assign obsInstrStatus used))
(at start (assignedAttitude))
(at end (assign attitude (obsEndAttitude ?oi ?ts)))
(at end (assign (status ?oi) acquired))
(at end (assign obsInstrStatus available))
(at end (not assignedAttitude))
(at end (increase energy (energyProd ?oi ?ts)))

)
)

Figure 4:Model of the “observe” action

Current work
To plan online, we need to estimate (1) the duration of each
activity of the satellite, depending on its starting time and
on the attitude profile of the satellite and (2) the production
and the consumption of energy and memory for each activity

of the satellite. For that, we try to compare two different
methods : an analytical one using a simplified model of the
satellite kinematics, and a learning one based on the use of
neural networks to approximate the quantities of interest.

Future work
We plan to solve, initially offline, this problem of planning
with a dynamic programming approach like this one used
by S. Damiani (Damiani 2005), then with a local search
method. A second step will consist in adapting the algo-
rithms to a mode of anytime reasoning in order to be able to
use them online.

References
Boussarie, E., and Boissin, B. 2006. Pléiades -
Dual Optical System for Metric Resolution Observations.
http://smsc.cnes.fr/PLEIADES/.
Charmeau, M.-C., and Bensana, E. 2005. AGATA: A Lab
Bench Project for Spacecraft Autonomy. In8th Interna-
tional Symposium on Artificial Intelligence, Robotics, and
Automation for Space (i-SAIRAS-05).
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and G.,
R. 2000. Using iterative repair to improve responsiveness
of planning and scheduling. InFifth International Confer-
ence on Artificial Intelligence Planning and Scheduling.
Damiani, S.; Verfaillie, G.; and Charmeau, M.-C. 2005.
An earth watching satellite constellation : How to manage
a team of watching agents with limited communications.
In Fourth International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS 2005), volume 1,
455–462.
Damiani, S. 2005.Gestion d’une constellation de satellites
de surveillance de la Terre : autonomie et coordination.
Ph.D. Dissertation, Supaéro, Toulouse, France.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains.Jour-
nal of Artificial Intelligence Research (JAIR)20:61–124.
Lemâıtre, M.; Verfaillie, G.; Jouhaud, F.; Lachiver, J.-M.;
and Bataille, N. 2002. Selecting and scheduling observa-
tions of agile satellites.Aerospace Science and Technology
6:367–381.
Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; and
Govindjee, A. 1999. Iterative repair planning for space-
craft operations in the aspen system. InInternational Sym-
posium on Artificial Intelligence Robotics and Automation
in Space.
Zilberstein, S. 1996. Using anytime algorithms in intelli-
gent systems.AI Magazine17(3):73–83.

ICAPS 2006

Doctoral Consortium 15

Solving Goal Utility Dependencies∗ and Simple Preferences in Partial Satisfaction
Planning

J. Benton
Computer Sci. & Eng. Dept.

Arizona State University
Tempe, AZ 85287
j.benton@asu.edu

Abstract

This doctoral research focuses on the analysis
and development of techniques for solving domain-
independent partial satisfaction planning (PSP) prob-
lems and planning problems with preferences. Re-
cently, these areas have gained the attention of the plan-
ning community. This has been underscored by the
recent introduction of preferences to the Fifth Interna-
tional Planning Competition (IPC5). This extended ab-
stract outlines contributions made to the area of PSP
and shows that planning with “simple preferences”, as
defined in the IPC5, is can be compiled to PSP. After-
wards, it outlines future steps to be taken for advancing
this line of research.

Introduction
In many real world problems, users prefer some goals over
others. In this sense, they have preferences among specified
“soft” goals. For instance, a user may prefer brown flour
over white flour but if white flour is all that is available, the
user will accept it. Goal preferences like this may also be
balanced with the cost of achieving the goal. For example,
if brown flour costs more than some measurable utility it
brings, and white flour costs less than its utility, then white
flour is the obvious choice despite the preference for brown
flour. This type of problem is called a partial satisfaction
planning (PSP) problem (van den Briel et al. 2004) and
provides a starting point for this work. Work on this type
of planning has been given recent attention (van den Briel
et al. 2004; Do & Kambhampati 2004; Smith 2004; Braf-
man & Chernyavsky 2005; Nigenda & Kambhampati 2005;
Benton, Do, & Kambhampati 2005). The primary focus of
this doctoral research is to extend the expressiveness of this
type of planning by using the current state of the art planning
graph heuristics as a means for solving these problems.

The most recent work on this doctoral thesis has focused
on extending PSP into handling goals with utility dependen-
cies. That is, some goals are worth much more or less in
conjunction with other goals. For instance, having both a left
and right shoe is worth much more than having just one or
the other and having two books on the same subject is worth

∗Joint work with Minh Do, Palo Alto Research Center, Palo
Alto, CA and Subbarao Kambhampati, Arizona State University,
Tempe, AZ

less than the sum of having either book independently.1 An-
other recent extension is the ability to handle “simple pref-
erences” as defined by PDDL3 in the 5th International Plan-
ning Competition. It turns out that planning problems with
preferences defined in this way are very similar to PSP prob-
lems.

The rest of this extended abstract is organized as follows.
First, we motivate the need for representing and handling
goal utility dependencies in PSP and provide a framework of
representing them using the General Additive Independence
(GAI) model (Bacchus & Grove 1995) and give an outline
of heuristic methods for handling them. To show the effec-
tiveness of our framework, we provide empirical results on
some benchmark planning domains. We then briefly outline
the method of generating a PSP problem from “simple pref-
erences” defined in PDDL3. Afterwards, we discuss future
work.

Goal Utility Dependency
Classical planning problems define each goal as a member
of a conjunctive set that must be satisfied at a plan’s end.
In partial satisfaction planning (PSP) we relax the constraint
of ending a plan with every goal satisfied. Instead we de-
fine soft goals and provide each with a numeric utility value.
This allows the planner to solve for a subset of the goals.
We also attribute to each action a numeric cost. The planner
then aims to find a plan with the best net benefit, where net
benefit is defined as the difference between the satisfied goal
utility and the action costs.

The process of finding plans in PSP is complicated by
two types of dependencies between goals: (i) A set of goals
may have cost dependencies in that there are dependencies
among the plans to achieve them (making the cost of achiev-
ing them together significantly more or less than the total
cost of achieving them in isolation) (ii) A set of goals may
have utility dependencies in that achieving the goals together
may lead to significantly different utility than the sum of

1These are examples of mutual dependency. There is also the
idea of conditional dependency, in which the utility of having one
item is conditional on whether we have the other item. The differ-
ence is subtle, but the general idea is that conditional dependency
is based upon an “if” relationship rather than an “and” relation-
ship. Also note that the “and” relationship is more general and can
be used to represent an “if” relationship by listing possible goal
combinations.

ICAPS 2006

16 Doctoral Consortium

achieving individual goals. Part of this dissertation work is
on investigating heuristic approaches to handle both utility
and cost dependencies together in PSP.

We have developed an approach for representing these
utility dependencies between planning goals using the Gen-
eralized Additive Independence (GAI) model (Bacchus &
Grove 1995) and a planning algorithm based on forward
search that solves this extended PSP problem. The algo-
rithm is based on the forward heuristic search described in
the SapaPS planner (van den Briel et al. 2004). The main
innovation is our heuristic, which is able to take into account
both goal utility and goal achievement cost dependencies.

Problem Formulation & Heuristics
A classical planning problem is a 4-tuple 〈F, I,G, A〉
where: F is a set of predicate symbols representing state
facts; I is the initial state, completely defined by predicates
in F ; G is a goal state, which is partially defined by a set of
predicates in F ; A is a set of actions with a ∈ A is defined by
pre and post-conditions Precond(a), Effect(a) ⊆ F . The
plan is a sequence of actions in A such that, when executed
from I , will achieve all goals g ∈ G. In PSP (Smith 2004;
van den Briel et al. 2004), goals g ∈ G have utility values
ug ≥ 0, representing how much each goal is worth to a user,
and each action a ∈ A has an associated positive execution
cost ca. Moreover, not all goals in G need to be achieved.
Let P be the lowest cost plan that achieves a subset G′ ⊆ G
of those goals. The objective is to maximize the tradeoff
between total utility U(G′) of G′ and total cost of actions
a ∈ P .

Work on PSP until now assumed that goals have no utility
dependencies and thus their utilities are additive: U(G′) =
Σg∈G′ug. To represent the goal utility dependencies we
adopt the Generalized Additive Independence(GAI) model
(Bacchus & Grove 1995). We named the PSP problem with
utility dependencies represented by GAI model PSPUD . We
chose this model because it is simple, intuitive and expres-
sive. It also is more general than other commonly used
models such as CP-Net (Brafman & Chernyavsky 2005) or
UCP-Net (Boutilier et al. 2001). Because of this, repre-
senting goals specified using GAI may result in a problem
size increase in comparison with these other modeling meth-
ods. However, its generality allows problem specification to
be more straightforward for the user (i.e. there are no “in-
ferred” utility values). A cost propagation process is used
on the planning graph to estimate the achievement cost for
each individual goal. After the propagation process is done
we have an estimated cost c(g) for each goal g ∈ G. As
shown in (Do & Kambhampati 2001), if we use max prop-
agation, then c(g) will underestimate the cost to achieve g
while there is no such guarantee for sum propagation.

The max family of heuristics tend to perform badly in
practice. Therefore, we use an alternative approach of uti-
lizing the relaxed plan employed by SapaPS for PSP2. For
each state S explored in a progression planner, after build-
ing the relaxed planning graph and doing forward cost prop-
agation on the graph, we extract a relaxed plan RP to sup-

2Variants of this approach are also used in several other PSP
planners such as AltAltps (van den Briel et al. 2004; Nigenda &
Kambhampati 2005) or the orienteering planner (Smith 2004).

ZenoTravel

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8 9 10 11 12 13
problems

b
e
n

e
fi

t

PSP_UD

PSP

Figure 1: SapaPSUD and SapaPS in ZenoTravel domain.

port a subset of goals G′ ⊆ G. Let RP (G′) be the relaxed
plan with highest net-benefit value among those achieving
G′ ⊆ G, the relaxed plan heuristic for PSPUD is:

hrelax = maxG′⊆G (u(G′)−
∑

a∈RP (G′)

ca) (1)

To capture the mutual cost dependencies between the goal
achievement costs (i.e. cost dependencies), we find the set
of actions shared between different partial plans achieving
different goals. This allows the generation of GS(a) which
specifies the set of goals for which the action a contributes.

Given the utility dependencies represented by GAI local
functions fu and the goal achievement cost dependencies
represented by goal supporting action set GS(a), we set up
an ILP encoding for hrelax. The purpose of this encoding is
to capture the set of goals G′ ⊆ G that gives the maximum
tradeoff between utility of G′ and the cost of actions in the
relaxed plan supporting G′.

Results
We have implemented the heuristic search algorithm for PSP
problems discussed in this paper on top of the SapaPS plan-
ner. We call the new planner SapaPSUD and tested it on two
sets of random ZenoTravel and Satellite problems. These
problems were generated on top of the problem sets used in
the Third International Planning Competition (Long & Fox
2003).

All tests were run using a Pentium IV 2.66GHz with 1GB
RAM and a 1200 second time limit. Because A∗PSP continu-
ously finds better solutions given more time (or the termina-
tion node is found), the results reported in this section repre-
sent the plan with the highest benefit value found within the
time limit. For solving the ILP encoding, we use the C ver-
sion of lp solve ver5.5 software, a free solver, with a
Java wrapper.

While SapaPSUD is sensitive to both cost and utility depen-
dencies, SapaPS only accounts for cost dependencies. The
empirical evaluation is designed to test whether SapaPSUD
is able to solve the PSPUD problems more effectively (i.e.
with higher net benefit). Figure 1 and 2 show the comparison
between those two planners.

PDDL3 “Simple Preferences” to PSP
The Fifth International Planning Competition defined pref-
erences as a new language feature for PDDL3(Gerevini &

ICAPS 2006

Doctoral Consortium 17

Satellite

-20000

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

problems

b
e

n
e

fi
t

PSP_UD

PSP

Figure 2: SapaPSUD and SapaPS in Satellite domain.

Long 2005). This feature allows domain modelers to express
soft constraints on action conditions and goals. Each prefer-
ence is given a name and an associated violation count. This
count can then be used as part of a metric specifying how to
measure the quality of the resulting plan.

In the planning competition, the “simple preferences”
category of domains specifies preferences and plan metrics
in a manner that allows problems to be converted from
PDDL3 to PSP. The domains in this category define prefer-
ences on actions as well as goals. An example is the drive
action of the trucks domain:

(:action drive
:parameters
(?t - truck ?from ?to - place)

:precondition (and
(at ?t ?from) (connected ?from ?to)
(preference p-drive (and
(ready-to-load goods1 ?from level0)
(ready-to-load goods2 ?from level0)
(ready-to-load goods3 ?from level0))
))

:effect (and (not (at ?t ?from))
(at ?t ?to)))

A plan metric assigns a weight to this preference in
the following manner:

(:metric (+ (* 10 (is-violated p-drive))
))

A domain specified in this way can be compiled into a
PSP problem (Benton, Kambhampati, & Do 2006). This is
done by generating an action for each preference combina-
tion on the original action. The cost of executing the action
is equal to the cost of not satisfying the preferences excluded
from the action definition. Preferences on goals are handled
similarly except actions provide a “has preference” goal with
a utility that matches the cost of not having the preference.

Conclusion & Future Work
In this extended abstract, we discussed a framework of solv-
ing partial satisfaction planning (PSP) problems with utility
dependencies and a way to handle IPC5 problems with “sim-
ple preferences” by compiling them to PSP problems. The
former methods show that there exists expressive power in

combining problem heuristics with declarative formulations.
In this case, re-formulating the relaxed plan as an ILP allows
us to impose more constraints that cannot easily be handled
procedurally. Though there exists additional computational
cost for generating the new heuristics, this is offset by the
extra guidance achieved toward better quality plans. This
line of reasoning is especially important to consider as the
planning community’s concerns have begun to focus on find-
ing plans of quality as evidenced with the Fifth International
Planning Competition (Gerevini & Long 2005).

For the future, this dissertation work will extend the
heuristic and search architectures used to solve utility de-
pendencies for dealing with trajectory preferences and con-
straints in PDDL3 (Gerevini & Long 2005). The idea is to
include in the ILP formulation information about the time
points on which actions are executed in the relaxed plan so
that we may find good estimates of the best action order-
ings. We also plan on extending this work to take more
negative information into account, following the example of
AltWlt (Nigenda & Kambhampati 2005).

References
Bacchus, F., and Grove, A. 1995. Graphical models for
preference and utility. In Proc. of UAI-95.
Benton, J.; Do, M. B.; and Kambhampati, S. 2005. Over-
subscription planning with numeric goals. In IJCAI, 1207–
1213.
Benton, J.; Kambhampati, S.; and Do, M. B. 2006.

Yochan
√∫

: Pddl3 simple preferences as partial satisfaction
planning. In Fifth International Planning Competition Ex-
tended Abstract Booklet.
Boutilier, C.; Brafman, R.; Hoos, H.; ; and Poole, D.
2001. Reasoning with conditional ceteris paribus prefer-
ence statements. In Proc. of UAI-2001.
Brafman, R. I., and Chernyavsky, Y. 2005. Planning with
goal preferences and constraints. In ICAPS.
Do, M., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner. In Proc. of
ECP-01.
Do, M., and Kambhampati, S. 2004. Partial satisfaction
(over-subscription) planning as heuristic search. In Knowl-
edge Based Computer Systems.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in PDDL3: The language of the fifth interna-
tional planning competition. Technical report, University
of Brescia, Italy.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artifi-
cial Intelligence Research.
Nigenda, R. S., and Kambhampati, S. 2005. Plan-
ning graph heuristics for selecting objectives in over-
subscription planning problems. In ICAPS.
Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proc. of ICAPS-04.
van den Briel, M.; Sanchez, R.; Do, M. B.; and Kambham-
pati, S. 2004. Effective approaches for partial satisfaction
(over-subscription) planning. In Proc. of AAAI-04.

ICAPS 2006

18 Doctoral Consortium

Sequential Monte Carlo in Probabilistic Planning Reachability Heuristics

Daniel Bryce
Department of Computer Science and Engineering

Arizona State University, Brickyard Suite 501
699 South Mill Avenue, Tempe, AZ 85281

dan.bryce@asu.edu

Abstract

In this work, we apply heuristic search to conformant prob-
abilistic planning by adapting planning graph heuristics de-
veloped for non-deterministic planning. We consider a
straight-forward application of these planning graph tech-
niques, which amounts to exactly computing the distribution
over reachable relaxed planning graph layers. In reality, com-
puting these distributions is costly, so we apply Sequential
Monte Carlo to approximate them. We demonstrate on sev-
eral domains how our approach enables our planner to far out-
scale existing (optimal) probabilistic planners and still find
reasonable quality solutions.
This work adds to a much broader dissertation on improv-
ing the scalability of planning under uncertainty. We have
designed heuristics for conformant and conditional non-
deterministic planning, in addition to this latest addition
to probabilistic planning. Future work will build on these
heuristic techniques to address conditional probabilistic plan-
ning and devise new search algorithms for probabilistic plan-
ning.

Introduction
We address the problem of conformant probabilistic plan-
ning, where the planning agent has no observability and
must formulate plans with uncertain actions. A conformant
plan is a sequence of actions that will guarantee goal sat-
isfaction with some probability. While agents can poten-
tially improve their success by devising conditional plans
(that use observations), conformant planning is a special
case that is useful when sensing is too expensive or impos-
sible (e.g., because of broken sensors). As has been seen
in non-deterministic conformant and conditional planning
(Bryce, Kambhampati, & Smith 2006; Brafman & Hoff-
mann 2005), conformant planning heuristics are useful in
conditional planning because ignoring observations is some-
times a reasonable relaxation. Future application of the work
discussed herein will validate how well conformant proba-
bilistic planning heuristics adapt to conditional probabilistic
planning. Initial experiments indicate the adaptation is ap-
propriate.

Despite long standing interest (Kushmerick, Hanks, &
Weld 1994; Hyafil & Bacchus 2003; 2004), probabilistic
plan synthesis algorithms have a terrible track record in
terms of scalability. The current best conformant probabilis-
tic planners are only able to handle very small problems. In

contrast, there has been steady progress in scaling determin-
istic planning. Much of this progress has come from the
use of sophisticated reachability heuristics. In this work, we
show how to effectively use reachability heuristics to solve
conformant probabilistic planning (CPP) problems. We
use work on planning graph heuristics for non-deterministic
planning (Bryce, Kambhampati, & Smith 2006; Hoffmann
& Brafman 2004) as our starting point.

We investigate an extension of the work by Bryce, Kamb-
hampati, & Smith (2006) that uses a planning graph gener-
alization called the labelled uncertainty graph (LUG). The
LUG is used to symbolically represent a set of relaxed plan-
ning graphs (much like the planning graphs used by Confor-
mant GraphPlan, Smith & Weld, 1998), where each is asso-
ciated with a possible world. While the LUG (as described
by, Bryce, Kambhampati, & Smith, 2006) works only with
state uncertainty, it is necessary in CPP to handle action un-
certainty. Extending the LUG to consider action uncertainty
involves symbolically representing how at each level CGP
creates a new literal layer for each joint outcomes of the un-
certain actions.

With uncertain actions, an explicit or symbolic represen-
tation of planning graphs for all possible worlds at each time
step is exactly representing an exponentially increasing set
of literal layers. Since we are only interested in planning
graphs to compute heuristics, it is both impractical and un-
necessary to exactly represent all of the reachable possible
worlds. We turn to approximate methods for representing
the possible worlds. Since we are planning in a probabilis-
tic setting, we can use Monte Carlo techniques to construct
planning graphs.

There are a wealth of methods, that fall under the name se-
quential Monte Carlo (SMC) (Doucet, de Freitas, & Gordon
2001) for reasoning about a hidden random variable over
time. SMC applied to “on-line” Bayesian filtering is often
called particle filtering, however we use SMC for “off-line”
prediction. The idea behind SMC is to represent a probabil-
ity distribution as a set of samples (particles), which evolve
recursively over time by sampling a transition function. In
our application, each particle is a (simulated) determinis-
tic planning graph and the transition function describes the
Conformant GraphPlan (Smith & Weld 1998) construction
semantics. By using more particles, we capture more pos-
sible worlds, exploiting the natural affinity between SMC

ICAPS 2006

Doctoral Consortium 19

approximation and heuristic accuracy.
The SMC technique requires multiple planning graphs

(each a particle), but their number is fixed. We could rep-
resent each planning graph explicitly, but they may have
considerable redundant structure. Instead, we generalize the
LUG to symbolically represent the set of planning graph
particles in a planning graph we call the Monte Carlo LUG
(McLUG). We show that by using the McLUG to extract
a relaxed plan heuristic we are able to greatly out-scale
the current best conformant probabilistic planner CPplan
(Hyafil & Bacchus 2004; 2003) in a number of domains,
without giving up too much in terms of plan quality.

This work appears as a full paper with Subbarao Kamb-
hampati and David E. Smith in the ICAPS’06 Technical Ses-
sion. Our presentation starts by describing a worked exam-
ple of how to construct planning graphs that exactly compute
the probability distribution over possible worlds versus us-
ing SMC, as well as how one would symbolically represent
planning graph particles. We then present an empirical anal-
ysis of our technique compared to CPplan, and conclusions.
Please consult the full paper for the formal details.

Monte Carlo Planning Graph Construction
We illustrate an example to give the intuition for Monte
Carlo simulation in planning graph construction. Consider
a simple logistics domain where we wish to load a specific
freight package into a truck and loading works probabilis-
tically (because rain is making things slippery). There are
two possible locations where we could pick up the package,
but we are unsure of which location. There are three flu-
ents, F = { atP1, atP2, inP }, our initial belief state bI is
0.5: s0 = {atP1, ¬atP2, ¬inP }, 0.5: s1 = {¬atP1, atP2,
¬inP }, and the goal is G ={inP}. The package is at loca-
tion 1 (atP1) or location 2 (atP2) with equal probability, and
is definitely not in the truck (inP). Our actions are LoadP1
and LoadP2 to load the package at locations 1 and 2, respec-
tively. Both actions have an empty enabling precondition {},
so they are always applicable, and have two outcomes. The
first outcome with probability 0.8 loads the package if it is
at the location, and the second outcome with probability 0.2
does nothing. We assume for the purpose of exposition that
driving between locations in not necessary.

Figure 1 illustrates several approaches to planning graph
based reachability analysis for our simplified logistics do-
main. (We assume we are evaluating the heuristic value
h(bI) of reaching G from our initial belief state.) The first
is in the spirit of Conformant GraphPlan, where uncertainty
is handled by splitting the planning graph layers for all out-
comes of uncertain events. CGP creates a planning graph
that resembles a tree, where each branch corresponds to a
deterministic planning graph.

CGP: In Figure 1a, we see that there are two initial literal
layers (denoted by literals in boxes), one for each possible
world at time zero. We denote the uncertainty in the source
belief state by X0, which takes on values s0, s1 (for each
state in our belief state). Both load actions are applicable in
both possible worlds because their enabling preconditions
are always satisfied. The edges leaving the actions denote

the probabilistic outcomes (each a set of conditional effects).
While it is possible for any outcome of an action to occur, the
effects of the outcome may or may not have their secondary
precondition supported. In world s0, if outcome the first out-
come of LoadP1 occurs, then effect denoted by atP1→inP is
enabled and will occur, however even if the first outcome of
LoadP2 occurs its effect is not enabled and will not occur.

The set of possible worlds at time one is determined by
the cross product of action outcomes in each world at time
zero. For instance, possible world x00 is formed from world
s0 when outcomes the first outcome of LoadP1 and the
first outcome of LoadP2 co-occur. Likewise, world x12 is
formed from world s1 when outcomes the second outcome
of LoadP1 and the first outcome of LoadP2 occur.

(a) CGP

LoadP1

LoadP2

atP1!inP

Noop

X0=s0

X0=s1

: inP
: atP2

atP1

: atP1

: inP
atP2

atP2!inP

Noop

X1=x00

X1=x01

X1=x02

X1=x03

: inP
: atP2

atP1

inP
?

?

LoadP1

LoadP2

atP1!inP

Noop

atP2!inP

Noop

X1=x10

X1=x11

X1=x12

X1=x13

?

?

(b) McCGP

LoadP1

LoadP2

atP1!inPx00=s0

x20=s1

: inP
: atP2

atP1

: atP1

: inP
atP2

Noop

: inP
: atP2

atP1

inP

LoadP1 atP1!inP

LoadP1

LoadP2

atP1!inPx10=s0

Noop

LoadP2 atP2!inP

atP2
:atP1

: inP
inP

x30=s1

: atP1

: inP
atP2

LoadP1

LoadP2 atP2!inP

Noop

(c) McLUG

: atP1

atP2

LoadP1

LoadP2

atP1

: inP

: atP2

: atP1

atP2

atP1

: inP

: atP2

atP1!inP

Noop

atP2!inP

Noop

?

?

: inP
: atP2

atP1

inP

: inP
: atP2

atP1

: inP
: atP2

atP1

: inP
atP2

: atP1

inP

: inP
atP2

: atP1

inP

: inP
atP2

: atP1

: inP
atP2

: atP1

: inP
: atP2

atP1

inP

atP2
:atP1

: inP
inP

inP

: inP
: atP2

atP1

x01=x01

x21=x10

x11=x01

x31=x12

x20 x
3
0

x20 x
3
0

x10x00

x10x00

x10x00

x20 x
3
0

x10
x00

x20 x30

x10x00

x20 x
3
0

x11x01

x31x30

x10x00

x20

x21 x
3
1

x11x01

x11x01

x21 x
3
1

x20 x
3
0

x10x00

x21 x
3
1

x11x01

x11x01

x21 x
3
1

x11x01

x21 x
3
1

0.5

0.5

0.8

0.2

0.8

0.2

0.8

0.2

0.8

0.2

0.32

0.08

0.08

0.02

0.32

0.08

0.08

0.02

Figure 1: Variations on planning graph representations.

ICAPS 2006

20 Doctoral Consortium

CGP is exactly representing the reachable literal layers for
all possible worlds. In our example, CGP could determine
the exact distribution over X1 for every value of X0. We see
that our goal is satisfied in half of the possible worlds at time
1, with a total probability of 0.8. It is possible to back-chain
on this graph to extract a relaxed plan (by ignoring mutexes)
that satisfies the goal with 0.8 probability. However, we note
that this is not efficient because it is exactly representing all
possible worlds (which can increase exponentially).

McCGP: Next, we illustrate a Monte Carlo simulation ap-
proach we call Monte Carlo CGP (McCGP), in Figure 1b.
The idea is to represent a set of N planning graph parti-
cles. In our example we sample N = 4 states {xn

0}N−1
n=0 ∼

P (X0) = bI and create an initial literal layer for each. To
simulate a particle we first insert the applicable actions. We
then insert effects by sampling from the distribution of joint
action outcomes. Finally, the subsequent literal layer is con-
structed, given the sampled outcomes. Note that each parti-
cle is a deterministic planning graph.

In our example, the simulation was lucky and the literal
layer for each particle at time 1 satisfies the goal, so we may
think the best one step plan achieves the goal with certainty.
From each of these graphs where the goal is satisfied it’s
possible to extract a relaxed plan, which can then be ag-
gregated to give a heuristic as described by Bryce, Kamb-
hampati, & Smith (2006). While McCGP improves memory
consumption by bounding the number of possible worlds, it
still wastes quite a bit of memory. Of the planning graphs
many literal layers are identical. Symbolic methods allow
us to compactly represent these planning graph particles.

McLUG: Using ideas from Bryce, Kambhampati, & Smith
(2006) , we can represent a single literal layer at every time
step for all samples in a planning graph called the Monte
Carlo LUG (McLUG), in Figure 1c. The idea is to union
the connectivity of multiple planning graphs into a single
planning graph skeleton, and use labels on the actions and
literals to signify the original, explicit planning graphs in
which an action or literal belongs. The contribution in the
McLUG is to represent a set of particles symbolically and
provide a relaxed plan extraction procedure that takes ad-
vantage of the symbolic representation. From the McLUG
we are able to extract a relaxed plan that supports the goal
for every particle that reaches the goal.

Empirical Analysis
We externally evaluate our planner and its heuristic based
on the McLUG by comparing with the leading approach to
CPP, CPplan (Hyafil & Bacchus 2003; 2004). We also in-
ternally evaluate our approach by adjusting the number of
particles N that we use in each McLUG. We show results
for a logistics domain. CPplan finds the optimal probability
of goal satisfaction for a given plan length, but our plan-
ner, like Buridan (Kushmerick, Hanks, & Weld 1994), finds
plans that satisfy the goal with probability no less than τ . We
find plans with a forward-chaining A* search in the space of
belief states. To compare with CPplan, we run CPplan on
a problem for each plan length until it exceeds our time or

0.1

1

10

100

1000

.8.7.6.5.4.3.2.1

(16)
(32)
(64)

(128)
(CPplan)

10

20

30

40

50

60

70

.8.7.6.5.4.3.2.1

(16)
(32)
(64)

(128)
(CPplan)

Figure 2: Run time in seconds (top), and Plan lengths (bottom) vs.
τ (log scale) for Logistics p4-2-2

memory limit. We record the probability that CPplan satis-
fies the goal for each plan length. We then give our planner a
series of problems with increasing values of τ that match the
values found by CPplan (and fixed increments thereafter).
We ran our planner five times on each problem and present
the average run time, and plan length.

The logistics domain has the standard logistics actions of
un/loading, driving, and flying, but adds uncertainty. Hyafil
& Bacchus (2004) enriched the domain to not only include
initial state uncertainty, but also action uncertainty. In each
problem there are some number of packages whose prob-
ability of initial location is uniformly distributed over some
locations and un/loading is only probabilistically successful.
Plans require several loads and unloads for a single package
at several locations, making a relatively simple deterministic
problem a very difficult stochastic problem. We compare on
problem p4-2-2, where there are 4 possible initial locations
for a package, 2 cities, and 2 packages.

The plots in Figure 2 compare the total run time in sec-
onds (top) and the plan lengths (bottom) of our planner with
16/32/64/128 particles in the McLUG versus CPplan. In
this domain we also use helpful actions from the relaxed
plan. We notice that CPplan is able to at best find solu-
tions where τ ≤ 0.09. In most cases our planner is able
to find plans much faster than CPplan for the problems they

ICAPS 2006

Doctoral Consortium 21

both solve. It is more interesting that our planner is able
to solve problems for much larger values of τ . Our plan-
ner finds solutions where τ ≤ 0.85 which is 9.6 times the
maximum values of τ solved by CPplan. In terms of plan
quality, the average increase in plan length for the problems
we both solved was 4.2 actions. Where CPplan exactly eval-
uates plan suffixes to find pruning conditions for plan pre-
fixes, we use a heuristic to estimate plan suffixes. As the
results demonstrate, our heuristic effectively guides search
toward good plans.

Conclusion & Future Work
We have presented an approach called McLUG to inte-
grate Monte Carlo into heuristic computation on planning
graphs. The McLUG enables us to quickly compute effec-
tive heuristics for conformant probabilistic planning. With
the heuristics, our planner is able to far out-scale the current
best conformant probabilistic planner. At a broader level,
our work shows one fruitful way of exploiting the recent suc-
cess in deterministic planning to scale stochastic planners.

Our future work will concentrate on adapting the heuris-
tics described here to handle conditional probabilistic plan-
ning. We also intend to develop a Monte Carlo based heuris-
tic search algorithm for search in belief space that com-
bines the work of Thrun (2000) and Barto, Bradtke, & Singh
(1995).

References
Barto, A. G.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intel-
ligence 72:81–138.
Brafman, R., and Hoffmann, J. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
Proceedings of ICAPS’05.
Bryce, D.; Kambhampati, S.; and Smith, D. 2006. Planning
graph heuristics for belief space search. JAIR. (To appear).
Doucet, A.; de Freitas, N.; and Gordon, N. 2001. Sequen-
tial Monte Carlo Methods in Practice. New York, New
York: Springer.
Hoffmann, J., and Brafman, R. 2004. Conformant planning
via heuristic forward search: A new approach. In Proceed-
ings of ICAPS’04.
Hyafil, N., and Bacchus, F. 2003. Conformant probabilistic
planning via CSPs. In Proceedings of ICAPS’ 03.
Hyafil, N., and Bacchus, F. 2004. Utilizing structured
representations and CSPs in conformant probabilistic plan-
ning. In Proceedings of ECAI’04.
Kushmerick, N.; Hanks, S.; and Weld, D. 1994. An al-
gorithm for probabilistic least-commitment planning. In
Proceedings of AAAI’94.
Smith, D., and Weld, D. 1998. Conformant graphplan. In
Proceedings of AAAI’98.
Thrun, S. 2000. Monte Carlo POMDPs. In Advances in
Neural Information Processing 12, 1064–1070.

ICAPS 2006

22 Doctoral Consortium

Analyzing, Learning, and Shaping Planning Search Spaces

Blazej Bulka
Department of Computer Science

University of Maryland, Baltimore County
bulka1@umbc.edu

Introduction
The complexity of a task faced by a planner depends
strongly on the search space. The importance of the plan-
ner’s search space is reflected in the two main classes of
classical AI planners:state-spaceplanners, which explore
the search space by considering totally ordered sequences
of directly neighboring states of the world, andplan-space
planners, which explore the search space by considering in-
complete plans consisting of partially ordered actions. The
search space also depends on the structure of subgoals (their
interactions) and on the representation of knowledge used
by the planner (e.g., the level of abstraction at which the
planning is done or the expressiveness of the description
language). Taking these factors into account can lead to
finer-grained classification of planning domains and search
spaces.

Knowing the properties of a search space is useful when
a human designer creates a new planner or decides which
of the existing planners to use. However, knowledge of the
properties of a search space may also be useful to the planner
itself. In my research, I plan to explore which features of the
search spaces can be automatically determined or learned by
planners (during repeated executions), and how such infor-
mation may be used by a planner to improve the search pro-
cess (e.g., by choosing an appropriate planning technique,
abstraction level, or representation).

This research is still in the idea stage: I am in the pro-
cess of developing my dissertation proposal, and plan to take
the preliminary exam (proposal defense) in July, after the
conference. Attending the doctoral consortium will give me
the ideal opportunity to receive early feedback that can help
guide my dissertation research. I also look forward to the
opportunity to attend the conference in order to get a bet-
ter sense of the current state of the field, and to meet other
graduate students and senior researchers.

Overview of the approach In my approach, the planner
will discover (either through a preliminary analysis or learn-
ing) features of the structure of the planning domain. Infor-
mation about these features can improve the planning pro-
cess by using them as heuristics, selecting a more appro-
priate search method, tuning the parameters of the planner,
or by changing to a different representation of the domain
knowledge (shaping the search space).

In this paper, I propose two approaches to discover fea-
tures of a planning domain. The first one is a preliminary
analysis of the domain description. Although the cost of
such analysis would be high, it can be amortized over mul-
tiple planning attempts in the future that would benefit from
it. The second approach includes observing multiple valid
plans (either produced by the planner itself, other planners
or humans), and learning the features from the observations.
This approach may be particularly effective in discovering
statistical features of the search space for the domain (e.g.,
intermediate states that are often included in a plan).

Detection of search space features
Analysis In my approach, the planner will run a prelimi-
nary analysis of the planning domain (i.e., actions, their pre-
conditions, and their effects) in order to discover dependen-
cies among the actions. Such dependencies can later be used
to make planning decisions for any specific problem (i.e.,
any initial state and goals). This approach is inspired by
work of Kambhampati, Parker, and Lambrecht (1997) and
Hoffmann, Porteous, and Sebastia (2004).

Kambhampati, Parker, and Lambrecht analyzed Graph-
plan. They point out that the planning graph created by
Graphplan is a way of representing the search tree in a com-
pact but approximate manner. Each level represents a set of
states in the search space, and the exact path in the state-
space can be retrieved, which happens during the extraction
of the plan produced by the planner. The representation of
the search tree is approximate because it includes only in-
formation for certain goals interactions (mutexes—i.e., sets
of size of two containing mutually exclusive propositions).
They also show that there are domains where this informa-
tion is not sufficient, yet looking for the additional infor-
mation during each generation of a planning graph is not
feasible. This would justify preprocessing, which needs to
be done only once since it does not depend on the particular
initial state and goals. An open question remains: how to au-
tomatically detect whether a particular domain has the prop-
erty that information in a planning graph created by Graph-
plan is not sufficient.

Hoffman, Porteous, and Sebastia also did preprocessing in
order to find ordering of subgoals, as described later. Their
research, however, was dependent on the initial and goal
states, which means that the preprocessing has to be exe-

ICAPS 2006

Doctoral Consortium 23

cuted during each run of the planner. If a more general anal-
ysis of the search space’s structure (not dependent on ini-
tial and goal states) could be performed, the preprocessing
could be performed only once. Moreover, the information
obtained during such an analysis could be used in multiple
ways. The first one would be to perform reachability anal-
ysis of a search space (which would allow the planner to
reject some paths in the search space and to declare some
goals not achievable from certain starting points). Another
way would be through the identification ofhub states: states
or preconditions thatalwaysor oftenappear in valid plans in
the domain. This would improve planning by adding hubs
as subgoals, or by precomputing actions that lead from one
hub state to another one. An extension of this idea would be
treating a group of states as a hub (a minimal group of states
such that at least one of the states appears in almost all valid
plans).

Hoffmann, Porteous, and Sebastia also used heuristics
based on parsing techniques (e.g., lookahead). I would also
like to explore the similarities between planning, given a do-
main representation, and parsing given a grammar. Many
efficient parsers do not analyze the grammar while parsing:
they usually use precomputed information such as a parser
table. Most parsers, however, cannot process arbitrary gram-
mars. Instead, they are limited to a few basic classes like
context-free or LALR(n) grammars. It would be interest-
ing to identify and analyze analogous classes of planning
spaces. Such classes of spaces could either be based on
specific structures of subgoals or relations among planning
states (especially in state-space search). (The relation of
planning to context-grammars has already been noticed by
Erol, Hendler and Nau (1994), but they mostly focused on
HTN planning, which has an explicit structure among ac-
tions.)

Learning The search space analysis described above may
be most efficient for features that are present in every valid
plan, but an approach that considers only such features may
be too restrictive (especially if we consider preprocessing of
the space for all initial states). However, detection of fea-
tures that are often (but not always) included in plans may
require enumerating a large part of the search space. There-
fore, it could be feasible to learn the existence of such hub
nodes by observing multiple generated plans for the same
domain, instead of analyzing.

Many domains (including benchmark domains for plan-
ning) are reported to have regularities in their local search
topology. For example, Hoffmann (2003) analyzed heuris-
tics that ignore delete lists of operations in the context of
phenomena that occur in the local search topology. Simi-
larly, Haslum and Geffner (2000) showed that the successful
use of heuristics to guide the planning process can be linked
to the regularities in the domains. Learning the local features
and regularities of the search space can possibly lead to the
development of good, domain-specific heuristics. Moreover,
for a search guided by a heuristic, it could also be possible
to incrementally learn a better heuristic.

Shaping the search space
Having discovered the features of a planning domain (e.g.,
by analyzing the search space or by learning the features
from observation of valid plans), a planner may take advan-
tage of this knowledge by reasoning about planning in this
domain (meta-planning) and shaping the search space.

One way to change the shape of the search space is to
change the representation of facts. My idea is partially in-
spired by work by Haslum and Jonsson (2000), who focused
on the idea of removing redundant operatorsgiven an initial
state. I believe that planning could be improved by removing
particular effects of the operators, while still preserving cor-
rectness comparing to the plan with non-modified operators
(redundant effects). It may also be possible to remove op-
erators that are rarely used in plans (as learned by the plan-
ner). As a result, removing some operators would allow eas-
ier preprocessing of the domain regardless of the initial state
(e.g., if it would reduce the class of a search space to a sim-
pler one) at the expense of producing less optimal plans in
terms of the plan’s length.

Another possible way of changing the search space is the
selection of an alternative search method for the whole plan
or part thereof. (A similar approach was used in the FLECS
algorithm (Veloso & Stone 1995), but the selection condi-
tion in that case was given by the designer, not learned by
the planner.) For example, it may be possible to learn which
search method performs the best given the set of detected
features of the planning domain. Alternatively, the planner
could learn a hierarchical representation of the problem (in-
spired by work by Knoblock (1994)), decide to first solve
the planning problem at a higher level, and then solve the
subproblems independently (similar to HTN planning).

Related work
The problem of structure and interactions among the goals
has previously been analyzed by Barrett and Weld (1994).
They described different classes of planning domains, and
tested the behavior of both total-order and partial-order plan-
ners on these domains. Hoffmann, Porteous, and Sebas-
tia (2004) described different kinds of possible ordering re-
lations between subgoals. They also introduced the con-
cept of landmarks, which can be perceived as a particu-
lar type of hub states mentioned earlier in this paper. (A
landmark is a subgoal that must be satisfied at some point
in everyplan in the domain; my definition of a hub state
is slightly broader and also includes the goals or states
that are included inmostplans in the domain.) Addition-
ally, Hoffmann in his earlier work described how local fea-
tures of the topology of the search space (as opposed to
“global” landmarks and orderings) may influence planning,
and how such features of the space can be detected and
used in FF planner (Hoffmann 2001; 2003). The work by
Smith and Peot (1996) described analyzing the search space
by usingoperator graphsto avoid recursion and prune it.
Preanalysis of the search space is also used in the work
by Fox and Long (1998), which finds state invariants us-
ing type inference. Their later work (Fox & Long 1999;
Porteous, Long, & Fox 2004) focuses on finding regularities

ICAPS 2006

24 Doctoral Consortium

in planning problems (symmetry and almost symmetry).
Other work has explored the appropriate level of abstrac-

tion during planning. This issue is the focal point of HTN
planning (Sacerdoti 1975), where different levels of abstrac-
tion are explicitly represented. Nevertheless, information
about an abstract hierarchy may also be used in planners that
do not support hierarchy explicitly: for example, Veloso and
Stone (1995) mention treating some intermediate goals as
milestones, which divide states in a plan into independent
groups. Each such group can be treated as a goal at a higher
level of abstraction. Information about these groups is ob-
tained from an external source. (Veloso and Stone mention
work by Knoblock (1994) as a method to generate abstrac-
tions automatically.) In fact, Kambhampati (1995) presents
a comparison of “pure” partial-order planners (no use of in-
formation regarding hierarchy) and HTN planning, and dis-
cusses the advantages of having an explicit representation
for abstract or higher-level goals.

Different ways of representing the same domain are also
a popular research topic, especially the tradeoff between the
complexity of planner’s data structures and the size of the
search space (Kambhampati & Yang 1996; Kambhampati,
Parker, & Lambrecht 1997).

There is also a body of work on learning in planning.
Learning appropriate heuristics by planners based on their
previous experiences in planning can be found in work by
Likhachev and Koenig (2005). Boteaet al. (2005) presented
an approach that exploits the underlying domain structure,
and learns ordering of operators (actions) and combining
them into groups (macros) by observing plans in the domain.

Status of the work
This paper presents preliminary work done under supervi-
sion of my advisor, Prof. Marie desJardins. I plan to have
the ideas further extended by July 2006 by providing details
of the proposed methods and examples of planning domains
where these methods are applicable. At this time, this work
should be developed far enough to form a Ph.D. thesis pro-
posal.

References
Barrett, A., and Weld, D. S. 1994. Partial-Order Plan-
ning: Evaluating Possible Efficiency Gains.Artificial In-
telligence67(1):71–112.

Botea, A.; M̈uller, M.; and Schaeffer, J. 2005. Learning
Partial-order Macros from Solutions. InProceedings of the
Fifteenth International Conference on Automated Planning
and Scheduling (ICAPS-05), 231–240.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN Planning:
Complexity and Expressivity. InProceedings of Eleventh
National Conference on Artificial Intelligence (AAAI-94),
1123–1128.

Fox, M., and Long, D. 1998. The Automatic Inference of
State Invariants in TIM.Journal of Artificial Intelligence
Research (JAIR)9:367–421.

Fox, M., and Long, D. 1999. The Detection and Exploita-
tion of Symmetry in Planning. InProceedings of the Six-

teenth International Joint Conference on Artificial Intelli-
gence (IJCAI-99).
Haslum, P., and Geffner, H. 2000. Admissible Heuristics
for Optimal Planning. InProceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling (AIPS-2000), 140–149.
Haslum, P., and Jonsson, P. 2000. Planning with Re-
duced Operator Sets. InProceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling (AIPS-2000), 150–158.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning.Journal of Artificial Intelligence
Research (JAIR)22:215–278.
Hoffmann, J. 2001. Local Search Topology in Planning
Benchmarks: An Empirical Analysis. InProceedings of
the Seventeenth International Joint Conference on Artifi-
cial Intelligence (IJCAI-01), 453–458.
Hoffmann, J. 2003. Where Ignoring Delete Lists Works:
Local Search Topology in Planning Benchmarks. Tech-
nical Report 185, Institute for Computer Science, Albert-
Ludwigs-University, Freiburg, Germany.
Kambhampati, S., and Yang, X. 1996. On the Role of
Disjunctive Representations and Constraint Propagation in
Refinement Planning. InProceedings of the Fifth Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning (KR-96), 135–146.
Kambhampati, S.; Parker, E.; and Lambrecht, E. 1997.
Understanding and Extending Graphplan. InRecent Ad-
vances in Planning: Fourth European Conference on Plan-
ning (ECP-97), 260–272.
Kambhampati, S. 1995. A Comparative Analysis of Par-
tial Order Planning and Task Reduction Planning.SIGART
Bulletin6(1):16–25.
Knoblock, C. A. 1994. Automatically Generating Abstrac-
tions for Planning.Artificial Intelligence68(2):243–302.
Likhachev, M., and Koenig, S. 2005. A Generalized
Framework for Lifelong Planning A*. InProceedings of
the Fifteenth International Conference on Automated Plan-
ning and Scheduling (ICAPS-05).
Porteous, J.; Long, D.; and Fox, M. 2004. The Identifi-
cation and Exploitation of Almost Symmetry in Planning
Problems. InProceedings of the 23rd UK Planning and
Scheduling SIG.
Sacerdoti, E. 1975. The Nonlinear Nature of Plans. InPro-
ceedings of the International Joint Conference on Artificial
Intelligence, 206–214.
Smith, D. E., and Peot, M. A. 1996. Suspending Recursion
in Causal-link Planning. InProceedings of the Third Artifi-
cial Intelligence Planning Systems Conference (AIPS-96),
182–190.
Veloso, M., and Stone, P. 1995. FLECS: Planning with a
Flexible Commitment Strategy.Journal of Artificial Intel-
ligence Research (JAIR)3:25–52.

ICAPS 2006

Doctoral Consortium 25

Linear Logic in Planning

Lukas Chrpa
Department of Theoretical Computer Science and Mathematical Logic

Faculty of Mathematics and Physics
Charles University in Prague

chrpa@kti.mff.cuni.cz

Abstract

Linear Logic is a powerful formalism used to manage a
lot of problems with resources. Linear Logic can also
be used to formalize Petri Nets and to solve simple plan-
ning problems (for example ‘Block World‘). Research
goes ahead also in Linear Logic Programming, which
means that we have tools, that can solve Linear Logic
problems. In this paper I will show the possible con-
nection between solving planning problems and Linear
Logic Programming.

Introduction
Planning problems can be solved by translation into another
formalism like SAT, CSP, BDD, etc. Linear Logic is
another formalism to which a planning problem can be
translated. There already exists a planning system based
on Linear Logic called RAPS (K̈ungas 2003). RAPS was
introduced at Doctoral Consortium at ICAPS 2003. The
author of RAPS compared RAPS with the best planners
that participated at IPC 2002. This comparison showed
very interesting results, a Skeleton version of RAPS
showed almost the best computation time in computing
the plans (the typed Depots domain), but on the other
hand the solution length (in the typed Depots domain) was
almost the highest, which means that the plans weren’t
optimal. The Skeleton version of RAPS first converts a
planning problem into propositional Linear Logic (which
means that predicates in a planning operator description
are abstracted to propositional constants by removing
predicates’ arguments) and from that it calculates skeleton
plans, which means that we obtain a sequence of actions
needed to reach the goal. The final plan is obtained from the
skeleton plan by unification with corresponding arguments.
RAPS (including the Skeleton version) exploits the fact
that a planning problem coded into Linear Logic is easily
converted to the problem of Petri Net reachability so the sys-
tem mainly exploits the algorithms for Petri Net reachability.

Instead of coding the planning problems in Linear Logic
and solving the Petri Net Reachability problem like in
RAPS, I propose to study possibilities of solving the plan-
ning problems using Linear Logic Programming tools (de-
scribed bellow). I believe that Linear Logic Programming

tools can achieve better efficiency than ‘classical‘ Logic Pro-
gramming tools and hence might be more appropriate for
solving planning problems (Banbara 2006). Nevertheless I
will also study the possibilities of efficient solving Linear
Logic problems in Prolog. Prolog itself has many exten-
sions which may support some techniques for optimization
of planning problems.

In the next part of this paper I will give a short introduc-
tion to Linear Logic and Linear Logic Programming. Then
I will describe how to solve Petri Net reachability problem
using Linear Logic and how to convert planning problems to
Linear Logic. Finally I will present my future research plans
in this area.

Linear Logic
Linear Logic was introduced by J.Y. Girard at 1987 (Girard
1987; 1995). Unlike the ‘classical‘ logic we can handle re-
sources in Linear Logic. The basic operator in Linear Logic
is a (linear) implication (A (B), which is defined as B
is obtained by using one resource A. Linear Logic defines
more operators (not only implication), but I will describe
here only the multiplicative conjunction⊗ and the addi-
tive disjunction⊕ (the description of other operators can be
found in (Girard 1987; 1995)). The expression(A ⊗ B) (

(C⊗D) means that C and D are obtained using A and B. The
expressionA ((B⊕C) means that B or C (we don’t know
which one) is obtained using A. Proving in Linear Logic is
quite similar to proving in the ‘classical‘ logic (hypotheses
⇒ conclusion) , but the calculus of Linear Logic is more
complicated. To find out more about proving in Linear Logic
and the whole calculus of Linear Logic, see (Girard 1987;
1995).

Linear Logic Programming
Linear Logic Programming is derived from classical logic
programming (Prolog based) by including linear facts
and linear operators. Syntax of common Linear Logic
Languages is quite similar to Prolog syntax (Banbara 2006).
As I mentioned above, the efficiency of these languages
in solving problems describable in Linear Logic is better
than in Prolog. The good efficiency of Linear Logic
Programming languages is reached by using optimization
techniques based on the theory of proving in Linear Logic,

ICAPS 2006

26 Doctoral Consortium

more in (Banbara 2002).

In my diploma thesis I proposed a Linear Logic Program-
ming language SLLL (Chrpa 2005), which was constructed
as a compiler to Prolog. However, the problem of this lan-
guage is a low computational efficiency caused by emu-
lating the linear facts as lists. Fortunately, there are other
Linear Logic Programming languages: Lolli (Hodas 1994;
1992), LLP (Banbara 2002), Lygon (Winikoff 1996), LTL1

and more. Lolli is possibly the strongest Linear Logic Pro-
gramming language, which contains almost all of Linear
Logic features. LTL and LLP are possibly the most effec-
tive Linear Logic Programming languages today.

Solving Petri Net reachability problem by
Linear Logic

In the next paragraphs, I will describe how Linear Logic
can be used in solving the Petri Net reachability problem,
that is, the problem of finding whether a given marking is
reachable from the initial marking. To find more about Petri
Nets (and the problem of Petri Net reachability), see (Reisig
1985).

Now I explain how the problem of Petri Net reachabil-
ity can be easily encoded using Linear Logic. Tokens in
places are encoded as linear facts (resources), in particular
the initial marking (in this case: one token in each place
p1, . . . , pk) is encoded in the following way:

` p1 ⊗ p2 ⊗ . . . ⊗ pk

Transitions are also encoded as axioms. For transi-
tion t and placespi1 , . . . , pim

∈ IN(t)...input places and
po1

, . . . , pon
∈ OUT(t)...output places we get:

` (pi1 ⊗ . . . ⊗ pim
) ((po1

⊗ . . . ⊗ pon
)

If the goal (in this case: one token in each placepg1
, . . . , pgl

)
(pg1

⊗. . .⊗pgl
) is provable (by using the above axioms), the

marking (one token in each placepg1
, . . . , pgl

) is reachable.2

More about the topic can be found in (Oliet & Meseguer
1989).

Planning with Linear Logic
Problem of using Linear Logic in planning have been stud-
ied by several authors (Masseron, Tollu, & Vauzeilles 1993;
Kanovich & Vauzeilles 2001). Encoding of planning prob-
lems in Linear Logic is quite similar to encoding of Petri
Nets (planning problems can also be encoded directly using
Petri Nets). In planning we have states, that are represented
by the set of predicates, that are true in the given state. We
can encode these states as a multiplicative conjunction of
(true) predicates, that belong to the corresponding state.The
encoding of states:

(p1 ⊗ p2 ⊗ . . . ⊗ pn), s = {p1, p2, . . . , pn}

1developed by Dr. Arnost Vecerka, my diploma supervisor
2multiple tokens in places or multiple (input, output) places can

be easily encoded as n-timesp ⊗ . . . ⊗ p

Actions in planning contain preconditionsp (must be
satisfied before preforming the action), negative effects
e−(removed after the action), and positive effectse+ (added
after the action). The actiona = {p, e−, e+} is encoded as:

∀i ∈ {1, 2, . . . , k}, li ∈ p ∪ e−

∀j ∈ {1, 2, . . . ,m}, rj ∈ e+ ∪ (p − e−)

(l1 ⊗ l2 ⊗ . . . ⊗ lk) ((r1 ⊗ r2 ⊗ . . . ⊗ rm)

This expression means that the predicates on the left side of
the implication will no longer be true after performing action
a and the predicates on the right side of the implication will
become true after performing actiona. The plan exists if
and only if the encoding of the goal state is provable from
the encoding of the initial state using the actions encoded as
axioms.3

Encoding negative predicates
The above formalism worked only with positive predicates.
However sometime we also need to encode negative pred-
icates.4 We extend the encoding of predicates with sym-
bols for negative predicates (p will obtain a twin p which
represents a negative form of predicatep). The encoding
of states, where predicatesp1, . . . , pm are true ins and
pm+1, . . . , pn are false ins:

p1 ⊗ . . . ⊗ pm ⊗ pm+1 ⊗ . . . ⊗ pn

For every actiona = {p, e−, e+}, we create an actiona′ =
{p, e′−, e′+}, wheree′− = e− ∪ {p |p ∈ e+} and e′+ =
e+ ∪ {p |p ∈ e−}. Now we can encode all actionsa′ in the
same way as described above.

Example
Let us present now an example of the conversion (without
negative predicates). Imagine the version of ”Block World”,
where we have slots and boxes, and every slot may contain
at most one box. We have also a crane, which may carry at
most one box.

Initial state: 3 slots (1,2,3), 2 boxes (a, b), empty crane, box
a in slot 1, boxb in slot 2, slot 3 is free.

Actions:

PICKUP (Box, Slot) = {

p = {empty, in(Box, Slot)},

e− = {empty, in(Box, Slot)},

e+ = {holding(Box), free(Slot)}

}

PUTDOWN(Box, Slot) = {

p = {holding(Box), free(Slot)},

e− = {holding(Box), free(Slot)},

e+ = {empty, in(Box, Slot)}

}

3To obtain a full plan, we must keep information about used
axioms (encoded actions) during proving.

4Negative predicates often appear in preconditions.

ICAPS 2006

Doctoral Consortium 27

Goal: Box a in slot 2, Boxb in slot 1, empty crane, free slot
3.

The encoding of the problem:

INIT :
in(a, 1) ⊗ in(b, 2) ⊗ free(3) ⊗ empty

PICKUP (Box, Slot) :
empty ⊗ in(Box, Slot) (holding(Box) ⊗ free(Slot)

PUTDOWN(Box, Slot) :
holding(Box) ⊗ free(Slot) (empty ⊗ in(Box, Slot)

GOAL :
in(b, 1) ⊗ in(a, 2) ⊗ free(3) ⊗ empty

A solution is a sequence of actions. In this case, this se-
quence looks like:PICKUP (a, 1), PUTDOWN(a, 3),
PICKUP (b, 2), PUTDOWN(b, 1), PICKUP (a, 3),
PUTDOWN(a, 1).

Possible optimizations

In the previous subsections I described the pure encoding
of planning problems to Linear Logic. In this subsection I
will show that we are able to encode some optimizations to
Linear Logic as well.

In the above example we have two actions:
PICKUP (Box, Slot) and PUTDOWN(Box, Slot).
These actions are inverse, which means that if we perform
these actions with same parametersBox, Slot consecu-
tively, we obtain the state that we had before performing
these actions. The main idea how to block the consec-
utive performing of inverse actions is an extension of
the encoding of the actions. The encoding of the action
PICKUP (Box, Slot) from the above example id shown
bellow (encoding of the actionPUTDOWN(Box, Slot)
is analogical):

PICKUP (Box, Slot) :
canpick(Box, Slot) ⊗ canput(Box, Slot) ⊗
nopick(X,Y) ⊗ empty ⊗ in(Box, Slot) (

holding(Box) ⊗ free(Slot) ⊗ canpick(Box, Slot) ⊗
noput(Box, Slot) ⊗ canpick(X,Y)

The predicatescanpick(Box, Slot) (canput(Box, Slot))
mean that actions PICKUP (Box, Slot)
(PUTDOWN(Box, Slot)) can be performed (allowed).
The predicatesnopick(Box, Slot) (noput(Box, Slot))
mean that actions PICKUP (Box, Slot)
(PUTDOWN(Box, Slot)) can’t be performed (blocked).
The encoding of the actionPICKUP (Box, Slot) means
that this action can be performed if and only if the
predicatecanpick(Box, Slot) is true. After performing
this action the predicatecanput(Box, Slot) becomes
false, the predicatenoput(Box, Slot) becomes true, the
predicatenopick(X,Y) (represents exactly one blocked
actionPICKUP (X,Y)) becomes false and the predicate
canpick(X,Y) becomes true. In the other words this means
that performing some (allowed) action blocks the inverse
action and unblocks the action blocked by the previously
performed inverse action.

Another optimization of the previous example is block-
ing the actionPICKUP (Box, Slot) forever if the pred-
icate in(Box, Slot) is true in goal state. The action
PICKUP (Box, Slot) is blocked when both predicates
canpick(Box, Slot) andnopick(Box, Slot) are false. This
is obtained by removing the predicatenopick(Box, Slot)
from the right side of the linear implication in the encoded
PUTDOWN(Box, Slot) action.

I showed that Linear Logic can easily encode some opti-
mizations for the planning problems. Using these optimiza-
tions may lead the to better efficiency.

Comparing to SAT
Linear Logic itself has some advantages that can be ex-
ploited in the encoding of planning problems. The main
advantage is the linear size of the encoding of the planning
problems. For example the size of a SAT encoding of plan-
ning problems can be exponential. On the other way, SAT
problems are in general NP-complete unlike the undecid-
ability of whole Linear Logic. In planning we are using only
a part of Linear Logic, but we still have no evidence about
decidability and complexity of this restricted problem.

Future Research
In my future research, I will study the problem of efficient
usage of Linear Logic in planning problems (for example en-
coding optimizations). I will study the possibilities of using
Linear Logic Programming tools and possibilities of emulat-
ing Linear Logic in Prolog. I will also make a comparison
to some models (Gelfond & Lifschitz 1993). The following
paragraphs will present my future research plans in more de-
tail:

Using Linear Logic Programming Tools
As I have mentioned above, we have several tools that could
solve Linear Logic problems efficiently. The preliminary ex-
periments showed that the existing Linear Logic Program-
ming tools are not powerful enough to solve the planning
problems, because these tools can’t still handle the linear
implication well. This means that I am still emulating Lin-
ear Logic in Prolog, which isn’t much efficient. Neverthe-
less, I believe that these tools may be useful as a support to
other planning techniques. I also believe that possible im-
provements of these tools may help with solving the plan-
ning problems. I will study the possibilities of using these
tools to solve the planning problems.

Emulating Linear Logic in Prolog
Linear Logic can be easily emulated in Prolog.5 Linear facts
are in a special list. We must define two predicates, one for
deleting the facts from the list (lin del) and one for adding
the facts to the list (lin add):

lin_del(V,[V|L],L).
lin_del(V,[H|L],[H|NL]):-lin_del(V,L,NL).
lin_add(V,L,[V|L]).

5We don’t need whole Linear Logic, we need to emulate only
the support for the operators⊗,⊕, (.

ICAPS 2006

28 Doctoral Consortium

Emulation of the multiplicative conjunction⊗ and the ad-
ditive disjunction⊕ is very easy, because we can replace
them by ‘classical‘ conjunction and disjunction which are
presented in Prolog. Emulation of the linear implication(

is also easy. All linear facts on the left side of the linear im-
plication are deleted from the list and all linear facts on the
right side of the linear implication are added to the list. A
formulaa ⊗ b (c ⊕ d can be written in Prolog like this:

(lin_del(a,L1,L2),lin_del(b,L2,L3)),
(lin_add(c,L3,L4);lin_add(d,L3,L4))

VariablesL1, L2, L3, L4 represent the list of linear facts,
because we must keep this list consistent and vulnerable to
backtracking.

This emulation isn’t very efficient, but we can do some
optimizations. If we have the list of linear facts sorted,
we don’t need to use the predicateslin del n-times conse-
quently. We can improve thelin del predicate such that it
will accept a sorted list of n facts and make the same effect
like using the old predicateslin del n-times consequently.
This approach will result in a fact that the list of linear facts
can be explored only once. To keep the list sorted we must
also improve thelin add fact. In future I will try to find out
more and better optimizations in emulating Linear Logic in
Prolog.

Temporal Logic extensions

There are also Linear Logic Programming tools that support
Temporal Logic extensions. For example the extension of
LLP is called TLLP (Banbara 2002). This could provide a
formalism to time extensions, especially for qualitative mod-
eling of time. With Temporal Logic we can also model fea-
tures like an action that must be performed before another
action. This may lead to PSP (Plan-Space Planning).

Using Linear Logic in probabilistic planning

When performing an action in probabilistic planning we
could reach more states (instead of one like in determin-
istic planning). Reachability of a particular state depends
on probability of obtaining that state after performing the
planned action. The main advantage of Linear Logic is ad-
ditive disjunction, so we are able to encode the actions in
probabilistic planning in the following way (s, s1, s2, . . . , sn

are states,A is the action):

s × A → {s1, s2, . . . , sn}

A : s ((s1 ⊕ s2 ⊕ . . . ⊕ sn)

This expression means that only one state from
s1, s2, . . . , sn, could be reached after performing ac-
tion A from states in a certain step, but we don’t know
which one (depends on probability). Unfortunately the main
disadvantage of Linear Logic is that it can’t handle proba-
bilities directly. Nevertheless, there is still an option,which
consists of possible cooperation with other techniques. This
problem needs to be more studied, so in future I will also
try to find out more about this extension.

Conclusion
The paper showed that Linear Logic can be used to encode
planning problems. Like for other encodings, the advantage
of this approach is that an improvement of the Linear Logic
solver leads to improved efficiency of the planner based on
Linear Logic. Still, the efficiency of current Linear Logic
solvers applied to planning problems should be explored in
more detail.

Acknowledgements
I thank to my supervisor Roman Bartak for help with writing
this paper. The research is supported by the Czech Science
Foundation under the contract no. 201/04/1102 and by the
Grant Agency of Charles University (GAUK) under the con-
tract no. 326/2006/A-INF/MFF.

References
Banbara, M. 2002.Design and Implementation of Linear
Logic Programming Languages. Ph.D. Dissertation, The
Graduate School of Science and Technology, Kobe Uni-
versity.
Banbara, M. 2006. http://bach.istc.kobe-u.ac.jp/llp/.
Chrpa, L. 2005. Linearni logika. Master’s thesis, Depart-
ment of Computer Science, Palacky University, Olomouc.
(in Czech).
Gelfond, M., and Lifschitz, V. 1993. Representing actions
and change by logic programs.Journal of Logic Program-
ming 17(2,3,4):301–323.
Girard, J.-Y. 1987. Linear logic.Theoretical computer
science 50:1–102.
Girard, J.-Y. 1995.Linear Logic: Its Syntax and Semantics.
Cambridge University Press.
Hodas, J. 1992. Lolli: An extension of lambdaprolog with
linear logic context management.Proceedings of the 1992
Workshop on the lambdaProlog Programming Language.
Hodas, J. 1994.Logic Programming in Intuitionistic Lin-
ear Logic: Theory, Design, and Implementation. Ph.D.
Dissertation, University of Pennsylvania, Department of
Computer and Information Science.
Kanovich, M., and Vauzeilles, J. 2001. The classical ai
planning problems in the mirror of horn linear logic: Se-
mantics, expressibility, complexity.Mathematical Struc-
tures in Computer Science 11(6).
Küngas, P. 2003. Linear logic for domain-independent ai
planning.Proceedings of Doctoral Consorcium ICAPS.
Masseron, M.; Tollu, C.; and Vauzeilles, J. 1993. Generat-
ing plans in linear logic i-ii.Theoretical Computer Science.
Oliet, N. M., and Meseguer, J. 1989. From petri nets to
linear logic.Springer LNCS 389.
Reisig, W. 1985. Petri Nets, An Introduction. Springer
Verlag, Berlin.
Winikoff, M. 1996. Hitch hiker’s guide to lygon 0.7. Tech-
nical Report 96/36, The University of Melbourne, Aus-
tralia.

ICAPS 2006

Doctoral Consortium 29

Generic Types and their Use in Improving the Quality of Search Heuristics

Andrew Coles
Department of Computer and Information Sciences

University of Strathclyde
26 Richmond Street,
Glasgow, G1 1XH

email:andrew.coles@cis.strath.ac.uk

Abstract

This abstract discusses work looking into techniques for im-
proving the quality of the search heuristics used to guide
forward-chaining planning. The improvements in heuris-
tic quality are made by performing a static analysis of the
planning problem to identify commonly occurring ‘generic
types’, and providing additional heuristic guidance based on
their known properties. In doing so, the heuristic is tailored
to the identified properties of the domain and can provide a
more realistic heuristic value and refined relaxed plan. This
can potentially lead to reduction in the time taken to find a
plan, and the generation of shorter plans.

Introduction
Forward-chaining planning guided by a heuristic has proved
to be an effective planning strategy in a range of planning
domains. At recent international planning competitions,
many of the participating planners followed this search ap-
proach; of particular note is FF (Hoffmann & Nebel 2001),
which participated with great success in the 2002 and 2000
competitions. Work on HSP (Bonet & Geffner 2000) and
Downward (Helmert 2004) has explored alternative heuris-
tics. What all these planners share, however, is that the
heuristic goal-distance estimate they provide is obtained
from a ‘relaxed’ version of the original problem, i.e. one
from which some constraints have been removed. The re-
laxation of the original problem in this manner is necessary
to allow a heuristic value to be obtained in a reasonable time;
however, it does reduce the accuracy with which the relaxed
problem is able to model certain aspects of the original prob-
lem.

Using static analysis techniques, such as those performed
by TIM (Long & Fox 2000), it is possible to identify
‘generic types’ of objects within planning problems: for
instance, self-propelled mobile objects capable of moving
from one location to another. These generic types form sub-
problems with known properties with which type-specific
heuristics can be used: for instance, using the Floyd Wal-
shall algorithm to calculate the cost of moving a mobile from
one location to another. HybridSTAN (Fox & Long 2001),
a forward-chaining heuristic planner, took the approach of
isolating these known sub-problems when planning, remov-
ing all predicates pertaining to the location of mobiles from
the domain. Once a solution plan was found, actions were

inserted into the plan to move the mobile objects to the lo-
cations needed for the actions used.

The decomposition approach of HybridSTAN relies on
being able to cleanly isolate the sub-problem, which is only
possible if it is wholly described by the generic type. For
example, if the move action for the mobile requires another
condition to be satisfied (such as one defining whether a door
is open between the two locations) then the subsolver cannot
handle the additional constraints imposed. In these cases,is
not possible to add the missing actions to the plan as required
once the remainder of the problem has been solved, as it is
no longer clear which actions are needed.

To this end, this work is concerned with investigating
whether the static domain analysis used to discover sub-
problems can be used to improve the quality of the relax-
ation heuristic used, in this case the Relaxed Planning Graph
heuristic, without relying on being able to solve the identi-
fied subproblems in isolation. By improving the heuristic,
and the guidance it provides through state space, the aim is
to reduce the time taken to find solution plans and to improve
the quality of plans found.

Background
Generic Types

TIM is capable of identifying objects, or groups of objects,
within planning problems as having a recognisable generic
behaviour and thus being of a certain generic type. TIM
first analyses planning problems to discover the ‘property
spaces’ relating to each of the objects. From these, generic
types are identified by looking for hand-coded patterns of
transitions within the property spaces. Included in these
generic types are mobiles and resources. Mobiles have a
location property, the value of which is changed by the ap-
plication of ‘move’ actions to move the mobile from one
location value to another. The locations at which the mobile
can be located are arranged into a map; directed edges exist
in the map between pairs of locations where a feasible move
action exists to move the mobile from the source location
to the destination. At no point, either in the initial state or
any sound, reachable, state is is it possible for a mobile to be
located at more than one location.

Resources are a special case of mobiles, whose map con-
sists of a series of linearly interconnected nodes. An edge

ICAPS 2006

30 Doctoral Consortium

can be drawn from a node A to a node B if there exists an
action capable of moving the mobile denoting the resource
level from A to B; an edge can be drawn from B to A if
there exists an action capable of moving the resource level
from B to A. Edges in one direction correspond to increasing
the resource level; edges in the other direction correspondto
decreasing the resource level.

Known generic types can sometimes arise in unexpected
situations, where human intuition might not have expected
them. Any object which has a predicate relating it to one of
a series of other objects and a corresponding action schema
which changes this assignment is identified as a mobile ob-
ject.

Generic Types and the Relaxed Planning Graph
Heuristic Landscape

The relaxed planning graph heuristic, as first used in FF, has
proved to be a useful heuristic for guiding forward-chaining
planning. The relaxation used as a basis for the heuristics is
to ignore the delete lists (negative effects) of the domain ac-
tions; Graphplan (Blum & Furst 1995) is then used to solve
this relaxed problem, although only a subset of the algorithm
needs to be implemented as the planning graph does not con-
tain mutexes due to the removal of delete effects.

When delete lists are ignored, once a fact has been estab-
lished by an action, it is available for use as a precondition
to all the subsequent actions in the plan. This has some in-
teresting effects on how well the relaxed problem is able to
model some aspects of known generic types within planning
problems. When the move actions of mobile objects are in-
voked, the effects of the action normally establish two facts:
the mobile is now located at the destination; and the mobile
is no longer located at the source. Similarly, when action
increasing or decreasing resource levels are invoked: the re-
source level is now that resulting from the action; and no
longer holds the previous value. Ignoring the delete effects
of move actions (or resource-level-altering actions), as done
when forming the relaxed planning problem, removes the
effects that establish that once a mobile has moved it is no
longer at its previous location. Effectively, when executing a
relaxed plan, mobiles are simultaneously available at all the
locations they have ever been, and resources are available at
all levels they have held.

When dealing with resources, this can have a substantial
impact on how well the relaxed planning problem models
the original: if a resource level is non-zero in the initial state
from which a relaxed-plan is built, it is available at that non-
zero level throughout. In FreeCell, for instance, if there is
one free cell available in a given state, the relaxed plan to
the goal from that state can make use of an effectively un-
limited number of free cells. No action is able to reduce
the number of free cells available by subsequent actions, as
the delete effect that would establish that the free cell count
is lowered when a card is placed in a free cell has been re-
moved. This can lead, for instance, to relaxed plans which
state that as many cards as necessary should be moved to a
free cell and then the cards should be moved to the home
cells in the correct order.

This over-optimism in the presence of a resource level of
one by the relaxed planning graph heuristic has a profound
effect on search: up to, and including the point, where there
is still a non-zero resource level, as much of the resource as
desired is available so a relaxed solution plan can be found.
However, as soon as an action reduces a resource level to
zero, the nature of the relaxed plan changes dramatically: if
that resource is required then actions must be added to the re-
laxed solution plan to increase the resource level (assuming
such resource-increasing actions are available). This sudden
change in relaxed plan can lead to unforeseen dead-ends, or
a sudden increase in relaxed plan length - both of which have
a negative impact on search performance.

The multi-locatedness of mobiles under the ignore-delete-
lists relaxation—that is, a mobile is available at all the loca-
tions it has ever been at thus far in the relaxed plan—can lead
to some interesting relaxed plans being formed. Consider,
for instance, a logistics problem in which a truck, beginning
in location A, must collect a package from location E and
deliver it to location A. The relaxed plan forwards from the
initial state moves the truck from A to E (via B, C and D),
loads the package into the truck and immediately unloads it
at A: this ‘teleportation’ of the package from E to A, without
the truck having to move back again, occurs because the fact
that the truck is in location A was never deleted and, thus,
the unload action placing the package at A is immediately
applicable.

Relaxed Plan Refinement using Generic Types
Refining Relaxed Plans
In many cases, one can identify actions that are logically
missing from relaxed plans that would need to be inserted in
order to make the plan executable if delete lists were con-
sidered. Through analysis of the behaviour of known-typed
objects in the plan, it is possible to suggest what some of
the missing actions are, and produce a relaxed plan which is
somewhat ‘less relaxed’ than it was previously.

When dealing with mobiles, if a precondition of one ac-
tion demands that a mobile be in one location, and the pre-
condition an action immediately following it demands that it
be in another, then it is clear that actions to move the mobile
from the former location to the latter would be necessary.
As the map describing how the mobile can traverse between
its locations is known, a path between all possible pairs of
locations that may arise can be determined, in polynomial
time, using the Floyd Walshall algorithm. The additional
actions corresponding to the mobile moving along this path
can be added to the relaxed plan, making it a closer analogue
of a real solution plan, and increasing the heuristic cost by
number of actions added.

The level of a resource is denoted by an assignment to a
series of ranked objects. Actions which increase the level
of the resource change the assignment denoting the resource
level to a higher-ranked object; actions which decrease the
level of the resource change the assignment to a lower-
ranked object. By starting with the resource level in the
state from which the relaxed plan was built, the cumula-
tive resource-level effects of the actions in the relaxed plan

ICAPS 2006

Doctoral Consortium 31

can be monitored: resource-increasing actions move the cur-
rent resource level one place higher up the rank; resource-
decreasing actions move it one place lower. If at any point
an action attempts to move the resource level to off the top
of the rank or off the bottom of the rank, a decreasing or
increasing action needs to be inserted as appropriate. Such
actions are not available in all cases; if they are not, a penalty
can be added the heuristic value returned (the plan length) to
dissuade search from considering plans whose relaxed solu-
tions appear to violate resource limits. This is similar to the
adjusted cost heuristic used in Sapa (Do & Kambhampati
2003), but as TIM provides finite bounds on the resource
levels it is possible to penalise resource flows through the
relaxed plan that would take the resource level both below
and above its bounded values.

The effect of relaxed plan extraction on plan
refinement
The process to extract a relaxed plan from a GraphPlan plan-
ning graph is designed to be as efficient as possible, to re-
duce the overhead of heuristic evaluation. When choosing
an achiever for each fact, the first achiever found when build-
ing the planning graph is used. The first achiever found,
however, varies between states, and can lead to dramatically
different relaxed plans being built, even if the plan lengths
are similar.

When refining the relaxed plans built in the conven-
tional manner, the penalty is heavily dependent on the first-
achieving actions found; in this case, adding actions to the
relaxed plan adds noise to the relaxed plan length, making it
difficult to decide which states are the most likely to lead to
a goal. In an attempt to address this problem, two alternative
plan extraction approaches are being investigated:

• A stochastic approach, called several times in an attempt
to minimise noise, in which one of the achievers for each
fact is chosen at random, rather than the first one found;

• A guided approach, called once, which uses a heuristic to
choose which successor to use.

These alternatives will lead to differing heuristic values
being found; which may lead to improved performance
and/or shorter plans.

Using Lookahead with Refined Plans
The heuristics discussed are invariably more expensive than
the baseline, unrefined, relaxed planning graph heuristic.
The ‘less-relaxed’ plans found are, however, closer to be-
ing solutions to the original planning problem than unrefined
relaxed plans; suggesting that it would be beneficial to use
more than just the plan length as a heuristic value to guide
search.

YAHSP (Vidal 2004), a planner which competed at the
2004 international planning competition, uses a lookahead
approach to generate an additional successor to each state.
The additional successor state is formed by applying as
many of the sequenced actions from the relaxed plan as pos-
sible. In YAHSP, in an attempt to satisfy some of the un-
satisfied preconditions of the actions in the relaxed plan, an

0.01

0.1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20

se
c.

task nr.

Lookahead with Refined Relaxed Plans
Lookahead with Non-Refined Relaxed Plans

Figure 1: Time Taken To Solve Problems in the DriverLog
Domain with Lookahead on Refined and Non-Refined Plans

attempt is made to find one action that would add the un-
satisfied precondition. Adding action sequences to satisfy
preconditions is not, however, considered: if satisfying a
precondition requires more than one action, lookahead ter-
minates.

Performing lookahead on the less-relaxed plan provided
by the generic-type refinement, rather than the conventional
relaxed plan, should allow more actions to be applicable in
domains with recognised generic types. Within the refined
plan, move action sequences to satisfy locatedness precondi-
tions have been added; something which the lookahead pro-
cedure itself cannot do, as it only considers adding single ac-
tions to satisfy preconditions. The combination of these two
techniques allows the low-cost of the lookahead procedure
to be maintained, by it only considering adding single ac-
tions, whilst allowing action sequences to be inserted where
these can be determined using the generic types analysis.

Using lookahead provides a further possibility: using the
non-refined relaxed plan to provide a heuristic value; but
performing lookahead over the refined plan. Such a con-
figuration would have two benefits:

• lookahead can apply more actions than it would have done
otherwise, as action sequences to achieve mobile loca-
tions have been added;

• the low-cost greedy relaxed plan extraction procedure can
still be used, as the length of the non-refined plan (with-
out the aforementioned noise) is taken to be the heuristic
value.

Initial results in the DriverLog domain using this planner
configuration, presented in figure 1, suggest that the use of
refined plans in this manner increases the effectiveness of
lookahead, providing a reduction in planning time. It can be
seen that a small overhead is incurred through the analysis
of the generic types in the domain, but in larger problems the
reduction in planning time far outweighs this overhead. In
particular, problems 16 and 19 are solved in less time, and
problem 18 is solved where previously it was not (within the
30 minute time-limit to which the tests were subjected).

ICAPS 2006

32 Doctoral Consortium

Selectively Introducing Delete Lists based on
Generic Type Information

Another approach to making the relaxed problem more real-
istic would be to introduce some of the delete effects which
are known to have controllable interactions within the prob-
lem, forming a ‘partially relaxed’ planning problem. In par-
ticular, if the delete effect when mobiles moved was main-
tained, the actions in the relaxed plan could not make use of
a mobile being in two locations at once.

Two approaches are being investigated to use to solve the
partially relaxed problem and return a heuristic measure:

• Using GraphPlan, as with the conventional relaxed plan-
ning problem, but handling the mutexes introduced by the
added delete effects

• Using a simple partial-order approach, dealing with the
mutexes by adding the necessary actions during plan time
- for example, a mutex between two actions requiring a
mobile to be at two locations can be dealt with by adding
actions between the two to move the mobile from one lo-
cation to the other.

Conclusions
This paper presented an overview of work investigating im-
proved search guidance; with a particular focus on the iden-
fication and use of generic type information to provide better
heuristic knowledge. To date, the relaxed plan extraction and
lookahead techniques have been implemented and an evalu-
ation is being performed. The implementation of the selec-
tive introduction of delete effects into the relaxed problem
still in progress.

References
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. InProceedings of the 14th Inter-
national Joint Conference on Artificial Inteligence (IJCAI-
95).

Bonet, B., and Geffner, H. 2000. HSP: Heuristic search
planner.Artificial Intelligence Magazine21.

Do, M. B., and Kambhampati, S. 2003. SAPA: A multi-
objective metric temporal planner.Journal of Artificial In-
telligence Research20:155–194.

Fox, M., and Long, D. 2001. Hybrid STAN: Identifying
and managing combinatorial optimisation sub-problems in
planning. InProceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI-01), 445–452.
Morgan Kaufmann.

Helmert, M. 2004. A planning heuristic based on causal
graph analysis. InProceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), 161–170.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.

Long, D., and Fox, M. 2000. Automatic synthesis and use
of generic types in planning. InProceedings of the 5th In-

ternational Conference on Artificial Intelligence Planning
and Scheduling (AIPS-2000), 196–205.
Vidal, V. 2004. A lookahead strategy for heuristic
search planning. InProceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2004), 150–159.

ICAPS 2006

Doctoral Consortium 33

Integrating Macro-Operators and Control-Rules Learning

Roćıo G. Durán
Departamento de Inforḿatica, Universidad Carlos III de Madrid
Avda. de la Universidad, 30 - 28911 Leganés (Madrid). Spain

rgduran@inf.uc3m.es

Abstract

Nowadays, planning is still a computationally unsolved
task and many different learning techniques have been
applied in order to improve its capabilities. In this pa-
per we propose the integration of two learning meth-
ods sequentially: macro-operators and search control
rules. Macro-operators provide us with a sequence of
actions that are often executed in a given order. Thus,
they avoid to plan that sequence each time it is re-
quired. However, the use of macro-operators increases
the branching factor of the planning search tree, so the
complexity of the planning process grows, and may pro-
duce a decrement of the planning performance. Our
goal is to learn control rules that let us know when to
use the macro-operators. Therefore, the search through
the planning tree can be efficiently guided by the con-
trol rules. We show that this combination can be suc-
cessfully applied in classical planning domains.

Introduction
Planning is a process that chooses and organizes a set of
given actions by anticipating their expected outcomes. It
is a task of Artificial Intelligence considered very complex
and computationally hard, in which the search tree reaches
a very big size and makes it difficult to find a solution. To
reduce the difficulty of finding a solution plan, many solvers
employ learning techniques, that acquire macro-operators,
heuristics, search control rules, etc, whose results improve
noticeably their original behaviour.

In this paper, we propose to use two of these learning
techniques sequentially that acquire: macro-operators and
search control rules. Firstly, we select the most common
macro-operators, composed by two or three simple opera-
tors, obtained from the solution plans of a set of random
problems. Secondly, we use the search tree of some prob-
lems solved with the macro-operators to learn control rules.
These rules may include the macro-operators used in the
plans previously generated. Finally, we compare the results
of both learning techniques together with both techniques
individually.

None of these two learning techniques are new, but the
sequential use of both provides a novel way of applying the
macros in the planning process. This method is much more
selective that without the control rules, reducing the num-

ber of nodes of the search tree expanded and reducing the
planning time.

In the next section we describe the planner and learn-
ing modules used in the experiments. The third section de-
scribes the method to decide the macro-operators and gen-
erate the control rules. The forth section shows some ex-
periments with a version of the Logistics and the Miconic
domains of the International Planning Competition. Finally,
the last section introduces some conclusions and outlines fu-
ture work.

The IPSSplanner
Nowadays there are very different kinds of planners with
different results for each domain. The planner used in this
work is the IPSS planner, which provides the two learning
modules we need in this work: macro-operators and control
rules learning modules.IPSS is an integrated tool for plan-
ning and scheduling (Rodrı́guez-Morenoet al. 2004), which
is based onPRODIGY (Veloso et al. 1995) as the planner
component.PRODIGY is a nonlinear planning algorithm and
it has been used for studying several machine learning tech-
niques in the context of planning.

IPSSplanner inputs are the domain and problem descrip-
tions, generating as output a total-ordered plan, and the plan-
ning search tree. They can be used to learn macro-operators
and seach control rules respectively, as explained next.

Macro-operators learning
A macro-operator is an operator composed by several sim-
pler operators. It produces the same result than executing
the simple operators sequentially. Their principal drawback
is the utility problem (Minton 1988; McCluskey & Porte-
ous 1997). The addition of macro-operators increases the
branching factor and the processing cost per node, which
can mean that they have worse search performance than not
using them. Some other effects of using the macro-operators
can be disadvantageous too: change of the order in which
the search space is traversed (they change the order in which
the primitive operators are used for obtaining a solution),
change of the path costs, and increase of redundancy.

However, they can show significant improvement in dif-
ferent domains (Botea, Mueller, & Schaeffer 2005), by in-
cluding into the macro-operators a partial ordering of its
simple operators or combining the use of macro-operators

ICAPS 2006

34 Doctoral Consortium

with techniques such as the relaxed graphplan computation
implemented inFF. Therefore, a key issue consists on find-
ing the good macro-operators, which can find faster a better
plan.

In this work, we have selected the macro-operators using
the frequency of appearance of several simple operators se-
quentially together in a set of obtained solution plans.IPSS
provides a module to obtain a macro-operator from solving
a problem in a given domain. It is also possible to select
one operator subsequence from the solution plan to obtain a
smaller macro-operator.

The HAMLET learning module

HAMLET is an incremental learning method based onEBL
(Explanation Based Learning) and inductive refinement of
control rules (Borrajo & Veloso 1997). The inputs ofHAM -
LET are a domain, a set of training problems, and other
learning-related parameters.HAMLET calls IPSS and re-
ceives as input the search tree expanded by the planner, in
order to decide where and what to learn.HAMLET output is
a set of control-rules that potentially guide the planner to-
wards good quality solutions. In the context of this work,
we useHAMLET to find a set of control rules that are able to
learn when to use the acquired macro-operators.

Integration of macro-operators and
control-rules

In this work, we have used both learning techniques to-
gether, with the aim of generating control rules that define
when a specific macro-operator shall be used. To show the
effectiveness of this approach, we show the results of using
the two techniques separately and together: control rules in
the original domain, macro-operators in the original domain
and control rules after the macro-operators are acquired.

The first step is to select some macro-operators composed
by two and three simple operators. We provideIPSSa set of
random training problems to be solved. From the resulting
total-ordered plans, all the different combinations of two and
three operators have been obtained that appear one after the
other and have, at least, one constant in common. The most
common of them are selected for the second step.

The next step is, for each macro-operator, to insert them
separately into the given domain and let the system learn
control rules, using always the same training set of random
problems. Learning control rules using the original domain
(without macro-operators) is also executed, in order to com-
pare the results.

Finally, the same test set is used for each resulting do-
main: (i) the original domain, (ii) the domains with each se-
lected macro-operator, (iii) the original domain with its own
learned control rules and (iv) the macro-operators and the
control rules together. The main objective of this approach
is to obtain good control-rules for each macro-operator and
so, better results with this combination than using both tech-
niques separately.

Experiments
This section describes the experiments performed in both the
Logistics and Miconic domains. For each experiment, the
learning parameters are the default ones. The only parameter
modified is the time limit given to learn from the training
problems and to solve the test problems. For both domains
and in both cases, this value is always 30 seconds.

Logistics domain
We use the version of the Logistics domain, as it was first
defined (Veloso 1994). The difference with the version cre-
ated for the first IPC is that the predicates for describing
where packages, trucks and airplanes are, have changed to
at-object, at-truck and at-airplane.

We have used a random problem generator to create dif-
ferent problem sets for learning and test. These sets are the
following:

• Macro-operator learning set (to obtain the most common
macro-operator composed by 2 and 3 simple operators):
30 random problems with 3 cities, 3 objects and a maxi-
mum of 3 goals.

• Control-rules learning set: 30 random problems with 3
cities, 3 objects and a maximum of 3 goals.

• Test set 1: 30 random problems with 7 cities, 10 objects
and from 1 to 10 goals.

• Test set 2: 40 random problems. 10 of them are of type
(3, 5, 5), other 10 are (5, 10, 10), the next 10 problemas
are (8, 15, 15) and the last 10 are (10, 20, 20), where (c,
o, g) refers to number or cities (c), number of objects (o)
and number of goals (g) respectively.

The characteristics of the sets are different because their
different use. For instance, the problems generated for learn-
ing control-rules and macro-operators are “simple” prob-
lems (with small number of cities, goals and objects) to en-
sure that the planner is able to: (i) find solutions from which
to generate macro-operators; and (ii) expand the whole
search tree to obtain control rules. Test sets are also dif-
ferent. We have first created a test set with easy problems
(from 1 to 10 goals), and a more complex set that contains
problems with up to 10 cities, 20 objects and 20 goals.

We have learned several macro-operators of different
types, following the approach introduced in the second sec-
tion. The complete list is enumerated next, where we de-
scribe the operators that compose the macro-operator.

1. Macro m2-1: drive-truck unload-truck

2. Macro m2-2: fly-airplane unload-airplane

3. Macro m2-3: load-truck drive-truck

4. Macro m3-1: load-truck drive-truck unload-truck

5. Macro m3-2: drive-truck load-truck drive-truck

6. Macro m3-3: load-airplane fly-airplane unload-airplane

Tables 1 and 2 show the results of solving the problems
of both test files respectively. They present percentages of
solved problem (Solved) and number of used rules (Rules).

ICAPS 2006

Doctoral Consortium 35

The IPSScolumn shows the results obtained withIPSSwith-
out control rules. TheHAMLET column shows the results
obtained byIPSSwhen using the learned control rules. The
different rows describe the results obtained when differ-
ent macro-operators are used. In the first row, no macro-
operator is used. In the second one, the m2-1 macro is used,
and so on.

Domain IPSS HAMLET

Solved Solved Rules

Logistics 20% 27% 9

Logistics + m2-1 13% 20% 4

Logistics + m2-2 43% 63% 8

Logistics + m2-3 8% 8% 6

Logistics + m3-1 13% 20% 4

Logistics + m3-2 13% 13% 9

Logistics + m3-3 23% 76% 9

Table 1: Percentage of solved problems of the test set 1.

The results obtained for the first test set are very satis-
factory in two cases: m2-2 (fly-airplane+unload-airplane)
and m3-3 (load-airplane+fly-airplane+unload-airplane). For
both macros, the results are good with and without control
rules. In the first case, the percentage of solved problems is
43%, more than double when compared withIPSSalone, that
obtains a 20%. If we learn the control rules for that macro,
the percentage increases up to 63%. When using control
rules and the m3-3 macro-operator, this percentage increases
up to 76% of solved problems. However, the table shows
that the results depend on the macro-operator used and, for
instance, when using the macros m2-1, m2-3, m3-1 and m3-
2 without control rules, the performance is lower (13%) than
when the macro-operator is not used (20%). In two of these
cases (m2-1 and m3-1), their results usingHAMLET improve
the results ofIPSSalone and, oddly, equal the results ofIPSS
in the original domain. In the other two cases (m2-3 and m3-
2) their results usingHAMLET are the same than the results
of IPSS.

The results with the second test set provide a similar read-
ing as described in Table 2. For macros m2-2 and m3-3 the
performance raises from a 2% of problems solved up to 15%
and 58% respectively. Thus, the macros that were useful in
the previous test set are useful in this one too.IPSSdefault
uses trucks before airplanes to load and unload objects in
a location. With these airplane macro-operators it changes
the preference and it seems to learn control rules that decide
when to use the airplane macro-operators (m2-2 and m3-3).
With the macros m2-1, m2-3 and m3-1,IPSS is not able to
solve any problem, nor withHAMLET . Finally, the macro
m3-2 keeps its results withIPSSequal than withHAMLET ,
only 3% solved problems.

Miconic domain
The version of this domain is the one used in the IPC-2000,
as well as the 150 used problems. In this domain there are
two types of objects: passengers and floors. The goal is to
bring people using an elevator to different floors. We used
the 10 most simple problems of the 150 problems of the

Domain IPSS HAMLET

Solved Solved Rules

Logistics 2% 0% 9

Logistics + m2-1 0% 0% 4

Logistics + m2-2 13% 15% 8

Logistics + m2-3 0% 0% 6

Logistics + m3-1 0% 0% 4

Logistics + m3-2 3% 3% 9

Logistics + m3-3 10% 58% 9

Table 2: Percentage of solved problems of the test set 2.

competition to learn the control rules inHAMLET and the
rest 140 to test. The first group are problems with two and
four floors, while the second set has problems with from six
up to sixty floors. The learned macro-operators in this do-
main are:

1. Macro m2-1: up board

2. Macro m2-2: board down

3. Macro m2-3: down depart

4. Macro m3-1: board down depart

5. Macro m3-2: up board down

6. Macro m3-3: board up depart

Table 3 shows the results of solving the test problems in
the same format that in the previous tables.

Domain IPSS HAMLET

Solved Solved Rules

Miconic 3% 11% 3

Mic+m2-1 22% 17% 4

Mic+m2-2 12% 26% 3

Mic+m2-3 51% 52% 3

Mic+m3-1 17% 28% 3

Mic+m3-2 27% 34% 3

Mic+m3-3 51% 53% 3

Table 3: Percentage of solved problems of the test set.

Every macro-operator configuration has better results
than the original domain, even with control-rules inHAM -
LET. So, except for the first macro-operator (up+board),
the results with both techniques together improve over us-
ing only one of them or not using them. After analysing the
solution plans from the Miconic domain using the macro-
operators, these solutions are not semantically correct. In
Figure 1, we can see the obtained solution plan using the
macro-operator up+board for one simple problem. The first
thing we can observe is the unnecessary use of operators.
The second and third actions, for example, could be better
replaced by down and board, instead of down and up+board.
But the real problem is the fact of repeating the actionup-
board f0 f2 p1 after boarding already the passenger p1 into
the lift and, evenup-board f0 f1 p0 after serving the pas-
senger p0 in the floorf2.

The reason of this behaviour is the definition of the board
simple operator, which does not delete the predicateorigin

ICAPS 2006

36 Doctoral Consortium

f2

f1

f0

p1

(destin p1 f1)

Goals: (served p0)
(served p1)

p0

(destin p0 f2) Solution:
<up-board f0 f2 p1>
<down f2 f0>
<up-board f0 f1 p0>
<down f1 f0>
<up-board f0 f2 p1>
<depart f2 p0>
<down f2 f0>
<up-board f0 f1 p0>
<depart f1 p1>

Figure 1: Example with macro-operator up+board.

p f. That means that the planner can board a passenger as
many times as it needs, because no operator deletes the ori-
gin predicate. So, for example, if we have to go up to the
second floor to leave passenger p0, the planner is going to
select first the macro-operator up+board, which will try to
move the lift up to the second floor, and board someone into
the lift: passenger p1, who has there the origin. Nothing
in this domain avoids this problem and the solution plan is
incorrect.

In order to solve this problem, we added a new predi-
cate: (at-passenger p f), to know exactly where each pas-
senger is and to avoid boarding them into the lift many times.
This includes changing the definition of the Miconic domain
and generating the correct definition of the macro-operators
again. Finally, the new results for the Miconic domain are
given in the Table 4.

Domain IPSS HAMLET

Solved Solved Rules

Miconic 3% 10% 2

Miconic + m2-1 16% 15% 4

Miconic + m2-2 1% 1% 3

Miconic + m2-3 11% 10% 3

Miconic + m3-1 4% 7% 3

Miconic + m3-2 1% 4% 3

Miconic + m3-3 15% 16% 3

Table 4: Percentage of solved problems of the test set.

Now, the results are not as good as before, but the plans
are valid this time. Only with macro m3-3 we obtain bet-
ter results with both learning techniques together than both
techniques alone.

Conclusions and future work
In this paper, we have shown that the combination of macro-
operators and control rules in the Logistics and Miconic do-
mains can improve the results of theIPSSplanner alone. We
demonstrate that different macro-operators can be learned,

and that their use does not always outperform the results of
IPSSalone. However, when learning control rules to guide
the search, the results over using the macro-operator alone
improve.

We show, however, that there are some risks on the appli-
cation of macro-operators: the learned macro-operators may
solve no problem. Thus, to define which kind of macro-
operators is good for this integration and which training
problems are good to obtain the right rules, are two of the
future research lines. That can include a new method to find
good macro-operators.

Also, there are many domains in which this integration
must be tested and we have to increase even more the
number of simple operators that compose the used macro-
operators.

A side effect of learning control rules on planning do-
mains with macro-operators has also been finding extra
knowledge about macro-operators: after acquiring macro-
operators, we have seen a bug in the Miconic domain de-
scription that would be difficult to detect without using them,
given when not using themIPSSwould always generate valid
plans.

Acknowledgements
This work has been partially supported by the Span-
ish MCyT project TIC2002-04146-C05-05, MEC project
TIN2005-08945-C06-05 and regional CAM-UC3M project
UC3M-INF-05-016.

References
Borrajo, D., and Veloso, M. 1997. Lazy incremental learn-
ing of control knowledge for efficiently obtaining quality
plans. AI Review Journal. Special Issue on Lazy Learn-
ing 11(1-5):371–405. Also in the book ”Lazy Learning”,
David Aha (ed.), Kluwer Academic Publishers, May 1997,
ISBN 0-7923-4584-3.
Botea, A.; Mueller, M.; and Schaeffer, J. 2005. Learn-
ing partial-order macros from solutions. InProceedings of
ICAPS’05.
McCluskey, T. L., and Porteous, J. M. 1997. Engineering
and compiling planning domain models to promote validity
and efficiency.Artificial Intelligence95(1):1–65.
Minton, S. 1988. Learning Effective Search Control
Knowledge: An Explanation-Based Approach. Boston,
MA: Kluwer Academic Publishers.
Rodŕıguez-Moreno, M. D.; Oddi, A.; Borrajo, D.; Cesta,
A.; and Meziat, D. 2004. IPSS: A hybrid reasoner for
planning and scheduling. In de Ḿantaras, R. L., and Saitta,
L., eds.,Proceedings of the 16th European Conference on
Artificial Intelligence (ECAI 2004), 1065–1066. Valencia
(Spain): IOS Press.
Veloso, M.; Carbonell, J.; Ṕerez, A.; Borrajo, D.; Fink, E.;
and Blythe, J. 1995. Integrating planning and learning:
The PRODIGY architecture.Journal of Experimental and
Theoretical AI7:81–120.
Veloso, M. 1994. Planning and Learning by Analogical
Reasoning. Springer Verlag.

ICAPS 2006

Doctoral Consortium 37

Techniques for Generating Optimal, Robust Plans in the Presence of Temporal
Uncertainty

Janae N. Foss∗
Department of Computer Science

Michigan Technological University
1400 Townsend Drive
Houghton, MI 49931
jnfoss@mtu.edu

Abstract

Planning under uncertainty has been well studied, but
usually the uncertainty is in action outcomes. This work
instead investigates uncertainty in the amount of time
that actions require to execute. In addition to this tem-
poral uncertainty, the problems being studied must have
robust solution plans that are optimized based on an ob-
jective function. This extended abstract details two it-
erative approaches that have been used to solve these
type of problems and discusses future work including
over-subscription of goals and MDP approaches.

Introduction

Uncertainty applies to several aspects of planning problems
and many planners have been built that prepare contingency
plans when actions may affect the world in uncertain ways
(Bresina et al. 2002). However, less work has been done
with planners that assume action durations are uncertain.
One approach to dealing with this type of uncertainty is to
take a pessimistic view of the world, assume a worst case
scenario, and find conservative plans that are likely to exe-
cute to completion regardless of the amount time consumed
by the actions in the plan. This approach is often undesirable
as it leads to missed opportunities and slack time in the plan
when actions complete quickly (Bresina et al. 2002). For
example, assume that a Mars rover has to move from point
a to point b and use either a slow, high resolution camera or
a fast, low resolution camera to take an image of a rock at
point b. Given that travel time is uncertain, a conservative
planner may recognize that in the worst case there will not
be enough time to use the high resolution camera, and thus
choose to always use the low resolution camera. This plan is
robust, but when the rover travels quickly the opportunity of
getting a high resolution image is not realized and the rover
may undesirably be left idle for some period of time. My re-
search focuses on finding ways to create robust plans where
suboptimal actions are taken when time dictates, but optimal
actions are executed when time allows.

∗Supported by NASA Harriett G. Jenkins Pre-Doctoral Fellow-
ship Program.

Problem Specification
I am considering a class of problems with solutions that
combine temporal uncertainty, optimality, and robustness,
each of which is difficult to deal with individually and more
so in combination. In this class of problems, action dura-
tions cannot be specified exactly and are represented by a
closed interval [min-d, max-d], specifying the lower and up-
per bounds for the duration. Under this model, the actual
duration required for an action is only known through ob-
servation after the action has executed. These duration in-
tervals complicate the problem because solution plans are
ranked by an objective function and the optimal solution is
only attainable when actions complete quickly. This means
that solutions found with the pessimistic assumption that all
actions require max-d will be suboptimal, but optimal solu-
tions found under the optimistic assumption that all actions
require min-d (or any value less than max-d) are not guaran-
teed to execute to completion. The best solutions for these
problems must be robust plans that are guaranteed to run to
completion regardless of the amount of time actions require
to complete. Plans that are robust in this sense are classi-
fied as safe. Considering all of these attributes, a temporally
uncertain planning problem is defined as a quadruple <D,
I, G, M>, where D is a domain description that lists the
available actions (including interval durations and temporal
constraints), I is a description of the initial state, G is a de-
scription of the goals, and M is a plan metric that represents
the objective function for ranking plans.

Temporal Contingency Planning
One way to create optimal plans that are also robust in the
face of temporal uncertainty is to build temporal contin-
gency plans (i.e., plans with contingency branches that are
taken based on the observed time at execution). At present,
I have developed two related iterative approaches for gen-
erating temporal contingency plans. They differ in that one
is a greedy algorithm and the other is a hill climbing algo-
rithm. These algorithms are implemented in the planners
PHOCUS-G (Foss & Onder 2005) and PHOCUS-HC (Foss &
Onder 2006).

Both approaches follow a Just-In-Case style algorithm
(Drummond, Bresina, & Swanson 1994) where a seed plan
is generated, the points where it is likely to fail are located,
and then contingency branches are inserted (when available)

ICAPS 2006

38 Doctoral Consortium

at those points (Fig. 2). The two algorithms differ in the
way that repairs are found when failure is possible. To gen-
erate the seed plan (line 1 in Fig. 2), temporal uncertainty is
removed from the problem. This allows generation of plans
using any planner that can handle durative actions, timed
initial literals, and optimize based on an objective function1.
Because it is assumed that the optimal plan is only attain-
able when actions complete quickly, min-d is assigned as
the duration of each action. The resulting seed plan P re-
turned by such a planner is temporally deterministic. My
algorithm factors temporal uncertainty back in by convert-
ing P to a directed, edge-weighted graph called a distance
graph DG, thus expressing P as a simple temporal network
(STN) (Dechter, Meiri, & Pearl 1991). Figure 1 (b) shows
a distance graph for a plan from a simplified rover domain.
This conversion is described in detail in earlier work (Foss
& Onder 2005).

Since DG contains all temporal constraints given in the
domain, it can be used to determine when P becomes unsafe
(line 11) (Dechter, Meiri, & Pearl 1991). In the loop that
contains line 11, the plan is analyzed one step at a time to
find the latest action i which makes the rest of the plan un-
safe. If an action is found to be safe in line 11, the domain
and the corresponding distance graph are updated to provide
topmost flexibility to the earlier actions (lines 12,13), assum-
ing the action requires its maximum duration. Otherwise,
modifications are made so that i minimally uses the dura-
tion that causes the plan to fail and a new plan meeting the
new constraints is sought for in one of the REPAIR-PLAN-*
algorithms.

Figure 1 (c) shows how the distance graph in (b) has
changed after several actions have been analyzed. First,
it was found that the transmit data action could exe-
cute to completion if it required its maximum duration of
10 time units. The distance graph was then updated to
constrain transmit data to always take 10 time units by
changing the weight of the arc from end:transmit data to
start:transmit data to -10. Next, it was found that even
with the updated transmit data constraint, high res pic
could execute safely with any duration in its interval. The
figure shows that this action was also then constrained to
require its maximum duration. However, when the drive
action was analyzed, it was found that the shortest path from
start:drive to end:drive had a weight of 50 (this path
is bolded in the figure). This indicates that high res pic
and/or transmit data may not have enough time to com-
plete if drive executes for longer than 50 time units. At this
point, a repair function must be called.

To apply the greedy approach, REPAIR-PLAN-G is called
(Fig. 3). In this version, the initial conditions of the world
are changed to represent the state of the world after all ac-
tions up to and including i are executed, assuming that i re-
quires the amount of time that would cause failure in the

1Currently LPG-td(Gerevini et al. 2004) is being used for this
step because it handles durational actions and timed initial literals
(used for specifying deadlines), creates parallel plans, and consid-
ers the objective function at planning time. It has also performed
well in the International Planning Competition.

Execution Time Action
30 drive to target
76 take high res pic
107 transmit data

(a)

(b)

(c)

Temporal Contingency Plan
at time 30: drive
if time < 81

high res pic
transmit data

else
low res pic
transmit data

(d)

Figure 1: (a) A seed plan for a problem from the rover do-
main. Note that the times given by the seed plan assume
actions require their minimum durations. (b) The distance
graph for the seed plan in (a), incorporating temporal uncer-
tainty. For clarity, only the most important edges are shown.
(c) The updated version of the distance graph in (b) after the
transmit data, high res pic, and drive actions have been an-
alyzed. The bold arcs show the shortest path from start:drive
to end:drive. (d) The temporal contingency plan generated
by both the greedy and hill-climbing approaches.

original plan. Then, an attempt is made to generate a new
plan which could be added as a temporal contingency branch
on the original plan. If no such plan is found, this algorithm
returns null and thus finds no solution. When applying the
greedy approach, the seed plan is optimal in respect to the
objective function. This optimal plan is never abandoned
and it is augmented with branches that are each optimal,
given the constraints used when generating them.

For the hill-climbing approach, REPAIR-PLAN-HC is

ICAPS 2006

Doctoral Consortium 39

called (Fig. 4). Instead of modifying initial conditions, in
this case the domain is modified so that i minimally requires
the amount of time that would cause failure in the original
plan. Then, an entire new plan is generated. If the new plan
shares a head with the current plan, a contingency plan is
formed. Otherwise, the new plan is returned and replaces the
seed plan. As with the greedy approach, the initial seed plan
is optimal with respect to the object function. However, the
hill-climbing approach will abandon and replace the original
seed plan either if no branches can be added to the seed plan
to make it safe, or if a new seed plan has higher utility than
the plan created by adding a branch to the old seed plan. In
this way, the safest branch of the plan is optimized.

Both the greedy and hill-climbing versions of the algo-
rithm benefit from the fact that they allow parallelism. This
is especially important when deadlines are taken into con-
sideration. Each approach has individual advantages, also.
Intuitively, the greedy approach is faster when contingency
branches can be added to repair the optimal plan. There
are two related factors that contribute to this. First, the
domain is modified so that the head of the plan will not
be regenerated, restricting the search space. Second, be-
cause a contingency branch is shorter than a full plan, it is
faster to generate it than to regenerate the entire plan as is
done in the hill-climbing algorithm. However, the greedy
approach fails to find any solution when no contingency
branches can be added to the optimal plan. Since the hill-
climbing approach always regenerates the whole plan, it
is able to escape local minima/maxima. Also, the greedy
algorithm may start with an optimal plan that is unlikely
to be executed and augment this plan with very undesir-
able branches that are likely to be executed. In this sit-
uation the hill-climbing algorithm would abandon the op-
timal plan and find a sub-optimal, but likely to succeed
plan that would have higher utility than the branches in
the greedy algorithm’s plan. Each algorithm has been in-
dependently implemented and tested (Foss & Onder 2005;
2006) and more experiments are planned to verify that these
intuitive conclusions hold.

Related Work

The main framework of this algorithm is very close to Just-
In-Case (JIC) scheduling (Drummond, Bresina, & Swanson
1994). The JIC scheduler analyzes a seed schedule, finds
possible failure points, and inserts contingency branches so
that valuable equipment time is not lost when an experiment
fails. My work extends this framework to multiple planner
goals, parallel plans, and nontemporal metrics, but does not
currently consider probability of failure.

Several planners dealing with problems similar to those I
am working with have been developed recently. Tempastic
(Younes & Simmons 2004) is a planner that models con-
tinuous time, probabilistic effects, probabilistic exogenous
events and both achievement and maintenance goals. It uses
a generate-test-debug algorithm that generates an initial pol-
icy and fixes the policy after analyzing the failure paths. In
producing a better plan, the objective is to decrease the prob-
ability of failure. Nontemporal resources are not modeled.

PHOCUS-* (D, I, G, M)
1: P0 ← GENERATE-SEED-PLAN (D, I, G, M)
2: Pcurrent ← P0
3: loop do
4: DG← CONSTRUCT-DISTANCE-GRAPH(Pcurrent ,D,I)
5: if SAFE-PLAN (Pcurrent , DG, D, I, G, M) return Pcurrent
6: Pnext ← MAKE-PLAN-SAFE (Pcurrent , DG, D, I, G, M)
7: if Pnext is null return failure
8: Pcurrent ← Pnext

MAKE-PLAN-SAFE (Plan P, DistanceGraph DG, D, I, G, M)
9: for i = downto 1 in P

10: maxAllowedDuration← SHORTEST-PATH-DISTANCE(si, ei,
*** DG)

11: if maxAllowedDuration ≥ max-d of i
12: DG, D← DG, D updated to constrain i to always require

************ max-d of i
13: DG, D← DG, D updated to constrain i to always start at

************ latest possible time that allows max-d of i
14: else
15: return REPAIR-PLAN-*(i,Plan P, D, I, G, M)

Figure 2: The shared PHOCUS-* algorithms.

REPAIR-PLAN-G (i, Plan P, D, I, G, M)
1: newMinDuration← maxAllowedDuration + 1
2: Imod ← I modified to represent the world after all steps up to i

******** have completed and i has consumed newMinDuration
3: Pnew← generate plan with D, Imod ,G,M
4: if Pnew is not null
5: return a contingency plan created out of P and Pnew
6: else
7: return null

Figure 3: The REPAIR-PLAN-G algorithm. A greedy algo-
rithm for finding temporal contingency branches.

Mausam and Weld (2005) describe a planner that can han-
dle actions that are concurrent, durative and probabilistic.
They use novel heuristics with sampled realtime dynamic
programming in this framework to generate policies that
are highly optimal. The quality metric includes makespan
but nontemporal resources are not modeled in the planning
problem. Prottle (Little, Aberdeen, & Thiebaux 2005) is a
planner that allows concurrent actions that have probabilis-
tic effects and probabilistic effect times. Prottle uses effec-
tive planning graph based heuristics to search a probabilistic
AND/OR graph consisting of advancement and placement
nodes. Prottle’s plan metric includes probability of failure
but not makespan or metric resources. Schaffer, Bradley and
Chien (2005) developed a probabilistic approach for reason-
ing about uncertainty in continuous activity duration and re-
source usage. Their approach does not include contingency
planning. They have shown robustness improvements over
traditional non-probabilistic methods.

Future Work
Temporal contingency planning improves on conservative
planning techniques by including the most conservative plan
as the least desirable contingency branch, executed only

ICAPS 2006

40 Doctoral Consortium

REPAIR-PLAN-HC (i, Plan P, D, I, G, M)
1: newMinDuration← maxAllowedDuration + 1
2: Dmod ← D modified so that action i requires newMinDuration
3: Pnew← generate plan with Dmod , I,G,M
4: if P and Pnew have the same steps through step i
5: return a contingency plan created out of P and Pnew
6: else
7: return Pnew

Figure 4: The REPAIR-PLAN-HC algorithm. A hill-climbing
algorithm for finding temporal contingency branches.

when more desirable options may cause failure. The tech-
niques currently implemented begin with an optimistic as-
sumption that actions complete quickly and assume a uni-
form distribution over the uncertain duration interval. As I
continue to work on these iterative approaches, I plan to con-
sider what happens when the distribution is not uniform. The
most likely case is that action durations will have a Gaus-
sian distribution where most of the probability mass lies in
the center of the interval. Considering this, it does not make
sense to start with the assumption that each action requires
only its minimum duration because that will result in a plan
that is unlikely to execute to completion. Instead, it will be
better to start with a value from the duration that is likely to
occur, based on the given distribution. In this situation, op-
portunity branches can be added for when actions complete
faster than expected, and contingency branches can be added
for when actions run long. This may be a good anytime ap-
proach to be applied when there is a limited amount of time
available for planning. In this circumstance it is important
to spend the time available for planning to generate branches
that will improve the plan in a significant way. By incorpo-
rating non-uniform distributions, I will be able to better de-
termine when to stop branching because the expected utility
gained is too small.

In addition to the rover domain, I have been working with
problems from a travel domain and an evacuation domain.
In the travel domain, the goal is to travel from home to some
destination within a given time constraint. There are several
different ways to reach the destination, but some modes of
transportation are more expensive and the objective function
in this domain is to minimize the amount of money spent.
The challenge is that more expensive options, such as tak-
ing a taxi, are faster than less expensive options, like taking
a bus. Optimally, the bus would be taken, but if this ac-
tion comes after a flight that is running late, there may only
be enough time to take the taxi. In the evacuation domain,
the goal is to evacuate as many people as possible within
a given period of time. This is further complicated by the
fact that there are intermediate deadlines for rescuing differ-
ent groups of people. As such, it is easy to create problems
where it is not possible to evacuate all people, resulting in
over-subscribed goals (Smith 2004).

Over-subscription is also an issue in the rover domain and
most real world problems. I would like to develop tech-
niques that directly address this issue. One approach is to
simply achieve more goals when actions complete quickly

and only the highest priority goals, otherwise. Another pos-
sibility is that entirely disjoint sets of goals may be attained
on different branches of the plan.

Finally, I would like to investigate MDP approaches to
solving planning problems with temporal uncertainty. Un-
like the iterative planning approaches, MDPs do not natu-
rally allow parallel actions. Even so, MDPs can be useful in
this context because they naturally deal with uncertainty and
take cost and rewards into account. One challenge in using
MDPs to solve these type of problems is how to represent
states when time is a factor. A naive approach is to include
time in the state and thus have one state for each possible
time increment. However, this would very quickly cause a
blow-up in the size of the state space. It is likely that many
states in this naive approach would be identical, only differ-
ing in time stamp. I plan to investigate ways to group states
by time to reduce the number of states without sacrificing
quality in the solution policy.

References
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.;
Smith, D.; and Washington, R. 2002. Continuous time and
resource uncertainty: A challenge for AI. In 18th Confer-
ence on Uncertainty in Artificial Intelligence.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. AI 49:61–95.
Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-case scheduling. In Proc. 12th National Conf. on Artifi-
cial Intelligence, 1098–1104.
Foss, J., and Onder, N. 2005. Generating temporally con-
tingent plans. In IJCAI 2005 Workshop on Planning and
Learning in A Priori Unknown or Dynamic Domains.
Foss, J., and Onder, N. 2006. A hill-climbing approach
for planning with temporal uncertainty. In FLAIRS 2006
Conference. To appear.
Gerevini, A.; Saetti, A.; Serina, I.; and Toninelli, P. 2004.
Planning in PDDL2.2 domains with LPG-TD. In Interna-
tional Planning Competition booklet (ICAPS-04).
Little, I.; Aberdeen, D.; and Thiebaux, S. 2005. Prottle:
A probabilistic temporal planner. In Proc. 20th National
Conf. on Artificial Intelligence (AAAI-05).
Mausam, and Weld, D. S. 2005. Concurrent probabilistic
temporal planning. In Proc. 15th International Conf. on
Automated Planning and Scheduling (ICAPS-05).
Schaffer, S. R.; Clement, B. J.; and Chien, S. A. 2005.
Probabilistic reasoning for plan robustness. In Proc. IJCAI
2005.
Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proc. 14th International Conference on Auto-
mated Planning and Scheduling (ICAPS-04), 393–401.
Younes, H. L., and Simmons, R. G. 2004. Policy gen-
eration for continuous-time stochastic domains with con-
currency. In Proc. 14th International Conf. on Automated
Planning and Scheduling (ICAPS-04).

ICAPS 2006

Doctoral Consortium 41

Controlability and Makespan Issues with Robot Action Planning and Execution

Matthieu Gallien
LAAS-CNRS∗

7, Avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
{matthieu.gallien}@laas.fr

Introduction
Nowadays, many robotic applications need autonomous
decision-making capabilities. Among them, some make in-
tensive use of planning. Yet, planning is an activity whose
algorithmic complexity is often incompatible with the reac-
tivity requirement of an exploration rover or a space probe.

In past years, some planners have proven their ability to
handle complex situations required by autonomous systems.
Some of these systems (e.g. RAXPS [Jonsson et al. 2000],
CASPER [Chien et al. 2005]) have been deployed.

The IxTeT planner1 [Ghallab & Laruelle 1994] was de-
veloped to handle such robotic planning problems. It was
extended to handle complex resources [Laborie & Ghal-
lab 1995], continuous domains and constraints between
both atemporal and temporal variables [Trinquart & Ghal-
lab 2001]. Further work [Lemai 2004] added a temporal
executive to IxTeT.

Reasoning about time is necessary to address these plan-
ning problems. The planner must be able to take into ac-
count strict deadlines, temporal windows for some tasks,
durative actions, and durative goals. The STN2 [Dechter,
Meiri, & Pearl 1991] formalism is often used in temporal
planning because the requests on these networks are solved
very efficiently by polynomial algorithms. Nowadays, an
extension to uncertain constraints has been studied and a
polynomial algorithm [Morris, Muscettola, & Vidal 2001]
has been proposed.

Actual robotic space exploration missions are very ex-
pensive, with a high requirement for quality scientific re-
turns. During the MER mission, the use of MapGen has
allowed a 25% increase of such returns [Rajan 2004]. In a
fully autonomous planner, optimization can be made in two
ways: finding directly one good plan or searching through
the whole search space several plans to find the optimal one.
Due to limited computational capacity, the second approach
is often unreasonable. So we have to modify the planner to
search for high quality solutions.

New issues were raised while experimenting with IxTeT

∗Part of this work has been funded by a grant from the ESF
(European Social Fund)

1IxTeT is a system used for chronicle recognition, planning and
temporal execution.

2STN: Simple Temporal Network

new executive. Some are related to temporal uncertainty,
thus we decided to experiment another time framework.
Some are related to efficiency, thus we decided to make a
different heuristic to solve this issue. We use a robot simu-
lator to make intensive tests of the proposed solutions. Dur-
ing the tests, it becames apparent that existing plan repair
capabilities in IxTeT were in some cases unacceptably in-
efficient. In this paper, we describe a preliminary solution
and some commented results. Future works will extend this
work to try to make the plan repair mechanism complete and
efficient.

Planning
IxTeT [Ghallab & Laruelle 1994] is a temporal constraint-
based causal link planner using partially instantiated actions.
Its planning algorithm is adapted from SNLP [McAllester &
Rosenblitt 1991]. A time reified logic describes the evo-
lution of state variables across the whole plan. IxTeT uses
CSP techniques3 to maintain the consistency of the plan con-
straints. In particular, the planner uses a Simple Temporal
Network [Dechter, Meiri, & Pearl 1991] to represent the
temporal constraint.

Definition 1 A temporal assertion on a state variable v is
either an event or a persistence condition on v.

Definition 2 A plan P(S, Φ, G, CA, F, T) is described by
the state variables contained in S. Φ is a chronicle describ-
ing all the temporal assertions of the plan. F is the set of
defaults in the plan. CA ⊂ Φ contains temporal assertions
on variables of S describing the predicted evolution of con-
tingent attributes. The goals are in G ⊂ Φ, they are persis-
tence conditions on state variables of S. T is the set of tasks
in the plan.

The planner begins with a plan describing the initial situ-
ation, the initial goals and the known predicted evolutions
of contingent attributes such as visibility windows. The
search is performed until the plan contains no default. These
defaults are temporal assertions unexplained in the current
plan4, conflicts between two temporal assertions or possible
resource conflicts. At each search step, a default is chosen

3Constraint Satisfaction Problem [Mackworth 1977] (CSP)
4A temporal assertion is not explained by a plan if it is not an

initial condition or if no causal link establishes the assertion.

ICAPS 2006

42 Doctoral Consortium

according to a given heuristic. One of the resolvants of this
default is then chosen and applied. The planner only needs
to backtrack on resolvant choices and not on default choices
to be complete.

IxTeT uses a least commitment heuristic to evaluate a cost
for each resolvant of each default. Then, a notation Opp(ρ)
is computed for each one (see Lemai thesis [Lemai 2004] for
more details). The basic idea is to minimize the size of the
search space and to ease the choice between the resolvants
of one default.

In order to make plans with a shorter makespan, we de-
sign a new heuristic. We have implemented it by modifying
two costs of the old heuristic. The first considers one sin-
gle ordering resolvant. The new cost depends on the earlier
date of one of the first timepoint instead of the commitment
of the resolvant. The second cost evaluates one causal link.
Instead of using the maximum duration for computing the
commitment, we now use the minimum duration. The idea
is that the planner will make shorter links and thus makes
shorter plans. This heuristic is called makespan minimizing
heuristic.

Underlying CSPs
IxTeT uses classical CSPs algorithms for managing con-
straints on atemporal variables. It uses an STN for managing
all the temporal constraints, and a general arc-consistency
filtering algorithm for managing symbolic and numeric con-
straints.

In some cases, we want to link the effects of a task to
its duration. For example, you need a mixed constraint be-
tween temporal and atemporal variables if a navigation du-
ration depends on the navigation length and speed of the
robot. IxTeT features a mechanism to propagate these con-
straints [Trinquart & Ghallab 2001].

On the STN, IxTeT always needs the minimal graph to be
computed. If the network is not always propagated, the com-
plexity of a request is not constant (i.e. O(n)). IxTeT makes
a number of requests that is much higher than constraint up-
dates [Vidal 1995]. It uses a path consistency algorithm like
PC-2. An incremental version (only for constraint addition)
is used during planning with a complexity of O(n2). For a
constraint relaxation, the complete one is used in O(n3).

During execution, we will update the plan for example
at each start or end of task. The CSP framework allows
us to do this. A special care is taken to always keep the
STN complete and minimal during execution. In fact the re-
source conflict detection, the plan repair mechanism and the
propagation of mixed constraints need a complete graph. So
the executive does not use a local temporal propagation like
the one in [Muscettola, Morris, & Tsamardinos 1998]. The
atemporal CSP is only kept arc-consistent for computational
reason and because the system can repair or replan.

Simple Temporal Network with Uncertainties
Definition 3 An STNU [Vidal & Fargier 1999] Θ =
(V,D,Cclb, Cctg) with V the set of variables, D the set of
domains. All constraints are in the form lb ≤ vi − vj ≤ ub.
The set Cclb is all the controllable constraints equivalent to

STN constraints. Cctg is a set of contingent constraints. The
duration of these constraints can only be observed.

The introduction of a new type of constraint changes the
consistency notion inherited from the STN. Three main lev-
els of controllability have been defined [Vidal & Fargier
1999]. In IxTeT, we use the dynamic controllability. An
STNU is dynamically controllable if the execution controller
must take decisions knowing only the past observations
and timepoint instantiations. The 3DC+ algorithm [Mor-
ris, Muscettola, & Vidal 2001] is known to establish it in
polynomial time. The result is similar to STN’s result (i.e.
the minimal network). It introduces a new ternary constraint
type called “wait" necessary to safely execute the STNU.

We have made two little improvements to this algorithm.
The first is that the STNU in IxTeT are dynamic ones (i.e.
constraints and variables are added during planning). Before
any constraint addition, we remove all existing “waits”. The
second one replaces the complete algorithm used to keep the
STNU minimal during 3DC+ loop by the same incremental
one used on STN.

Execution
IxTeT’s executive runs a classical execution cycle corre-
sponding to a “sense/plan/act" scheme. The executive be-
gins with an initial plan produced by the planner.

All executable timepoints5 are started as soon as possible
except the end of actions labelled as “late preemptible" or
“not preemptible".

The executive receives task reports, new goals or resource
capacity changes. It has to check the validity of the task re-
ports considering the current plan. If the report is not nomi-
nal, the system integrates the report, thus partially invalidate
the current plan and triggers a plan repair if possible. All
causal links possibly in conflict with new inserted tasks are
removed during the relaxation. The execution can continue
interleaved with the plan repair. If the failed plan does not
anymore support the running tasks, all tasks are interrupted
and a complete replanning is made. The new goals and re-
source capacity changes are integrated in the same manner.

Simulation and Results
IxTeT runs on the robot Dala and on a simulator of this
robot. The simulator allows us to perform accurate tests of
the different IxTeT strategies presented in the paper. The en-
vironment and the initial conditions can be exactly the same
between runs.

We illustrate our contributions with an exploration rover
like mission. The robot must acquire scientific data from
several places. During its mission, it must communicates
with an orbiter during visibility windows.

IxTeT now features two different planning heuristics and
two different time management systems. This defines four
IxTeT instantiations and we compare their performances us-
ing the simulator and the robot.

5IxTeT currently executes only a subset of the plan’s time-
points: start and end of actions, goal and contingent timepoints.

ICAPS 2006

Doctoral Consortium 43

During some missions with an STN, the system has a bad
comportment. Due to multiple faillures, the system repaired
many times the plan. The makespan was the maximum al-
lowed duration for the mission. In that case, the system must
cancel unachievable goals according to their priority. The
system does not make that but due to STN propagations de-
cided to keep a low priority goal instead of cancelling it.
This is due to uncertain durations of tasks that have been
squeezed.

The execution of the tasks to satisfy the low priority goal
makes impossible to satisfy other goals with higher priority.
The system makes exactly the worst case. Thanks to STNU,
it may be impossible because uncertain durations are never
reduced, thus it keeps enough time to execute the remaining
tasks in the plan.

Using an STN and the makespan minimizing heuristic can
produce up to 30% shorter plan. With an STNU, the value is
approximatively 15%. During execution of the mission and
depending on the world, the mission duration can increase
by 15% removing the advantage of the new heuristic.

Results show that the combination of an STN and the
makespan minimizing heuristic makes plans very unstable
and breakable most of the times and sometimes make a very
good and shorter execution. In general, the correct execution
of the mission highly depends on the uncertainties. The new
heuristic gives good results for the initial plan with STN or
STNU, but if some plan repairs are made during execution
the quality decreases significantly. The STNU produces sta-
ble and robust plans. Thanks to this, the whole mission is
executed in a more reliable way.

Improve the Plan Repair Mechanism
We identify a drawback of the current plan repair process
during our tests. Sometimes, a repaired plan contains un-
necessary tasks leading to a suboptimal plan. For example,
during our tests, we add new “take picture" goals. The plan-
ner produces a plan resulting in navigation from an existing
waypoint to a new goal location and back from the new goal
to the old one. This may lead to a very low quality plan.

This situation arises when the planning decision taken to
satisfy a new goal make the old tasks not supported by the
plan. So new tasks are inserted to support these tasks. In
fact the set of tasks added to restore the state variable to
their values before the new goals may be unnecessary, for
example the navigation tasks. A better way is to relax the
existing tasks so that they may be adapted to the new plan.

A preliminary solution
The example is a mission with initially five “take picture"
goals and two communication goals. One “take picture" goal
is added during the first communication. The initial plan is
found in 1.7s. The simulator runs on a Pentium4 at 3GHz.

The problem comes from a limited relaxation of the plan
before the plan repair process. The plan repair solution, de-
scribed in the precedent sections of this paper, removes only
causal links. A POCL planner using partially instantiated
tasks, adds constraints on variables to make causal links
valid. If these constraints remain after the removal of the

link, the plan repair may produce a suboptimal plan. The
solution is to remove the constraints at the same time than
the link.

We integrated the algorithms described in [Surynek &
Barták 2004]. We adapt it to continuous domains and use
it to manage the filtering in the atemporal CSP. This permits
to remove the atemporal constraints supporting a causal link.
The current implementation does not remove temporal con-
straints because of the very small benefit. In fact, the number
of temporal constraints added during resolution of conflicts
between temporal assertions is much higher than constraints
added with causal links. The relaxation of causal links tem-
poral constraints does not significantly relax the plan, con-
trary to atemporal constraints.

Our proposition does not remove all removable causal
links anymore. The ones added with task insertions are no
more removed to keep as much as possible satisfiability de-
cisions.

The planner finds a solution containing only necessary
tasks or navigations. This solution is yet limited to sim-
ple cases where actions partial order allows the planner to
find a new solution. The duration is rather similar than for
the initial planning. From initial tests, the answer is that re-
planning may be faster to find a new plan but must interrupt
all running tasks. In our test, the rover is navigating to its
next goal and interleaving it with the plan repair resulting
in zero delay for mission execution. The replanning, will
introduce a delay before the navigation can be made. Yet a
comparison of the duration of the plans produced by repair
or replannning has not been done.

Ongoing and Future Works

The recording of constraints associated to causal links per-
mitts to remove only some constraints before a plan repair.
We will try to generalize this idea to record more explana-
tions inside the plan. In fact, we want to be able to change
task ordering when doing plan repair. By recording not only
feasibility decisions but also the satisfiability decisions, we
may be able to do that in the same way than the precedent
work.

A promising way of research is to be able to explain why
a task is in the plan and why it is in a specific time win-
dow. Using such explanation, one will be able to make local
change on a plan in order to repair or improve it.

Any of these research ways may invalidate some hypothe-
sis of the executive and may need to review all them in order
to be able to use new repair capabilities. Clearly if one want
to use plan repair, it must be globally interesting for the over-
all mission even if plan repair is longer to find a plan or if
the duration of a repaired plan is greater.

We need also to improve the propagation of temporal con-
straint removals. In fact, this is the longest operation made
during an execution cycle. The maximum duration of an ex-
ecution cycle influences the task models and the reactivity
to exogenous events. To safely execute the plan, the value
must always be greater than the real cycle duration.

ICAPS 2006

44 Doctoral Consortium

Conclusion
We have describe a temporal planner and executive whose
plan execution raises new issues. The first one is to deal
with uncontrollable durations. We use a temporal frame-
work with explicit uncertainties. The second one is the bad
quality of the plans when compared with a duration optimal
plan. We modify the search control of the planner to find
better plans by modifying the planning heuristic.

The integration of an STNU shows that it is usable on a
rover. It shows a better robustness of the mission execution.
If one goal is achievable, with 3DC+, it is executed.

A simulation architecture is used to evaluate the two so-
lutions. During the test, the heuristic has shown a good ro-
bustness. Yet, an identified drawback limits the performance
of this work. A solution using the plan repair ability is de-
scribed in the last part of the paper.

We see that ongoing work improves the plan repair mech-
anism but this work is limited to only some case and may
take more time than a complete replanning. Ongoing work
is made to evaluate the opportunity of using new relaxation
methods before a plan repair and to extend the relaxation.

References
Chien, S.; Tran, D.; Rabideau, G.; Cichy, B.; Davies, A.;
Sherwood, R.; Castano, R.; Mandl, D.; Frye, S.; Trout,
B.; D’Agostino, J.; Shulman, S.; and Boyer, D. 2005.
The autonomous sciencecraft on earth observing one. In
i-SAIRAS-2005.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Network. Artificial Intelligence 49(1-3):61–95.
Ghallab, M., and Laruelle, H. 1994. Representation and
Control in Ixtet, a Temporal Planner. In AIPS, 61–67.
Jonsson, A. K.; Morris, P. H.; Muscettola, N.; Rajan, K.;
and Smith, B. D. 2000. Planning in Interplanetary Space:
Theory and Practice. In Artificial Intelligence Planning
Systems, 177–186.
Laborie, P., and Ghallab, M. 1995. Planning with sharable
resource constraints. In IJCAI.
Lemai, S. 2004. IxTeT-eXeC : planning, plan repair and ex-
ecution control with time and resource management. Ph.D.
Dissertation, LAAS-CNRS and Institut National Polytech-
nique de Toulouse, France.
Mackworth, A. 1977. Consistency in networks of relations.
Artificial Intelligence 8:99–118.
McAllester, D. A., and Rosenblitt, D. 1991. Systematic
nonlinear planning. In AAAI, 634–639.
Morris, P. H.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In IJCAI.
Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. In Prin-
ciples of Knowledge Representation and Reasoning.
Rajan, K. 2004. Invited talk: Mapgen. In IWPSS 2004,
4th International Workshop on Planning and Scheduling
for Space, June 23 - 25.

Surynek, P., and Barták, S. 2004. A New Algorithm for
Maintaining Arc Consistency After Constraint Retraction.
In Principles and Practice of Constraint Programming.
Trinquart, R., and Ghallab, M. 2001. An extended func-
tional representation in temporal planning : towards con-
tinuous change. In ECP.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. JETAI 11(1):23–45.
Vidal, T. 1995. Le temps en planification et ordonnance-
ment
Vers une gestion complète et efficace de Contraintes
hétérogènes et entachées d’incertitudes. Ph.D. Disserta-
tion, LAAS-CNRS.

ICAPS 2006

Doctoral Consortium 45

Backdoors in Planning and Scheduling Problems

Peter Gregory and Derek Long and Maria Fox
University of Strathclyde

Glasgow, UK
firstname.lastname@cis.strath.ac.uk

Abstract

A backdoor is a set of assignments to a problem that yield the
rest of the problem polynomially determinable. Backdoors
have been shown to have interesting relationships with prob-
lem hardness, backbones and other properties.
We show deeper insight into the relationship between back-
doors and backbones than has previously been shown. The
effect of no-good clause learning on backdoors is also dis-
cussed.
The aim of this work is to find ways to exploit backdoors to
solve problems more efficiently.

Introduction
Boolean Satisfiability (SAT) underlies the optimal STRIPS
planner, Blackbox (Kautz & Selman 1999). It gained the
first place in the ‘optimal track’ of the 2004 International
Planning Competition (Hoffmann & Edelkamp 2004). The
translation is effective because modern SAT-solvers incorpo-
rate sophisticated search features such as rapid-restarts and
clause learning; these features in combination with efficient
data-structures make SAT a high performance general prob-
lem solving framework. This work furthers previous studies
on the relationship between two structures in SAT problems,
the backbone and backdoors. The backbone of a SAT prob-
lem is the variables that are set in the same way in every
solution. A backdoor of a SAT problem, is a set of vari-
ables that lead to the rest of the problem being polynomially
determinable.

The backdoor has recently been seen as an important
structure in SAT problems (Williams, Gomes, & Selman
2003), as it can explain how a rapid restart policy can im-
prove chronological backtracking search. However, there
are many unanswered questions about backdoors.

• How are backdoors distributed across the variable space?
• How exactly are backdoors and backbones related, if at

all?
• How does the amount of symmetry in a problem relate to

backdoor distribution?
• Does no-good clause learning affect the backdoor distri-

bution of a problem?
• Are backdoor properties domain-independent, or are there

specific planning backdoors, etc.

C

A

B

Initial State Goal

B

A

Figure 1: A blocksworld example to illustrate the major
points in this paper. Can be solved in two time-steps, there
are two different plans that solve the problem at this length.
Note, in the goal, it is not specified that any block is on the
table.

• Can backdoor variables be predicted with enough accu-
racy to directly solve problems with them?

The following example will be used throughout the paper
as illustration of the concepts discussed. It is intentionally
trivial, so that ideas can be clarified; but its structure is not
so trivial that it isn’t representative of harder problems. Fig-
ure 1 is a blocksworld planning problem. The goal is to
reach a state where A is on B. This can be achieved in two
ways: the first being ‘put B on the table and then put A on
B’, the second being ‘put B on C and then put A on B’.

Blackbox encodes STRIPS planning problems by first
representing the problem as a plan-graph. The graph is then
translated to a SAT instance where each variable represents
either a fact (at some layer), a possible actions (including no-
ops). The clauses represent the preconditions, effects, and
mutexes between both facts and actions (Kautz, McAllester,
& Selman 1996). The example SAT instance is the transla-
tion of the plan-graph at the first satisfiable layer.

Motivation
The aim of any academic study into the structure of prob-
lems should be to better understand that problem, and to
develop novel problem solving techniques that exploit this
new understanding. If backdoors can be characterised effec-
tively, then it should be possible to search over small “can-
didate backdoors” at a much lower cost than searching the
entire set of variables.

The challenges involved in this are manifold. A good pre-
diction of the size of backdoor is required. Searching for an

ICAPS 2006

46 Doctoral Consortium

unreasonably small backdoor would never find one, whilst
searching for a backdoor much larger than the smallest ones
would lead to redundant search. If we are to identify those
variables in a problem that are most likely to be backdoor
variables, then we need to have a good characterisation of
how a backdoor is structurally composed. It is this charac-
terisation that is detailed in this paper, along with some in-
teresting effects that clause learning can have on backdoors.
In previous research on backdoors, the backbone and back-
door sets been shown to be typically disjoint. For example,
(Kilby et al. 2005) shows an empirical distinction between
the two structures. In this work, we show analytically that
there is a certain part of the backdoor that necessarily is not
part of the backbone and that even if all of the backbone
variables were set correctly, that would not be enough infor-
mation to solve the problem (unless all variables are in the
backbone).

SAT and Backdoors
In this work, we are concerned with the problem of Boolean
Satisfiability. Boolean Satisfiability (SAT herein) is a spe-
cial case of CSP. SAT restricts the domains of every vari-
able to two values, true and false. It also restricts the con-
straints to a set of clauses. A clause is a disjunction of lit-
erals. The variables correspond to logical variables, and the
clauses disjunctions of logical literals, rather than writing
xi = true and xi = false, we will use the shorthand xi

and ¬xi instead. We will also occasionally refer to xi and
¬xi as being in positive and negative phase respectively.

A sub-solver is an algorithm that solves a tractable sub-
problem of the general problem class. Paraphrasing Garey
and Johnson (Garey & Johnson 1979), a subproblem of a
general problem is obtained whenever we place additional
restrictions on the allowed instances of that problem class.
A sub-solver is an algorithm that determines only problem
instances of a given subproblem.

The backdoor structure is reliant on the definition of a
sub-solver, A, that has the following properties (given as
input a CSP, C):

Trichotomy A either rejects the input C, or “determines”
C correctly.

Efficiency A runs in polynomial time.
Trivial Solvability A can determine if C is trivially true

(has no constraints) or trivially false (has a contradictory
constraint).

Self-Reducibility If A determines C, then for any variable
x, and value v, then A determines C[v/x]. (Williams,
Gomes, & Selman 2003)

The informal definition of a backdoor is those variables
which lead to a solution in polynomial time, when assigned
correctly, or prove no solution exists for unsatisfiable prob-
lems. A weak backdoor can determine if a problem is sat-
isfiable. That is, a set of variables wBD, for which there
is at least one assignment such that A returns a satifying
assignment. A strong backdoor can determine both satisfi-
ability and unsatisfiability. For an unsatisfiable instance, a
strong backdoor is defined as a set of variables, such that

each assignment to those variables leads to A determining
the instance unsatisfiable.

The definition of a backdoor requires a polynomial-time
sub-solver (A in the definition). In this work, the sub-solver
is assumed to be unit-propagation, and the CSP is always a
SAT instance. Even when restricted to SAT, the sub-solver
need not be unit propagation, it could be an algorithm that
solves only 2SAT problems, or an algorithm that solves only
horn-SAT problems, for example. The work will be as gen-
eral as possible, as the concepts discussed (backdoors, back-
bones, no-good learning) are ubiquitous in CSP, planning,
scheduling, and all search problems that can be modelled
using constraints. Whenever I refer to backdoors from here,
I refer to minimal backdoors as these are more interesting to
study (The entire set of variables is trivially a non-minimal
backdoor but it isn’t a very interesting one, for example.)

Distribution of Backdoors
If we can find all of the minimal backdoors in a problem,
we can easily calculate the total number of backdoors in the
problem. As this is computationally prohibitive, we can use
a sampling method to find representatives from the global set
of minimal backdoors. The algorithm we use to find these is
as follows:

ALGORITHM: MINIMAL BACKDOORS

1. s <- number of variables

2. while (!cutoff_limit){
3. BD <- pick random variables (size s)
4. backtrack over BD, if backdoor then{
5. minBD <- MinimiseBackdoor(BD)
6. s’ <- |minBD|
7. if (s’ < s)
8. s <- s’
9. BDlist <- BDlist U {minBD}

}
}

The algorithm seeds the size of the backdoor to be the size
of the instance. Then, while a cutoff limit is not reached,
new backdoor candidates are selected. The algorithm back-
tracks over the variables in the candidate, if a solution is
found (or unsatisfiability proven), we minimise the back-
door.

Minimisation is achieved by simply removing each vari-
able, in order, and testing if the remaining structure is a
backdoor. If it is, then the variable is not part of the min-
imal backdoor, and is discarded. If not, then the variable
is reintroduced into the candidate. This is similar to the
MINWEAKBACKDOOR algorithm in (Kilby et al. 2005).
The difference being, that algorithm used literals and not
variables as the constituents of the backdoor. This means
that different instantiation of the variables in their backdoors
could give a smaller weak backdoor. It also means that the
(Kilby et al. 2005) procedure cannot detect (or minimise)
strong backdoors. It would however have better runtime per-
formance than MINIMAL BACKDOORS.

ICAPS 2006

Doctoral Consortium 47

Problem #Backdoors Variables Median BD Size Backbone Size Median BB Overlap
qg1-07 8 343 5.5 189 0
qg2-07 11 343 5 169 0
qg7-09 13 729 2 505 0
bw-medium 30 116 2 97 1
bw-large.a 31 459 3 459 3
bw-huge 38 459 3 459 3
flat30-5 9771 90 5 0 0
flat75-5 141 225 12 0 0

Table 1: Table of statistics for the studied instances. The studied instances are 3 quasi-group completion problems, 3
blocksworld problems, and 2 graph colouring problems, each from the satlib benchmark suite. The results show the num-
ber of minimal backdoors found in 10 minutes using the above algorithm.

Let us consider the blocksworld instance. Using unit
propagation as the subsolver, there are two minimal back-
doors. These relate to the actions (stack B C) and (move-
to-table B) (both at timepoint 1). This is because, in two
steps, the goal can be achieved by either putting B on the
table or on block C first, then stacking A on B. Once we
have decided which option to take, the mutex between the
two actions causes propagation to imply the other one false.
Everything else then propagates from this decision.

The Backbone and Backdoors
The backbone of a SAT instance is the set of variables that
are implied by the model. More intuitively, it is the set of
variables that take the same assignments in every solution.
There are two variables in the SAT encoding of our example
that are not in the backbone. These variables correspond to
the actions (stack B C) and (move-to-table B). These have
already been identified as the backdoor variables, no back-
bone variables are backdoor variables in this instance.

It has been previously observed that backdoor variables
are not often backbone variables (Kilby et al. 2005). There
is occasionally an intersection between the two structures,
but it appears accidental. So a better question is: what is
the reason that backbones and backdoors appear to be (typi-
cally) disjoint? Let us start by making some observations.

If all of the backbone variables are set correctly, could
this be a backdoor? No. The backbone variables are those
whose assignments are implied by the problem. Thus, if set-
ting the backdoor correctly implied another variable/value
assignment, this other variable must be in the backbone also.
Once we have this piece of information, we can see that par-
tial/ full assignments to backbone variables only have the
capacity to imply other backbone variables. Since a back-
door implies every variable’s value for a given solution, the
backbone variables cannot be a backdoor.

As variables are assigned in search, the sub-spaces that we
move into have monotonically growing backbones. Indeed,
when the problem is solved using assignment and propaga-
tion, all of the variables are trivially in the ’backbone’ (as
in the final state all variables are set). Since we have shown
backbone variables can only imply themselves, it is true that
in any sub-space of the search tree, an algorithm would not
want to make the choice of next variable one which is in the

augmented backbone, as this can’t imply any variables other
than those in the augmented backbone.

Identifying Unique Solutions
When all variables are in the augmented backbone, then
there is a single solution (in that sub-space). This doesn’t
mean that search is necessarily complete: some problems
with single solutions can be hard to solve. But it does mean
the problem is simplified to a state where it might be possi-
ble to solve the problem using propagation, because there is
now a single solution in the sub-space.

Therefore, we have a necessary, but not sufficient, prop-
erty of any backdoor – assignment of part of the backdoor
must identify a unique solution. The next enquiry naturally
concerns the question: how is the remainder of the back-
door composed? In this situation, several variables have
been assigned such that, in the current sub-space, there is
a unique solution to the studied instance (but the problem
is not solved). However, there is not enough information
in the current clauses to cause propagation of the remaining
variables. One reason this can happen is that there are cyclic
relationships in the clauses. Once a unique solution is found,
if there remain cycles in the constraint graph, it may be nec-
essary to ‘cut’ them in order to finish solving the problem.
This is equivalent to finding the cycle cutset (Dechter 2003)
of the remaining problem after a unique solution has been
identified.

Another conjecture could be posited: if we had enough in-
ferred knowledge of the problem at hand, then no backdoors
would contain any backbone variables. This claim may seem
unlikely, but some preliminary work has been carried out to
suggest that it may not be. The conjecture centres around
inferred knowledge. What exactly has to be inferred from
the problem to reduce the size of backdoors? A “perfect” set
of clauses can be imagined. With these clauses, any partial
assignment that is made would lead to the entire augmented
backbone being propagated. This would mean that the prob-
lem would have a unit clause for each variable in the back-
bone. If we actually had the “perfect” set of clauses, we
could make any assignment in full confidence that the as-
signment led to a solution. Clearly we could never find such
a model in reasonable time. But there are ways of bringing
our model closer to this “perfect” model during search. We

ICAPS 2006

48 Doctoral Consortium

can infer extra knowledge of a SAT instance using conflict-
clause learning.

Clause Learning and Backdoors
Many SAT solvers make use of conflict clause learning.
What happens to the backdoors in a problem as new clauses
are learnt? It appears that as we learn new information, the
size of a typical backdoor to a problem reduces. To illustrate
how this happens, consider the following tiny SAT instance:

(1 ∨ 2) ∧ (1 ∨ ¬2 ∨ ¬3) ∧ (¬1 ∨ 2 ∨ 3) ∧ (¬1 ∨ 2 ∨ ¬3)
In this example 2 is the only backbone member (¬2 im-

plies 1 which in turn implies 3 ∧ ¬3, a contradiction, hence
2 is true in all solutions). There are two minimal backdoors
to the instance, (1) and (2, 3) (this is because 3 alone cannot
cause any propagation).

The effect of choosing ¬2 as the first decision, causes the
contradiction on variable 3. Using FirstUIP conflict analy-
sis, the generated conflict clause would be simply the unit-
clause (2). With this clause in place, one of the previ-
ous minimal backdoors is now non-minimal. The backdoor
(2, 3) need not have 2 in it, as this is already implied by the
conflict clause. Clause learning has reduced the size of the
largest minimal backdoor and removed the backdoor values
from it.

This one example only shows that clause learning can be
used to reduce the size of backdoors.

Results and Discussion
The results in Table 1 were found by running MINIMAL
BACKDOORS on each problem instance for 10 minutes.
There are three classes of problems studied. The first are
quasigroup completion problems. These are partially com-
plete latin squares with additional constraints. These are
useful in experimental design, for example scheduling a
drugs trial. The second class of problem is the blocksworld
planning problem. The third class of problem are graph
colouring instances. The problems are benchmarks picked
from the satlib web resource (Hoos & Sttzle 2000).

It is interesting to note the fact that the planning instances
have very large backbones. This is because of the the fact
that at the first satisfiable plan graph layer, the number of
valid solutions to these blocksworld problems is extremely
limited. The median backdoor sizes for every instance stud-
ied is tiny in proportion to the total number of variables in
the respective problems. This is what was expected, and
further indication that direct exploitation of backdoors is a
promising research avenue.

Conclusions and Future Work
Backdoors and backbones are related structures, even
though they do not often contain the same variables as each
other. A backdoor causes the backbone to “grow” so that it
covers all of the variables. The rest of the backdoor is com-
posed of assignments that “fill-in” the missing information
that renders the problem easily soluble. It also appears that
clause learning can reduce the size of backdoors. Immediate

future work includes rigourous empirical analysis of the re-
lationship between backdoors and backbones; and between
backdoors and clause learning.

Algorithms that predict which variables are backbone
variables (Dubois & Dequen 2001) have been used previ-
ously to guide DPLL based search. If the algorithm they use
can successfully predict backbone variables, then these vari-
ables are unlikely to be backdoor variables. Once the likely
backdoor variables are found, then candidate backdoor sets
can be generated from these, and tested using backtracking.

In DPLL based search, certain types of learnt clause are
not useful. The decision variables are never used to generate
conflict clauses as the same assignments will never again be
visited in chronological search. However, this changes with
restarts occurring, and will be just as important with search
using backdoors. Which type of clause learning will be most
useful in the development of a solver that exploits backdoors
directly isn’t clear, and is worthy of further work.

The final goal of this work is to create a SAT Solver that
uses analysis of the structure of problems to find backdoors
efficiently, so that problems can be solved faster and and
problems that are currently out of reach of current solvers
can be solved.

References
Dechter, R. 2003. Constraint Processing. Morgan Kauff-
man.
Dubois, O., and Dequen, G. 2001. A backbone-search
heuristic for efficient solving of hard 3-sat formulae. In
Nebel, B., ed., Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI
2001, Seattle, Washington, USA, August 4-10, 2001, 248–
253. Morgan Kaufmann.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.
Hoffmann, J., and Edelkamp, S. 2004. International plan-
ning competition. http://ipc.icaps-conference.org/.
Hoos, H. H., and Sttzle, T. 2000. SATLIB: An Online
Resource for Research on SAT. In I.P.Gent; H.v.Maaren;
and T.Walsh., eds., Proceedings of the Third International
Conference on the Theory and Applications of Satisfiability
Testing, 283–292. IOS Press.
Kautz, H., and Selman, B. 1999. Unifying SAT-based
and graph-based planning. In Minker, J., ed., Workshop on
Logic-Based Artificial Intelligence, Washington, DC, June
14–16, 1999. College Park, Maryland: Computer Science
Department, University of Maryland.
Kautz, H. A.; McAllester, D.; and Selman, B. 1996. En-
coding plans in propositional logic. In Proceedings of the
Fifth International Conference on the Principle of Knowl-
edge Representation and Reasoning (KR’96), 374–384.
Kilby, P.; Slaney, J.; Thiebaux, S.; and Walsh, T. 2005.
Backbones and backdoors in satisfiability. In Proceedings
of AAAI-2005.
Williams, R.; Gomes, C.; and Selman, B. 2003. Backdoors
to typical case complexity.

ICAPS 2006

Doctoral Consortium 49

Computing action equivalences for planning

Natalia H. Gardiol, Leslie Pack Kaelbling
MIT Computer Science and Artificial Intelligence Lab

Cambridge, MA 02139
nhg@mit.edu,lpk@csail.mit.edu

Abstract

In order for autonomous artificial decision-makers to
solve realistic tasks, they need to deal with searching
through large state and action spaces under time pres-
sure. We study the problem of planning in such do-
mains. We show how structured representations of ac-
tion effects can help us partition the action space in to
a smaller set of approximate equivalence classes at run
time. The pared-down action space can be used to iden-
tify a useful subset of the state space in which to search
for a solution. This analysis allows us to collapse the ac-
tion space and yields large gains in planning efficiency.

Introduction
In many logical planning domains, the crux of finding a solu-
tion often lies in overcoming an overwhelmingly large action
space. In the blocks world domain, for example: the number
of ways to make a stack of a certain height grows exponen-
tially with the number of blocks on the table, so this appar-
ently simple task becomes daunting very quickly. We want
planning techniques that can deal with large state spaces and
large, stochastic action sets, since most compelling, realistic
domains have these characteristics.

One way to describe large stochastic domains compactly
is to use relational representations. Such a representation al-
lows dynamics of the domain to be expressed in terms of ob-
ject properties rather than object identities, and, thus, yields
a much more compact representation of a domain than the
equivalent propositional version can.

Even planning techniques that use relational representa-
tions, however often end up operating in a fully-ground state
and action space when it comes time to find a solution, since
such spaces are conceptually much simpler to handle. In this
case, a key insight gives us leverage: often, several action
instances produce similar effects. For example, in a blocks
world it often does not matter which block is picked up first
as long as a stack of blocks is produced in the end. If it were
possible to identify under what conditions actions produce
equivalent kinds of effects, the planning problem could be
simplified by considering a representative action (from each
equivalence class) rather than the whole action space.

This work is about taking advantage of structured, rela-
tional action representations. We want to identify logically

similar effects in order to reduce the effective size of the ac-
tion space.

Related Work
The idea of exploiting symmetries in a planning prob-
lem in order to reduce the search space has a rich his-
tory. Fox and Long present a notion of symmetric states
that is used to simplify planning (Fox & Long 1999; 2002;
Fox, Long, & Porteous 2005). Two objects are defined to be
equivalent if they have the same initial and final properties
and attributes. In their most recent work, object symme-
try (computed with respect to a pre-specified abstraction of
the object relationships) is used to supplement the FF algo-
rithm (Hoffmann & Nebel 2001) during search.

Guere and Alami (Guere & Alami 2001) also try to re-
strict search by analyzing domain structure. In their ap-
proach, they define the idea of the “shape” of a state. An al-
gorithm is given to try to construct all the “shapes” for a par-
ticular domain instance. To extract a plan/solution, it looks
for an action that connects a state in the starting “shape” to
a state in the goal “shape”. These shapes must be computed
off-line for any particular domain instance.

The work of Haslum and Jonsson (Haslum & Jonsson
2000) shares a very similar goal: reduce the number of op-
erators in order to reduce the branching factor and speed up
search. They define the notion of redundant operator sets:
intuitively, an operator is redundant to an existing sequence
of operators if it does not add any new effects to the se-
quence. The set of redundant operators are computed before
starting to plan; however, this is a computation that appears
to be PSPACE-hard in general. An approximate algorithm is
also given. Planning efficiency increases when these redun-
dancies are found, but this kind of redundancy may not exist
in all domains.

Additionally, Rintanen (Rintanen 2004) has looked at
equivalence at the level of transition sequences for use in
SAT-based planners.

The approach described in this paper, however, is in-
tended to be a general method for reducing the action space
that can be applied on-the-fly in a domain-independent man-
ner. The equivalence classes of actions that are computed at
each step produce an action set that can be used by any plan-
ning algorithm. We propose one such algorithm below.

ICAPS 2006

50 Doctoral Consortium

Relational Envelope-based Planning
The Relational Envelope-based Planning algorithm (REBP)
(Gardiol & Kaelbling 2004) is well-suited to address plan-
ning problems with large underlying spaces. It proceeds
in two phases. First, given a domain theory and a prob-
lem instance, an initial plan of action is found quickly using
classical planning techniques. Classical planning produces
a focused search within high-probability sequences of ac-
tions, and yields an initial sequence called an envelope of
states (Dean et al. 1995). Second, with additional time, this
initial plan can be made more robust by considering devia-
tions from the original envelope. Conditioned on a ground
initial state, the number of states we expect to experience
on the way to the goal is relatively small; thus, the effective-
ness of REBP lies in limiting the state space in which policies
searched for to an informative, reachable subset.

A fundamental step, however, is to produce the initial en-
velope efficiently. When the action space is large, however,
this can be hard to do. In this case, a key insight gives us
leverage: different ground action instances often produce
qualitatively similar effects. For example, in a blocks world
it often does not matter which block is picked up first as
long as a stack of blocks is produced in the end. If it were
possible to identify under what conditions actions produce
equivalent kinds of effects, the planning problem could be
simplified by considering a representative action (from each
equivalence class) rather than the whole action space. The
resulting reduction in branching factor can result in huge
planning efficiency gains. Figure 1 shows an example.

Finding the initial envelope
Finding a trajectory of states with which to populate the ini-
tial envelope involves solving a planning problem from the
ground initial state to a state satisfying a logical goal condi-
tion.

We represent planning domains in a subset of the PPDDL
language.1 A problem description contains the following el-
ements: P , a set of logical predicates, denoting the proper-
ties and relations that can hold among the finite set of do-
main objects,O; Z , a set of transition schemas; and T , a set
of object types. A schema z ∈ Z , when applied in a state s,
produces a set of ground actions, z|s.

To find this plan, we execute heuristic-based search using
the FF heuristic. (Hoffmann & Nebel 2001). The algorithm
is shown in Figure 2.

Equivalence in relational domains
We need to properly define action equivalence in order to
execute the steps b) and c) of the planning algorithm in Fig-
ure 2. To that end, we make the following crucial assump-
tion:

Assumption 1 (Sufficiency of Object Properties). A domain
object’s function is determined only by its properties and
relations to other objects, and not by its name.2

1We do not consider conditional outcomes.
2What if we are in a setting in which a few objects’ identities

are in fact necessary? One could encode this information via sup-

1. Start with initial ground state, s and empty plan, P
2. Find state s', the best successor to s:
 a. calculate all ground actions applicable in s
 b. partition set of actions into equivalence classes
 c. apply a representative action a from each class,
 compute the most likely resulting state, s'
 evaluate s' using FF heuristic, h(s')
 d. if a unique state s' has the lowest h(s') value
 add the producing action, a, to P
 e. else,
 do breadth-first search until lowest h(s') found

 add the sequence of actions from s to s' to P
3. If s' is the goal, return the plan P.
4. Else, set s<=s', and return to step 2.

Figure 2: Planning algorithm. Note steps b) and c), which com-
pute and make use of the reduced action space given by a partition
over the actions.

For example, consider a blocks world in which the only
two properties are the relation on() and the attribute color().
Then if two blocks block14 and block37 are both red, are
both on the table, and have nothing on them, they would be
considered functionally equivalent. If block37 had another
block on top of it, however, it would not be equivalent to
block14. Intuitively, two objects are equivalent to each other
if they are related in the same way to other objects that are,
in turn, equivalent.

Here is the main contribution. We establish that a plan-
ning procedure that uses only equivalence-class representa-
tives is complete whenever the original planning procedure,
which had access to the whole action space, is complete. We
need the following pieces: first, whenever goal is satisfied in
a particular state s, then it must be satisfied by any state in
s’s equivalence class; second, equivalent actions taken from
equivalent states produce equivalent successor states. These
pieces let us construct an inductive argument to show that,
from a given starting state, the successive substitution of one
ground action by another in its equivalence class leads us to
a state that still satisfies the goal.

Previous work on object equivalence, or symmetry, has
used single, unary relations as a basis for computing sim-
ilarity (Ellman 1993; Fox & Long 1999; 2002). However,
we want to study object equivalence when more complex
relationships are present. To aid our analysis, we view a re-
lational state description as a graph, called the state relation
graph. The nodes in the graph correspond to objects in the
domain, and the binary relations between the objects corre-
spond to the edges. For each pair of related nodes, we con-
struct an edge representing the relation. In addition, nodes
and edges are labeled with a string (or set of strings). Each
node is labeled with the object’s type, and each edge is la-
beled with the relation’s name. If an object also participates
in a unary relation, we augment its label set with that predi-
cate’s name. 3 Thus, we can establish equivalence between

plementary properties, by adding a relation such as block14(X)
that would only be true for block14. Obviously, if identity matters
for a large number of objects, the approach described here would
not be suitable.

3At present, we consider up to binary relations. In the case of
relations with more than two arguments, we would have to consider

ICAPS 2006

Doctoral Consortium 51

Figure 1: In this figure, we have an example domain in which the task is to fly each of the three helicopters onto one of two carriers. In a) is
shown a picture of the search tree if we were to enumerate all the ground actions. However, there are only a few qualitatively different states,
as seen on the bottom, in c). If we could eliminate distinguishing between actions that produce equivalent states, our search tree would be
much more compact (b).

Figure 3: The steps involved in computing action equivalence. In part (a), the instantiation of the pickup operator z in a state s produces four
ground actions. In part (b), the state relation graph for s shows we can map blocks 3 and 4 to blocks 5 and 6, respectively. This allows us to
map the instantiation of pickup(3,4) to pickup(5,6), and vice-versa. Thus, the four ground actions correspond to three equivalence
classes.

two states by computing an isomorphism between the state
relation graphs.

Definition 1 (State equivalence). Two states are equivalent,
written s1 ∼ s2, if there exists an isomorphism, Φ, between
the respective state relation graphs such that Φ(Gs1) = Gs2 .

Next, we need to define equivalence for actions. Intu-
itively, two actions should be considered equivalent if they
produce equivalent states. However, this requires propagat-
ing a state through a transition rule for each calculation. A
way to define action equivalence without doing such a prop-
agation is to overload the notion of isomorphism to apply to
sentences (of which actions are a special case).

Definition 2 (Action Equivalence). The applications of ac-

a hypergraph representation to allow for edges of more than two
nodes.

tion schema z in states s1 and s2 yield the sets of ground
actions z|s1 and z|s2 . Two ground actions a1 ∈ z|s1 and
a2 ∈ z|s2 are equivalent if and only if there exists a Φ such
that Φ(Gs1) = Gs2 and Φa(a1) = a2.

Essentially, we will be grouping two instances of an op-
erator into the same equivalence class if there exists an au-
tomorphism between objects in the state that allows us to
re-write one action instance as the other. Figure 3 shows an
example of this computation.

Now we move to the next important step: we need to guar-
antee that if the goal condition, if satisfied in a particular
state s, can be satisfied by any state equivalent to s. We
prove that if a logical sentence is satisfied in a state s, then
it is satisfied in any state s̃ ∈ [s], where [s] is the equiva-
lence class of s. We must be clear about the logical setting:
we assume that an un-ground sentence (i.e., a goal condi-

ICAPS 2006

52 Doctoral Consortium

tion) contains no constants, and that a ground state is a fully
ground list of facts (which we can treat as a conjunction or
set of ground relations).

We provide one more definition for an important interme-
diate concept:
Definition 3 (Equivalent Planning Procedures). Let P be
a planning procedure such at at each state s, P selects an
action a. Consider a planning procedure P’ such that at each
state s̃ ∼ s, P’ chooses an action ã ∼ a. Then P and P’ are
defined to be equivalent planning procedures.
Theorem 1. Let P be a complete planning procedure. Any
planning procedure P’ equivalent to P is also a complete
planning procedure. That is,4

γ(a1, . . . , an, s0) → g ⇒ γ(ã1, . . . , ãn, s0) → g

Thus, any serial plan that exists in the full action space
has an equivalent version in the partitioned space. (?)

Experimental Validation
As a check, we did a small study to illustrate the computa-
tional savings of planning with equivalence class sampling.
Figures ?? shows these results. The experiments were done
in the ICAPS 2004 blocks-world domain, varying the num-
ber of blocks from 2 to 7. In each case, the goal was to stack
all of the blocks, and the starting state was with all blocks
on the table. The x-axis of the graphs shows the plan step,
and the y-axis shows the number of actions expanded in the
search at that step. The top graph shows a linear y-axis, and
the bottom graph shows it log-scale. Each curve corresponds
to the performance of each algorithm in each size blocks
world. The dashed lines correspond to the planning algo-
rithm that uses all the actions, and solid lines correspond to
the planning algorithm that uses a representative from each
equivalence class.

With just five blocks in the domain, already the combina-
torial growth in the branching factor is such that searching
in the whole action space is hopeless. The equivalence-class
based planner shows a consistently small branching factor
even with six and seven blocks. The computational savings
of computing the action classes is significant even in this
small test domain. Further experiments are forthcoming in
other domains from the ICAPS planning competition.

Conclusion
This is work explicitly attempts to define what it means for
planning operators to be equivalent in the presence of com-
plex relational structure. We formalize such a definition and
illustrate the benefit of equivalence-class analysis for plan-
ning.

Taking advantage of structured action representations
helps us ignore the distracting complexity and focus in-
stead on the interesting complexity in a problem. We pro-
vide a formal basis for computing action equivalence classes

4Some notation: γ(a1, . . . , an, s0) denotes the state that results
from executing the sequence of actions a1, . . . , an starting from
state s0. The arrow denotes entailment.

that guarantees a complete planning procedure while signif-
icantly reducing the branching factor of the search. While
our original motivation is the REBP algorithm, our findings
are useful for efficient planning in general.

References
Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A.
1995. Planning under time constraints in stochastic do-
mains. Artificial Intelligence 76.
Ellman, T. 1993. Abstraction via approximate symmetry.
In Proceedings of the 13th International Joint Conference
on Artificial Intelligence.
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In 16th Interna-
tional Joint Conference on Artificial Intelligence.
Fox, M., and Long, D. 2002. Extending the exploitation of
symmetries in planning. In AIPS.
Fox, M.; Long, D.; and Porteous, J. 2005. Abstraction-
based action ordering in planning. In International Joint
Conference on Artificial Intelligence.
Gardiol, N. H., and Kaelbling, L. P. 2004. Envelope-based
planning in relational MDPs. In Advances in Neural Infor-
mation Processing 16 (NIPS-2003).
Guere, E., and Alami, R. 2001. One action is enough to
plan. In International Joint Conference on Artificial Intel-
ligence (IJCAI’01).
Haslum, P., and Jonsson, P. 2000. Planning with reduced
operator sets. In Artificial Intelligence Planning Systems.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14.
Rintanen, J. 2004. Symmetry reduction for SAT represen-
tations of transition systems. In International Conference
on Automated Planning and Scheduling.

ICAPS 2006

Doctoral Consortium 53

Concurrent Planning using Petri Net Unfoldings

Sarah Hickmott
National ICT Australia and

School of Electrical and Electronic Engineering University of Adelaide, Australia

Abstract

Those in the planning community previously exposed to the
construct of Petri nets, have probably recognised a connec-
tion between the world modelled by these nets and a con-
current planning domain. Work to date however has failed
to sufficiently capture and motivate the possible benefits of
developing and utilising this connection, so the area has re-
mained relatively undeveloped. We believe the factored state
representation and concurrency semantics of Petri nets are so
closely related to that of concurrent planning domains that
cross cultivation between the areas will give theoretical in-
sight and lead to the development of computationally efficient
algorithms for concurrent planning. Our research seeks to de-
velop the theory required to exploit the connection and cre-
ate models and algorithms for optimally solving determinis-
tic and probabilistic concurrent planning problems using low
level Petri nets. Our approach casts the planning problem as
a Petri net reachability problem. Unfolding is an attractive
method for reachbility analysis because it utilises and main-
tains the concurrency and factored state structure of the Petri
net. We capitalise the unfolding process for planning by guid-
ing it with heuristics.

Petri nets are traditionally used for modeling and anal-
ysis of distributed systems. They can be used to exploit
the structure of a planning domain in two beneficial ways.
Firstly Petri nets, like STRIPS and PDDL operators, pro-
vide a non-flat representation of transition systems. They
avoid explicitly enumerating the state space as it is implicit
in their representation of variable -action relationships. This
can be utilised in computation. Secondly Petri nets specifi-
cally represent concurrency and causal relations between ac-
tions. Consequently it is possible to avoid enforcing a total
order on actions; this can have not only computational ad-
vantages via reduction of the policy space but also allows us
to generate partially ordered plans.

We propose a translation from deterministic and proba-
bilistic planning problems to Place-transition (PT) Petri nets.
We then unfold the net in a specific manner. The unfolding
of a Petri net maintains a partial ordering of actions based on
causality, allowing us to search for an optimal solution plan
without considering the unnecessary interleaving of actions
or enumerating the state space entirely. For the determinis-
tic case, we adapt the Esparza-Vogler-Romer (EVR) unfold-
ing algorithm so that either the minimum cost partial plan is
found during the unfolding procedure, or we identify that the

goal is not achievable. We capitalise the unfolding by guid-
ing it with planning heuristic. Note we are not restricted to
unit-cost actions. For the probabilistic case, we unfold the
Petri net up to a finite horizon. We propose a Bellman-like
equation which then uses the unfolded net to determine the
partial plan with the maximum probability of success, or ex-
pected reward, within the finite horizon. This later case does
not require that all rewards be positive, and thus could be
used for over-subscription planning.

Translation of a Planning Problem to a Petri net
A Place Transition (PT) net is a low level Petri net. A PT-
net is a 5-tuplePN = (P, T, F, W, M0) whereP andT
are finite sets of places and transitions respectively;F ⊆
(P × T) ∪ (T × P) is the flow relation;W : F →
1, 2.. is the weight function;M0 is the the initial marking;
P ∩ T = ∅ and P ∪ T 6= 0. Figure 1 shows a simple
PT net. The markingM of a Petri net is the mapping of
tokens to places, and represents the state of the modelled
world. The preset of a nodex in the net,•x, is the set
{y ∈ P ∪ T |W (y, x) ≥ 1}. The postset of a node,x•, is
the set{y ∈ P ∪ T |W (x, y) ≥ 1}. A transitiont is enabled
if each of its input placesp is marked with the weight of
the arc connectingp to t. A particular markingM enables a
transitiont if W (p, t) ≤ M(p) ∀p ∈ P . The occurrence of a
transition absorbs the tokens in its input places and produces
tokens in its output places thus moving the net fromM to the
new markingM ′(p) = M(p)−W (p, t) + W (t, p) ∀p ∈ P .
This corresponds to a state transition of the modelled sys-
tem. A set of transitionsT ′ is concurrently enabled at the
markingM if it is possible for allt ∈ T ′ to occur at once,
viz.

∑
t∈T ′ W (p, t) ≤ M(p)∀p ∈ P . A more detailed re-

view of Petri nets can be found in (Murata 1989).
A planning problem is a quadruple〈A, I, O, G〉 whereA

is a set of state variables,I : A → {0, 1} is a state,O is a set
of STRIPS operators, andG is a set of goal literals (Ghal-
lab, Nau, & P.Traverso 2004). The set of literals overA is
L = ∪{¬a|a ∈ A}. The complement̄l of a literal l ∈ L is
defined bȳa = ¬a and¬̄a = a for a ∈ A. A STRIPS oper-
ator 〈p, e〉 is 1-safe if{¬l|l ∈ e} ⊆ p. A STRIPS operator
〈p, e〉 has a positive precondition ifp ⊆ A. The first part
of our translation involves mapping the planning problem to
an equivalent one where every operator is 1-safe one, and
there are no negative preconditions. 1-safety is established

ICAPS 2006

54 Doctoral Consortium

b a

1 23

c de

4

f g

6 7

50

Places are represented
by circles, transitions
by squares and token
by black dots. Firing
transitions 2 and 3 (in
any order or concur-
rently) followed by fir-
ing transition 5, would
result in a single token
each in places f and g.

Figure 1: Example of a Petri net.

by replacing every operator by several 1-safe ones; we define
S(o) as set of operators obtained from someo ∈ O. Nega-
tive preconditions are eliminated by replacing each¬a by a
corresponding positive preconditionâ and forcinĝa anda to
always have opposite values. The reasons for this translation
become clear soon.

Given a deterministic planning problemR = 〈A, I, O, G〉
we create a PTpnet(R) = 〈P, T, F, W, Mo〉 such that:

• the places areP = A ∪ Â,

• the transitions areT = {S(o)|o ∈ O},
• the setF of arcs is obtained fromt0 = 〈p, e〉 ∈ T as

p× {t0}
∪{〈to, a〉|a ∈ A ∪ Â, a ∈ p,¬a /∈ e}
∪{〈to, a〉|a ∈ A, a ∈ e}
∪{〈to, a〉|a ∈ A,¬a ∈ e}

• W (f) = 1 for all arcsf ∈ F ,

• for all a ∈ A, M0(a) = 1 iff I(a) = 1 andM0(â) = 1
iff I(a) = 0, and for alla ∈ A ∪ Â, M0(a) = 0 or
M0(a) = 1 .

The 1-safety of the STRIPS operators has allowed us to cre-
ate 1-safe Petri nets, meaning it is not possible for more than
one token to exist in a place. Without 1-safeness it would be-
come complicated to maintain consistency in the net, as one
would have to consider the semantics of multiple tokens in a
place: if the respective literal becomes false all these tokens
must be removed.

Petri net Unfolding
Unfolding is a method for reachability analysis which ex-
ploits and preserves the factored state representation and
concurrency information in the Petri net. In the planning
context this confers the ability to reason about partially or-
dered sets of actions directly, without having to consider
their interleavings. It also enables the recognition and sep-
arate resolution of independent subproblems. During the
planning process we can reason about the actions and cost
required to assert some subset of state variables, and com-
bine this information with that for another (thus-far) inde-
pendent subset, at a future point when the two sets are no

longer independent. The benefit of this ’divide-and-conquer’
approach depends on the level of concurrency in the domain.

The unfolding of a PT-netN = (P, T, F,W, M0) pro-
duces an occurrence netON = (B,E, F ′), whose node
sets are conditionsB and eventsE. These nodes represent
particular occurrences of the places and transitions, respec-
tively, in possible runs of the original net from the initial
marking. The unfolding achieves this by eliminating cycles
and backward conflicts. Backward conflict is the case when
two transitions output to the same place; by eliminating this
we know exactly which transitions are involved in a partic-
ular marking. In the context of planning, this means that
we know the exact set of actions that, when executed, lead
to a state variable reaching a certain value at some point in
the plan. The labelling functionϕ is a homomorphism from
ON to N .

The main theoretical notions required to understand un-
folding are that of a configuration and local configuration of
an event. A configuration represents a possible partial run
of the net. It is any set of eventsC such that:C is causally
closed, e∈ C ⇒ e′ ∈ C ∀e′ ≤ e; and C contains no
forward conflict,•e1 ∩ •e2 = 0 ∀ e1, e2 ∈ C, e1 6= e2.
We can think about a configuration as a partially ordered
plan. The local configuration of an evente, denoted[e]
is the minimal configuration containing evente. Conse-
quently if we introduce a ’goal’ transitiontg whose prede-
cessors correspond to the set of goal literalsG, then a so-
lution plan is any partially ordered set of operators [e] such
that ϕ(e) = tg. A configurationC can be associated with
a marking Mark(C) of the original net by identifying those
conditions whose tokens are produced but not consumed af-
ter firing the events inC starting from the initial marking:
Mark(C) = ϕ((M0 ∪ C•)\•C), whereC• = {e•|e ∈ C}
and•C = {•e|e ∈ C}.

The unfolding process involves identifying which transi-
tions are enabled by conditions currently in the occurence
net that can be simultaneously marked. These transitions are
referred to as the possible events. A new instance of each is
added to occurence net, as are instances of the places in each
of their postsets. The question of whether a set of conditions
can be simultaneously marked is answered by determining
whether the union of the local configurations of their pre-
sets forms a configuration. Figure 2 shows an example of
unfolding.

Finite Complete Prefix of Unfolded net
In most cases, the unfoldingβ of a Petri-net is infinite. For
this reason, we seek a complete finite prefixβ′ of β, one
which contains as much information asβ.

The key to obtaining a complete finite prefix is to identify
those events at which we can cease unfolding without loss of
information. Such events are referred to ascut-off eventsand
are defined in terms of anadequate orderon configurations
(McMillan 1992; Esparza, R̈omer, & Vogler 2002):

Definition 1 A partial order≺ on the finite configurations
of a branching process is an adequate order if

1. ≺ is well founded
2. ≺ refines⊂: C1 ⊂ C2 ⇒ C1 ≺ C2

ICAPS 2006

Doctoral Consortium 55

b (c1)

3 (e3)

e (c5)

a (c2)

2 (e2)1 (e1)

d (c4)c (c3)

4 (e4)

g (c6)f (c7)

5 (e12)

g (c17) f (c18)

7 (e6)

b (c9)

6 (e5)

a (c8)

2 (e8)1 (e7)

d (c11)c (c10)

3 (e9)

e (c12)

4 (e11)

g (c15) f (c16)

5 (e10)

g (c13) f (c14)

Figure 2: Prefix of an unfolding of the Petri net in Figure 1.

3. ≺ is preserved by finite extensions: ifC1 ≺ C2 and
Mark(C1) = Mark(C2) thenC1 ⊕ E ≺ C2 ⊕ I2

1 (E),
whereI2

1 (E) is an isomorphism mapping the finite exten-
sionE of C1 onto the extension ofC2.

Without loss of information, we can cease unfolding from an
evente, if e takes the net to a marking which can be caused
by some other evente′ such that[e′] ≺ [e]. This is because
the events (and thus markings) which proceed frome will
also proceed frome′. Relevant proofs can be found in (Es-
parza, R̈omer, & Vogler 2002):

MOLE (http://www.fmi.uni-stuttgart.de/szs/tools/mole/),
is a free-ware unfolder which can be used for 1-safe PT-
nets. It uses an adequate order on configurations,≺, which
is based primarily on comparing their cardinality. The prefix
shown in Figure 2 is the complete finite prefixMOLE returns
for the net in Figure 1.

Deterministic Concurrent Planning
Once the problem is translated to a PT-net, it is easy to let
MOLE produce a partially ordered plan for that problem. It
suffices to augment the STRIPS operator set with a dummy
operator whose precondition is the goal, and to require mole
to stop whenever an event labelled with the corresponding
transition is added to the occurence net. The local configura-
tion of this event is a partially ordered plan for the problem.
Further, owing to the fact thatMOLE orders events by in-
creasing local configuration cardinality, this plan is minimal
in the number of actions.

The cardinality-based ordering relation used byMOLE has
a serious drawback for planning however, as it leadsMOLE
to perform a breadth-first search. If we were to swap the
ordering to prefer events with larger local configurations to

those with smaller ones, we would forceMOLE into a depth-
first search. However, since the resulting ordering is not ade-
quate, there is no guarantee that the resulting planner would
be complete. Checking for loops is not as straightforward
in the unfolding framework as it is in a state-space search
framework, since the markings of local configurations only
have a partial view of the state. Indeed, the main purpose
of an adequate order is to implement a form of loop detec-
tion. A natural idea is to change the ordering to provide
MOLE with better guidance towards the goal, while preserv-
ing, and even generalising from the restricted notion of opti-
mality currently in place. This rejoins the work on directed
model-checking pionneered by Edelkamp et al. (Edelkamp,
Lluch-Lafuente, & Leue 2001).

We propose that given an arbitrarymonotonicheuristic,
it is possible to build an adequate order which implements
A*, letting the heuristic guide the unfolding towards opti-
mal plans. Monotonic heuristics which, likehm (Haslum
& Geffner 2000), can be automatically generated from a
planning problem description, are equally easily generated
from PT-nets. In planning terms, let cost(o) be the (pos-
itive) cost of operatoro, and res(o, s) be the result of ap-
plying o in states. A Heuristic h (such thath(s) ≥ 0
everywhere andh(s) = 0 at goal states) is monotonic iff
h(s) ≤ h(res(o, s)) + cost(o) for all non-goal statess and
operatorso applicable ins. These definitions easily trans-
fer to the PT-net case, by identifying each operator with the
corresponding transition and considering a set of placesP
as the state in which all state variables but those inP are
false. We define the following ordering on configurations:

Definition 2 (≺h) Let h be a monotonic heuristic as de-
fined above. For a configurationC, define g(C) =∑

e∈C cost(ϕ(e)), andf(C) = g(c)+h(Mark(C)). Define
C ≺h C ′ if and only if f(C) < f(C ′) or f(C) = f(C ′)
and|C| < |C ′|.

Proof that this order is adequate will not be shown here.
When runningMOLE with this ordering for some monotonic
heuristich, we obtain a planner which generates partially
ordered plans with the smallest total action cost. As far as
we are aware, only the HSP* family of existing planners
routinely optimise this metric (Haslum, Bonet, & Geffner
2005). In contrast, most state of the art planners optimise
parallel plan length. It is possible our approach could be
modified for concurrent temporal planning, but the full im-
plications of this have not yet been considered.

Experimental Results
Our translation from propositional STRIPS operators to PT-
nets is implemented in Standard ML within a program called
Petrify. Petrify actually parses a large subset of PPDDL
(Youneset al. 2005), and handles non-grounded domains,
conditional, and probabilistic effects. We modifiedMOLE to
implement a variety of search strategies and heuristics de-
fined by their respective ordering relations. In Figure 3, we
present results for PIPESWORLD and AIRPORT instances,
for some of the variants as they provide a good illustration
of the benefits and problems with our current implementa-
tion. Namely we show results forh(s) = 0, h(s) = h1

max

ICAPS 2006

56 Doctoral Consortium

 10

 100

 1000

 10000

 100000

 1 3 5 7 9 11 13 15 17 19 21

nu
m

be
r o

f e
xp

an
si

on
s

problem

AIRPORT: Number of Expansions

zero
h1max
h1sum

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5 6 7 8 9 10 11 12

nu
m

be
r o

f e
xp

an
si

on
s

problem

PIPESWORLD: Number of Expansions

zero
h1max
h1sum

 0.01

 0.1

 1

 10

 100

 1000

 1 3 5 7 9 11 13 15 17 19 21

ru
n

tim
e

(s
ec

)

problem

AIRPORT: Run Times

zero
h1max
h1sum

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11 12

ru
n

tim
e

(s
ec

)

problem

PIPESWORLD: Run Times

zero
h1max
h1sum

 0

 20

 40

 60

 80

 100

 120

 1 3 5 7 9 11 13 15 17 19 21

pl
an

 le
ng

th

problem

AIRPORT: Plan Length

zero
h1max
h1sum

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11 12

pl
an

 le
ng

th

problem

PIPESWORLD: Plan Length

zero
h1max
h1sum

Figure 3: Experimental Result on PIPESWORLD and AIR-
PORT Instances

andh(s) = h1
sum, where the later is the same ash1

max but
using the sum instead of the maximum. Out of these, only
≺0 and≺h1

max
are adequate orders and thus guarantee com-

pleteness.

As can be seen from the figures, the number of node ex-
pansions performed byMOLE significantly decreases (note
the log scale) when switching fromh = 0, to the mono-
tonic h1

max heuristic, and then to the non-admissibleh1
sum.

This is particularly visible in PIPESWORLD whereh1
max

andh1
sum respectively expand over an order of magnitude

and over three orders of magnitude fewer nodes thanh = 0.
However, this improvement in number of expansions does
not carry over to run time. Without heuristic, our AIRPORT
run times are as good as, and in a number of cases better
than those obtained by the competition optimal planners, ex-
cept SATPLAN. Theh1

max heuristic is always slower than
breadth-first andh1

sum only start yielding run-time gains
when the improvement in number of expansions reaches two
orders of magnitude. This is because, in a forward search,
h1 heuristics need to be recomputed at each expansion, and
this computation has a complexity quadratic in the number
of nodes of the PT-net. We expect to see a significant im-
provement in run time by switching to other automatically
generated heuristics which can be pre-computed once and
efficiently looked up during the search. Promising candi-
dates include Pattern Database heuristics (Edelkamp 2002;
Haslum, Bonet, & Geffner 2005).

Probabilistic Concurrent Planning
The translation for the probabilistic case is similar but some-
what more complicated and will not be formalised here. For
probabilistic concurrent planning, we are currently focused
on optimising the maximum expected reward, given a finite
horizon. The Petri net is first unfolded completely, without
generating any cut-off points, until the decided horizon. We
propose a Bellman-like equation which uses the unfolding to
answer the question: given this set of conditions are marked,
what is the maximum expected reward from here and what
event must be chosen to achieve this? This will not be dis-
cussed further here, due to space constraints.

Future Work
Experimental results are not presently entirely conclusive.
They are only competitive with state of the art planners in
some of the domains examined. Our immediate agenda is to
implement pattern databases heuritics. Furthermore we will
consider different translations to PT-nets and to higher level
nets.

Acknowledgements
I would like to acknowledge Sylvie Thiébaux, Jussi Rinta-
nen and Langford White for their ongoing contributions to
this research.

References
Edelkamp, S.; Lluch-Lafuente, A.; and Leue, S. 2001. Di-
rected explicit model checking with hsf-spin. InSPIN, 57–
79.
Edelkamp, S. 2002. Symbolic pattern databases in heuris-
tic search planning. InAIPS, 274–283.
Esparza, J.; R̈omer, S.; and Vogler, W. 2002. An improve-
ment of mcmillan’s unfolding algorithm.Formal Methods
in System Design20(3):285–310.
Ghallab, M.; Nau, D.; and P.Traverso. 2004.Automated
Planning: Theory and Practice. Morgan Kaufmann Pub-
lishers.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. InAIPS, 140–149.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. InAAAI,
1163–1168.
McMillan, K. L. 1992. Using unfoldings to avoid the state
explosion problem in the verification of asynchronous cir-
cuits. InCAV, 164–177.
Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations.Proceedings of the IEEE77(4):541–580.
Younes, H. L. S.; Littman, M. L.; Weissman, D.; ; and
Asmuth, J. 2005. The first probabilistic track of the inter-
national planning competition.Journal of Artificial Intelli-
gence Research24:851–887.

ICAPS 2006

Doctoral Consortium 57

On the Smoothness of Linear Value Function Approximations

Branislav Kveton
Intelligent Systems Program

University of Pittsburgh
bkveton@cs.pitt.edu

Milos Hauskrecht
Department of Computer Science

University of Pittsburgh
milos@cs.pitt.edu

Abstract

Markov decision processes (MDPs) with discrete and contin-
uous state and action components can be solved efficiently by
hybrid approximate linear programming (HALP). The main
idea of the approach is to approximate the optimal value func-
tion by a set of basis functions and optimize their weights by
linear programming. It is known that the solution to this con-
vex optimization problem minimizes theL1-norm distance in
between the optimal value function and its approximation. In
this paper, we relate this measure to the max-norm error of the
same value function. We believe that this theoretical analysis
may help to understand the quality of HALP approximations
in continuous domains.

Introduction
Markov decision processes (MDPs) (Bellman 1957; Puter-
man 1994) provide an elegant mathematical framework for
solving sequential decision problems in the presence of un-
certainty. However, traditional techniques for solving MDPs
are computationally infeasible in real-world domains, which
are factored and represented by both discrete and continuous
state and action variables. Approximate linear programming
(ALP) (Schweitzer & Seidmann 1985) has recently emerged
as a promising approach to address these challenges (Kveton
& Hauskrecht 2006).

Our paper centers around hybrid ALP (HALP) (Guestrin,
Hauskrecht, & Kveton 2004), which is an established frame-
work for solving large factored MDPs with discrete and con-
tinuous state and action variables. The main idea of the ap-
proach is to approximate the optimal value function by a lin-
ear combination of basis functions and optimize it by linear
programming (LP). The combination of factored reward and
transition models with the linear value function approxima-
tion permits the scalability of the approach.

The quality of HALP solutions inherently depends on the
choice of basis functions. Therefore, it is often assumed that
these are provided as a part of the problem definition, which
is unrealistic. The goal of this paper is to analyze the quality
of HALP approximations. Based on the analysis, we provide
a simple advice for selecting basis functions.

Hybrid factored MDPs
Discrete-state factored MDPs (Boutilier, Dearden, & Gold-
szmidt 1995) permit a compact representation of stochastic

decision problems by exploiting their structure. In this work,
we consider hybrid factored MDPs with exponential-family
transition models (Kveton & Hauskrecht 2006). This model
extends discrete-state factored MDPs to the domains of dis-
crete and continuous state and action variables.

A hybrid factored MDP with an exponential-family tran-
sition model (HMDP)(Kveton & Hauskrecht 2006) is given
by a 4-tupleM = (X,A, P,R), whereX = {X1, . . . , Xn}

is a state space characterized by a set of discrete and contin-
uous variables,A = {A1, . . . , Am} is an action space repre-
sented by action variables,P (X′

| X,A) is an exponential-
family transition model of state dynamics conditioned on the
preceding state and action choice, andR is a reward model
assigning immediate payoffs to state-action configurations.1

In the remainder of the paper, we assume that the quality of a
policy is measured by theinfinite horizon discounted reward
E[

∑∞
t=0 γtrt], whereγ ∈ [0, 1) is adiscount factorandrt

is the reward obtained at the time stept.

Hybrid ALP

Value iteration, policy iteration, and linear programmingare
the most fundamental dynamic programming (DP) methods
for solving MDPs (Puterman 1994; Bertsekas & Tsitsiklis
1996). Unfortunately, none of these methods is suitable for
solving hybrid factored MDPs. First, their complexity grows
exponentially in the number of state variables if the variables
are discrete. Second, these methods assume a finite support
for the optimal value function or policy, which may not exist
if continuous variables are present. As a result, any feasible
approach to solving arbitrary HMDPs is likely to be approx-
imate. To compute these approximate solutions, Munos and
Moore (2002) proposed an adaptive non-uniform discretiza-
tion of continuous-state spaces and Fenget al. (2004) used
DP backups of piecewise constant and piecewise linear value
functions.
Linear value function model: Since a factored representa-
tion of an MDP may not guarantee a structure in the optimal
value function or policy (Koller & Parr 1999), we resort to
linear value function approximation(Bellman, Kalaba, &

1General state and action space MDPis an alternative name for
a hybrid MDP. The termhybrid does not refer to the dynamics of
the model, which is discrete-time.

ICAPS 2006

58 Doctoral Consortium

Kotkin 1963; Van Roy 1998):

V w(x) =
∑

i

wifi(x). (1)

This approximation restricts the form of the value function
V w to the linear combination of|w| basis functionsfi(x),
wherew is a vector of tunable weights. Every basis function
can be defined over the complete state spaceX, but often is
restricted to a subset of state variablesXi (Bellman, Kalaba,
& Kotkin 1963; Koller & Parr 1999).

Similarly to discrete-state ALP (Schweitzer & Seidmann
1985),hybrid ALP (HALP)(Guestrin, Hauskrecht, & Kve-
ton 2004) optimizes the linear value function approximation
(Equation 1). Therefore, it transforms an initially intractable
problem of estimatingV ∗ in the hybrid state spaceX into a
lower dimensional spacew. The HALP formulation is given
by a linear program:

minimizew
∑

i

wiαi (2)

subject to:
∑

i

wiFi(x,a) − R(x,a) ≥ 0 ∀ x,a;

wherew represents the variables in the LP,αi denotesbasis
function relevance weight:

αi = Eψ(x)[fi(x)] (3)

=
∑

xD

∫

xC

ψ(x)fi(x) dxC ,

ψ(x) is astate relevance density functionweighting the ap-
proximation, andFi(x,a) = fi(x) − γgi(x,a) is the dif-
ference between the basis functionfi(x) and its discounted
backprojection:

gi(x,a) = EP (x′|x,a)[fi(x′)] (4)

=
∑

x
′

D

∫

x
′

C

P (x′
| x,a)fi(x′) dx′

C
.

VectorsxD (x′
D

) andxC (x′
C

) are the discrete and continu-
ous components of value assignmentsx (x′) to all state vari-
ablesX (X′). The HALP formulation is feasible if the set of
basis functions contains a constant functionf0(x) ≡ 1. We
assume that such a basis function is always present.

In the remainder of this paper, we analyze the quality of
HALP approximations. Please refer to Hauskrecht and Kve-
ton (2004), Guestrinet al. (2004), Kveton and Hauskrecht
(2005), and Kveton and Hauskrecht (2006) for information
on how to apply and solve HALP formulations.

Existing work
De Farias and Van Roy (2003) analyzed the quality of ALP.
Based on their work, we may conclude that optimization of
the objective functionEψ[V w] in HALP is identical to mini-
mizing theL1-norm error‖V ∗

− V w
‖1,ψ

. This equivalence
can be proved from the following proposition.

Proposition 1 Letw̃ be a solution to the HALP formulation
(2). ThenV w̃

≥ V ∗.

Proof: The Bellman operatorT ∗ is a contraction mapping.
Based on its monotonicity,V ≥ T

∗V impliesV ≥ T
∗V ≥

· · · ≥ V ∗ for any value functionV . Since constraints in the
HALP formulation (2) enforceV w̃

≥ T
∗V w̃, we conclude

V w̃
≥ V ∗.

Based on Proposition 1, we know that HALP optimizes the
linear value function model with respect to the weightedL1-
norm error‖V ∗

− V w
‖1,ψ

. The following theorem bounds

the quality of a greedy policy for the value functionV w̃.

Theorem 1 Let w̃ be an optimal solution to the HALP for-
mulation (2). Then the expected error of a greedy policy:

u(x) = arg sup
a

[
R(x,a) + γEP (x′|x,a)

[
V w̃(x′)

]]

can be bounded as:

‖V ∗
− V u

‖1,ν
≤

1
1 − γ

∥
∥
∥V ∗

− V w̃

∥
∥
∥

1,µu,ν

,

where‖·‖1,ν
and‖·‖1,µu,ν

are weightedL1-norms,V u is a
value function for the greedy policyu, andµu,ν denotes the
expected frequency of state visits generated by following the
policyu given the initial state distributionν.

Based on Theorem 1, the state relevance density functionψ
should resemble the expected frequency of state visitsµu,ν .
Unfortunately,µu,ν is unknown unlessV w̃ is known, which
is optimized with respect to the unknown distributionµu,ν .
To break this cycle, de Farias and Van Roy (2003) suggested
an iterative scheme that resolves several LPs and adaptsµu,ν

accordingly. Alternatively, real-world control problemsof-
ten exhibit a lot of structure, which permits guessing ofµu,ν .

Error bounds
This section demonstrates how to bound the max-norm error
‖V ∗

− V w
‖∞ of a linear approximationV w in terms of its

L1-norm error‖V ∗
− V w

‖1,ψ
. This result is a step towards

understanding the quality of HALP approximations. For in-
stance, based on the work of Williams and Baird III (1993),
we can bound the loss of acting greedily with respect to the
value functionV w by its max-norm error‖V ∗

− V w
‖∞. In

combination with our work (Theorems 2 and 3), we can de-
rive max-norm bounds on the quality of greedy policies for
HALP approximations. Note that Theorem 1 only provides
bounds on theL1-norm errors of greedy policies.

For discrete-state factored MDPs, we can easily prove the
following proposition.

Proposition 2 Let w̃ be an optimal solution to the HALP
formulation (2) with discrete state variables. Then the max-
norm error ofV w̃ can be bounded as:

∥
∥
∥V ∗

− V w̃

∥
∥
∥
∞,ψ

≤

∥
∥
∥V ∗

− V w̃

∥
∥
∥

1,ψ

,

where‖·‖1,ψ
and‖·‖∞,ψ

areL1 and infinity norms weighted
by the state relevance density functionψ.

Proof: The claim directly follows from the definition of the
norms‖·‖1,ψ

and‖·‖∞,ψ
.

ICAPS 2006

Doctoral Consortium 59

xδ xε

f(x)

g(x)

‖f‖1

‖g‖1,[xδ,xε]

‖f‖∞

δ ε

Figure 1: A graphical representation of the bound from The-
orem 2 in a single dimension. Light and dark gray regions
correspond to the integrals‖f‖1 and‖g‖1,[xδ,xε].

Unfortunately, this bound is loose and not of much practical
interest. In the remainder of this section, we prove a tighter
bound for continuous-state spaces. The notion of continuity
is captured through the Lipschitz condition.

Definition 1 The functionf(x) is Lipschitz continuousif:

|f(x) − f(x′)| ≤ K ‖x − x
′
‖∞ ∀ x,x′; (5)

whereK is referred to as aLipschitz constant.

In the rest of the paper, it is useful to think of the max-norm
(L1-norm) as being the supremum (integral) of a function.

Theorem 2 Let w̃ be an optimal solution to the HALP for-
mulation (2) with continuous state variables. If the function:

f(x) = ψ(x)
∣
∣
∣V ∗(x) − V w̃(x)

∣
∣
∣

is Lipschitz continuous, and there exists a statexδ such that
f(xδ) ≤ δ, the max-norm error ofV w̃ can be bounded as:

∥
∥
∥V ∗

− V w̃

∥
∥
∥
∞,ψ

≤ δ + K

min

n

√
‖V ∗

− V w̃
‖1,ψ

δC
,

n+1

√
2 ‖V ∗

− V w̃
‖1,ψ

KC

,

where‖·‖1,ψ
and‖·‖∞,ψ

areL1 and infinity norms weighted
by the state relevance density functionψ, n is the number of
state variables,K represents the Lipschitz constant off(x),
andC is a problem-specific constant.

Proof: To prove the theorem, we define a function:

g(x) = δ + K ‖x − xδ‖1 . (6)

It follows that the functiong(x) is an upper bound onf(x)
becausef(xδ) ≤ δ, ‖x − xδ‖1 ≥ ‖x − xδ‖∞, andK is the
Lipschitz constant off(x). Furthermore,g(x) is increasing
faster thanf(x) in every dimension. As a result, there exists

a pointxε such thatg(xε) ≥ ‖f‖∞, and the integral ofg(x)
betweenxδ andxε is smaller or equal to‖f‖1. A graphical
interpretation of this situation in a single dimension is shown
in Figure 1.

In general, the integral‖g‖1,[xδ,xε] can be computed as:

‖g‖1,[xδ,xε] =
[

δ +
K

2
ε

] n∏

i=1

εi,

whereεi = |xεi − xδi|, ε = ‖xε − xδ‖1, andn denotes the
number of state variablesX. Sinceε =

∑
n

i=1 εi, we rewrite
the equation as:

‖g‖1,[xδ,xε] = C

[

δ +
K

2
ε

]

εn,

whereC =
∏

n

i=1(εi/ε) is a problem-specific constant that
guaranteesg(xε) ≥ ‖f‖∞. The constantC is bounded from
above byn−n. Finally, we recognize thatC, δ, K, andε are
always nonnegative, which leads to the conclusion:

ε ≤ min

{
n

√
‖f‖1

δC
,

n+1

√
2 ‖f‖1

KC

}

(7)

assuming‖g‖1,[xδ,xε] ≤ ‖f‖1. Direct combination of Equa-
tions 6 and 7 yields our final result.
To make the bound in Theorem 2 practical, we have to assure
a low Lipschitz factorK and the existence of a statexδ such
thatf(xδ) ≤ δ. We cannot guarantee the existence of such a
state yet. However, we can affect the factorK by the choice
of basis functions and state relevance densities. In particular,
to achieve a low valueK, we should use basis functions that
yield close approximations toV ∗. In practice, this condition
cannot be guaranteed unless we knowV ∗. Furthermore, the
Lipschitz factor ofV ∗ may be large itself. To address these
concerns, we generalize Theorem 2 to an arbitrary partition-
ing of the state spaceX.

Theorem 3 Let w̃ be an optimal solution to the HALP for-
mulation (2) with continuous state variables. If:

Ω =
{
ω1, . . . , ω|Ω|

}

is a mutually-exclusive partitioning of the state spaceX, the
function:

f(x) = ψ(x)
∣
∣
∣V ∗(x) − V w̃(x)

∣
∣
∣

is Lipschitz continuous on each partition, and there existsa
statexδω

for everyω such thatf(xδω
) ≤ δω, the max-norm

error of V w̃ can be bounded as:

∥
∥
∥V ∗

− V w̃

∥
∥
∥
∞,ψ

≤ max
ω∈Ω

{

δω + Kω

min

n

√
‖V ∗

− V w̃
‖1,ψω

δωCω

,
n+1

√
2 ‖V ∗

− V w̃
‖1,ψω

KωCω

,

where the explanation of symbols is identical to Theorem 2.
All subscripted symbols are partition-specific.

ICAPS 2006

60 Doctoral Consortium

Proof: Based on the definition of the max-norm‖·‖∞,ψ
, we

conclude:
∥
∥
∥V ∗

− V w̃

∥
∥
∥
∞,ψ

= max
ω∈Ω

∥
∥
∥V ∗

− V w̃

∥
∥
∥
∞,ψω

,

whereψω(x) = ψ(x)1x∈ω(x), and1x∈ω(x) is the indicator
function of the partitionω. The final result is a consequence
of bounding each

∥
∥V ∗

− V w̃

∥
∥
∞,ψω

by Theorem 2.

Theorem 2 provides an insight into the relation between the
L1-norm objective

∥
∥V ∗

− V w̃

∥
∥

1,ψ
and the max-norm error

∥
∥V ∗

− V w̃

∥
∥
∞,ψ

. The max-norm error can be minimized by

loweringL1-norm errors
∥
∥V ∗

− V w̃

∥
∥

1,ψω
if the growth rate

of Kω andδω is controlled. This result leads to an intuitive
advice for choosing basis functions. If the shape of the value
functionV ∗ is not known, we should prefer smooth approx-
imations. These are not likely to inflate Lipschitz constants
Kω whereV ∗ is smooth.

Conclusions
Development of efficient methods for solving large factored
MDPs is a challenging problem. In this paper, we analyzed
the quality of linear approximations and bounded their max-
norm error by the objective value in HALP. We believe that
this analysis can help us to understand the quality of HALP
approximations in continuous domains.

Acknowledgment
During the academic years 2004-06, the first author was sup-
ported by two Andrew Mellon Predoctoral Fellowships. The
first author recognizes support from Intel Corporation in the
summer 2005. This research was also partially supported by
two National Science Foundation grants CMS-0416754 and
ANI-0325353. We thank anonymous reviewers for provid-
ing comments that led to the improvement of the paper.

References
Bellman, R.; Kalaba, R.; and Kotkin, B. 1963. Polyno-
mial approximation – a new computational technique in
dynamic programming: Allocation processes.Mathemat-
ics of Computation17(82):155–161.
Bellman, R. 1957.Dynamic Programming. Princeton, NJ:
Princeton University Press.
Bertsekas, D., and Tsitsiklis, J. 1996.Neuro-Dynamic Pro-
gramming. Belmont, MA: Athena Scientific.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Ex-
ploiting structure in policy construction. InProceedings of
the 14th International Joint Conference on Artificial Intel-
ligence, 1104–1111.
de Farias, D. P., and Van Roy, B. 2003. The linear program-
ming approach to approximate dynamic programming.Op-
erations Research51(6):850–856.
Feng, Z.; Dearden, R.; Meuleau, N.; and Washington, R.
2004. Dynamic programming for structured continuous
Markov decision problems. InProceedings of the 20th
Conference on Uncertainty in Artificial Intelligence, 154–
161.

Guestrin, C.; Hauskrecht, M.; and Kveton, B. 2004. Solv-
ing factored MDPs with continuous and discrete variables.
In Proceedings of the 20th Conference on Uncertainty in
Artificial Intelligence, 235–242.
Hauskrecht, M., and Kveton, B. 2004. Linear program
approximations for factored continuous-state Markov de-
cision processes. InAdvances in Neural Information Pro-
cessing Systems 16, 895–902.
Koller, D., and Parr, R. 1999. Computing factored value
functions for policies in structured MDPs. InProceedings
of the 16th International Joint Conference on Artificial In-
telligence, 1332–1339.
Kveton, B., and Hauskrecht, M. 2005. An MCMC ap-
proach to solving hybrid factored MDPs. InProceedings
of the 19th International Joint Conference on Artificial In-
telligence, 1346–1351.
Kveton, B., and Hauskrecht, M. 2006. Solving factored
MDPs with exponential-family transition models. InPro-
ceedings of the 16th International Conference on Auto-
mated Planning and Scheduling.
Munos, R., and Moore, A. 2002. Variable resolution dis-
cretization in optimal control.Machine Learning49:291–
323.
Puterman, M. 1994.Markov Decision Processes: Discrete
Stochastic Dynamic Programming. New York, NY: John
Wiley & Sons.
Schweitzer, P., and Seidmann, A. 1985. Generalized
polynomial approximations in Markovian decision pro-
cesses.Journal of Mathematical Analysis and Applications
110:568–582.
Van Roy, B. 1998.Planning Under Uncertainty in Com-
plex Structured Environments. Ph.D. Dissertation, Mas-
sachusetts Institute of Technology.
Williams, R., and Baird III, L. 1993. Tight performance
bounds on greedy policies based on imperfect value func-
tions. Technical Report NU-CCS-93-14, Northeastern Uni-
versity.

ICAPS 2006

Doctoral Consortium 61

Memory-Efficient Graph Search in Planning and Model Checking

Peter Lamborn and Eric A. Hansen
Dept. of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

pcl16@msstate.edu

Abstract

Graph search plays a central role in both planning and
model checking. We describe how to adapt an approach
to memory-efficient graph search that has been used for
domain-independent STRIPS planning in order to create a
more memory-efficient domain-independent model checker.
We discuss some changes to this approach that are required
by the differences between planning and model checking, and
report preliminary results that indicate its effectiveness.

Introduction
Model checking is a fully-automated formal technique for
verifying that a property is satisfied, or modeled, by a tran-
sition system (Clarke, Grumberg, & Peled 2000). The tran-
sition system is often a protocol, such as a protocol for wire-
less communication or an embedded hardware device. A
violation of the property is an error. For example, in a wire-
less protocol, an error could be starvation of a device. Model
checking can find errors that are difficult to detect by testing
and simulation, and is especially effective in finding errors
with long traces or errors that occur after unusual sequences
of events. Model checking can also verify that no errors ex-
ist, which is impossible using testing and simulation.

There are several important connections between research
in model checking and research in automated planning and
heuristic search. First of all, there is a large body of work
on planning via model checking (Giunchiglia & Traverso
1999). In this work, planning domains are formalized as
transition systems, goals are expressed as temporal formu-
las, and planning is done by using model checking to deter-
mine whether the temporal logic formula is true in the tran-
sition system. Another important connection between au-
tomated planning and explicit-state model checking is that
both rely on state-space exploration using graph search. For
both, scalability is limited by the state explosion problem –
the size of the state space grows exponentially in the num-
ber of variables in its description. Finally, in both plan-
ning and model checking, there is an emphasis on domain-
independent tools; there is a focus on developing domain-
independent model checkers just as there is interest in de-
veloping domain-independent planners.

This short paper describes preliminary work on using an
approach to memory-efficient graph-search originally devel-
oped for domain-independent planning in order to improve

the scalability of a domain-independent model checker. The
approach we adapt is called breadth-first heuristic search
with layered duplicate detection (Zhou & Hansen 2006).
Layered duplicate detection turns out to be a very effective
approach to reducing the memory requirements of model
checking because it can be easily implemented in a domain-
independent way and works well in searching directed
graphs; model checking always involves directed graphs. In
our adaptation, we use breadth-first search without a heuris-
tic to perform a complete search of a graph, in order to verify
that a property always holds. We report preliminary empiri-
cal results that illustrate that this approach can significantly
improve the range of models that can be verified.

Background
Graph search and model checking

In model checking, a transition system (e.g., for a protocol)
is represented by a directed graph in which the nodes cor-
respond to states of the system and the edges correspond
to state transitions. For example, a state may indicate two
packets in flight, a valid transition could be the reception of
a packet, and the new state would contain just one packet
in flight. The graph has an initial state, and the set of all
possible paths in the graph represents the set of all possi-
ble behaviors of the protocol. Given this representation, a
property can be verified by a complete search of the graph
to make sure that no error states can be reached. If an error
is found, a trace of the error (i.e., a path from the initial state
to the error state) is returned and used to debug the protocol.

The scalability of model checking is limited by the size
of the graph that must be searched. In explicit-state model
checking, every generated state is stored in a hash table that
is used for duplicate detection, which is the process of deter-
mining whether or not a newly-generated state is a duplicate
of a previously-generated state. Since a complete search of
the graph is needed to verify a system, the memory needed
to store all generated states is the bottleneck of model check-
ing. As a result, some approaches to model checking aban-
don verification and merely attempt to detect errors in a
swift manner. Heuristic search algorithms such as A* have
been used to efficiently find paths to error states, which are
treated as goal states (Edelkamp, Lluch-Lafuente, & Leue
2001). Other approaches, such as randomized search, have

ICAPS 2006

62 Doctoral Consortium

also been used (Jones et al. 2003).

Frontier search and layered duplicate detection

Frontier search is a memory-efficient approach to graph
search that only stores the Open list, and saves memory by
not storing the Closed list (Korf et al. 2005). Instead of the
traceback method of solution recovery, it uses a divide-and-
conquer method that involves finding an intermediate node
along an optimal path and using it to divide the search prob-
lem into two subproblems – the problem of finding an opti-
mal path from the start node to the intermediate node, and
the problem of finding an optimal path from the intermediate
node to the goal node. The subproblems are solved recur-
sively by the same search algorithm until all nodes along an
optimal solution path for the original problem are identified.

Since frontier search only stores nodes on the frontier, it
needs to prevent already-explored nodes that are no longer in
memory from being regenerated. In undirected graphs, Korf
et al. (2005) use a technique called used-operator bits that is
very effective. But directed graphs present more of a chal-
lenge. In the approach proposed by Korf et al., each time a
node is expanded and its successors generated, all predeces-
sors of these successors are also generated, even if no path
has yet been found to these nodes. These dummy nodes are
stored in the Open list with an g-cost of infinity until a path
to them is found, at which point they acquire the g-cost of
that path. Although this guarantees that no node is generated
more than once, the dummy nodes would not be generated
by a standard graph-search algorithm and there is no bound
on the number of dummy nodes that can be generated. In
some cases, the additional overhead for generating dummy
nodes can make search performance worse.

Zhou and Hansen (2006) propose an alternative approach
to duplicate detection that can be used in breadth-first
search. In this approach, called layered duplicate detection,
the Closed list is stored in layers, one for each g-cost, and
earlier layers are deleted to recover memory. In undirected
graphs, they point out that keeping just one previous layer
in memory is sufficient to detect all duplicates. In directed
graphs, they propose keeping one or more previous layers,
where the number needed to prevent all duplicates depends
on the structure of the graph. They also point out that even if
no previous layers are kept in memory, the number of times
a node can be regenerated is bounded by the depth of the
search. In depth-first search, by contrast, the number of node
regenerations can be exponential in the depth of the search.

Layered duplicate detection is easy to implement in a
domain-independent way, in contrast to the approach to du-
plicate detection used in Korf et al.’s implementation of fron-
tier search. Therefore, we use frontier breadth-first search
with delayed duplicate detection to reduce the memory re-
quirements of our domain-independent model checker.

Algorithm and preliminary results

We briefly describe our approach to memory-efficient model
checking and present some preliminary experimental results.

Algorithm

The starting point for our implementation is the Murφ model
checker, a domain-independent tool that takes a description
of a model as input and uses breadth-first search to verify
that the model is correct (Dill 1996). If an error is found, it
returns an error trace.

Since the graphs that are searched in model checking are
directed graphs, we modify the breadth-first search algo-
rithm to use layered duplicate detection. First of all, this
requires indexing the hash table of stored states by layers,
so that individual layers can be deleted as the search pro-
gresses. The breadth-first search proceeds as usual until it
begins to run out of memory. At that point, it recovers mem-
ory by deleting layers of generated states from memory. The
layers it deletes are those that are furthest from the frontier
(i.e., the shallowest layers), since they are less likely to be
useful in duplicate detection. Any closed nodes are eligible
for deletion, if more memory is needed. Thus, as long as
the Open list can fit in memory, the search continues. (If the
Open list does not fit in memory, we could use beam search
to continue to search for an error, but we do not consider this
possibility in this paper.)

If an error is found, the error trace is recovered by using
the traceback method to follow pointers backwards from the
error state through as many layers as still reside in memory.
If some layers are missing, the shallowest state in the error
trace is treated as a goal state, and another search is con-
ducted to find a path from the initial state to this state, in or-
der to finish recovering the error trace. This is a modification
of the divide-and-conquer technique for solution recovery.

Theoretical properties

Because the search is breadth-first, if an error is found, the
error trace is guaranteed to be a shortest path to the error
state. If no error is found, the search terminates when the
Open list is empty and there are no more states of the graph
to explore. If the search terminates in this way without find-
ing an error, the model is verified.

However, when layers of the search graph are deleted to
save memory, the search is no longer guaranteed to termi-
nate with an empty Open list, even if the graph is finite. If
some layers of the search graph are removed from memory,
it is possible for duplicate nodes to be generated during the
search. Zhou and Hansen (2006) give some conditions under
which no duplicates will be generated, but these do not hold
in general. In the worst case, the number of times a node
can be regenerated is bounded by the depth of the search
(d) and the number of of layers stored (l), and no state can
be duplicated more than d/l times. In practice, duplicates
are generated even less frequently than this. But the possi-
bility of regenerating previously explored nodes means that
there is no guarantee the search will terminate with an empty
Open list, since the search can repeatedly regenerate and re-
explore the same parts of the search graph.

If the model contains an error, however, breadth-first
search is guaranteed to terminate by finding a shortest path
to this error, no matter how many duplicates may be gen-
erated. This points to a second way to detect termination

ICAPS 2006

Doctoral Consortium 63

Model Peak Nodes Total Nodes Number
in Memory Generated of Layers

cache32622 14,141 111,335 8
newlist8 3,930,856 24,714,307 44
arbiter13 1,521,655 11,545,717 17
arbiter14 1,429,446 11,255,853 14
adash1313e 684,946 13,480,127 15
ns22110 87,366 173,866 8
dynpart4 2,619,984 16,202,474 30

Table 1: Memory savings for seven different models.

and verify a model. If the diameter of the search graph is
known, or can be bounded, and no error is found by the
search algorithm in searching up to this depth, then no er-
rors can be present and the model is verified. (If the search
algorithm generates any nodes past this depth, they must be
duplicates.) This method of detecting termination is similar
to that used in bounded model checking, which uses sat-
isfiability testing to verify that a model does not have any
errors up to depth k (Clarke et al. 2001). If the model
is verified for a depth that is equal to or greater than the
diameter of the graph, called the completeness threshold,
verification is complete. Various methods for determining
a completeness threshold have been explored in the litera-
ture on bounded model checking, and can be applied in our
approach to model checking.

Preliminary empirical results

Table 1 shows the performance of our modified algo-
rithm in verifying seven different models. They include
a cache coherency protocol with six caches and two disks
(cache32622), a protocol for maintaining a linked list in a
parallel environment with eight parallel nodes (newlist8), a
mutual exclusion protocol with thirteen or fourteen threads
and an arbiter in charge of who gets access (arbiter13 and ar-
biter14), the DASH communications protocol for a network
of three nodes (adash1313e), the Needham-Schroeder pro-
tocol for secure communication for four participants with
two intruders (ns22110), and an algorithm for dynamically
partitioning a search with four processing nodes (dynpart4).

In model checking, the node data structure is typically
very large because the state description includes many vari-
ables that can have a large range of possible values. For
the cache coherency model, for example, the size of a sin-
gle node is 167 bytes. Therefore, even though the models
in Table 1 are relatively small, none can be verified using
1GB of memory without using our layered duplicate detec-
tion technique. The difference between the peak number of
nodes stored and the number of nodes generated during the
search gives a sense of how this approach improves scalabil-
ity by allowing larger models to be verified using the same
amount of memory. Note that because we use blind breadth-
first search, the Open list it typically much smaller than the
Closed list, and deleting the Closed list from memory saves
a substantial amount of memory and significantly improves
scalability.

Future Work
Besides testing this approach on larger and more varied
models, we hope to eventually extend it in several ways.
When the Open list does not fit in memory, we plan to use
disk to continue the search. While disk provides much more
storage than internal memory, it is also limited, and our ap-
proach will allow complete search of graphs that do not fit
on disk. For example, Korf and Schultze (2005) describe
a complete breadth-first search of the Fifteen Puzzle that
requires 1.4 terabytes of disk just to store the search fron-
tier. Their frontier search algorithm is for undirected graphs
and specialized for the Fifteen Puzzle, whereas our approach
will allow domain-independent search in directed graphs.

We will also consider parallel search algorithms. Our ap-
proach to both external-memory and parallel graph search
will be based on structured duplicate detection, which has
been shown to be very effective in domain-independent
planning (Zhou & Hansen 2004). Thus, we will continue
to leverage the close connections between graph search in
domain-independent planning and model checking.

References
Clarke, E. M.; Biere, A.; Raimi, R.; and Zhu, Y. 2001.
Bounded model checking using satisfiability solving. For-
mal Methods in System Design 19(1):7–34.
Clarke, E. M.; Grumberg, O.; and Peled, D. 2000. Model
Checking. MIT Press.
Dill, D. 1996. The Murφ verification system. In R. Alur,
and T. Henzinger., eds., Proceedings of the Eighth Inter-
national Conference on Computer Aided Verification CAV,
volume 1102, 390–393. Springer Verlag.
Edelkamp, S.; Lluch-Lafuente, A.; and Leue, S. 2001. Di-
rected explicit model checking with HSF-SPIN. In Dwyer,
M. B., ed., Proc. of the 8th Int. SPIN Workshop, volume
2057 of Lecture Notes in Computer Science, 57–79.
Giunchiglia, F., and Traverso, P. 1999. Planning as model
checking. In Proceeding of the Fifth European Conference
on Planning (ECP 1999), volume 1809 of Lecture Notes in
Computer Science, 1–20. Springer.
Jones, M.; Mercer, E.; Bao, T.; Kumar, R.; and Lamborn,
P. 2003. Benchmarking explicit state parallel model check-
ers. In Proceedings of the 2nd International Workshop on
Parallel and Distributed Methods in Verification, 84–98.
Korf, R., and Schultze, P. 2005. Large-scale parallel
breadth-first search. In Proc. of the 20th National Con-
ference on Artificial Intelligence (AAAI-05), 1380–1385.
Korf, R.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search. Journal of the ACM 52(5):715–748.
Zhou, R., and Hansen, E. 2004. Structured duplicate de-
tection in external-memory graph search. In Proceedings
of the 19th National Conference on Artificial Intelligence
(AAAI-04), 683–688.
Zhou, R., and Hansen, E. 2006. Breadth-first heuristic
search. Artificial Intelligence 170:385–408.

ICAPS 2006

64 Doctoral Consortium

A Study of Process Languages for Planning Tasks

Stephen Lee-Urban, Héctor Muñoz-Avila

Department of Computer Science & Engineering, Lehigh University, Bethlehem, PA 18015-3084 USA. {sml3, hem4}@lehigh.edu

Abstract
We present the semantics of processes for planning tasks. We
target Task-Method-Knowledge (TMK) process models, a widely
used formalization of processes. These semantics are formalized
by proving that Task-Method-Knowledge (TMK) process models
can be translated into equivalent Hierarchical Task Networks
(HTNs). We construct a Turing-computable translation function
that maps TMK process model constructs to equivalent HTN
constructs. We leverage well-known results from HTN planning
to define soundness, completeness and complexity results for
TMKs.

Introduction
Processes are an important family of knowledge constructs.
Loosely speaking, a process is the means by which tasks
are accomplished via a series of actions or operations.
Process modeling is important when reasoning by concept
reuse and modification; without such a model, reasoning
takes place at the level of actions, such as STRIPS
operators, and knowledge transfer to new problems is
difficult. Process models ease knowledge transfer by
capturing how to achieve a goal. This yields a flexible
representation for problem solving.

Processes have been used in a wide range of
applications. For example, they have been used to:
represent web services integration (Curbera et al., 2002),
build adaptive agents (Ulam et al,. 2005), build
introspective agents that use models to identify failures in
their reasoning (Murdock, 2001), and build a testbed for
machine learning systems (Molineaux & Aha, 2005). For
our analysis, we use the process language called Task-
Method-Knowledge process models (Murdock, 2001),
which was also used in the latter three applications
mentioned above.

One drawback of Task-Method-Knowledge process
models (TMKs) is that they lack clear semantics, in
particular when viewed as a language for expressing
planning problems as used in REM (Murdock, 2001) and
TIELT (Molineaux & Aha, 2005). In this paper we define
formal semantics for TMKs by demonstrating their
equivalence with Hierarchical Task Networks (HTNs).
This will allow us to state soundness and completeness
results for planning with TMKs, show that planning with
TMKs is NP-complete, and prove that they are strictly
more expressive than STRIPS plans. Furthermore, we
prove that a Turing-computable translation function exists
from TMKs to HTNs that runs in polynomial time.

The significance of these results is threefold. First, the
results imply that HTN reasoning capabilities that have
clear semantics can be applied to the growing body of
TMKs knowledge. Second, several advances involving
HTNs, including results on their applicability (Wilkins,
1988) and learning them (Choi & Langley, 2005; Ilghami
et al., 2005), can be applied to a wide range of real-world
applications for which TMKs knowledge is readily
available. Third, TMKs adopt common characteristics of
process languages, including grouping of simple activities
into more complex activities, iteration (e.g., while loops),
variable assignment, and value return. Thus, our results
should also apply to other process languages.

Hierarchical-Task-Network Planning
HTN planning is a form of planning that reasons at the
level of high-level tasks instead of lower-level actions
(Erol et al., 1994). In HTN planning, high-level tasks are
repeatedly decomposed into simpler ones until all tasks
have been reduced to primitive actions.

The main knowledge artifacts in HTN planning are
called methods. A method encodes how to achieve a
compound task. Methods consists of three elements: (1) the
task being achieved, called the head of the method, (2) the
set of preconditions indicating the conditions that must be
fulfilled for the method to be applicable, and (3) the
subtasks needed to achieve the head. The second set of
knowledge artifacts are the operators. Operators in HTN
planning have the same purpose as in STRIPS planning:
they represent action schemes. Like STRIPS operators, an
HTN operator consists of the primitive task it achieves and
its effects, indicating how the world changes when it is
applied. However, HTN operators have no preconditions
because applicability conditions are determined in the
methods.

Task-Method-Knowledge Planning
TMK planning is another form of planning that, like HTN
planning, reasons at the level of high-level tasks instead of
low-level actions. TMKs capture tasks (what an agent
does), methods (how the agent works), and knowledge (the
information used by the agent). Tasks are accomplished by
methods, which are in turn further decomposed into lower
level tasks as specified by the methods. A hierarchy is
consequentially created where the leaves of the resulting
TMK model tree are primitive tasks (not decomposable)
that explicitly specify their effects, and the non-primitive

ICAPS 2006

Doctoral Consortium 65

tasks are the internal nodes of the tree (Murdock, 2001).
The set of plans representable TMK models is a superset of
the set of plans representable as HTNs.

As with HTNs, methods are behavioral elements that
encode how a piece of computation works; the overall
function of a method is encoded in the task it addresses.
Methods specify the means of accomplishing a task, and
the applicability of a selected method to a particular task is
determined by the method’s preconditions and the current
situation. A TMK method has three elements:
preconditions that must be true in order to perform the
method, postconditions that represent the consequences of
performing it, and a reference to the first transition in a
state-transition machine that implements the method’s
behavior. A method can be viewed as a state machine,
which is convenient for describing the translation of
statements (e.g., while, for, if). TMK operators have the
same form as in STRIPS planning.

Translating TMKs into HTNs: A Sketch
Our translator selects each input TMK method and calls a
recursive procedure that traverses its state-transition
machine implementation. This state machine can be
viewed as a sequence of statements s1, .., sn, where each
statement si can be a complex statement consisting of its
own statements. Our current implementation translates
TMKs from TIELT (Molineaux, & Aha, 2005) into HTNs
for the SHOP HTN planner (Nau et al., 1999).

The procedure HTNs() translates a list of TMK methods
MT into an equivalent collection MT of HTN methods (Fig.
1). For every TMK method mT we call the procedure
toHTNs(), with the body of mT and a dummy task that can
always be accomplished (line 1-2). This procedure returns
the collection M of HTN methods translating the body and
a task tbody that is accomplished by methods in M (line 3).
We construct a new method m, that decomposes t into tbody
(line 4). All these are collected and returned (lines 5-6).

The procedure toHTNs() is also shown in Figure 2. It
receives as input a sequence of TMKs statements E that
must be executed before a task tnext (initially called with a
dummy task). This procedure translates a finite state
machine’s statements in the reverse order (sn, ..., s1) in
which they appear in the machine and each statement sk is
translated from the most to the least deeply nested. If E
has only one statement s1 that has no body, we create a
new task nt accomplished by a new method m that
decomposes into the translation of that statement (lines 5-
7). The task tnext is appended as the last subtask of the
method (line 8). The pair (m,nt) is then returned (line 9). If
E has only one statement s1 that has a body (i.e., one or
more nested statements), then we return the result of a
recursive call (lines 3 and 4). If E has more than one
statement, these are translated in reverse order (lines 10-
14). A recursive call is in line 12. We update the task tnext
for the next iteration to be the task t returned by the
previous recursive call (line 13). During each iteration, the

resulting HTN methods are collected in MH (line 14).
Finally the pair (MH,t) is returned (line 15).
 Table 1 informally summarizes how the individual
statements are translated in the algorithm toHTNs().

More compact translations are possible if HTN planners
support expressions defined in the planning language
PDDL (Long & Fox, 2002). PDDL is a STRIPS-based
planning language, a subset of which is used in the annual
AI planning competition. However, the mappings
described here are the most direct and suffice to illustrate
the equivalence between TMKs and HTNs.

Procedure HTNs(MT)
Input: MT is a list of TMKs methods
Output: A collection MH of HTN methods translating MT
1 MH {}
2 for every TMKs method mT =(t,body) in MT do
3 (M,tbody) toHTNs(body,dummyTask())
4 m newMethod(t, <tbody>)
5 MH MH ∪ M ∪ { m }
6 return MH
Procedure toHTNs(E,tnext)
Input: E is a sequence of TMKs statements that must be
executed before tnext
Output: A collection MH of HTN methods translating E
and the task t that achieve the methods in MH
1 Let E = (s1, .., sn)
2 if (n = 1) then
3 if (s1 is complex) then
4 return toHTNs (s1,tnext)
5 else
6 nt newTask()
7 m newMethod(nt, translateAtomicStatement(s1))
8 appendMethod(m, tnext)
9 return ({m}, nt)
10 else
11 for k n to 1 do
12 (M,t) toHTNs(sn, tnext)
13 tnext t
14 MH MH ∪ M
15 return (MH,t)
Figure 1: Pseudo-code of the TMKs Translation Algorithm

TMKs HTNs
Return (values from
functions)

Use an unbound variable as a
parameter in the caller’s
invocation; set same variable in
called method’s preconditions

If-then-else Use HTN method syntax
While (iteration) Use recursion
For (iteration) Change to while, use recursion
Tasks with
preconditions, effects

Add preconditions to methods
and the effects as new tasks

Call Subtask
Set (variable
assignment)

Split into a new method and
pass the variables by value

Table 1: Mapping from TMKs to HTNs

ICAPS 2006

66 Doctoral Consortium

Semantics and Complexity of TMKs Planning
According to Erol et al. (1994) no well-established
definition of planning language expressivity exists;
expressivity has instead been defined using model-
theoretic semantics, operational semantics, and the
computational complexity of problems representable by the
planning language.

One way to demonstrate the expressive equivalence of
HTNs and TMKs is a presentation like that described in
(Erol et al., 1995), which states that the expressivity of two
languages can be compared by demonstrating that a
polynomial or Turing computable transformation exists
between them. We presented a sketch of this
transformation from TMKs to HTNs in the previous
section. This sketch allows us to assert the following:

Theorem: There exists a Turing-computable function
ψ from the set of TMK planning problems to the set of
HTN planning problems such that, for any TMK
planning problem Ρ and any plan σ, σ solves Ρ iff σ
solves the HTN planning problem ψ(Ρ) = PH, under the
assumption that Ρ and PH have the same set of
operators.

We define a TMK planning problem as a triple P = 〈d, I,
T〉, where T = (MT,O) is a TMK process model, I is the
initial state, and d is the task network for which a plan is
desired. Therefore, the translation function ψ defines a
translation from MT into MH because d, I, and O are the
same for both P and PH.

Given the existence of a transformation, both P and σ
can apply to HTNs and therefore lend their well-defined
semantics to TMKs. In particular:

• TMK Planning is Sound and Complete. This means
that if a planning problem is solvable, a correct solution
plan will be found. Informally, given a TMK planning
problem P = 〈d, I, T〉, a plan that recursively achieves all
tasks in d is called a correct plan of the planning problem
(Nau et al., 1999). Given a TMK problem P = 〈d, I, T〉,
where T = (MT,O), the translation H = (ψ(MT),O)
defines an HTN planning domain. The solution plan for
PH = 〈d, I, H〉 is a sequence of actions, each an instance
of an operator in O. This same sequence is also a
solution for P.

• TMKs are more expressive than STRIPS. This means
that, for every Turing-computable function ψ from the
set of TMK planning problem instances to the set of
STRIPS planning problem instances, there is a TMK
planning problem instance Ρ, for which either ψ(Ρ) is not
defined or, if it is defined, σ does not solve ψ(Ρ). This
result follows from HTNs being provably more
expressive than STRIPS (Erol et al., 1994) and because
TMKs can always be represented as equivalent HTNs.

• TMK planning is NP-Complete.

 Conclusions and Future Work
In this paper we described formal semantics for Task-
Method-Knowledge process models by constructing a
Turing-computable translation function that maps TMKs
into equivalent HTN constructs. This allowed us to state
soundness, completeness, and complexity results for
planning with TMK process models, and prove that TMK
planning is strictly more expressive than STRIPS planning.
Furthermore, we proved that this translation function runs
in polynomial time.
 In our future work, we wish to conduct experiments to
confirm the theoretical results. We wish to empirically
show that the overhead of plan generation running time
with a translated domain is linearly correlated to an
equivalent domain natively encoded in an HTN. We will
explore solving project planning problems translated from
TMKs into HTNs. We also wish to explore our conjecture
that the translation works for other process languages.

References
Choi, D., & Langley, P. 2005. Learning teleoreactive

logic programs from problem solving. Proceedings of the
Fifteenth International Conference on Inductive Logic
Programming. Bonn, Germany: Springer.

Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller,
D., Thatte, S., Weerawarana, S. 2002. Business Process
Execution Language for Web Services, Version 1.0. IBM
technical report.

Erol, K., Hendler, J., & Nau, D. 1994. HTN planning:
Complexity and Expressivity. In Proceedings of the
Twelfth National Conference on Artificial Intelligence
(AAAI-94). AAAI Press

Erol, K., Hendler, J., & Nau, D. 1995. Complexity results
for HTN planning. Annals of Mathematics and Artificial
Intelligence. Kluwer.

Ilghami, O., Muñoz-Avila, H., Nau, D. S., and Aha, D.
W. 2005. Learning approximate preconditions for methods
in hierarchical plans. Proceedings of the International
Conference on Machine Learning (ICML-05)

Fox, M., & Long, D. 2003. pddl2.1: An extension to
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research..

Molineaux, M., & Aha, D.W. 2005. TIELT: A Testbed
for Gaming Environments . In: Proceedings of the
Twentieth National Conference on Artificial Intelligence.
Pittsburgh, PA: AAAI Press.

Murdock, J. W. 2001. Self-Improvement through Self-
Understanding: Model-Based Reflection for Agent
Adaptation. Dissertation Georgia Institute of Technology.

Ulam, P., Goel, A., Jones, J. & Murdock, J.W. 2005.
Using Model-Based Reflection to Guide Reinforcement
Learning. Proceedings of the IJCAI 2005 Workshop on
Reasoning, Representation and Learning in Computer
Games. Edinburgh, UK.

Wilkins, D. E. 1988. Practical Planning: Extending the
Classical AI Planning Paradigm. Morgan Kaufmann
Publishers Inc.

ICAPS 2006

Doctoral Consortium 67

Software tool for the master production schedule conception based on the
Capacitated Lot Sizing Problem

M. Gourgand
(1)

, N. Grangeon
(2)

, D. Lemoine
(2)

, S. Norre
(2)

LIMOS CNRS UMR 6158
(1) ISIMA, 24 avenue des Landais, 63000 Clermont Ferrand

(2) IUT de Montluçon, Avenue A. Briand, BP 2235, 03101 Montluçon

 {gourgand,grangeon}@isima.fr

{lemoine,norre}@moniut.univ-bpclermont.fr

Introduction

Production management is a set of decisions that must
reflect a compromise between customers’ satisfaction and
production criteria such as cost, delay and quality. The
goal of production management is to ensure the continued
success of the firm. Industrial planning plays a central part
in this one. The latter can be divided into three hierarchical
decisional levels:

- the strategic level deals with long-term decisions
such as opening or closing of factories or
determining building sites. (horizon is more than
eighteen months),

- the tactical level which deals with conception of
several plans such as Master Production Schedule,
stock policy on a mid term horizon (six to eighteen
months),

- the operational level which relates to the daily
scheduling of the workshops.

Judging from the literature, the tactical planning is

composed of two plans: The Sales and Operations Planning
(S&OP) and the Master Production Schedule. The
objective of S&OP is to obtain a compromise between
sales objectives and production capacities. Therefore, it
constrains the Master Production Schedule which
determines, for each period, a balance between the capacity
constraints and the customer’s satisfaction while
minimizing the production cost.

The mathematical model

Traditionally, the tactical planning models are based
on Lot-Sizing models which determine the size of batches
in order to minimize costs (setup cost, holding cost,
production cost). Among those, there is a basic model: the
“Capacitated Lot Sizing Problem” (CLSP) which
elaborates the Master Production Schedule.

The CLSP can formally be described as a mixed-
programming model:

()
1 1

, , 1 ,

1

 (.1)

. :

, {1,.., }, {1,.., } (.2)

, {1,.., } (.3)

, {1,.., }, {1,.., } (.4)

, ,

T N

i it i it i it

t i

i t i t i t it

N

i it t

i

it t it

it it

Min s X h I rQ Eq

s c

I I Q d i N t T Eq

p Q C t T Eq

Q C X i N t T Eq

I Q

= =

−

=

+ +

= + − ∈ ∈

≤ ∈

≤ ∈ ∈

∈

∑ ∑

∑

ℕ {1,.., }, {1,.., } (.5)

{0,1}, {1,.., }, {1,.., } (.6)
it

i N t T Eq

Y i N t T Eq

 ∈ ∈

∈ ∈ ∈

Parameters for the CLSP:
N Number of items.
T Number of periods.
dit External demand for item i at period t.
Ct Available capacity of the machine at period t.
pi Capacity request for producing one unit of item i.
si Non-negative setup costs for item i.
hi Non-negative holding costs for item i.
ri Non-negative production costs for item i.
Ii0 Initial inventory for item i.

Decision variables for the CLSP:
Qit Production quantity of item i at period t.
Iit Inventory of item i at the end of period t.
Xit Binary variable which indicates whether a setup

for item i occurs at period t (Xit=1) or not (Xit=0).

(Eq.1) is the objective function: it means the sum of
the setup, the holding and the production costs
that we seek to minimize.

(Eq.2) represents the inventory balances.
(Eq.3) represents the capacity constraint.
(Eq.4) represents the setup constraint: due to these

restrictions, production of an item can only take
place if the machine is set up for that particular
item.

(Eq.5) are the non negativity conditions.
(Eq.6) the setup variables are defined as binary.

ICAPS 2006

68 Doctoral Consortium

State of art

Solving CLSP is known as NP-Hard (Bitran et al. 1982).
If positive setup times are added into the model, the
feasibility problem is NP-complete (Trigeiro and al. 1989).
In this case, the Eq 3 becomes

()
1

, {1,.., }, {1,.., } (.3')
N

i it i it t

i

p Q z X C i N t T Eq
=

+ ≤ ∈ ∈∑

where zi is the setup time to set the machine up to produce
the item i at period t.

Many researchers have developed solutions for CSLPs,
including mathematical programming (Leung et al 1997,
Eppen et al. 1987, Belvaux et al. 2001 …), heuristic
solutions (Dogramaci et al. 1981, Trigeiro et al. 1989,
Diaby et al. 1993, Kirca et al. 1995, Degraeve et al. 2003
…), and metaheuristics (Gopalakrishnan et al. 2001,
Özdamar et al. 2002, Karimi et al. 2005 …)

Our contribution

Our proposal is divided into two successive axes:

- The first one concerns the computation of a
feasible solution, i.e. the design of a tactical plan
which respects the capacity constraint and the
customer’s demand, even if setup times are
considered,

- The second one is the cost optimization of the
feasible solution found before.

In each step, we propose a metaheuristic. We encode the

solution by a matrix representing a production plan. For
each metaheuristic, we define an objective function and
neighbouring systems.

Computation of a feasible solution:

So as to, we use the kangaroo algorithm, a metaheuristic

based on simulated annealing (Fleury, 1993). For this one,
we propose:

- a new quadratic objective function which models
the capacity overshooting, whose minimization
allows the smoothing of the production in order to
find a feasible plan.

- two types of neighbouring systems: the first one
allows to move a quantity period by period if and
only if the customer’s demand and capacity
constraint are respected. The second one, changes
the current solution, neglects capacity but respects
demand.

- We use customer demand as initial solution for this
method. In most of the cases, this solution is not
feasible.

The quadratic function is defined as:

()
2

1 1

0,
T N

i it i it t

t i

k Q Max p Q z X C
= =

= + −

∑ ∑

where Q is the proposed planning. As Shown in Fig.1,
this latter allows the smoothing of the production.

Fig1. Effect of the objective function

 An initial solution Q* is found if and only if k(Q*)=0.

The first neighbouring system is summarised by the
algorithm Algo1 :
Input: A solution Q
Output: A new solution Q*
1. Q* ← Q

2. Choose i randomly in {1,..,N}.

3. Choose randomly tstart and ttarget in {1..T}

4. Compute Kmax, the maximal quantity of item i to be

shifted from tstart to ttarget according to proposition 1 below.

5. Set α:=0.6, choose randomly β∈[0,1]

6. If β≤α then choose randomly K in {0,Kmax}

 else K=Kmax.

7. Q*[i,tstart]:= Q*[i,tstart]-K

8. Q*[i,ttarget]:= Q*[i,ttarget]+K.

Algo1: Algorithm for the first neighbouring system.

α reflects distribution of two strategies: the K=Kmax
strategy which tries to remove a maximum of setup time,
and the other one which allows smaller adjustments.

Proposition1: Let Q a production planning which respects
the demand. Q* is another one if and only if:

- if target≤start:

()
1

max
min ,/

N

target j jtarget j jtarget i

j

istartQC p Q z X pK
=

− −

=

∑

- if start>target:

()
1

max
min ,/ , min

N

target j jtarget j jtarget i it
start t<target

j

istartQC p Q z X p IK
≤

=

− −

=

∑

The second neighbouring system uses the same algorithm
but neglects capacity in the determination of Kmax. By the
way, we accept worse transitions in term of capacity.

ICAPS 2006

Doctoral Consortium 69

Optimization of the feasible solution:

 Concerning the optimization part, we use several
metaheuristics based on simulated annealing algorithm:

- The objective function stands for the whole
production cost for the plan as modelled in the
CLSP (Eq 1),

- The neighbouring system allows the quantity
moves period by period if and only if it respects
the customer’s demand and doesn't exceed the
capacity of the target period. Moreover, it
examines the inventory position in order to
improve the computation of a new current solution
while banishing bad tries.

The neighbouring system is based on the (Algo1).

Indeed, proposition 1 ensures that if Q is feasible for the
CLSP then Q* deduced from (Ago1.) will keep that
property. The major change is in the choice of α. Indeed,
α is designed as a function of iteration count. Its goal is to
support the choice of K=Kmax initially in order to remove a
maximum of setup cost. This function converges gradually
toward 0,6 because, after many tries, we have determined
that it is a very good distribution for the two choices.
Therefore

α(iter)=0.6-1/ln(1+10
3×iter)

In order to measure the quality of the obtained solution,

we have implemented a lagrangian relaxation to determine
a lower bound. This one is inspired by Diaby’s works
(Diaby et al. 1993). Our relaxation deals with Capacities
constraints (Eq.3). Indeed, Chen et al. 1990 have shown
that it provides the best lower bound. The Wagner-Within
algorithm (Wagner et al. 1958) is used to solve
subproblems optimally.

Our method is tuned according to the general formula
which guides lagrangian coefficients:

() ()

()

1 1
2

1 1

0,

N
k k

k i it i it t
k k i

t t k
T N

k k

i it i it t

t i

Z Z p Q z X C

Max

p Q z X C

λ λ γ+ =

= =

 − + −
 = +
 + −

∑

∑ ∑

where, Z is an upper bound of the lagrangian relaxation, Zk
is the value of objective function for the lagrangian
relaxation at iteration k: it could be updated during

algorithm proceeding. (),k k

it itQ X is the solution of the

lagrangian relaxation problem at iteration k and 0 2
k

γ< ≤ .

Computational results:

Early results of testing our approach are promising. Indeed,
we have tested these different methods on small instances.
For each instance, we obtained an optimal solution. We are

testing these different methods on Trigeiro’s instances
which are commonly used like benchmark in literature.
We chose the ones selected by Wolsey in his lotesizelib
(2000) because they appear to be among the most difficult
ones (Belvaux et al. 2000)

Tab.1 shows some results about feasibility for these
instances:

Name N. Items N. periods Success N. Iter
G30 6 15 Y 14994
G53 12 15 Y 115336
G57 24 15 Y 4475
G62 6 30 Y 4265
G69 12 30 Y 10650
G72 24 30 Y 9049

Tab.1: Feasibility tests

As we say, we obtain very good results for the feasibility
problem. We also test our optimization metaheuristic on
these same instances neglecting setup time, in a first time.

Tab.2 shows some results about it:

Kangaroo

Name Solver
Sol. N. Iter LB Gap

G30 37156* 37267 1651164 36939,5 0,89 %

G53 72831* 71599 1434315 70717,73 1,25 %

G57 137762* 137659 384215 135938,96 1,27 %

G62 62058* 62545 1375810 60626,80 3,17 %

G69 132097* 131839 1224781 129589,97 1,74 %

G72 295291* 295209 910361 287390,70 2,73 %

Tab.2: Optimization Tests

 We use Cplex 9.1 as solver for our tests: (*) means that
it stops with an “overflow error”. We test our metaheuristic
with 600s time limit. We calculate our Lower Bound (LB)
according to our lagrangean relaxation. We can see that we
obtain very good results even if metaheuristic time limit is
very weak. However, we can observe that higher is the
number of items, better is our Kangaroo, compared to the
Solver. To conclude, this approach is promising. We are
still testing it on all Trigeiro’s instances.

The software tool:

In order to test all these methods, we have designed a

software tool which incorporates all these techniques and
which allows us to follow, in real time, the evolution of the
metaheuristics proposed. This software allows us to import
the Trigeiro’s instances or to create ours by using a
convivial interface where we can parameterize the
production system (capacity, cost …) and the customer’s
demand.

ICAPS 2006

70 Doctoral Consortium

The main part of it is the optimization tool in which are
implemented all the optimization methods seen before. On
the GUI, we can follow the metaheuristic behavior, the gap
of the best solution found (with the lower bound
determinated by our lagrangian relaxation), and the best
plan found, at any time of the optimization.

Our prospect:

 We have proposed a software tool for the deterministic
CLSP. However, within the framework of industrial
planning, the managers work with estimated demands, thus
potentially subjected to strong fluctuations. Therefore, we
wish to extend our research by taking into account the
uncertainty in the demand and the production capacities
(resources into breakdowns etc.) so as to incorporate a new
dimension: the robustness, in the obtained solution.
Moreover, the presented model is a single-level model
which doesn’t take into account the material requirement
planning (MRP) for the end items’ planning conception.
Moreover, it doesn’t integrate the multi-sites aspect in the
current productions systems. Therefore we are considered
multi-sites models of planning based on the lot-sizing
model: Multi Level Capacitated Lot Sizing Problem
(MLCLSP). The next step would be to propose a new
tactical planning’s model, multi-levels and multi-sites as
well as resolution approaches which could provide us a
robust production plan, under an uncertain industrial
context.

References

Belvaux, G. and Wolsey, L.A. Lot-sizing issues and a
specialized branch-and-cut system BC-PROD. Core
discussion paper, 1998.

Bitran, G.R., and Yanasse, H.H. Computational complexity

of the capacitated lot size problem. Management Science,
46(5):724–738, 1982.

Belvaux, G. and Wolsey, L. Lot-sizing problems:

modelling issues and a specialized branch-and-cut system

BC-PROD. Management Science, 46(5) :724–738, 2000

Chen, W.H., and Thizy, J.M. Analysis of relaxation for the

multi-item capacities lot-sizing problem. Annal of
Operations Research, 26:29–72, 1990.

Degraeve, Z. and Jans, R. A new Dantzig-Wolfe

reformulation and Branch-And-Price Algorithm for the

Capacitated Lot Sizing Problem With Set up Times. ERIM
Report Series in Management ERS-2003-010-LIS,
Erasmus University Rotterdam, The Netherlands.

Diaby, M., Bahl, M., Karwan, H.C., and Zionts, S.
Capacitated lot-sizing and scheduling by lagrangean

relaxation. European Journal of Operational Research,
59:444–458, 1992.

Dogramaci, A., Panayiotopoulos, J.C., and Adam, N.R.
The dynamic lot-sizing problem for multiple items under

limited capacity. AIIE Transactions, 13(4) :294–303, 1981.

Eppen, G.D., and Martin, R.K. Solving multi-item lot-

sizing problems using variable redefinition. Operations
Research, 35 :832-848, 1987.

Fleury, G. Méthodes stochastiques et deterministes pour

les problèmes NP-difficiles. PhD thesis, Clermont-Ferrand
II university.

Gopalakrishnan, M., Ding, K., Bourjolly, J.M. and Mohan,
S. A Tabu-search Heuristic for the Capacitated Lot-Sizing

Problem with Set-up Carryover. Management Science,
47(6): 851-863, 2001.

Karimi, B., Fatemi Ghomi, S.M.T and Wilson, J.M. A tabu

search heuristic for solving the CLSP with backlogging

and set-up carry-over. Journal of the Operational Research
Society, 57(2):140-147, 2006.

Kirca, M., and Kökten, Ö. A new heuristic approach for

the multi-item dynamic lot sizing problem. European
Journal of Operational Research, 75 :332–341, 1994.

Leung, J.M., Magnanti, T.L., and Vachani. R., Facets and

algorithms for the capacitated lot sizing. Mathematical
programming, 45:331–359, 1989.

Özdamar, L., Birbil, S.I. and Portmann M.C. Technical

note: New results for the capacitated lot sizing problem

with overtime decisions and setup times. Production
Planning & Control, 13(1):2-10, 2002.

Trigeiro, W.W., Thomas, L.J., and Mc Clain, J.O.
Capacitated lot sizing with setup times. Management
science, 35 :353–366, 1989.

Wagner, H.M., and Whitin, T.M. Dynamic version of the

economic lot size model. Management science, 5 :89–96,
1958.

Woley, LotsizeLib, “Lot-Sizing Problems : A Library of
Models and Matrices”.
http://www.core.ucl.ac.be/wolsey/lotsizel.htm, 2006

ICAPS 2006

Doctoral Consortium 71

Towards Efficient Probabilistic Temporal Planning

Iain little
National ICT Australia & Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia

A related paper appears in ICAPS’06.

Introduction
Many real-world planning problems involve a combination
of both time and uncertainty (Bresina et al. 2002). For in-
stance, Aberdeen et al. (2004) investigate military opera-
tions planning problems that feature concurrent durative ac-
tions, probabilistic timed effects, resource consumption, and
competing cost measures. It is the potential for such practi-
cal applications that motivates this research.

Probabilistic temporal planning combines concurrent du-
rative actions with probabilistic effects. This unification
of the disparate fields of probabilistic and temporal plan-
ning is relatively immature, and presents new challenges in
efficiently managing an increased level of expressiveness.
Some of our techniques for solving probabilistic temporal
planning problems could be applied beyond the context they
were developed in, and may prove useful in efficiently solv-
ing the simpler subproblems.

The most general probabilistic temporal planning frame-
work considered in the literature is that of Younes and Sim-
mons (2004). It is expressive enough to model generalised
semi-Markov decision processes (GSMDPs), which allow
for exogenous events, concurrency, continuous-time, and
general delay distributions. This expressiveness comes at a
cost: the solution methods proposed in (Younes & Simmons
2004) lack convergence guarantees and significantly depart
from the traditional algorithms for both probabilistic and
temporal planning. Concurrent Markov decision processes
(CoMDPs) are a much less general model that simply allows
instantaneous probabilistic actions to execute concurrently
(Guestrin, Koller, & Parr 2001; Mausam & Weld 2004). Ab-
erdeen et al. (2004) and Mausam and Weld (2005) have
extended this model by assigning actions a fixed numeric
duration. They solved the resulting probabilistic tempo-
ral planning problem by adapting existing MDP algorithms,
and have devised heuristics to help manage the exponential
blowup of the search space.

The ultimate goal of this research is to produce plan-
ners that are expressive enough to support: concurrent dura-
tive actions, probabilistic effects, metric resources, and cost
functions; while being efficient enough to solve interesting-
sized (real-world) problems.

We currently have two separate avenues of research with
the aim of achieving this goal. The first approach is to
combine a forward-chaining search with effective heuris-

tics. We have developed a probabilistic temporal planner
called Prottle using this approach (Little, Aberdeen, &
Thiébaux 2005). Prottle uses a (deterministic) trial-
based search algorithm with a heuristic that is based on an
extension of the planning graph data structure.

Another approach to planning is the Graphplan frame-
work (Blum & Furst 1997). While Prottle makes use
of the planning graph—a data structure that originates from
this framework—it does not use the framework’s other key
features; in particular, Prottle does not use a backward
search. The Graphplan framework has previously been
successfully applied to temporal planning (concurrent dura-
tive actions) (Smith & Weld 1999), but had not been success-
fully applied to probabilistic planning (actions with prob-
abilistic effects) in its entirety. Extensions of this frame-
work for probabilistic planning had been developed (Blum
& Langford 1999), but either dispense with the techniques
that enable concurrency to be efficiently managed, or are un-
able to produce optimal contingency plans.

As a way of investigating approaches to compressing the
search space for probabilistic temporal planning, our other
avenue of research has the goal of implementing a proba-
bilistic temporal planning in the Graphplan framework.
As the issues relating to probabilistic planning had not been
adequately solved, and as a way of managing the complex-
ity, we started by developing a (concurrent) probabilistic
planner (Little & Thiébaux 2006). Paragraph, the result-
ing planner, is competitive with the state of the art, produc-
ing acyclic or cyclic plans that optionally exploit a prob-
lem’s potential for concurrency. We are confident that this
approach can be extended to the probabilistic temporal con-
text.

This paper gives a brief overview of both Prottle and
Paragraph, and concludes with remarks about our future
research intentions. For more detailed descriptions and ex-
perimental results, please refer to the respective papers (Lit-
tle, Aberdeen, & Thiébaux 2005; Little & Thiébaux 2006).

Prottle
Prottle is a probabilistic temporal planner that allows
effects, the time at which they occur, and action durations
to all be probabilistically determined. Its input language is
the temporal STRIPS fragment of PDDL2.1 (Fox & Long
2003), but extended so that effects can be probabilistic, as

ICAPS 2006

72 Doctoral Consortium

in PPDDL (Younes & Littman 2004). We also allow effects
to occur at any time within an action’s duration. The prob-
abilistic and temporal language constructs interact to allow
effect times and action durations to vary probabilistically.
For clarity, each probabilistic alternative is given a descrip-
tive label.

(:durative-action jump
:parameters (?p - person ?c - parachute)
:condition (and (at start (and (alive ?p)

(on ?p plane)
(flying plane)
(wearing ?p ?c)))

(over all (wearing ?p ?c)))
:effect (and (at start (not (on ?p plane)))

(at end (on ?p ground))
(at 5
(probabilistic
(parachute-opened 0.9 (at 42 (standing ?p)))
(parachute-failed 0.1
(at 13 (probabilistic

(soft-landing 0.1
(at 14 (bruised ?p)))

(hard-landing 0.9
(at 14 (not (alive ?p)))))))))))

Figure 1: An example of an action to jump out of a plane.

Figure 1 shows an example action that represents a per-
son jumping out of a plane with a parachute. After 5
units of time, the person makes an attempt to open the
parachute. The case where this is successful has the label
parachute-opened, and will occur 90% of the time; the
person will gently glide to safety, eventually landing at time
42. However, if the parachute fails to open, then the per-
son’s survival becomes dependent on where they land. The
landing site is apparent at time 13, with a 10% chance of it
being soft enough for the person to survive. Alive or dead,
the person then lands at time 14, 28 units of time sooner
than if the parachute had opened. But regardless of the out-
come, or how long it takes to achieve, the action ends with
the person’s body on the ground.
Prottle’s search space is defined in terms of an

AND/OR graph. In the interpretation that we use, an AND
node represents a chance, and an OR node a choice. We
associate choice nodes with the selection of actions, and
chance nodes with the probabilistic event alternatives.

Each node is used in one of two different ways: for selec-
tion or advancement. This is similar to what some tempo-
ral planners do, where states are partitioned between those
that represent action selection, and those that represent time
advancement (Bacchus & Ady 2001). This sort of optimisa-
tion allows forward-chaining planners to be better guided by
heuristics, as action sets are structured into linear sequences.

The rules for node succession are defined by Figure 2.
They can be summarised as: every successor of a node must
either be a selection node of the same type, or an advance-
ment node of the opposite type. Our choice of a search
space structure is intended to be used with a ‘phased’ search,
where action selection and outcome determination are kept
separate. It might seem that it would be more efficient to
have only a single selection phase, where an action’s prob-
abilistic branching is dealt with immediately after it is se-
lected, but consider what this does to the problem: we would
be assuming that an action’s outcome is known as soon as

choice
advancement

selection

choice
advancement

chance

selection

chance

Figure 2: A state machine for valid node orderings. Time
may only increase when traversing bold face arcs.

the action starts execution. In contrast, the phased approach
allows the time at which this knowledge is available to be
accurately represented, by deferring the branching until the
appropriate time. This issue of knowledge becomes rele-
vant when concurrency is combined with probabilistic ef-
fects. The conservative assumption — that we wait until
actions terminate — breaks down when an action’s duration
can depend on its outcome.

Using the graph structure that we have established, we
define a state of the search space as a node in an AND/OR
graph that is identified by a time, model and event queue.
The time of a state is generally the same as its predecessors,
but may increase when advancing from choice to chance
(see Figure 2). The model is the set of truth values for
each of the propositions, and the event queue is a time-
ordered list of pending events. An event can be an effect
e.g. (on ?p ground), a probabilistic event, or an action
execution condition that needs to be checked. When the time
is increased, it is to the next scheduled event time.

We associate states with both lower and upper cost
bounds. As the search space is explored, the lower bounds
will monotonically increase, the upper bounds monotoni-
cally decrease, and the actual cost is sandwiched within an
ever-narrowing interval. We say that a state’s cost has con-
verged when, for a given ε ≥ 0: U(s) − L(s) ≤ ε where
U is the upper bound and L the lower bound of state s. A
state’s cost bounds are initially determined using a planning
graph-based heuristic, and are updated by comparing its cur-
rent values with those of its successors.

In addition to a cost, we also associate each state with
a label of either solved or unsolved. A state is labelled as
solved once the benefit of further exploration is considered
negligible; for instance, once its cost has converged for a suf-
ficiently small ε. The search algorithm ignores a state once
it has been labelled as solved, and confines its exploration to
the remaining unsolved states.
Prottle uses a search algorithm that combines a deter-

ministic search with the convergence and labelling optimisa-
tions used by LRTDP (Bonet & Geffner 2003). As with pre-
vious probabilistic temporal planners (Aberdeen, Thiébaux,
& Zhang 2004; Mausam & Weld 2005), this algorithm is
trial-based, and explores the search space by performing re-
peated depth-first probes starting from the initial state.

Paragraph
Paragraph is a probabilistic planner that finds contin-
gency plans that maximise the probability of reaching the
goal within a given time horizon. These solutions are op-
timal in the non-concurrent case, and optimal for a re-

ICAPS 2006

Doctoral Consortium 73

a2a1

o3 o4

p1 p2

pg p2

o2 o1

p1

o3 o1

a2 a1

p1

a1 a2

p2

o1 o3

o2 o4

t: 0 p1

p2

pg

t: 1 pg

t: 2

Figure 3: An action-outcome-proposition dependency graph
and search space for an example problem.

stricted model of concurrency. A detailed description of this
model—and of Paragraph in general—is given in (Little,
Aberdeen, & Thiébaux 2005).
Paragraph extends the Graphplan framework to the

probabilistic setting. To do this, it is necessary to extend
the planning graph data structure to account for uncertainty.
We do this by introducing a node for each of an action’s
possible outcomes, so that there are three different types of
nodes in the graph: proposition, action, and outcome. Ac-
tion nodes are then linked to their respective outcome nodes,
and edges representing effects link outcome nodes to propo-
sition nodes. Each persistence action has a single outcome
with a single add effect. We refer to a persistence action’s
outcome as a persistence outcome. This extension is func-
tionally equivalent to that described in (Blum & Langford
1999), except that we also adapt the planning graph’s mutex
propagation rules from the deterministic setting.

The solution extraction step of the Graphplan algo-
rithm relies on a backward search through the structure of
the planning graph. In classical planning, the goal is to find a
subset of action nodes for each level such that the respective
sequence of action sets constitutes a valid trajectory. The
search starts from the final level of the graph, and attempts
to extend partial trajectories one level at a time until a solu-
tion is found.
Paragraph uses this type of goal-regression search with

an explicit representation of the expanded search space. This
search is applied exhaustively, to find all trajectories that the
Graphplan algorithm can find. An optimal contingency
plan is formed by linking these trajectories together. This
requires some additional computation, and involves using
forward simulation through the search space to compute the
possible world states at reachable search nodes.

As observed by Blum and Langford (1999), the difficulty
with combining probabilistic planning with Graphplan-
style regression is in correctly and efficiently combining the
trajectories. Sometimes the trajectories will ‘naturally’ join
together during the regression, which happens when search
nodes share a predecessor through different ‘joint outcomes’
(sets of outcomes) of the same action set.

Unfortunately, the natural joins are not sufficient to find
all contingencies. Consider the problem shown in Fig-
ure 3, which we define as:1 the propositions p1, p2 and pg;

1This problem was used by Blum and Langford (1999) to il-
lustrate the difficulty of using goal-regression for probabilistic

s0 = {p1, p2}; G = {pg}; the actions a1 and a2; and the
outcomes o1 to o4. a1 has precondition p1 and outcomes
{o1, o2}; a2 has precondition p2 and outcomes {o3, o4}.
Both actions always delete their precondition; o1 and o3
both add pg. To simplify the example, we prohibit a1 and
a2 from executing concurrently. The optimal plan for this
example is to execute one of the actions; if the first action
does not achieve the goal, then the other action is executed.

The backward search will correctly recognise that exe-
cuting a1–o1 or a2–o3 will achieve the goal, but it fails to
realise that a1–o2, a2–o3 and a2–o4, a1–o1 are also valid
trajectories. The longer trajectories are not discovered be-
cause they contain a ‘redundant’ first step; there is no way
of relating the effect of o2 and the precondition of a2, or the
effect of o4 with the precondition of a1. While these undis-
covered trajectories are not the most desirable execution se-
quences, they are necessary for an optimal contingency plan.
In classical planning, it is actually a good thing that trajec-
tories with this type of redundancy cannot be discovered, as
redundant steps only hinder the search for a single shortest
trajectory. Identifying the missing trajectories requires some
additional computation beyond the goal regression search.
We refer to trajectories that can be found using unadorned
goal regression as natural trajectories.

The solution we have developed is based on constructing
all ‘non-redundant’ contingency plans by linking together
the trajectories that goal regression is able to find. This is
sufficient to find an optimal solution, as there always exists
at least one non-redundant optimal plan. Paragraph com-
bines pairs of trajectories by linking a node in one trajectory
to a node in the other. This can be done when a possible
world state of the earlier node has a resulting world state
that subsumes the goal set of the later node.

A detailed description of Paragraph’s acyclic search
algorithm follows.2 The first step is to generate a plan-
ning graph from the problem specification. This graph is
expanded until all goal propositions are present and not mu-
tex with each other, or until the graph levels off to prove that
no solution exists. Assuming the former case, a depth-first
goal regression search is performed from a goal node for the
graph’s final level. This search exhaustively finds all natu-
ral trajectories from the initial conditions to the goal. Once
this search has completed, the possible world states for each
trajectory node are computed by forward-propagation from
time 0, and the node/state costs are updated by backward-
propagation from the goal node. Potential trajectory joins
are detected each time a new node is encountered during
the backward search, and each time a new world state is
computed during the forward state propagation. Unless a
termination condition has been met, the planning graph is
then expanded by a single level, and the backward search is
performed from a new goal node that is added to the exist-
ing search space. This alternation between backward search,
state simulation, cost propagation, and graph expansion con-
tinues until a termination condition is met. An optimal con-

planning, and to explain their preference of a forward search in
PGraphplan.

2We have another algorithm for extracting cyclic solutions.

ICAPS 2006

74 Doctoral Consortium

Horizon PRTTL Time NA-PG Time Cost
10 14.0 0.23 0.728
15 21.6 0.73 0.607
20 25.1 12.5 0.486
25 36.0 52.2 0.429
30 40.6 103 0.429

(a) g-tire

Horizon PRTTL Time CA-PG Time PRTTL Cost CA-PG Cost
5 4.38 0.08 0.272 0.204
6 14.9 0.13 0.204 0.193
7 168 0.26 0.178 0.156
8 554 0.71 0.151 0.149
15 − 613 − 0.078

(b) maze

tingency plan is then extracted from the search space by
traversing the space in the forward direction using a greedy
selection policy.

Example Results
We give a sample of our experimental results for Prottle
and Paragraph. For more detailed comparative re-
sults, see (Little & Thiébaux 2006). Additional results for
Prottle can be found in (Little, Aberdeen, & Thiébaux
2005). Prottle and Paragraph are implemented in
Common Lisp, and were both compiled using CMUCL ver-
sion 19c. These experiments were performed on a machine
with a 3.2 GHz Intel processor and 2 GB of RAM.

Figure shows comparative results for two problems, g-
tire and maze. Their PDDL definitions are available at http:
//rsise.anu.edu.au/∼thiebaux/benchmarks/pddl/. The plan-
ner configurations used in these experiments are: Prottle
with ε = 0 and its cost-based planning graph heuristic
(PRTTL), and Paragraph with its acyclic search using ei-
ther the restricted concurrency model (CA-PG) or no con-
currency (NA-PG).

The objective of the g-tire problem is to move a vehicle
from one location to another, where each time the vehicle
moves there is a chance of it getting a flat tire. There are
spare tires at some of the locations, and these can be used
to replace flat tires. This problem is not concurrent. The
results compare Prottle to Paragraph’s acyclic search;
Paragraph is faster for the earlier horizons, but Prottle
scales better.

The maze problem involves a number of connected
rooms and doors, some of which are locked and require
a specific key to open. This problem has some potential
for concurrency, although mostly of the type not allowed in
composite contingency plans. None of the planner configu-
rations fully expoit it. Paragraph scales much better than
Prottle this time.

We have found that Paragraph usually out-performs
Prottle. Paragraph has the best comparative perfor-
mance on problems with a high forward branching factor
and relatively few paths to the goal.

Conclusion and Future Work
In Paragraph and Prottle, we have made significant
progress towards our goal of producing an efficient planner
that can deal with all of: concurrent durative actions, proba-
bilistic effects, metric resources, and cost functions. We be-

lieve that both planning approaches show promise, and have
a strong potential for future improvement.

The most important future improvements for Prottle
include: reducing the implementation’s memory usage, de-
vising ways of efficiently extracting a greater amount of
heuristic information from the planning graph, and adding
support for metric resources and cost functions. Another
intriguing possibility is extending Prottle’s effect model
(as a decision tree) to the more general graph. This might be
an effective way of modelling exogenous processes.

We have many ideas for improving Paragraph’s per-
formance, in particular by adapting optimisations developed
for the Graphplan framework in the deterministic setting.
For example, we have observed that a small amount of con-
trol knowledge in the form of mutex invariants can make
a substantial impact on efficiency. This suggests that there
would also be a benefit in investigating ways of strengthen-
ing the planning graph’s mutex reasoning and in incorpo-
rating explanation-based learning. But the most important
future direction of this research is extending Paragraph
to the probabilistic temporal setting, which will allow us to
compare our two approaches in the context of probabilistic
temporal planning.

References
Aberdeen, D.; Thiébaux, S.; and Zhang, L. 2004. Decision-
theoretic military operations planning. In Proc. ICAPS.
Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: A forward chaining approach. In Proc. IJCAI.
Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90:281–300.
Blum, A., and Langford, J. 1999. Probabilistic planning in the
Graphplan framework. In Proc. ECP.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving the
convergence of real-time dynamic programming. In Proc. ICAPS.
Bresina, J.; Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith,
D.; and Washington, R. 2002. Planning under continuous time
and resource uncertainty: A challenge for AI. In Proc. UAI.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20:61–124.
Guestrin, C.; Koller, D.; and Parr, R. 2001. Multiagent planning
with factored MDPs. In Proc. NIPS.
Little, I., and Thiébaux, S. 2006. Concurrent probabilistic plan-
ning in the graphplan framework. In Proc. ICAPS.
Little, I.; Aberdeen, D.; and Thiébaux, S. 2005. Prottle: A prob-
abilistic temporal planner. In Proc. AAAI.
Mausam, and Weld, D. 2004. Solving concurrent Markov deci-
sion processes. In Proc. AAAI.
Mausam, and Weld, D. 2005. Concurrent probabilistic temporal
planning. In Proc. ICAPS.
Smith, D., and Weld, D. 1999. Temporal planning with mutual
exclusion reasoning. In Proc. IJCAI.
Younes, H., and Littman, M. 2004. PPDDL1.0: The language for
the probabilistic part of IPC-4. In Proc. International Planning
Competition.
Younes, H. L. S., and Simmons, R. G. 2004. Policy generation for
continuous-time stochastic domains with concurrency. In Proc.
ICAPS.

ICAPS 2006

Doctoral Consortium 75

Challenges for Temporal Planning with Uncertain Durations

Mausam and Daniel S. Weld
Dept. of Computer Science, University of Washington

Seattle, WA-98195
{mausam,weld}@cs.washington.edu

To appear as a short paper at ICAPS’06.

Abstract
We investigate the problem of temporal planning with con-
current actions having stochastic durations, especially in the
context of extended-state-space based planners. The problem
is challenging because stochastic durations lead to an explo-
sion in the space of possible decision-epochs, which exacer-
bates the familiar challenge of growth in executable action
combinations caused by concurrency. We present various ob-
servations and insights into different variations of this prob-
lem that form the basis of our future research.

Introduction
Recent progress in temporal planning (JAIR Special Issue
2003) raises hopes that this technology may soon apply to a
wide range of real-world problems. However, concurrent ac-
tions with stochastic durations characterise many real-world
domains. While both concurrency and duration uncertainty
have independently received some attention by planning re-
searchers, very few systems have addressed them in concert,
and all of these systems have used an extended-state-space
method (as opposed to a constraint-posting approach). In
this paper we step back from specific algorithms and analyse
the broader problem of concurrent temporal planning with
actions having stochastic durations, especially in the context
of extended-state-space planners.

We find that the problem is challenging in novel ways and
opens interesting avenues for future research. The stochas-
tic durations lead to an explosion in the space of possible
decision-epochs, which exacerbates the familiar challenge
of growth in executable action combinations caused by con-
currency. The rate of decision-epoch growth increases with
greater expressiveness in the action language, and we char-
acterise the challenges along several dimensions, e.g., the
possible times for which action preconditions and effects
may be specified, duration distributions of actions.

Expressiveness of Action Models
The action models handled by different temporal planners
vary in complexity. Figure 1 lists different representations
along two dimensions (ignoring continuous change). The
simplest temporal model is used in TGP (Smith & Weld
1999). TGP-style actions require preconditions to be true
throughout execution; the effects are guaranteed to be true
only after termination; and actions may not execute concur-
rently if they clobber each other’s preconditions or effects.

Simple Boundary Metric
Deterministic duration TGP PDDL2.1 Zeno
Prob. but independent Prob. TGP Prob. PDDL2.1

Joint distrib: dur×effects Prottle

Figure 1: Action models for temporal planning (ignoring continu-
ous change). The horizontal axis varies the times at which precon-
ditions and effects may be specified. The vertical axis varies the
uncertainty in effects and its correlations with durations.

Along the horizontal axis, we vary the temporal ex-
pressiveness in the precondition and effect representations.
PDDL2.1 (Fox & Long 2003) is more expressive than TGP’s
representation as it can represent preconditions that are re-
quired to be true just at start, over whole action execution
or just at the end. Where PDDL2.1 allows effects to ap-
pear only at boundaries, Zeno’s representation (Penberthy
& Weld 1994) allows effects (preconditions) to appear at ar-
bitrary intermediate points (and intervals).

Along the vertical axis, we vary the representation of un-
certainty in the model. PDDL2.1 doesn’t support probabilis-
tic action effects or durations. “Probabilistic PDDL2.1” ex-
tends PDDL2.1 along this direction, associating a distribu-
tion with each action duration; the distribution for durations
is independent of that for effects. “Probabilistic TGP” ex-
tends the TGP action representation similarly. Even more
expressive representations may use a single joint distribu-
tion — enabling action durations that are correlated with ef-
fects. Indeed, the representation language of Prottle (Little,
Aberdeen, & Thiebaux 2005) contains all these features: ef-
fects at intermediate points, action durations correlated with
probabilistic effects. Tempastic (Younes & Simmons 2004)
uses probabilistic TGP-style actions, but because it also sup-
ports exogenous events, it is at least as expressive as Prottle.
The blank entries in Figure 1 denote action languages that
have not yet been discussed in the literature.

Planning with TGP-style Actions
We first study TGP-style actions in the context of uncertain
durations (Smith & Weld 1999). TGP-style actions require
preconditions to be true throughout execution; the effects
are guaranteed to be true only after termination; and actions
may not execute concurrently if they clobber each other’s
preconditions or effects.

We find that planning, even with these simplified action
models, suffers significant computational blowup. All the

ICAPS 2006

76 Doctoral Consortium

s0 G
a0

b0 b1

s0 G
a0 a1

b0

Probability: 0.67

Probability: 0.33

0 2 41 3Time

Make−span: 3

Make−span: 4

Figure 2: Planning with expected durations leads to a sub-optimal
solution.

examples in this section apply regardless of whether effects
are deterministic or stochastic. We investigate extensions to
richer representations in the next sections.

We focus on problems whose objective is to achieve a goal
state, while minimising total expected time (make-span), but
our observations apply to cost functions that combine make-
span and resource usage. This raises the question of when
a goal counts as achieved. We require that all executing ac-
tions terminate before the goal is considered achieved.

A naive way to solve our problem is by ignoring duration
distributions. We can assign each action a constant dura-
tion equal to the mean of its distribution, and then apply a
deterministic-duration planner such as that of Mausam and
Weld (2005). Unfortunately, this method may not produce
an optimal policy, as the following example illustrates.
Example: Consider the planning domain in Figure 2, in
which the goal can be reached in two independent ways —
executing the plan 〈a0; a1〉, i.e., a0 followed by a1, or the
plan 〈b0; b1〉. Let a0, a1 and b1 have constant durations 3,
1, and 2 respectively. Let b0 have a uniform distribution
between lengths 1, 2 and 3. It is clear that if we disregard
b0’s duration distribution and replace it by the mean 2, then
both these plans have an expected cost of 4. However, the
truly optimal plan has duration 3.67 — start both a0 and b0;
if b0 finishes at time 1 (prob. 0.33) then start b1, else (prob.
0.67) wait until a0 finishes and execute a1 to reach the goal.
In this policy, the expected cost to reach the goal is 0.33×3
+ 0.67×4 = 3.67. Thus for optimal solutions, we need to
explicitly take duration uncertainty into account. 2

Definition Any time point when a new action is allowed to
start execution is called a decision epoch. A happening is
either 0 or a time when an action actually terminates.

For TGP or probabilistic TGP-style actions with deter-
ministic durations, restricting decision epochs to happenings
suffices for optimal planning (Mausam & Weld 2005). Un-
fortunately, the same is not true for problems with duration
uncertainty.

Temporal planners may be classified as having one of two
architectures: constraint-posting approaches, in which the
times of action execution are gradually constrained during
planning (e.g., Zeno and LPG (Penberthy & Weld 1994;
Gerevini & Serina 2002)), and extended-state-space meth-
ods (e.g., TP4 and SAPA (Haslum & Geffner 2001; Do &
Kambhampati 2001)). The following example has impor-
tant computational implications for state-space planners, be-
cause limiting attention to a subset of decision epochs can

s0

s0
a1

a1

a0 a2

a0

b0

G

Probability 0.5

Probabillity: 0.5

G

Time
0 4 82 6

Make−span: 9

Make−span: 3

Figure 3: Intermediate decision epochs are necessary for optimal
planning.

speed these planners.
Example: Consider Figure 3, in which the goal can be
reached in two independent ways — executing both {a0, a1}
followed by a2 (i.e. effects of both a0 and a1 are precondi-
tions to a2); or by executing action b0. Let a1, a2, and b0

have constant durations 1, 1, and 7 respectively. Suppose
that a0 finishes in 2 time units with 0.5 probability and in
9 units the other half of the time. Furthermore, b0 is mutex
with a1, but no other pairs of actions are mutex.

In such a domain, following the first plan, i.e.,
〈{a0, a1}; a2〉, gives an expected cost of 6.5 = 0.5 × 2 +
0.5 × 9 + 1. The second plan (〈b0〉) costs 7. The optimal
solution, however, is to first start both a0 and a1 concur-
rently. When a1 finishes at time 1, wait until time 2. If a0

finishes, then follow it with a2 (total length 3). If at time 2,
a0 doesn’t finish, start b0 (total length 9). The expected cost
of this policy is 6 = 0.5 × 3 + 0.5 × 9. 2

Notice above that the optimal policy needs to start action
b0 at time 2, even when there is no happening at 2. Thus
limiting the set of decision epochs to happenings does not
suffice for optimal planning with uncertain durations. It is
quite unfortunate that non-happenings are potentially nec-
essary as decision epochs, because even if one assumes that
time is discrete, there are many interior points during a long-
running action; must a planner consider them all?
Definition An action has independent duration if there is no
correlation between its probabilistic effects and its duration.
An action has monotonic continuation if the expected time
until action termination is nonincreasing during execution.

Actions without probabilistic effects have independent
duration. Actions with monotonic continuations are com-
mon, e.g., those with uniform, exponential, Gaussian, and
many other duration distributions. However, actions with
bimodal or multi-modal distributions don’t have monotonic
continuations.

We believe that if all actions have independent dura-
tion and monotonic continuation, then the set of decision
epochs may be restricted to happenings without sacrificing
optimality; this idea can be exploited to build a fast plan-
ner (Mausam & Weld 2006).

Timing Preconditions & Effects
Many domains require more flexibility concerning the times
when preconditions and effects are in force: different effects
of actions may apply at different times within the action’s

ICAPS 2006

Doctoral Consortium 77

:action a
:duration 4
:condition (over all P) (at end Q)
:effect (at end Goal)

:action b
:duration 2
:effect (at start Q) (at end (not P))

Figure 4: A domain to illustrate that an expressive action model
may require arbitrary decision epochs for a solution. In this exam-
ple, b needs to start at 3 units after a’s execution to reach Goal.

execution, preconditions may be required only to hold for
part of execution, and executing two actions concurrently
might lead to different results than executing them sequen-
tially. Note that the decision epoch explosion is even more
pronounced for such problems. Moreover, this not only af-
fects optimality, but also affects the completeness of the al-
gorithms. The following example with deterministic dura-
tions demonstrates this further.
Example: Consider the deterministic temporal planning
domain in Figure 4 that uses PDDL2.1 notation (Fox & Long
2003). If the initial state is P=true and Q=false, then the
only way to reach Goal is to start a at time 0, and b at time 3.
Clearly, no action could terminate at 3, still it is a necessary
decision epoch. 2

Intuitively, two actions may require a certain relative
alignment within them to achieve the goal. This alignment
may force an action to start somewhere in the midst of the
other’s execution thus requiring a lot of decision epochs to
be considered.

This example clearly shows that additional complexity in
planning is incurred due to a more expressive action repre-
sentation. It has important repercussions on existing plan-
ners. For instance, popular planners like SAPA and Prot-
tle (Little, Aberdeen, & Thiebaux 2005) will not be able to
solve this simple problem, because they consider only a re-
stricted set of decision epochs. This shows that both these
planners are incomplete (i.e., problems may be incorrectly
deemed unsolvable). Indeed, these planners can be naively
modified by considering each time point as a decision epoch
to obtain a complete algorithm. Unfortunately, such a mod-
ification is bound to be ineffective in scaling to any reason-
able sized problem. Intelligent sampling of decision epochs
is, thus, the key to finding a good balance between the two.
Finding the exact modalities of such an algorithm is an im-
portant open research problem.

Continuous Action Durations
Previously, we assumed that an action’s possible durations
are taken from a discrete set. We now investigate the effects
of dealing directly with continuous uncertainty. Let fT

i (t)dt
be the probability of action ai completing between times t+
T and t + T + dt, if we know that action ai did not finish
until time T . Similarly, define FT

i (t) to be the probability
of the action finishing after time t + T .
Example: Consider the extended state 〈X, {(a1, T)}〉,
which denotes that action a1 started T units ago in the world
state X . Let a2 be an applicable action that is started in this
extended state. Define M = min(∆M (a1) − T,∆M (a2)),
where ∆M denotes the maximum possible duration of exe-

cution for each action. Intuitively, M is the time by which at
least one action will complete. Also, let Jn and Qn denote
the nth revision to the expected cost to reach a goal starting
from a state or a state-action pair respectively (Mausam &
Weld 2005). Qn may be computed as follows:

Qn+1 (〈X, {(a1, T)}〉, a2) =∫ M

0

fT
1 (t)F 0

2 (t) [t + Jn (〈X1, {a2, t}〉)] dt +∫ M

0

FT
1 (t)f0

2 (t) [t + Jn (〈X2, {a1, t + T}〉)] dt (1)

Here X1 and X2 are world states obtained by applying
the deterministic actions a1 and a2 respectively on X . Re-
call that Jn+1(s) = mina Qn+1(s, a). For a fixed point
computation of this form, we desire that Jn+1 and Jn have
the same functional form1. Going by the equation above this
seems very difficult to achieve, except perhaps for very spe-
cific action distributions in some special planning problems.
For example, if all distributions are constant or if there is no
concurrency in the domain, then these equations are easily
solvable. But for anything mildly interesting, solving these
equations is a challenging open question.

Non-Monotonic Duration Distributions
Dealing with continuous multi-modal distributions worsens
the decision epochs explosion. We illustrate this below.
Example: Consider the domain of Figure 3 except that let
action a0 have a bi-modal distribution, the two modes being
uniform between 0-1 and 9-10 respectively as shown in Fig-
ure 5(a). Also let a1 have a very small duration. Figure 5(b)
shows the expected remaining termination times if a0 termi-
nates at time 10. Notice that due to bi-modality, this time
increases between 0 and 1. The expected time to reach the
goal using plan 〈{a0, a1}; a2〉 is shown in the third graph.

Now suppose that, we have started {a0, a1}, and we need
to choose the next decision epoch. It is easy to see that the
optimal decision epoch could be any point between 0 and 1
and would depend on the alternative routes to the goal. E.g.,
if duration of b0 is 7.75, then the optimal time-point to start
the alternative route is 0.5 (right after the expected time to
reach the goal using first plan exceeds 7.75). 2

We have shown that the choice of decision epochs de-
pends on the expected durations of the alternative routes.
But these values are not known in advance, in fact these are
the ones being calculated in the planning phase. Therefore,
choosing decision epochs ahead of time does not seem pos-
sible. This makes the optimal continuous multi-modal dis-
tribution planning problem mostly intractable for any rea-
sonable sized problem.

Correlated Durations and Effects
When actions’ durations are correlated with the effects, then
failure to terminate provides additional information regard-
ing an action’s effects. For example, non-termination at a

1This idea has been exploited in order to plan with continuous
resources (Feng et al. 2004).

ICAPS 2006

78 Doctoral Consortium

2 6 8 1040
Time

Du
rat

ion
 Di

stri
but

ion
 of

 a0

2 6 8 1040
Time

2

4

6

8

10

Ex
pec

ted
 Re

ma
ini

ng
Tim

e fo
r a

ctio
n a

0

2 6 8 1040
Time

2

4

6

8

10

Ex
pec

ted
 tim

e to
 re

ach
 th

e g
oal

Figure 5: If durations are continuous (real-valued) rather than discrete, there may be an infinite number of potentially important decision
epochs. In this domain, a crucial decision epoch could be required at any time in (0, 1] — depending on the length of possible alternate plans.

point may change the probability of the action’s eventual ef-
fects, and this may prompt new actions to be started. Thus,
these points need to be considered for decision epochs, and
cannot be omitted, even with TGP-style actions.

Notion of Goal Satisfaction
Different problems may require slightly different notions of
when a goal is reached. For example, we have assumed thus
far that a goal is not “officially achieved” until all executed
actions have terminated. Alternatively, one might consider a
goal to be achieved if a satisfactory world state is reached,
even though some actions may be in the midst of execution.
There are intermediate possibilities in which a goal requires
some specific actions to necessarily end.

Interruptible Actions
We have assumed that, once started, an action cannot be ter-
minated. However, a richer model may allow preemptions,
as well as the continuation of an interrupted action. The
problems in which all actions could be interrupted at will
have a significantly different flavour. To a large extent, plan-
ning with such actions is similar to finding different concur-
rent paths to the goal and starting all of them together, since
one can always interrupt all the executing paths as soon as
the goal is reached. For instance, example in Figure 3 no
longer holds, since b0 can be started at time 1, and later ter-
minated as needed to shorten the make-span.

Conclusions
This paper investigates planning problems with concurrent
actions having stochastic durations, focussed primarily on
extended-state-space planners. We identify the explosion in
the number of decision epochs as the main cause of com-
putational blowup. No longer can a planner limit action-
initiation times to points when a different action has ter-
minated. The rate of decision-epoch growth increases with
greater expressiveness in the action language, and we char-
acterise the challenges along several dimensions.

Even with simple probabilistic TGP-style actions, many
more decision epochs must be considered to achieve opti-
mality. However, if all durations are unimodal and uncor-
related with effects, we conjecture that one can bound the
decision epochs in terms of times of action terminations.

We show that for PDDL2.1 and richer action represen-
tations, the currently employed extended state space based
methods are incomplete, and the straightforward ways to en-
sure completeness are highly inefficient. Developing an al-
gorithm that achieves the best of both worlds is an important
research question.

Additionally, we discuss the challenges posed by contin-
uous time, observing that techniques employing piecewise
constant/linear representations, which are popular in dealing
with functions involving continuous variables, may be inef-
fective for our problem. These techniques rely on the same
functional forms for successive approximations of the value
function — and this does not hold in our case. Other potent
directions for future research include multi-modal distribu-
tions, interruptibility, and correlated durations and effects.
We develop algorithms to handle some of these issues in
(Mausam & Weld 2006).

Acknowledgments
We thank Sumit Sanghai for theorem proving skills and advice.
We also thank Jiun-Hung Chen, Nilesh Dalvi, Maria Fox, Jeremy
Frank, Subbarao Kambhampati, and Håkan Younes for helpful sug-
gestions. Raphael Hoffman, Daniel Lowd, Tina Loucks, Alicen
Smith and the anonymous reviewers gave useful comments on prior
drafts. This work was supported by NSF grant IIS-0307906, ONR
grants N00014-02-1-0932, N00014-06-1-0147 and the WRF / TJ
Cable Professorship.

References
Do, M. B., and Kambhampati, S. 2001. Sapa: A domain-
independent heuristic metric temporal planner. In ECP’01.
Feng, Z.; Dearden, R.; Meuleau, N.; and Washington, R. 2004.
Dynamic programming for structured continuous Markov deci-
sion processes. In UAI’04, 154.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. JAIR Special Issue on
3rd International Planning Competition 20:61–124.
Gerevini, A., and Serina, I. 2002. LPG: A planner based on local
search for planning graphs with action graphs. In AIPS’02, 281.
Haslum, P., and Geffner, H. 2001. Heuristic planning with time
and resources. In ECP’01.
2003. Special Issue on the 3rd International Planning Competi-
tion, JAIR, Volume 20.
Little, I.; Aberdeen, D.; and Thiebaux, S. 2005. Prottle: A prob-
abilistic temporal planner. In AAAI’05.
Mausam, and Weld, D. 2005. Concurrent probabilistic temporal
planning. In ICAPS’05, 120–129.
Mausam, and Weld, D. 2006. Probabilistic temporal planning
with uncertain durations. In AAAI’06.
Penberthy, J., and Weld, D. 1994. Temporal planning with con-
tinuous change. In AAAI’94, 1010.
Smith, D., and Weld, D. 1999. Temporal graphplan with mutual
exclusion reasoning. In IJCAI’99, 326–333.
Younes, H. L. S., and Simmons, R. G. 2004. Policy genera-
tion for continuous-time stochastic domains with concurrency. In
ICAPS’04.

ICAPS 2006

Doctoral Consortium 79

Efficient and Expressive Extensions of Constraint-Based Temporal Reasoning

Michael D. Moffitt
Department of Electrical Engineering and Computer Science

University of Michigan
mmoffitt@eecs.umich.edu

Abstract

In this extended abstract, I present a brief overview of sev-
eral proposed extensions to the field of constraint-based tem-
poral reasoning. Combined, these extensions allow one to
reason efficiently and simultaneously about overconstrained
problems, preferences, finite-domain constraints, and uncer-
tain situations within the context of Temporal CSPs. I also de-
scribe a particularly exciting application of these techniques
to an area of research outside the usual scope of temporal rea-
soning.

Introduction
In the field of artificial intelligence, a great deal of effort
has been extended toward improving existing methods for
temporal constraint satisfaction. Temporal Constraint Sat-
isfaction Problems (TCSPs) (Dechter et al. 1991) are espe-
cially suited to express constraints regarding the time, or-
der, and duration of events, and as a result, it is common
to find TCSPs applied in problems relating to planning and
scheduling. Recent work has begun to extend the TCSP
to handle uncontrollable events (Vidal & Fargier 1999;
Morris & Muscettola 2005; Venable & Yorke-Smith 2005)
and preferences (Khatib et al. 2001; Peintner & Pollack
2004).

However, there are certain situations where existing tem-
poral representations and reasoning systems remain inade-
quate. First, it may be the case that a given TCSP is over-
constrained, and thus admits no solution. If one instead de-
sires a partial solution, where as many constraints can be
satisfied as possible, traditional DTP solving algorithms are
insufficient. Second, there are some scenarios in which the
constraints of a given CSP contain a mixture of both finite-
domain and temporal constraints. The problem of construct-
ing such hybrid representations and algorithms has, until re-
cently, been largely overlooked. Finally, there may be cases
where the constraints of the problem are themselves uncer-
tain. When such decisions lie outside the control of the con-
straint engine, it may be valuable to model the manner in
which this information becomes known in an online envi-
ronment, or to efficiently precompute a set of potential solu-
tions in advance.

The objective of my thesis is to extend the particu-
larly expressive Disjunctive Temporal Problem (DTP) along
with traditional meta-CSP algorithms in order to cope with

overconstrained problems, preferences, finite-domain con-
straints, and uncertain situations. To achieve these goals
while maintaining efficiency requires both the creation of
novel methods as well as the integration of well-established
techniques that have proven effective in prior literature. An
additional goal is to expand the range of applications to
which TCSPs can be applied, demonstrating their useful-
ness outside the typical planning and scheduling domains
that have been the focus of previous work.

Background

A Disjunctive Temporal Problem (DTP) (Stergiou &
Koubarakis 1998) is a type of TCSP defined by a pair
〈X,C〉, where each element Xi ∈ X designates a time
point, and each element Ci ∈ C is a constraint of the form:

ci1 ∨ ci2 ∨ ... ∨ cin

where in turn, each cij is of the form:

aij ≤ xij − yij ≤ bij

with xij , yij ∈ X and aij , bij ∈ �. A solution to a DTP
can be defined in one of two ways. The first of these is
as an object-level assignment of a numeric value to each of
the time points in X , such that all the constraints in C are
satisfied. A second type of solution is a meta-CSP assign-
ment. Here, instead of directly considering assignments to
the time points in X , a meta-variable Ci is created for each
constraint in the DTP. The domain D(Ci) is simply the set
{ci1, ci2, ..., cin}, representing the various disjuncts one can
choose to satisfy that disjunctive constraint. A meta-CSP so-
lution is thus a selection of a single disjunct for each meta-
variable such that the resulting set of inequalities is consis-
tent.

Temporal Constraint Relaxation

A significant portion of my thesis deals with the problem
of constraint relaxation in Disjunctive Temporal Problems.
In this section I describe both systematic and approximate
methods for handling overconstrained problems, and sug-
gest how these can be applied to the more interesting issue
of temporal preference optimization.

ICAPS 2006

80 Doctoral Consortium

Partially-Solve-DTP(A, U , cost, upperbound)
If (cost ≥ upperbound) return
If (U = �)

best-solution-so-far ← A
upperbound ← cost
return

EndIf
Ci ← select-variable(U), U ′ ← U − {Ci}
For each disjunct cij of D(Ci)

A′ ← A ∪ {Ci ← cij}
If (consistent(A′))

Partially-Solve-DTP(A′, U ′, cost, upperbound)
EndIf

EndFor
A′ ← A ∪ {Ci ← ε}
Partially-Solve-DTP(A′, U ′, cost + 1, upperbound)

Figure 1: A PCS algorithm for DTPs

Partial Constraint Satisfaction of DTPs
Existing packages for solving DTPs, such as Epilitis
(Tsamardinos & Pollack 2003) and TSAT++ (Armando et
al. 2004), are sufficient for problems that admit one or more
consistent solutions. However, in the event that a given DTP
is overconstrained, these solvers are unable to provide any-
thing other than a notice of failure. In some situations, one
may instead desire a partial solution, in which as many con-
straints are satisfied as possible.

My thesis work extends traditional meta-CSP-based
search algorithms in order to achieve partial constraint sat-
isfaction of DTPs (Moffitt & Pollack 2005a). To accomplish
this, the domain of each meta-variable (or constraint) in the
DTP must be implicitly augmented with an empty disjunct,
labeled ‘ε’. This mechanism allows constraints to be vio-
lated explicitly during the meta-CSP search, a nuance that
sets the algorithm apart from previous applications of partial
constraint satisfaction to classical CSPs (Freuder & Wallace
1992). A solver, named Maxilitis, applies a branch-and-
bound search (outlined in Figure 1) to minimize the total
number of so-called ε-relaxations.

Applying Local Search to DTPs
One drawback to the systematic algorithm is that it can be-
come rather expensive for extremely overconstrained prob-
lems that require a large number of constraint violations. Al-
though Maxilitis has the anytime property (meaning that it
can be interrupted at any time to extract a suboptimal solu-
tion), one may wonder whether there are more efficient ways
of obtaining such solutions.

To address this question, my thesis work includes an ap-
plication of local search to overconstrained temporal prob-
lems (Moffitt & Pollack 2005b). In contrast to previous
work on DTPs, the approach works within a total assign-
ment space at the object-level, and thus abandons the meta-
CSP and corresponding graph-based consistency algorithms
that have been employed in prior DTP literature. This par-
ticular search space presents several interesting challenges,
such as the presence of infinitely many neighbors at each
search node.

Revisiting Temporal Preference Optimization
One of the more active subjects in recent TCSP literature is
the problem of preferential optimization. In this line of re-
search, traditional temporal constraints (Dechter et al. 1991)
are augmented with local preference functions that express
how well a particular assignment satisfies the correspond-
ing constraint. Early versions of this research focused on
the problem of maximizing the minimum such preference
value (Khatib et al. 2003; Peintner & Pollack 2004), al-
though later developments have begun to address the more
challenging problem of utilitarian optimization (Morris et al.
2004), where the sum of the individual preference values is
maximized. Unfortunately, existing CSP-based methods for
this objective (Peintner & Pollack 2005) have been shown to
suffer in performance compared to more general SAT-based
approaches (Sheini et al. 2005).

My thesis work explores a new means of obtaining util-
itarian optimal solutions to Disjunctive Temporal Problems
with Preferences (DTPPs) (Moffitt & Pollack 2006a). I de-
part from the SAT encoding and instead introduce the Val-
ued DTP (VDTP). In contrast to the traditional semiring-
based formalism (Bistarelli, Montanari, & Rossi 1997) that
annotates legal object-level tuples of a constraint with pref-
erences, the framework I develop instead assigns elementary
costs to the constraints themselves, as is commonly done in
finite-domain Valued CSP literature (Schiex et al. 1995).
While this reformulation provides no increase in expressive
power, it simplifies some of the computational difficulties
related to temporal optimization, since (as mentioned ear-
lier) search strategies for DTP solving rarely invoke object-
level assignments directly. After proving that the VDTP
can express the same set of utilitarian optimal solutions as
the DTPP with piecewise-constant preference functions, I
develop a method for achieving weighted constraint satis-
faction within the meta-CSP search space that has tradition-
ally been used to solve DTPs without preferences. This al-
lows the application of well-established strategies that have
proven effective in previous literature on both temporal rea-
soning and constraint optimization. As shown in Figure 2,
empirical results suggest that an implementation of this ap-
proach (named WEIGHTWATCHER) consistently outperforms
prior DTPP solvers – including GAPD (Peintner 2005) and
the SAT-based solver ARIO (Sheini et al. 2005) – by several
orders of magnitude.

Temporal/Finite-Domain Hybrid CSPs
There are some cases where the constraints of a given prob-
lem contain a mixture of both finite-domain and temporal
components. For instance, consider the task of scheduling
a set of meetings, where each meeting must be held in one
of finitely-many locations. Temporal CSPs can quite easily
capture temporal aspects of the problem such as start and
end times, but a finite-domain network may be needed to
reason about the locations. If these separate constraint net-
works exhibit any degree of interaction (e.g., if the physical
locations of two meetings have an effect on their pairwise
temporal relationship), then some kind of hybrid approach
is required.

My thesis work considers the problem of constructing a

ICAPS 2006

Doctoral Consortium 81

10 15 20 25 30 35 40 45 50

0.01

0.1

1

10

100

Number of Constraints

T
im

e
(s

ec
.)

GAPD
ARIO
WeightWatcher

Figure 2: Median running times for GAPD, ARIO, and
WEIGHTWATCHER for DTPPs of varying sizes (Timeout set
at 300s)

hybrid constraint system capable of managing both finite-
domain CSPs and temporal constraints (Moffitt et al. 2005),
an endeavor that poses two formidable challenges. The first
of these is that a more flexible representation is required to
express both the individual constraint systems and their in-
teraction. The second is that a new algorithm for establish-
ing consistency of the hybrid problem is needed. In particu-
lar, I am in the process of developing a least-commitment
algorithm especially suited for cases in which the finite-
domain network is large but relatively underconstrained.

Dealing with Uncertainty
Uncertainty is a common element in many real-world sce-
narios. Within the context of temporal reasoning, prior work
on uncertainty has focused on the presence of uncontrollable
events (Vidal & Fargier 1999; Morris & Muscettola 2005;
Venable & Yorke-Smith 2005), where the values of some
subset of time points are decided on by nature. The prob-
lem is then no longer one of consistency, but rather one of
controllability.

My thesis work examines a different dimension of uncer-
tainty; specifically, how to deal with situations in which the
constraints of the problem are themselves uncertain. For
instance, if it is unknown whether a pair of activities must
share the same resource, there may or may not exist a non-
overlap constraint between them. Such uncertainty could
exist even if the the object-level temporal variables are them-
selves fully controllable. In the presence of such uncertainty,
several options are available. First, one can attempt to model
the manner in which these constraints become known in an
online environment, allowing the various notions of control-
lability to be generalized. Second, one can alternatively rea-
son about the possible individual realizations of the prob-
lem, where each of these corresponds to a single DTP whose
constraints are fixed. As an example, a precomputed set of
potential solutions to the original problem, known as a cov-
ering set closure in classical CSP literature (Yorke-Smith &
Gervet 2003), could be constructed. This might be done in

a sequential enumerative fashion; or, since these realizations
will likely share a significant amount of structure, some kind
of parallelized approach may prove more efficient. Opti-
mization variants exist as well, where a single solution is
generated that maximizes the likelihood of feasibility. This
work is largely in development, and I am still in the pro-
cess of comparing my approaches to a wide body of related
literature.

An Application to Optimal Rectangle Packing
So far, we have explored ways in which temporal repre-
sentations and reasoning methods can be extended in or-
der to handle overconstrained problems, preferences, finite-
domain constraints, and uncertainty with respect to the con-
straints of the problem. While no single application has been
used exclusively to motivate these extensions, one can imag-
ine how the domains of planning and scheduling would ben-
efit most directly, as they are popular areas to which tempo-
ral reasoning has traditionally been applied.

However, there are other problems that have attracted re-
cent interest where TCSP techniques have yet to be consid-
ered. For instance, consider the topic of rectangle packing, a
problem that has drawn attention from several diverse fields
of computer science (e.g., VLSI/CAD) in addition to some
areas of operations research. The current state-of-the-art
(Korf 2003; 2004) has cast optimal rectangle packing as a
CSP in which a variable is created for each rectangle, whose
legal values are the positions that rectangle could occupy
without exceeding the boundaries of the enclosing space. In
addition, there is a binary constraint between each pair of
rectangles, requiring that they do not overlap. To solve this
CSP, Korf developed a backtracking algorithm, where each
partial assignment is defined to be the fixed placement of
a subset of rectangles. By obtaining lower bounds on the
amount of wasted space at each node in the search, an algo-
rithm was constructed that is the fastest known for optimal
rectangle packing.

My thesis work addresses the problem of optimal rectan-
gle packing (Moffitt & Pollack 2006b) in a way that departs
from the aforementioned search space. Specifically, I cast
the problem of optimally packing a set of rectangles with
fixed orientations as a meta-CSP, in which a meta-variable
is created for each pair of rectangles, whose values are the
four pairwise relationships (i.e., above, below, left of, right
of) that prevent that pair from overlapping. As such, com-
mitment to the exact placement of any rectangle is not estab-
lished until a consistent solution has been generated. I show
how to apply several powerful DTP-solving techniques to
this problem, and also develop a suite of new methods that
exploit both the symmetry and geometry present in this par-
ticular domain. Despite its many differences with the fixed-
placement formulation, the meta-CSP algorithm is shown to
be quite competitive in performance, as evidenced in Fig-
ure 3 on a set of benchmarks fully explained in (Moffitt &
Pollack 2006b).

Motivation for Other Extensions
The domain of rectangle packing proves to be an extremely
interesting application of not only existing TCSP methods,

ICAPS 2006

82 Doctoral Consortium

N Opt. Dimen. Korf ‘04 Moffitt ‘06
14 23 × 45 0 0
15 23 × 55 1 1
16 27 × 56 2 3
17 39 × 46 10 10
18 31 × 69 1:08 1:29
19 47 × 53 8:15 4:11
20 34 × 85 13:32 15:03
21 38 × 88 1:35:08 1:32:01
22 39 × 98 6:46:15 4:51:23
23 64 × 68 36:54:50 29:03:49
24 56 × 88 213:33:00 146:38:48

Figure 3: Experimental results for minimum-area rectangles
than contain all consecutive squares from 1×1 up to N×N .
Runtime is reported in hours, minutes, and seconds.

but also of the other extensions proposed in this thesis. For
instance, although the current formulation cannot represent
rotatable rectangles, these could be handled by encoding the
rectangles’ orientations as finite-domain variables, and ex-
ploiting the hybrid representation discussed earlier. In addi-
tion, I have collaborated with researchers in VLSI to develop
the floorplan repair problem, and proposed a means to solve
it using a variation of the ε-relaxation (Moffitt et al. 2006).

Integration of Techniques
Within each of the extensions described in this paper, there
are a number of issues that remain to be addressed. How-
ever, one of the more challenging tasks is to combine these
extensions into a single, unified framework that elegantly in-
tegrates all techniques. The development of a unified frame-
work is crucial for handling complicated real-world scenar-
ios, such as calendar management and meeting scheduling,
that require each of these extensions to some degree. A sys-
tem based on this framework will be implemented and com-
pared in both design and performance to other related recent
developments.

References
Armando, A.; Castellini, C.; Giunchiglia, E.; and Maratea, M.
2004. A SAT-based decision procedure for the boolean combi-
nation of difference constraints. In Proceedings of the 7th Inter-
national Conference on Theory and Applications of Satisfiability
Testing (SAT-2004).
Bistarelli, S.; Montanari, U.; and Rossi, F. 1997. Semiring-
based constraint satisfaction and optimization. Journal of the
ACM 44(2):201–236.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks. Artificial Intelligence 49(1-3):61–95.
Freuder, E. C., and Wallace, R. J. 1992. Partial constraint satis-
faction. Artificial Intelligence 58(1-3):21–70.
Khatib, L.; Morris, P.; Morris, R.; and Rossi, F. 2001. Temporal
constraint reasoning with preferences. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence (IJCAI-
2001), 322–327.
Khatib, L.; Morris, P.; Morris, R.; and Venable, K. B. 2003.
Tractable Pareto optimal optimization of temporal preferences. In
Proceedings of the 18th International Joint Conference on Artifi-
cial Intelligece (IJCAI-2003), 1289–1294.
Korf, R. E. 2003. Optimal rectangle packing: Initial results. In
Proceedings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS-2003), 287–295.

Korf, R. E. 2004. Optimal rectangle packing: New results. In
Proceedings of the 14th International Conference on Automated
Planning and Scheduling (ICAPS-2004), 142–149.
Moffitt, M. D.; Ng, A. N.; Markov, I. L.; and Pollack, M. E. 2006.
Constraint-Driven Floorplan Repair. To appear in Proceedings of
the 43rd Design Automation Conference (DAC-2006).
Moffitt, M. D.; Peintner, B.; and Pollack, M. E. 2005. Augment-
ing disjunctive temporal problems with finite-domain constraints.
In Proceedings of the 20th National Conference on Artificial In-
telligence (AAAI-2005), 1187–1192.
Moffitt, M. D., and Pollack, M. E. 2005a. Partial constraint sat-
isfaction of disjunctive temporal problems. In Proceedings of the
18th International Florida Artificial Intelligence Research Soci-
ety Conference (FLAIRS-2005), 715–720.
Moffitt, M. D., and Pollack, M. E. 2005b. Applying local search
to disjunctive temporal problems. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI-
2005), 242–247.
Moffitt, M. D., and Pollack, M. E. 2006a. Temporal preference
optimization as weighted constraint satisfaction. To appear in
Proceedings of the 21st National Conference on Artificial Intel-
ligence (AAAI-2006).
Moffitt, M. D., and Pollack, M. E. 2006b. Optimal rectangle pack-
ing: a meta-CSP approach. To appear in Proceedings of the 16th
International Conference on Automated Planning and Scheduling
(ICAPS-2006).
Morris, P. H., and Muscettola, N. 2005. Temporal dynamic con-
trollability revisited. In Proceedings of the 20th National Confer-
ence on Artificial Intelligence (AAAI-2005), 1193–1198.
Morris, P.; Morris, R.; Khatib, L.; Ramakrishnan, S.; and Bach-
mann, A. 2004. Strategies for global optimization of tempo-
ral preferences. In Proceedings of the 10th International Con-
ference on Principles and Practices of Constraint Programming,
408–422.
Peintner, B., and Pollack, M. E. 2004. Low-cost addition of pref-
erences to DTPs and TCSPs. In Proceedings of the 19th National
Conference on Artificial Intelligence (AAAI-2004), 723–728.
Peintner, B., and Pollack, M. E. 2005. Anytime, complete al-
gorithm for finding utilitarian optimal solutions to STPPs. In
Proceedings of the 20th National Conference on Artificial Intelli-
gence (AAAI-2005), 443–448.
Peintner, B. M. 2005. Algorithms For Constraint-Based Temporal
Reasoning With Preferences. Ph.D. Dissertation, University of
Michigan.
Schiex, T.; Fargier, H.; and Verfaillie, G. 1995. Valued constraint
satisfaction problems: hard and easy problems. In Proceedings of
the 14th International Joint Conference on Artificial Intelligence
(IJCAI-1995), 631–639.
Sheini, H. M.; Peintner, B.; Sakallah, K. A.; and Pollack, M. E.
2005. On solving soft temporal constraints using SAT techniques.
In Proceedings of the 11th International Conference on Princi-
ples and Practice of Constraint Programming (CP-2005), 607–
621.
Stergiou, K., and Koubarakis, M. 1998. Backtracking algorithms
for disjunctions of temporal constraints. In Proceedings of the
15th National Conference on Artificial Intelligence (AAAI-98),
248–253.
Tsamardinos, I., and Pollack, M. E. 2003. Efficient solution tech-
niques for disjunctive temporal reasoning problems. Artificial In-
telligence 151(1-2):43–90.
Venable, K. B., and Yorke-Smith, N. 2005. Disjunctive temporal
planning with uncertainty. In Proceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-2005),
1721–1722.
Vidal, T., and Fargier, H. 1999. Handling contingency in tem-
poral constraint networks: From consistency to controllabilities.
Journal of Experimental and Theoretical Artificial Intelligence
11(1):23–45.
Yorke-Smith, N., and Gervet, C. 2003. Certainty closure: A
framework for reliable constraint reasoning with uncertainty. In
Proceedings of the 9th International Conference on Principles
and Practice of Constraint Programming (CP-2003), 769–783.

ICAPS 2006

Doctoral Consortium 83

Path Planning Under Uncertainty: Complexity and Algorithms
(ICAPS Doctoral Consortium: Thesis Abstract)

Evdokia Nikolova
MIT Computer Science & AI Lab

Cambridge MA 02139, USA
enikolova@csail.mit.edu

Introduction
Finding shortest paths is a classic and fundamental
problem in theoretical computer science which has in-
fluenced a wide array of other �elds. Finding stochastic
shortest paths has also been extensively studied though
it has proven harder to formalize and yield classic re-
sults. What is the right way to de�ne stochastic short-
est paths, when we only know random distributions for
the edge weights? Is it shortest paths on average, or
shortest paths minimizing a combination of mean and
variance, or minimizing some other speci�ed criterion?
Are they found adaptively or non-adaptively? A vari-
ety of problem variants have appeared in the literature,
and most have ended up minimizing the expected length
of paths, or a combination of expected lengths and ex-
pected costs such as bicriterion problems (Pallottino &
Scutella 1997). Adaptive formulations have prevailed,
perhaps because a non-adaptive minimization of the ex-
pected path length trivially reduces to the deterministic
shortest path problem.

Few researchers have considered optimizing a non-
linear function of the path length. Some notable
work includes that of Loui (Loui 1983) who de�nes a
decision-theoretic framework, where the optimal path
maximizes the expected utility of the user for a class
of monotonically increasing utility functions. Fan et al.
(Fan, Kalaba & Moore) present an adaptive heuristic
for paths that maximize the probability of arriving on
time. Formulations of this type with nonlinear objec-
tive, though perhaps most useful in practice, have been
sparse, because the hardness of the problem arises and
accumulates from many levels: combinatorial, distribu-
tional, analytic, functional, to list a few. We elaborate
on these sources below.

We focus on stochastic shortest paths models which
can effectively factor the sources of dif�culty and
whose solution draws from a variety of areas underly-
ing the problem. In addition our solutions contain tech-
niques that may be useful in solving other combinatorial
problems and more generally, a number of nonconvex
optimization problems.

Related Work

A lot of the related work on shortest paths in stochastic
networks has focused on the notion of shortest paths in
expectation, e.g., (Bertsekas & Tsitsiklis 1991). Other
models have added costs on the edges in addition to
travel times (Chabini 2002), (Miller-Hooks & Mahmas-
sani 2000) where the costs depend on the realized travel
times and in this way can capture a measure of uncer-
tainty.

Finding the path of smallest expected length trivially
reduces to a deterministic shortest path problems and
does not take into account risk in predicting the optimal
route. Since most real world applications care about a
tradeoff between risk and expectation, we consider non-
linear objectives that capture more information about
the edge distributions. Closest to this model, Loui
(Loui 1983) considered a decision analytic framework
for optimal paths under uncertainty, however he only
studied monotone increasing cost functions and his al-
gorithm has running time O(nn) in the worst case. Mir-
chandani and Soroush (Mirchandani & Soroush 1985)
extended his work to a quadratic cost function of the
path length, however their algorithm is also an exhaus-
tive search over all potentially optimal paths, and thus
exponential in the worst case.

Another branch of the stochastic shortest path liter-
ature has focused on adaptive algorithms (Fan, Kal-
aba & Moore), (Gao & Chabini 2002), (Boyan &
Mitzenmacher 2001), which compute the optimal next
edge in light of lengths or travel times already real-
ized en route to the current node. Another direction has
been to give approximations and heuristics for expected
shortest paths in stochastic networks with nonstationary
(time-varying) edge length distributions (Miller-Hooks
& Mahmassani 2000), (Fu & Rilett 1998), (Hall 1986),
to list a few. In this proposal, we only consider station-
ary edge length distributions, that do not change with
time; time-varying distributions will be the subject of
future work.

ICAPS 2006

84 Doctoral Consortium

Problem Statement
The offline stochastic shortest path problem takes as in-
put a graph and independent probability distributions
for all its edge weights. It asks for the optimal path
between a given source and a destination, which mini-
mizes the expectation of a speci�ed objective function.
The term offline is used to emphasize that we seek a
nonadaptive algorithm for an optimal path, before we
observe any of the realized edge weights. When the
cost function is linear, the problem becomes equivalent
to a deterministic shortest path with edge weights equal
to the expectations of their corresponding random vari-
ables. Thus, the challenge is when the objective is non-
linear, which is also the case that most often occurs in
practical applications.

Notation. We denote the graph G = (V, E), with
|V | = n and |E| = m. Let the source and destination
be S and T respectively. Denote the random weight
of edge e by Xe. The objective function is C : R →
R. Strictly speaking, C(X) is a function of the random
path length X =

∑
Xe. Thus, our problem is to solve

min
π

E[C(
∑

e∈π

Xe)] (1)

for paths π between the source and destination.
The meaning of a non-linear cost function of the path
length is not as intuitive as the notion of penalty for be-
ing late. Thus, we provide an equivalent formulation
of the objective function, by including the extra param-
eter t for the clock time relative to a deadline at time
0. The penalty for arriving at the destination at time
t is C̃(t) (t is negative for early arrivals and positive
for late arrivals). The expected cost of a path is then∫ ∞

0
f(x)C̃(t + x)dx where f(.) is the probability den-

sity of the length X of the path and t is the departure
time. For a �xed departure time t, the cost of the path is
Ct(X) = C̃(t+X), simply a horizontal shift by t units,
and the minimization of its expectation over the set of
paths is equivalent to the problem (1). When it is clear
from the context, the parameter dependence Ct(X) will
be suppressed and we will write C(X). This richer
framework allows us to solve an additional problem:
what is the optimal path and the optimal departure time
t? This question is well de�ned for non-monotone cost
functions with a global minimum.

We sometimes distinguish the cost functions by call-
ing C̃(t) the penalty function (since it explicitly speci-
�es a penalty for being late), and E[C(X)] the objective
function.

Note that we may not expect to solve the problem (1)
in full generality for several reasons.
• Combinatorial dif�culty. Even in the absence of ran-

domness, when the edge weights are fully determin-
istic, a wide class of cost functions reduce to �nding
the longest path in the graph, which is NP-hard and

inapproximable within a reasonable factor (Karger,
Motwani & Ramkumar 1997).
• Distributional dif�culty. The distributional assump-

tions on the edge lengths may bring a dif�culty on
their own, to the extent that we cannot even com-
pute the distribution of the total length of a path
X =

∑
Xe, let alone evaluate the function E[C(X)]

and minimize it. For example, Kleinberg et al.
show that computing the distribution of the sum of n
non-identical Bernoulli random variables is #P-hard
(Kleinberg, Rabani & Tardos).
• Analytic dif�culty. Even with additive edge length

distributions such as the Normal distribution, with
which we can readily compute the sum X =

∑
Xe,

we might not be able to get a closed analytic form
of the objective function E[C(X)] =

∫
f(x)C(x)dx

and thus cannot optimize it ef�ciently. This is a com-
mon problem in decision theory and related �elds,
which therefore focus attention on conjugate pairs
of function and distribution families (more precisely,
conjugate priors), i.e., function-distribution pairs for
which the integral can be computed in a closed form
and the Expected Cost function lies in the same fam-
ily as the original Cost function C(X). For exam-
ple, standard conjugate pairs are (Beta, Binomial)
and (Gamma, Exponential).
• Functional dif�culty. Having computed the distribu-

tion of the path length X and a closed form expres-
sion for the objective function E[C(X)], we are left
with an integer optimization problem, to minimize a
function over the collection of ST-paths of graph G.
Relaxing the integer constraint, we have to optimize
the function E[C(X)] over the path polytope inRm.
The path polytope likely does not have any nice de-
scription with fewer than exponentially many linear
constraints. Thanks to the separability of a linear ob-
jective into the graph edges, the deterministic shortest
path problem has an ef�cient combinatorial solution.
However, other than the linear and exponential ob-
jectives, no other cost function is separable into the
edges (Loui 1983) and thus we might not hope to �nd
exact optimal solutions in the general case. In special
cases, convex and quasi-convex objective functions
may admit greedy approaches that are equivalent to
gradient descent on the path polytope, or they may
admit ef�cient enumeration of a small set of candi-
date paths, which would contain the optimum. Non-
convex functions in the relaxed problem may achieve
an optimum anywhere in the path polytope, and as
there are no general ef�cient methods for non-convex
programming, it might not be tractable to �nd the
relaxed optimum, nor approximate the integer opti-
mum.
In addition to looking for ef�cient and approximation

algorithms, we would like to understand the degree of

ICAPS 2006

Doctoral Consortium 85

dif�culty each factor above contributes with.
For the case of general objective, we prove hard-

ness and inapproximability results for objectives with
a global minimum. We then describe approximations
based on a combination of problem substructure and
discretization. This method applies to non-separable
objectives which have a separable term, and the solution
idea is similar to partial minimization of a multivariate
function.

We also study several speci�c but fundamental cost
functions together with several different distributions,
and offer hardness results, exact and approximation al-
gorithms based on a variety of techniques.

References
Bertsekas, D. P. and Tsitsiklis, J. N. 1991. An analysis
of stochastic shortest path problems. Math. Oper. Res.
16 (3): 580-595.
Boyan, J. and Mitzenmacher, M. 2001. Improved Re-
sults for Route Planning in Stochastic Transportation
Networks. ACM-SIAM Symposium on Discrete Algo-
rithms.
Bruno, J.L.; Downey, P.J.; and Fredrickson, G.N.
1981. Sequencing tasks with exponential service time
to minimize the expected flowtime or makespan. Jour-
nal of the ACM, 28: 100-113.
Chabini, I. 2002. Algorithms for k-Shortest Paths
and Other Routing Problems in Time-Dependent Net-
works. Transportation Research Part B: Methodolog-
ical.
Chvatal, V. 1980. Hard Knapsack Problems. Opera-
tions Research, 28: 1402-1411.
Fan, Y.; Kalaba, R.; and Moore, II, J. E. Arriving on
Time. Journal of Optimization Theory and Applica-
tions, forthcoming.
Fu, L. and Rilett, L. R. 1998. Expected Shortest Paths
in Dynamic and Stochastic Traf�c Networks. Trans-
portation Research, Part B, 32: 499-516.
Gao, S. and Chabini, I. 2002. Optimal Routing Policy
Problems in Stochastic Time-Dependent Networks.
Proceedings of the IEEE 5th International Conference
on Intelligent, Transportation Systems, Singapore, pp.
549-559.
Hall, R. W. 1986. The Fastest Path Through a Network
with Random Time-Dependent Travel Times, Trans-
portation Science, 20: 182-188.
Karger, D.; Motwani, R.; and Ramkumar, G. D. S.
1997. On approximating the longest path in a graph.
Algorithmica, 18: 82-98.
Kleinberg, J.; Rabani. Y.; and Tardos, ·E. 2000. Allo-
cating Bandwidth for Bursty Connections SIAM Jour-
nal on Computing, 30: 191-21.

Loui, R. P. 1983. Optimal Paths in Graphs with
Stochastic or Multidimentional Weights. Communi-
cations of the ACM, 26: 670-676.
Miller-Hooks, E. D. and Mahmassani, H. S. 2000.
Least Expected Time Paths in Stochastic, Time-
Varying Transportation Networks. Transportation Sci-
ence, 34: 198-215.
Mirchandani, P. and Soroush, H. 1985. Optimal paths
in probabilistic networks: a case with temporary pref-
erences. Computers and Operations Research, 12 (4):
365-381.
Nikolova, E. 2005. Stochastic Shortest Paths.
Manuscript.
Pallottino, S. and Scutella M. G. 1997. Shortest Path
Algorithms in Transportation Models: Classical and
Innovative Aspects. TR-97-06. Universita di Pisa Di-
partimento di Informatica, Pisa, Italy.
Papadimitriou, C.H. and Yannakakis, M. 1991. Short-
est paths without a map. Theoretical Computer Sci-
ence 84: 127-150.
Papadimitriou, C. H. and Steiglitz, K. 1998. Combina-
torial optimization: Algorithms and complexity. Dover
Publications, Inc., N.Y.
Vazirani, V. V. 2001. Approximation Algorithms.
Springer-Verlag Berlin Heidelberg.

ICAPS 2006

86 Doctoral Consortium

Easy and Hard Conformant Planning

Héctor Palacios
Departamento de Tecnologı́a

Universitat Pompeu Fabra
08003 Barcelona, SPAIN

hector.palacios@upf.edu

Advisor: Héctor Geffner
Departamento de Tecnologı́a

ICREA & Universitat Pompeu Fabra
08003 Barcelona, SPAIN

hector.geffner@upf.edu

Abstract
Even under polynomial restrictions on plan length, confor-
mant planning remains a very hard computational problem
as plan verification itself can take exponential time. This
heavy price cannot be avoided in general although in many
cases conformant plans are verifiable efficiently by means of
simple forms of disjunctive inference. We report an efficient
but incomplete planner capable of solving non-trivial prob-
lems quickly. In this work, we show that this is possible
by mapping conformant into classical problems that are then
solved by an off-the-shelf classical planner. The formulation
is sound as the classical plans obtained are all conformant, but
it is incomplete as the inverse relation does not always hold.
Atoms L/Xi that represent conditional beliefs ’if Xi then L’
are introduced in the classical encoding and combined with
suitable actions when certain invariants are verified. Empiri-
cal results over a wide variety of problems illustrate the power
of the approach. We propose extensions to this formulation.

Introduction
Conformant planning is a form of planning where a goal is
to be achieved when the initial situation is not fully known
and actions may have non-deterministic effects (Goldman
& Boddy 1996). Conformant planning is computation-
ally harder than classical planning, as even under polyno-
mial restrictions on plan length, plan verification remains
hard (Turner 2002). This additional complexity cannot be
avoided in general. This difference in complexity explains
why it is still very easy to come up with simple and small
conformant problems that no general domain-independent
planner can solve, while the same is no longer true for clas-
sical planners. The main motivation of this work is to nar-
row this gap by developing an approach that targets ’sim-
ple’ conformant problems effectively. The approach will
not be complete but it will provide solutions to some non-
trivial conformant planning problems by translating them
intro classical planning problems(Palacios & Geffner 2006).
New problems are fed into a classical planner. The trans-
lation is sound as the classical plans are all conformant,
but it is incomplete as the converse does not always hold.
The translation scheme accommodates ’reasoning by cases’
by means of an ’split-protect-and-merge’ strategy; namely,
atoms L/Xi that represent conditional beliefs ’if Xi then L’
are introduced in the classical encoding that are then com-
bined by suitable actions when certain invariants in the plan
are verified.

While several effective but incomplete formulations of
conformant planning have been formulated before, like 0-
approximation (Baral & Son 1997), none, as far as we know,
can represent these types of plans, while those planners
that can represent them (Cimatti, Roveri, & Bertoli 2004;
Brafman & Hoffmann 2004), are not able to compute them
except for very small problems.

Conformant Planning
For a conformant planning problem, if the number m of pos-
sible initial states s0 ∈ Init is bounded and actions are de-
terministic, the conformant planning problem P with a fixed
horizon n can be mapped in the SAT problem over the for-
mula (Palacios & Geffner 2005)∧

s0∈Init

T s0(P, n) (1)

where if T (P, n) is the propositional theory that encodes the
problem P with horizon n. T s0(P, n) is T (P, n) with two
modifications: first, fluent literals L0 (L at time 0) are re-
placed by true/false iff L is true/false in the (complete) state
s0, and second, fluent literals Li, i > 0, are replaced by
’fresh’ literals Ls0

i , one for each s0 ∈ Init.
Eq. 1 can be thought as expressing m ’classical planning

problems’, one for each possible initial state s0 ∈ Init, that
are coupled in the sense that they all share the same set of
actions; namely, the action variables are the only variables
shared across the different subtheories T s0(P, n) for s0 ∈
Init.

For bounded m, the resulting class of conformant plan-
ning problems with a fixed horizon can be mapped polyno-
mially into SAT, generalizing the SAT encoding of classical
planning problems which corresponds to m = 1 (Kautz &
Selman 1996). Also, for a sufficiently large horizon, this
formulation is complete. In other words, for this interesting
class of problems, the formulation of Eq 1 takes advantage
of the reduced complexity without restricting the inferences
at all. However, expressivity and complexity, however, are
not the only problems; efficiency or control is the other. A
planner using Eq. 1 naively will not scale.

We have already proposed two approaches to optimal
classical conformant planning based on logical formulations
(Palacios et al. 2005; Palacios & Geffner 2005). Both of
them translate the problem into CNF, and obtain a plan by

ICAPS 2006

Doctoral Consortium 87

doing logical operations and search. The logical approach
has been very importan on optimal classical planning (Kautz
& Selman 1996), where they map it into SAT. In vplan
(Palacios et al. 2005) we presented a complete optimal plan-
ner that rejects plan candidate by checking through model
counting that it does not work for some initial state. In
cf2sat (Palacios & Geffner 2005) (for conformant2sat) we
construct a new propositional formula by doing logical op-
erations as forgetting (Lin & Reiter 1994) and condition-
ing. The models of these new formula are all the possible
plan. We feed that formula into a SAT solver to obtain a
plan. Logical operations in both planners became feasible
by compiling the propositional theory into d–DNNF (Dar-
wiche 2002), a formal norm akin to OBDD. We obtained
good results on some very complex domains but failed to
scale in more simple problems.

One way to trade off completeness for efficiency in con-
formant planning results from approximating belief states
(Bonet & Geffner 2000). For example, the 0-approximation
introduced in (Baral & Son 1997) represents belief states bel
by means of two sets: the set of literals that are true in bel,
and the set of literals that are false in bel. Variables which
do not appear in either set are unknown.

Conformant planning under the 0-approximation is thus
no more complex, theoretically, than classical planning. The
problem however is that the 0-approximation is strongly in-
complete, as it does not capture any non-trivial form of dis-
junctive inference. For example, given a disjunction p ∨ q
and an action a that maps either p or q into r, the seman-
tics will not validate a as a conformant plan for r. Indeed,
disjunctions that are not tautologies are thrown away.

Translation
The translation scheme maps a conformant planning prob-
lems P into a classical planning problems K(P). We de-
scribe the contents of K(P) in two parts, starting with the
basic core K0(P). We assume that P is given by tuples of
the form 〈F,O, I, G〉 where F stands for the fluent symbols
in the problem, O stands for a set of actions a, I is a set
of clauses over F defining the initial situation, and G is a
set of literals over F defining the goal. In addition, every
action a has a precondition given by a set of fluent literals,
and a set of conditional effects C → L where C is a set of
fluent literals and L is a literal. We assume that actions are
all deterministic and hence that all uncertainty lies in the ini-
tial situation. We will usually refer to the conditional effects
C → L of an action a as the rules associated with a, and
sometimes write them as a : C → L. Also, we use the ex-
pression C ∧X → L to refer to rules with literal X in their
bodies. In both cases, C may be empty. Last, when L is a
literal, we take ¬L to denote the complement of L.

Definition 1 (Core Translation) 1 The core translation
maps the conformant problem P into the classical problem
K0(P) = 〈F ′, O′, I ′, G′〉 where

1We will present a simplified subset of the transformation rules
due to lack of space. In particular, we will assume that every action
only has one rule and no preconditions. The general translation
appears in (Palacios & Geffner 2006).

• F ′ = {KL, K¬L | L ∈ F}
• I ′ = {KL,¬K¬L | L ∈ I}∪ {¬KL′,¬K¬L′ | L′ 6∈ I}
• G′ = {KL | L ∈ G}
• O′ = O but with conditional effect a : C → L replaced

by a : KC → KL and a : ¬K¬C → ¬K¬L.

For any literal L in P , KL denotes its ’epistemic’ coun-
terpart in K0(P) whose meaning is that L is known. We
write KC for C = L1 ∧ L2 . . . as an abbreviation for
KL1 ∧KL2 . . ., and ¬K¬C for ¬K¬L1 ∧ ¬K¬L2

The intuition behind the translation is simple: first, com-
plementary literals L and ¬L whose status is not known in
the initial situation in P are ’negated’, by mapping them into
the literals ¬KL and ¬K¬L that are jointly consistent. This
mapping removes all uncertainty from K0(P). In addition,
to ensure soundness, each conditional effect a : C → L in
P maps, not only into the ’supporting’ rule a : KC → KL
but also into the ’cancellation’ rule a : ¬K¬C → ¬K¬L
that guarantees that literal K¬L is deleted (prevented to per-
sist) when action a is applied except when C is known to be
false.

We extend the translation further so that the disjunctions
in P are taken into account in a form that is similar to the
Disjunction Elimination inference rule used in Logic

If X1 ∨ · · · ∨Xn, X1 ⊃ L, . . . , and Xn ⊃ L then L (2)

For this, we will create new atoms in K(P), written L/Xi,
that aim to capture the conditional beliefs Xi ⊃ L. Then,
the resulting classical encoding will be such that once these
atoms are ’achieved’ for each i = 1, . . . , n, and when they
are suitably ’protected’, the literal L will be made ’achiev-
able’ by an extra ’dummy’ action with conditional effect
similar to (2). In principle, any rule a : C ∧ Xi → L in P
with Xi uncertain can be used to produce a rule a : KC →
L/Xi in K(P), meaning that if KC is known and a is ap-
plied, then if Xi was true, L will become true.

Rule 2 (Split) For each rule a : C ∧ Xi → L in P where
Xi is a literal that appears in a disjunction X : X1 ∨ · · · ∨
Xn, then add to K(P) the atoms L/Xj , j = 1, . . . , n, all
initialized to false, and the rules a : KC → L/Xi. 2

The combinations of the conditional beliefs represented by
the atoms L/Xi is achieved by means of extra actions added
to the classical encoding K(P) that generalize (2) slightly,
allowing some of the cases Xi to be disproved:3

Rule 3 (Merge) For each disjunction X : X1 ∨ · · · ∨ Xn

and atom L in P such that L/Xi is an atom in K(P), add
to K(P) a new action aX,L with conditional effect

(L/X1∨K¬X1)∧· · ·∧(L/Xn∨K¬Xn)∧FLAGX,L → L

where FLAGX,L is a fluent initialized to true. If L = Xi

for some i ∈ [1, n], remove the conjunct (L/Xi ∨ K¬Xi)
from the rule body.

2If we want L/Xi to mean exactly that ’right after the action a,
if Xi is true, then L is true’, some additional care is needed about
the other rules of the action. Details in the full paper.

3When using the classical plans obtained from K(P) as con-
formant plans in P , such ’dummy’ actions must be removed.

ICAPS 2006

88 Doctoral Consortium

cf2cs(ff) CFF
Problem Time Length Time Length
Bomb-100-1 0,84 199 96,2 199
Bomb-100-60 9.64 140 23,53 140
Cube-7-Ctr 0,02 24 38,2 39
Cube-9-Ctr 0,05 33 —- —-
Cube-11-Ctr 0,09 42 —- —-
Sqr-8-Ctr 0,03 22 140,5 50
Sqr-12-Ctr 0,04 32 —- —-
Sqr-64-Ctr 9,66 188 —- —-
Grid-4-4 0,06 25 0,11 25
Grid-4-5 0,05 30 0,14 30
Safe-50 0,05 50 134,4 50
Safe-70 0,08 70 561,8 70
Safe-100 0,28 100 —- —-

Table 1: Plan times and lengths obtained by a classical planner
(FF) over K(P) translation (cf2cs(ff)) in relation to Confor-
mant FF for various conformant problems P . Times in seconds.
The symbol ’—-’ means cutoff exceeded (30 mins or 800Mb)

A key distinction from Logic is that the disjunction X1 ∨
· · · ∨ Xn and the conditional beliefs ’if Xi then L’ repre-
sented by the atoms L/Xi need all be preserved until they
are combined together to yield L. This is the purpose of
the boolean FLAGX,L that is initially set to true, but which
is deleted when an action is taken in a context where it is
not possible to prove that 1) L is preserved (if true), 2) the
disjunction X ∨ L is preserved, and 3) the conditional be-
liefs represented by the atoms L/Xi achieved are preserved.
This is accomplished by extending K(P) with the rules that
delete FLAGX,L when it is necessary.

These rules more detailed and other rules can be read in
(Palacios & Geffner 2006). They yield expressivity with-
out sacrificing efficiency, as they manage to accommodate
non-trivial forms of disjunctive inference in a classical the-
ory without having to carry disjunctions explicitly in the be-
lief state: some disjunctions are represented by atoms like
L/Xi, and others are maintained as invariants enforced by
the resulting encoding.

Theorem 2 (Soundness K(P)) Any plan that achieves the
literal KL in K(P) is a plan that achieves L in the confor-
mant problem P .

Experimental Results
We have implemented the translation program cf2cs that
takes a conformant planning problem P as input and outputs
a classical problem K(P). Table 1 shows the plan times and
lengths obtained by Conformant FF (Brafman & Hoffmann
2004) vs. cf2cs(ff) (FF planner fed with the problem
generated by cf2cs). Translations only require a few sec-
onds. Among the existing benchmarks, not included in the
table, there are three domains, Sorting-Nets, (Incomplete)
Blocks, and Ring, which cannot be handled by our transla-
tion scheme.

Discussion & Future Work
In vplan (Palacios et al. 2005) we presented a complete op-
timal planner that reject plans candidate that does not work
for some initial state. In cf2sat (Palacios & Geffner 2005)

we proposed to generate a propositional formula that en-
codes all the possible conformant planners, and called a SAT
solver over it. In both cases we require an exponential pro-
cess step of compiling into d–DNNF.

We have introduced a translation scheme that enables a
wide class of conformant planning problems to be solved by
an off-the-shelf classical planner. The translation accounts
for a limited form of ’reasoning by cases’ by means of an
’split-protect-and-merge’ strategy; namely, atoms L/Xi that
represent conditional beliefs ’if Xi then L’ are introduced,
and when certain invariants are verified, they are combined.
This translation is incomplete because it is equivalent to a
transformation like cf2sat, but considering only simple dis-
junctions of fluents instead of every initial state.

We want to explore allowing combinations of disjunctions
by introducing atoms L/XiYj . For rules a : C ∧ L → M ,
we can add a : KC ∧ L/Xi → M/Xi, but in many cases
it can lead to an exponential number of added atoms. How-
ever, we hope that some domains such as the Rings can be
solved by a combination of these new rules, even when the
new transformation will not be complete. We want to de-
tect whether a problem is suitable for doing those additional
transformations by using causal graphs. It will allow us, for
instance, to see how many labels we need to consider for a
variable.

The results presented here suggest to look for new propo-
sitional theories similar to Eq. 1. We can split on atoms
that really need to be considered for solving the problem.
We also can combine cf2cs, for easy problems, with cf2sat,
for more complex problems, and obtain an hybrid planner
that scales in a broader set of benchmarks. Moreover, as the
plans obtained by cf2cs do not appear to be suboptimal, we
want to identify when optimality holds and guarantee that.
We also want to look for similar rules that allow transforma-
tions of other kinds of non-probabilistic uncertain planning,
such as contingent planning.

Related Work

We did not compare the performance of cf2cs with many
of the planners available because our goal is to map some
conformant problems into classical planning. We compare
with CFF (Brafman & Hoffmann 2004) as a way to show
that our results are encouraging with respect to the state
of the art. Most of them try to give a suboptimal solution
to any conformant problem (Brafman & Hoffmann 2004;
Cimatti, Roveri, & Bertoli 2004; Ferraris & Giunchiglia
2000). FragPlan (Kurien, Nayak, & Smith 2002) try to solve
the general problem, but it can be used in more realistic en-
vironments where a partially conformant plan are needed.

Acknowledgements

We thank Blai Bonet for the PDDL parser and Joerg Hoff-
mann for providing FF and CFF.

ICAPS 2006

Doctoral Consortium 89

References
Baral, C., and Son, T. C. 1997. Approximate reasoning
about actions in presence of sensing and incomplete infor-
mation. In Proc. ILPS 1997, 387–401.
Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Proc. of
AIPS-2000, 52–61. AAAI Press.
Brafman, R., and Hoffmann, J. 2004. Conformant planning
via heuristic forward search: A new approach. In Proc.
ICAPS-04.
Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Confor-
mant planning via symbolic model checking and heuristic
search. Artificial Intelligence 159:127–206.
Darwiche, A. 2002. On the tractable counting of the-
ory models and its applications to belief revision and truth
maintenance. J. of Applied Non-Classical Logics.
Ferraris, P., and Giunchiglia, E. 2000. Planning as satisfia-
bility in nondeterministic domains. In Proceedings AAAI-
2000, 748–753.
Goldman, R. P., and Boddy, M. S. 1996. Expressive plan-
ning and explicit knowledge. In Proc. AIPS-1996.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of AAAI-96, 1194–1201. AAAI Press / MIT
Press.
Kurien, J.; Nayak, P.; and Smith, D. 2002. Fragment-
based conformant planning. In Proc. 13th Int. Conf. on
Automated Planning and Scheduling (ICAPS-2002).
Lin, F., and Reiter, R. 1994. Forget it! In Working Notes,
AAAI Fall Symposium on Relevance, 154–159. American
Association for Artificial Intelligence.
Palacios, H., and Geffner, H. 2005. Mapping conformant
planning to sat through compilation and projection. In 1st
Workshop on QCSP - CP-2005.
Palacios, H., and Geffner, H. 2006. Compiling uncertainty
away: Solving conformant planning problems using a clas-
sical planner (sometimes). In Proc. of (AAAI-06).
Palacios, H.; Bonet, B.; Darwiche, A.; and Geffner, H.
2005. Pruning conformant plans by counting models on
compiled d-DNNF representations. In Proc. of the 15th
Int. Conf. on Planning and Scheduling (ICAPS-05). AAAI
Press.
Turner, H. 2002. Polynomial-length planning spans the
polynomial hierarchy. In JELIA ’02: Proc. of the European
Conference on Logics in AI, 111–124. Springer-Verlag.

ICAPS 2006

90 Doctoral Consortium

Predictive Planning for Supply Chain Management:
Adapting to Competitor Behavior∗

David Pardoe
Department of Computer Sciences
The University of Texas at Austin

dpardoe@cs.utexas.edu

Introduction
In today’s industrial world, supply chains are ubiquitous in
the manufacturing of many complex products. Tradition-
ally, supply chains have been created through the interac-
tions of human representatives of the various companies
involved. However, recent advances in planning, schedul-
ing, and autonomous agent technologies have sparked an
interest, both in academia and in industry, in automating
the process (Kumar 2001).

From a planning and scheduling perspective, supply
chain management simultaneously requires long-range in-
ventory management, mid-range customer negotiations,
and short-term factory scheduling, all of which interact
closely.

One barrier to supply chain management research is that
it can be difficult to benchmark automated strategies in
a live business environment, both due to the proprietary
nature of the systems and due to the high cost of errors.
The Trading Agent Competition Supply Chain Manage-
ment (TAC SCM) scenario provides a unique testbed for
studying and prototyping supply chain management agents
by providing a competitive environment in which indepen-
dently created agents can be tested against each other over
the course of many simulations in an open academic set-
ting (Arunachalam & Sadeh 2005). In a TAC SCM game,
each agent acts as an independent computer manufacturer
in a simulated economy. The agent must procure compo-
nents such as CPUs and memory; decide what types of
computers to manufacture from these components as con-
strained by its factory resources; bid for sales contracts with
customers; and decide which computers to deliver to whom
and by when.

One crucial challenge in supply chain management is
that decisions must often be made in the face of consid-
erable uncertainty. For instance, purchases of production
resources may need to be negotiated long before accurate
information about customer preferences becomes available.
This challenge is particularly evident in TAC SCM, where

∗This abstract is largely based on a paper in the ICAPS 2006
techical program (Pardoe & Stone 2006) that contains both a com-
plete description of the TacTex-05 agent and a number of experi-
mental results. I would like to thank my advisor, Peter Stone, for
assistance with this work.

sources of uncertainty include the capacity of suppliers to
deliver components, the nature of customer demand, and
the actions of other agents as they compete for components
and customers.

I have designed an agent to compete in TAC SCM,
TacTex-05 (winner of the 2005 competition), that addresses
this uncertainty by taking a predictive approach to its many
planning and scheduling decisions. In particular, TacTex-
05 makes predictions concerning the types and quantities of
computers that will be requested by customers, the capac-
ities of component suppliers and the prices they are likely
to offer, and the probability that an offer to a customer will
be accepted at a particular price. Planning and scheduling
takes place using these predictions.

In this abstract, I will first provide details on the
TAC SCM scenario and give an overview of the design
of TacTex-05. Then I will describe my current work, which
focuses on learning to adapt to the behavior of competing
agents.

The TAC Supply Chain Management
Scenario

In this section, I provide a brief summary of the TAC SCM
scenario. Full details are available in the official specifica-
tion document (Collins et al. 2005).

In a TAC SCM game, six agents act as computer man-
ufacturers in a simulated economy managed by a game
server. The length of a game is 220 simulated days, with
each day lasting 15 seconds of real time. The game can
be divided into three parts: i) component procurement, ii)
computer sales, and iii) production and delivery, as ex-
panded on in the remainder of this section and illustrated
in Figure 1.

Component Procurement
The computers are made from four components: CPUs,
motherboards, memory, and hard drives, each of which
come in multiple varieties. From these components, 16 dif-
ferent computer configurations can be made. Agents must
purchase these components from a set of suppliers managed
by the game server.

Agents wanting to purchase components send requests
for quotes (RFQs) to suppliers indicating the type and quan-

ICAPS 2006

Doctoral Consortium 91

Figure 1: The TAC SCM Scenario (figure taken
from (Collins et al. 2005)).

tity of components desired, the date on which they should
be delivered, and a reserve price stating the maximum
amount the agent is willing to pay. Suppliers respond to
RFQs the next day by offering a price for the requested
components if the request can be satisfied. Agents may then
accept or reject the offers.

Suppliers have a limited capacity for producing compo-
nents; this capacity varies throughout the game according
to a random walk. The price offered in response to an RFQ
depends on the fraction of the supplier’s capacity that is free
before the requested due date.

Computer Sales

Customers wishing to buy computers send the agents RFQs
consisting of the type and quantity of computer desired, the
due date, a reserve price indicating the maximum amount
the customer is willing to pay per computer, and a penalty
that must be paid for each day the delivery is late. Agents
respond to the RFQs by bidding in a first-price auction: the
agent offering the lowest price on each RFQ wins the order.
The number of RFQs sent by customers each day depends
on the level of customer demand, which fluctuates through-
out the game.

Production and Delivery

Each agent manages a factory where computers are assem-
bled. Factory operation is constrained by both the compo-
nents in inventory and assembly cycles. Each day an agent
must send a production schedule and a delivery schedule
to the server indicating its actions for the next day. The
production schedule specifies how many of each computer
will be assembled by the factory, while the delivery sched-
ule indicates which customer orders will be filled from the
completed computers in inventory. Agents are required to
pay a small daily storage fee for all components in inven-
tory at the factory.

Overview of TacTex-05
Given the detail and complexity of the TAC SCM sce-
nario, creating an effective agent requires the development
of tightly coupled modules for interacting with suppliers,
customers, and the factory. TacTex-05 is a fully imple-
mented agent that operates within the TAC SCM scenario.
In this section, I present a high-level overview of the agent.

Agent Components
Figure 2 illustrates the basic components of TacTex-05 and
their interaction. There are five basic tasks a TAC SCM
agent must perform:

1. Sending RFQs to suppliers to request components

2. Deciding which offers from suppliers to accept

3. Bidding on RFQs from customers requesting computers

4. Sending the daily production schedule to the factory

5. Delivering completed computers

The first two tasks are assigned to a Supply Manager mod-
ule, and the last three to a Demand Manager module. The
Supply Manager handles all planning related to compo-
nent inventories and purchases, and requires no informa-
tion about computer production except for a projection of
future component use, which is provided by the Demand
Manager. The Demand Manager, in turn, handles all plan-
ning related to computer sales and production. The only in-
formation about components required by the Demand Man-
ager is a projection of the current inventory and future com-
ponent deliveries, along with an estimated replacement cost
for each component used. This information is provided by
the Supply Manager.

The tasks to be performed by these two managers can be
viewed as optimization tasks: the Supply Manager tries to
minimize the cost of obtaining the components required by
the Demand Manager, while the Demand Manager seeks to
maximize the profits from computer sales subject to the in-
formation provided by the Supply Manager. In order to per-
form these tasks, the two managers need to be able to make
predictions about the results of their actions and the future
of the economy. TacTex-05 uses three predictive models
to assist the managers with these predictions: a predictive
Supplier Model, a predictive Demand Model, and an Offer
Acceptance Predictor.

The Supplier Model keeps track of all information avail-
able about each supplier, such as TacTex-05 ’s outstanding
orders and the prices that have been offered in response to
RFQs. Using this information, the Supplier Model can as-
sist the Supply Manager by making predictions concerning
future component availability and prices.

The Demand Model tracks the customer demand in each
of the three market segments, and tries to estimate the un-
derlying demand parameters in each segment. With these
estimates, it is possible to predict the number of RFQs that
will be received on any future day. The Demand Manager
can then use these predictions to plan for future production.

ICAPS 2006

92 Doctoral Consortium

deliveries

component
use

projected
inventory
and costs

S
u

p
p

lie
rs

C
u

sto
m

e
rs

Supplier
Model

Demand Manager
bid on customer RFQs

produce and deliver computers

Offer
Acceptance
Predictor

Supply Manager
plan for component purchases

negotiate with suppliers

Demand
Model

TacTex−05

component RFQs
and orders

offers and
deliveries

computer RFQs
and orders

offers and

projected

Figure 2: An overview of the main agent components

When deciding what bids to make in response to cus-
tomer RFQs, the Demand Manager needs to be able to es-
timate the probability of a particular bid being accepted
(which depends on the bidding behavior of the other
agents). This prediction is handled by the Offer Acceptance
Predictor. Based on past bidding results, the Offer Accep-
tance Predictor produces a function for each RFQ that maps
bid prices to the predicted probability of winning the order.

Current Work: Adapting to Competing
Agents

The TAC SCM competition consists of a series of rounds.
During each round an agent faces the same five opponents
in a number of games. When analyzing competition results,
it quickly becomes apparent that the nature of the economy
within a game depends heavily on the agents participating.
An agent that consistently achieves a high profit against one
set of opponents may lose a large amount of money against
a different set of opponents in a different round. This fact
suggests the potential value of designing an agent that can
adapt to the behavior of whatever opponents it happens to
be facing during a particular round. Enabling TacTex-05 to
adapt in such a fashion is the primary focus of my current
work. (The general development of such adaptive agents
in agent-based economies will be the focus of my thesis; in
addition to studying the TAC SCM domain, I have explored
auction domains in which seller agents adapt the parameters
of auction mechanisms in response to the observed behav-
ior of bidding agents (Pardoe et al. 2005).)

The primary means by which TacTex-05 can be made
more adaptive is through improvements to the predictive

modules described previously. In particular, I would like to
improve long-term predictions of computer prices and com-
ponent prices, both of which can vary considerably based
on opponent behavior. Currently, the predictions made by
the predictive modules are based primarily on observations
from the current game. Another source of information that
could be useful in making predictions is the events of past
games, made available in log files kept by the game server.

The potential benefit from basing predictions on the re-
sults of these past games is illustrated by the one form of
adaptation used by TacTex-05 during the 2005 TAC SCM
competition. At the beginning of each game, many agents
place relatively large component orders (when compared to
the rest of the game) to ensure that they will be able to pro-
duce computers during the early part of the game. Prices
for some components may also be lower on the first day
than they will be afterwards, depending on the due date re-
quested. Determining the optimal initial orders to place is
difficult, because no information is made available on the
first day of the game. As a result, many agents use the same
hard-coded initial orders in each game. TacTex-05 takes ad-
vantage of this fact by basing its predictions of early-game
component prices on the prices observed in past games. An
analysis of the final round of competition (Pardoe, Stone, &
VanMiddlesworth 2006) showed that first-day prices were
unusually attractive due to the purchasing patterns of the
agents. As a result of its adaptivity, TacTex-05 recognized
this opportunity and purchased significantly more compo-
nents on the first day of each game than its competitors. The
savings on component costs accounted for much of TacTex-
05’s winning margin. Although this example illustrates the
value of adaptation, it is admittedly ad hoc. One goal of
my current work is to identify additional opportunities for
adaptation automatically, through techniques that will gen-
eralize to other domains.

One possible approach is the use of machine learning
techniques to develop more accurate predictive models. In
fact, I explored this possibility in past work (Pardoe &
Stone 2004), finding that learned predictors could indeed
improve agent performance. There is one primary draw-
back to this approach, however: it requires that an agent be
able to draw training data from a large number of games
against the same opponents. A single round of competition
consists of a relatively small number of games, at most 16,
raising the question of how a machine learning approach
could successfully be applied. In particular, during the first
game of a round, there would be no data from which the
agent could learn.

Thus, I am currently exploring means by which TacTex-
05 can begin a round of competition with fairly general
predictive modules, and then revise them based on data as
it becomes available, rather than starting tabula rasa. One
valuable resource in my work is the TAC Agent Reposi-
tory,1 a collection of agents made available by competition
participants for research purposes. By simulating rounds
of competition with various combinations of these agents,

1http://www.sics.se/tac/showagents.php

ICAPS 2006

Doctoral Consortium 93

along with variations of TacTex-05 designed to exhibit par-
ticular behaviors, I can observe a wide range of different
economies. Using these simulations I hope to answer the
following questions:

• What properties remain the same from one set of oppo-
nents to another? (e.g., component prices tend to de-
crease over the course of a game)

• What properties are highly dependent on the set of op-
ponents? (e.g., how quickly computer prices rise when
customer demand increases)

• What fixed predictive models result in the best perfor-
mance across a wide range of opponent sets?

• As additional data becomes available, how can these pre-
dictive models successfully be revised?

Answering the last question presents the largest chal-
lenge from a learning perspective. Approaches I am cur-
rently investigating include the use of online learning meth-
ods for combining expert advice (where each expert repre-
sents a predictive model learned for a particular opponent
set) and metalearning methods (in which the performance
of a learning system is improved through experience with a
family of related tasks – in this case various opponent sets).

References
Arunachalam, R., and Sadeh, N. 2005. The supply
chain trading agent competition. Electronic Commerce
Research and Applications 4:63–81.
Collins, J.; Arunachalam, R.; Sadeh, N.; Eriksson,
J.; Finne, N.; and Janson, S. 2005. The sup-
ply chain management game for the 2006 trading
agent competition. Technical report. Available from
http://www.sics.se/tac/tac06scmspec v16.pdf.
Kumar, K. 2001. Technology for supporting supply-chain
management. Communications of the ACM 44(6):58–61.
Pardoe, D., and Stone, P. 2004. Bidding for customer or-
ders in TAC SCM. In AAMAS 2004 Workshop on Agent
Mediated Electronic Commerce VI: Theories for and En-
gineering of Distributed Mechanisms and Systems.
Pardoe, D., and Stone, P. 2006. Predictive planning
for supply chain management. In Sixteenth International
Conference on Automated Planning and Scheduling.
Pardoe, D.; Stone, P.; Saar-Tsechansky, M.; and Tomak,
K. 2005. Adaptive auctions: Learning to adjust to bid-
ders. In The Fifteenth Annual Workshop on Information
Technologies and Systems.
Pardoe, D.; Stone, P.; and VanMiddlesworth, M. 2006.
TacTex-05: An adaptive agent for TAC SCM. In AAMAS
2006 Workshop on Trading Agent Design and Analysis /
Agent Mediated Electronic Commerce.

ICAPS 2006

94 Doctoral Consortium

Integration of Constraint-Based Off-line and On-line Approaches
to Project Scheduling

Riccardo Rasconi∗

Institute for Cognitive Science and Technology
Italian National Research Council

riccardo.rasconi@istc.cnr.it

Abstract

Solving a scheduling problem involves considerations of
twofold nature: on one hand, the solution must be searched
according to specific optimization needs (off-line require-
ments), while on the other hand, great effort should be em-
ployed into producing solutions which can be safely put into
execution in unpredictable environments (on-line require-
ments). In many cases, these two classes of necessities hide
mutually conflicting aspects. Aim of my work is to assess
the possible integration of off-line and on-line procedures in
project scheduling in order to find the best balance between
the two, in view of the inherently dynamical utilization of
each produced scheduling solution.

Introduction
Traditionally, planning and scheduling communities have
tackled the scheduling problem according to one of the two
following mainstreams. On one side, much effort has been
put into the development of methodologies producing solu-
tions which are characterized by a certain degree of robust-
ness, therefore retaining the ability to absorb the effects of
exogenous events (proactive approach). On the other side,
thebuffer that protects the solution against possible disrup-
tions is inherently limited, and the need to device mecha-
nisms to reactively counteract circumstances that fall beyond
its boundaries (reactive approach), is not eliminated.

The present work introduces a schedule management
schema which tends to integrate the off-line and on-line ap-
proaches: according to this schema, the task of the scheduler
is not limited to the production of a sequence of activities,
as well as the process of controlling schedule executability
is not exclusively played on the ground of on-line reaction
and activity dispatchment. This work is inspired by the fol-
lowing considerations: (a) regardless the proactive approach
employed to produce the baseline schedule, a dynamic anal-
ysis on the actual behaviour of the schedule execution is nec-
essary in order to prove, from the operational standpoint,
both the efficacy of the choices made and the soundness of
the arguments which led to those choices; (b) merely count-
ing on the effectiveness of schedule adjustments at execu-
tion time is prone to fostering myopic decisions which may
readily result in a complete schedule disruption. Analyzing
how the proactive phase may influence (and possibly guide)
the reactive phase at execution time is in my opinion as im-
portant as assessing the best baseline schedule production

∗Also affiliated with the Dipartimento di Informatica, Sis-
temistica e Telematica (DIST) of the University of Genova, Italy

strategy on the base of the schedule’s particular dynamic be-
havior. The information that can be extracted from the two
phases may reveal mutually useful in order to find an opti-
mal strategy combination, as well as the reasons behind its
optimality. For example, one may find an initial solution
which is optimal with respect to some criteria of interest
(e.g. the makespan), and may wish to know what are the
online rescheduling strategies which preserve optimality as
much as possible, given some knowledge about the types of
exogenous events that may occur during execution.

Aim of the present abstract is to describe the steps I have
taken in order to pursue the previous goal. The scheduling
problem we specifically focus upon is the project scheduling
problem (Bruckeret al. 1999). These problems are char-
acterized by a rich internal structure. They are based on a
network of activities, among which it is possible to identify
complex temporal relations that can be used to model a num-
ber of variably rigid causal links which normally constrain
the tasks in a project. As a further source of complexity, sev-
eral heterogeneous resources with different capacities serve
the activities according to complex modalities.

As a first step, I have implemented an experimental
framework which allows to compare different approaches
to schedule synthesis and execution in a fair and controlled
way. This empirical platform can be used to carry on a set
of reproducibleexperiments by (1) simulating the execution
of a number of baseline schedules produced with different
proactive methods, (2) disturbing their execution with pre-
defined exogenous events, and (3) assessing their behavior
by using separate reactive scheduling policies. Different off-
line and on-line solving procedures can be compared inde-
pendently from each other, given the generality of the de-
vised architecture.

Great attention was paid in order to grant measureabil-
ity and reproducibility of the experimentations. A Reac-
tive Scheduling Problem Benchmark Generator (RSP-BG)
has been produced, which, given a project scheduling prob-
lem P, returns a number ofexogenous events(or disturbs)
that might be fired during the execution of the solution
[baseline(P)]. The production of such events must be
strictly related to the structure of each scheduling problem in
order to maximize the probability of event acceptance dur-
ing execution. In order to guarantee experimental fairness,
for each initial problem, theRSP-BG allows to produce a
specified number of disturbs characterized by a given over-
all difficulty.

Following the production of a reactive scheduling prob-

ICAPS 2006

Doctoral Consortium 95

lem benchmarks, a number of explorative experiments have
been performed by simulating the execution of baseline
schedules synthesized by different proactive techniques and
therefore characterized by a different degree of initial “tem-
poral flexibility” (Cheng & Smith 1994).

The Reactive Scheduling Problem
Benchmark Generator

Real world uncertainty can be reasonably singled out in the
following points: activity delays, growth of activity process-
ing times, lowerings of resource availability, variations in
the number of activities, changes in the mutual ordering of
the activities.

Currently I have focused our attention on the temporal
changes which normally characterize the physical environ-
ments, such as delays of the activities start times and/or
modifications of activity processing times:
– delay of the activity start time: activity ai undergoes a

delay of∆st time units, att = taware
(edelay = 〈ai, ∆st, taware〉);

– change of activity processing time: activity ai’s process-
ing timepi is extended by∆p time units, attaware

(ep = 〈ai,∆p, taware〉).
In order to evaluate the difficulty of each benchmark,

proper metrics are introduced to evaluate the structure of
a scheduling problem as a set of unexpected eventsE =
{e1, . . . en} is introduced. For instance, let us consider a
scheduling problemP ′ obtained by adding to the original
problemP an eventek; given a metricµ(), it is then possi-
ble to compare the structures of the problemsP ′ andP by
considering theµ variation value:∆µ = |µ(P)− µ(P ′)|.

One of the possible metrics to use for this purpose is the
following, defined as the average width, relative to a given
temporal horizonH, of the temporal slack associated with
each pair of activities(ai, aj):

fldtH =
n∑

i=1

n∑

j=1∧j 6=i

slack(ai, aj)
H × n× (n− 1)

× 100 (1)

whereslack(ai, aj) is the width of the allowed distance in-
terval between the end time of activityai and the start time
of activity aj . This metric characterizes thefluidity of a so-
lution (Cesta, Oddi, & Smith 1998), i.e., the ability to use
flexibility to absorb temporal variation in the execution of
activities: it is a measure of the possibility that a temporal
variation concerning an activity is absorbed by the temporal
flexibility of the solution instead than generating a delete-
rious domino effect (the higher the value offldtH , the less
the risk, i.e., the higher the probability of localized changes).

The Schedule Execution Simulation Monitor
The idea behind the open schedule management framework
used in this work is simple: an off-line solver produces the
baseline solution and delivers it to an on-line module which
takes care of assessing its dynamic characteristics by stress-
ing it in a variety of ways.

The overall framework is composed of three modules: the
off-line solverand thereal world simulatorwork off-line
and have the job of, respectively, computing the initial so-
lution and generating the exogenous events, intended to dis-
turb the schedule execution; the third module, theon-line

solver, works on-line and is responsible to complete a simu-
lated execution of the initial solution (the baseline schedule).
A number of disturbing events synthesized by theRSP-BG
are injected during the simulated execution at the times spec-
ified within each event, and their effects are counteracted
by the on-line module, which is endowed with a portfolio
of reschedulingalgorithms to the aim of restoring schedule
consistency whenever necessary.

Testing Schedule Flexibility
The particular problem I focus upon is the Resource-
Constrained Project Scheduling Problem with minimum and
maximum time lags, orRCPSP/max. This is a particular
project scheduling problem which presents constraints that
define the minimum and maximum distance between the ex-
ecution of two activities1.

Each baseline solution is computed according to different
procedures: the result is the production of initial solutions
retaining different degree of temporal flexibility. A tem-
porally flexible solution can be described as a network of
activities whose start times (and end times) are associated
with a set of feasible values (feasibility intervals). Underly-
ing the activity network there exists a Temporal Constraint
Network (TCN (Dechter, Meiri, & Pearl 1991)), composed
of all the start and end points of each activity (time points),
bound to one another through specific values which limit
their mutual distances (activity on the arc representation).
The search approaches used in our schema focus on deci-
sion variables which represent conflicts in the use of the
available resources; the solving process proceeds by order-
ing pairs of activities until all conflicts in the current prob-
lem representation are removed. This approach is usually
referred to as Precedence Constraint Posting (PCP (Cheng
& Smith 1994)), because it revolves around imposing prece-
dence constraints (thesolution constraints) on the TCN in
order to solve the resource conflicts, rather than fixing rigid
values to the start times.

In (Cesta, Oddi, & Smith 1998) it is shown that the pre-
vious schedule representation inherently provides a certain
level of resilience at execution time (i.e. it producesFlex-
ible Schedules), even though temporal and resource con-
sistency are guaranteed only if the lower bounds (or upper
bounds) from the feasibility intervals are chosen for the time
points. In order to overcome the limitation imposed by the
flexible schedule, i.e. having only one consistent solution,
a generalization of the TCN produced by a PCP phase is
proposed in works such as (Cesta, Oddi, & Smith 1998;
Policellaet al. 2004), in which methods for defining a set of
both time and resource feasible solutions are presented. This
new representation is calledPartial Order Schedule(POS),
a special case of a flexible solution which is obtained by re-
placing the solution constraints with a new set of constraints
that impose a stronger condition on the TCN (chaining con-
straints). A POS is a flexible solution such that any possible
temporal solution is also a resource-consistent assignment.
As a third type of solution, fixed time solutions have been
tested against Flexible schedules andPOSs.

The execution of each baseline schedule has been sim-
ulated, in the face of an increasing number of exogenous

1RCPSP/max is recognized as a quite complex problem; in fact,
even the feasibility version of the problem is NP-hard. The reason
for the NP-hardness lies in the presence of maximum time-lags,
which inevitably imply the satisfaction of deadline constraints.

ICAPS 2006

96 Doctoral Consortium

Algorithm 1 : Solve a scheduling problemP and Exe-
cute one of its solutionS

Input : problemP, policies parameterretract andpos
Output : Execution report

// off-line phase
S ← offlineScheduler(P)
if S does not existthen

STOP(SOLVER FAILURE)
if pos then

S ← createPOS(S)

// on-line phase
while a disturbE existsdo

if retract then
if propagation(E, S) fails∨ S is not resource
consistentthen

S ← removeChoice (S)
if propagation(E,S) fails then

STOP(EXECUTION FAILURE)
S ← onlineScheduler(S)
if S does not existthen

STOP(EXECUTION FAILURE)
if pos then

S ← createPOS*(S)

else
if propagation(E,S) fails then

STOP(EXECUTION FAILURE)
if S is not resource consistentthen

S ← onlineScheduler(S)
if S does not existthen

STOP(EXECUTION FAILURE)

events, according to the Algorithm 1.
The algorithm is divided in an off-line and an on-line

section; in the former, the initial solution can be com-
puted by theofflineScheduler() either as a flexi-
ble schedule (case FS) or as aPOS (case POS) through
the createPOS() procedure, depending on the value of
the flag pos . In the latter, and regardless how the ini-
tial solution is produced, it is put into execution according
to different modalities, depending on the value of the flag
retract . At each step of the execution cycle, the en-
vironment is sensed for possible disturbs. Afterwards, if
retract = true, the execution algorithm firstly removes
all the constraints imposed in the previous solving process
(removeChoice()), and secondly looks for a new so-
lution (onlineScheduler()), possibly creating a new
POS. If retract = false, a new solution is searched leav-
ing the previously imposed solution constraints untouched.
In both cases, the algorithm initially checks for temporal
consistency after each disturb is acknowledged through the
propagation() procedure.

Preliminary Experiments and Results
Table 1 shows some preliminary results of our investigation
(refer to (Rasconi, Policella, & Cesta 2006) for a more de-
tailed description). As explained earlier, we evaluate the dif-
ferent combinations of off-line/on-line policies — POS-R
(POS + retraction), POS-NR (POS + no retraction), FS-
R (Flexible Schedule + retraction), and FS-NR (Flexible

Schedule + no retraction). To make the comparison more
complete, we add a further execution mode based on the use
of fixed time solution where each activity is assigned a sin-
gle start time instead of a set of alternatives.

For each entry in the tables, we take into account the fol-
lowing aspects: the number of unexpected events (number of
disturbs) injected during each single execution, the percent-
age (with respect to the number of initially solved problems)
of the schedules which successfully completed the execution
(% executed), the execution failure percentage due to the in-
ability to find an alternative solution (% failed resch.), the
execution failure percentage due to the impossibility to ac-
cept the exogenous event on behalf of the TCN (% refused
events), the average makespan of the solutions at the end of
the execution (mk), the average difference between the ini-
tial and the final makespan (∆ mk), the percentage of the
performed rescheduling actions with respect to the number
of the injected disturbs (% rescheduling)2, the average CPU
time, in msecs, to compute the initial solution (CPU Off-
line), the average CPU time spent to perform all reschedul-
ings during the execution (CPU On-line), thesensitivityof
activity start time w.r.t. the execution process (ψ).

For a fair comparison of the different policies, the data
presented in the rightmost part of the table are computed on
the basis of the problem instances commonly executed with
all the execution strategies.

One of the most striking results that we observe regards
the different abilities in preserving the executability of a
solution. The outcome shows that the use of partial or-
der schedules tends to lower the success rate in terms of
completed executions (% executedcolumn). As the table
presents, this is mainly due to the dramatic increase in the
number of rejected disturbs (refused eventscolumn). This
apparent anomaly can be explained as follows: the creation
of aPOS inherently involves a higher level of “constrained-
ness” in the TCN, in order to guarantee a resource conflict-
free solution. This circumstance inevitably makes the TCN
more reluctant in accepting new contraints, in the specific
case, the constraints which model the exogenous events.
Also, note how this effect gets worse as the number of the
exogenous events increases (86,87% in the POS-NR case
with 1 event, against 56,66% with 5 events).

The rightmost part of Table 1 offers different yet interest-
ing results. One of the most important characteristic to be
observed is the extremely low rate of necessary reschedul-
ings exhibited by the POS-R/POS-NR policies (% resched.
column): this result is all but surprising and confirms the
theoretical expectations which motivated the study on the
POS. As shown, the need for schedule revision in case
of POS utilization roughly decreases by more than 50% in
case of 5 disturbs.

A maybe misleading results is given by the compari-
son of the final makespan (mk) obtained respectively by
using the Retraction and the No-Retraction strategies. In
fact, one would expect the R strategies (which allow a
greater re-shuffling) to return better makespan values with
respect to NR strategies. This is not our case because, as
described before, the rescheduling actions are performed
by using a less specialized makespan-optimizing procedure
(onlineScheduler in Algorithm 1) which tends to spoil

2We recall that we have a rescheduling action each time the on-
line solver is invoked.

ICAPS 2006

Doctoral Consortium 97

number of % failed refused mk ∆mk % CPU CPU ψ

disturbs executed resch. events resched. off-line on-line
FS-R 91,04% 2,08% 6,88% 424,60 9,02 24,38% 36242,48 766,15 5,44

POS-R 1 87,29% 2,08% 10,63% 419,88 5,07 11,58% 36287,86 303,97 3,00
FS-NR 91,87% 1,25% 6,87% 419,06 3,48 24,14% 36242,48 130,74 1,48

POS-NR 86,87% 2,50% 10,62% 417,11 2,31 11,58% 36287,86 54,59 1,05
fixed time 89,79% 3,75% 6,45% 437,36 21,78 99,75% 36242,48 3035,68 15,16

FS-R 85,21% 3,13% 10,66% 435,54 13,95 23,04% 30259,15 874,70 9,48
POS-R 2 76,46% 2,29% 21,25% 429,22 8,41 10,03% 32371,82 674,86 5,17
FS-NR 85,62% 2,71% 11,66% 427,90 6,30 22,88% 30259,15 258,50 3,07

POS-NR 73,95% 5,00% 21,04% 424,74 3,93 9,56% 32371,82 97,46 2,02
fixed time 81,25% 8,54% 10,20% 446,62 25,02 99,53% 30259,15 2768,37 17,73

FS-R 79,17% 3,96% 16,87% 449,84 19,40 20,27% 26318,37 963,16 11,83
POS-R 3 69,58% 2,92% 27,50% 441,49 11,93 9,41% 28406,98 675,18 6,96
FS-NR 80,00% 2,50% 17,50% 439,66 9,23 22,37% 26318,37 371,03 4,08

POS-NR 67,71% 5,41% 26,87% 436,24 6,68 9,63% 28406,98 151,26 3,16
fixed time 77,50% 6,87% 15,62% 458,32 27,89 99,22% 26318,37 3716,15 19,77

FS-R 70,21% 4,17% 25,63% 464,12 28,85 22,45% 25682,40 2391,92 17,36
POS-R 5 60,42% 3,13% 36,46% 455,56 21,07 10,57% 27544,98 1748,56 13,12
FS-NR 70,41% 3,33% 26,25% 447,42 12,15 21,66% 25682,40 646,90 5,80

POS-NR 56,66% 7,08% 36,25% 444,68 10,18 10,48% 27544,98 289,17 4,81
fixed time 67,08% 8,33% 24,58% 465,56 30,29 98,43% 25682,40 6721,48 19,74

Table 1: Summarizing data for each execution strategy (the values in the last six columns are computed on the intersection set
of all successfully executed j100 problems)

the makespan quality. On the other hand, the NR strategy
that tries to maintain the schedule continuity is also able to
obtain a preservation of makespan values.

Another interesting aspect can be observed by compar-
ing theCPU on-linevalues between theRetractionandNo
Retractionstrategies. In general, the Retraction methods
require a higher CPU on-line load because the removal of
the solution constraints inevitably re-introduces some re-
source conflicts that must be solved by rescheduling. But
the intriguing result lies in the fact that this difference in the
CPU on-line rates standsdespite the comparable amount of
performed reschedulings. Let us look at the difference be-
tween the FS-R and FS-NR rates: it can be seen that, in the
5 events case, we have 2392 ms. (FS-R) against 647 ms.
(FS-NR), although the number of performed reschedulings
is practically the same (≈ 21%)! The same effect can be
observed between the POS-R and POS-NR cases: 1748 ms.
against 289 ms, notwithstanding the same (≈ 10.5%) num-
ber of reschedulings. This circumstance can be explained as
follows: NR execution modes retain all the temporal con-
straints of the previous solution: hence, the rescheduler is
bound to work on a smaller search space, finding the next
solution almost immediately.

Ongoing Work
The analysis being performed on the considered schedul-
ing benchmarks is returning several interesting information.
Some results confirm the expectations while other require a
certain level of analysis in order to be correctly understood.
For instance, the rigid behavior exhibited by the fixed time
schedules when confronted with dynamically variable envi-
ronments is totally confirmed, as confirmed is the behavior
of schedules characterized by a more flexible nature.

However, among several other aspects, the experiments
revealed a scarce capability in accepting exogenous events
on behalf of thePOS: post-experimental analysis about this
unexpected effect has shown that this drawback is due to an
increase of constrainedness in the TCN, necessary to guar-
antee a resource conflict-free solution at all times. This has

suggested several research lines which are the object of on-
going work, such as the production of a different class of
POSs, through the development of alternative chaining pro-
cedures aimed at minimizing the inevitable constrainedness
increase in the TCN. Moreover, the observed dynamic be-
havior of the schedules suggests to study the introduction of
different reactive techniques. For instance, a possible ap-
proach under current development is based oninformed re-
traction procedures, where the constraint removal strategy
is preceded by a search phase to determine the constraints
which are to be retracted, depending on the particular dy-
namic requirements.

Acknowledgments. I would like to thank Amedeo Cesta
and Nicola Policella for their continuous and invaluable sup-
port in this research, as well as all my colleagues at ISTC-
CNR.

References
Brucker, P.; Drexl, A.; Mohring, R.; Neumann, K.; and Pesch,
E. 1999. Resource-Constrained Project Scheduling: Notation,
Classification, Models, and Methods.European Journal of Oper-
ational Research112:3–41.
Cesta, A.; Oddi, A.; and Smith, S. F. 1998. Profile Based Al-
gorithms to Solve Multiple Capacitated Metric Scheduling Prob-
lems. InProceedings, AIPS-98, 214–223. AAAI Press.
Cheng, C., and Smith, S. F. 1994. Generating Feasible Schedules
under Complex Metric Constraints. InProceedings, AAAI-94,
1086–1091. AAAI Press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal constraint
networks.Artificial Intelligence49:61–95.
Policella, N.; Oddi, A.; Smith, S. F.; and Cesta, A. 2004. Gener-
ating Robust Partial Order Schedules. InCP 2004, volume 3258.
Rasconi, R.; Policella, N.; and Cesta, A. 2006. Fix the schedule or
solve again: Comparing constraint-based approaches to schedule
execution. InProceedings of Constraint Satisfaction Techniques
for Planning and Scheduling Problems Workshop ICAPS 2006.
To appear.

ICAPS 2006

98 Doctoral Consortium

Improving Planning Techniques for Web Services

Francisco Carlos Palao Reinés
Dept. of Computer Science and Artificial Intelligence

University of Granada, SPAIN
palao@decsai.ugr.es

Abstract

The new trend on software development is oriented to
web services running in collaborative environments. In-
telligent planning techniques are very useful to compose
complex calls to these web services. However, there are
still some issues that need to be improved to use plan-
ning and scheduling techniques in dynamic and collab-
orative contexts like the web service environment. This
paper proposes some extensions to our planning system
for using it to compose web service calls.

Introduction
This research extends the SIADEX environment, which is
a planning system oriented to assist the command technical
staff for decision support in forest fire fighting operations.
The system is composed of different components communi-
cating each other and working together through the Internet.
These components are implemented as web services: they
are pieces of software that make themselves available over
the Internet and use standard XML messaging system. The
World Wide Web is turning into a new paradigm called the
Collaborative Web (Pallot, Prinz, & Schaffers 2005) where
not only documents are connected through the network but
collaborative services as well. The SIADEX project has
some different web services working together for a common
goal (Figure 1). One web service to store the knowledge of
the problem; another to make the planning process; and a
third monitors the plan execution. The planning web service
uses the SIADEX planner that has been developed by us and
is a forward state-based HTN temporal planner (Castillo et
al. 2006). Moreover there is a user interface where techni-
cal staff can introduce the problem to solve it, see the plan
generated by the planner and follow the execution.

To achieve a correct system operation we need to call the
different web services in the correct order and time. In or-
der to do that we have developed a central server that syn-
chronizes all the component of the architecture. This cen-
tral server has been called the InfoCenter. The InfoCen-
ter is based on a publish/subscribe architecture (Carzaniga,
Rosenblum, & Wolf 2001) (PSA) that works as follows.
Each web service or user interface can publish information
in the central server (InfoCenter) and also it may subscribe to
the information (published by others web services or clients)

that they want. For instance, when the technical staff pub-
lishes the problem, the InfoCenter sends it to the planner
web service that is subscribed to it.

At the present, our architecture is very simple because
only a web service of each kind is available and no exter-
nal web services can connect to the InfoCenter to make the
system more complete. Therefore the InfoCenter can easily
compose calls to the web services to achieve the requests,
the execution and the monitoring of the plans.

Now, we want to extend the system not only to assist
the technical staff for decision support in forest fire fight-
ing but also for e-business, e-tourism and workflow applica-
tions among others. Therefore we need to extend the system
with new web services, some of them different than the cur-
rent ones and another with similar capabilities. However, the
current PSA presents some lacks that impede the extension
of the system. For instance, the InfoCenter can not choose
what web service is the correct one (or optimal one) when
there are more than one web service that offer the same func-
tionality. Furthermore, the PSA is purely reactive because it
only make web service calls upon receptio nof a publication
and it is not able to compose sequences of web services with
a longer time horizon.

In order to extend the system architecture we are going to
use planning techniques into the InfoCenter, as well some
frameworks to use planning techniques for web services
composition have been purposed (Madhusudan & Uttams-
ingh 2006; Mithum, desJardins, & Finin 2003) but there are
still a lot of issues to solve to fulfill our InfoCenter require-
ments. We are thinking of using our own planner, SIADEX,
to use it inside the InfoCenter. However, we need to improve
it for some reasons. Firstly, the web services environment is
a very dynamic context. Therefore, the state of web services
(the domain) and the requests of the users (the goal) can
change during the execution of calls to web services. And
our planner can not check domain and state changes during
planning time. Secondly, there could be a large number of
web services with similar capabilities and the InfoCenter has
to evaluate them to decide which one is the best to achieve
its goals. And thirdly, we are thinking of an architecture
oriented to the Collaborative Web, so our intelligent Info-
Center need to communicate with others intelligent servers
in order to access trough them to resources that are not di-
rectly connected to it. So, the planner needs to be extended

ICAPS 2006

Doctoral Consortium 99

with distributed planning skills and to be able to understand
web services standard languages.

In this work we present our system SIADEX as a frame-
work that will be extended with novel ideas to give solutions
to all these problems.

The SIADEX architecture
SIADEX is a system being developed under a research con-
tract with the Andalusian Regional Ministry of Environ-
ment. Its objective is to assist the command technical staff
in the design, dispatching and progress of forest fire fighting
plans. It is composed of different, domain independent web
services (Figure 1), that offers different services, that are dis-
tributed and communicate with each other using XML-RPC
standard protocols.

• SIADEX Planner: Is a planning web service that can be
called by XML-RPC protocol. SIADEX is a forward
state-based HTN temporal planner (Castillo et al. 2006).
It uses its own hierarchical extension of PDDL 2.2 level
3 language, that makes it very expressive. It also has the
capability to include embedded Python scripts in the do-
main definition, that allows us to implement external calls
at planning time.

• BACAREX: Is an ontology web service that stores the
knowledge related to the planning domain. In our case its
stores information about the forest fire fighting domain in
Andalusia (Spain). BACAREX is also capable of gener-
ating domain and problem files that are processed by our
planning web service.

• Monitor service: This web service splits the plan into sev-
eral pieces and sends every piece to the person in charge
of executing it. These parts of the plan will be presented to
the user using any portable electronic device. The moni-
tor controls the plan executions attending the dependences
between tasks and their possible delays (Castillo et al.
2006).

• User interfaces: We have provided GUI capabilities to the
planning system for the expert. The GUI is built on top
of the ArcView GIS tool (ESRI). This GUI is totally do-
main dependent and oriented toward the interaction with
the forest fire technical staff. We have also developed a
web interface to monitor the execution of the plan with
any available web browser.

• InfoCenter: It is the central component of our architec-
ture. All the aforementioned web services are connected
to the InfoCenter and collaborate each other by passing
messages through it. The InfoCenter has been developed
as a publish/subscribe architecture (PSA) in which the
others web services can subscribe to the information that
they want and publish the information that they have to
share with others web services. The PSA works correctly
in small environments like this with a few web services
but it is purely reactive. And we want to extend this archi-
tecture to larger and more dynamic environments where
we would need a deliberative server able to compound se-
quences of calls to web services. To achieve this we are

thinking on extending the InfoCenter with planning tech-
niques that we need to develop and are explained below.

Composing Web Services and SIADEX
There is an interchange of information between all the web
services described above during a planning episode to as-
sist the technical staff for decision support. In this section
we show how this interchange of information is done at the
present and how would be done in the future supporting
larger environments of web services.

Present operation between web services
The InfoCenter is the Broker Server in our PSA . Each web
service or user interface can publish information in the cen-
tral server (InfoCenter) and also can subscribe to the infor-
mation (published by others web services or clients) that
they want. The basic cycle of the present architecture is:

1. The user interface publishes the goal of the planning
problem defined by the technical staff and the InfoCen-
ter sends it to the ontology web service that is subscribed
to all new information about the world state and the new
goals.

2. The ontology web service BACAREX publishes the do-
main and the problem translated into PDDL from the
ontology knowledge and the InfoCenter sends it to the
SIADEX Planner that is subscribed to all the domains and
problems in PDDL generated.

3. The SIADEX Planner publishes the plan generated and
the broker server sends it to the Monitor because it is sub-
scribed to new plans.

4. The Monitor publishes the actions that have to be exe-
cuted at each time and the InfoCenter sends it to the tech-
nical staff in charge of doing it.

5. Until the plan is completely executed, the technical staff
send (public) confirmations about actions completed to
the InfoCenter and the Monitor, that is subscribed to new
events of the actions, publishes new actions. BACAREX
is also subscribed to the new events of the actions in order
to update the world state in the ontology.

The cycle shown above can be carried out with the present
PSA that implements the InfoCenter. However, if we had
more web services connected and some of them offer the
same or similar functionalities, we would need to make more
complex compositions of web services that we can not make
now. At the moment, the InfoCenter can not choose what
web service is the correct one (or optimal one) when there
are more web services that offer the same functionality. Fur-
thermore, the PSA is purely reactive because it only make
web service calls when receive a publication and it is not
able to compose sequences of web services with a longer
time horizon. Note that it is not only a selection problem
to pick the best web service, we need to make a sequence
of calls to web services to know if the goal can be achieved
with the available web services. We want to keep the easy

ICAPS 2006

100 Doctoral Consortium

Figure 1: General overview of SIADEX Architecture.

connectivity and scalability of our current PSA but in a de-
liberative way. In order to do that, we will extend the Info-
Center or Broker Server with intelligent planning techniques
like we describe below.

Future operation between web services

In the last section we have seen that we need to compose
complex calls to web services in dynamic and larger envi-
ronments. In order to do that we need to improve some fea-
tures of our own SIADEX planner to use it in the InfoCenter.
The features with which we need to extend our planner are
shown in this section.
Continuous revision of the state and the goal. A great
advantage of our PSA is the high response capabilities to the
environment changes. So, it has to be supported by the plan-
ner. The set of services available could be constantly chang-
ing as online or offline status while we are executing the
sequence of calls to web services. In addition the user could
change his goals at execution time. Therefore the planning
process needs to be continually checking for changes in the
domain, in the state or in the goals (Giunchiglia & Traverso
1999; Madhusudan & Uttamsingh 2006) during the execu-
tion of web services. We can achieve this using the embed-
ded Python scripts in the domain definition to implement
external calls at planning time. There are two kinds of calls
to extern web services. Firstly, calls to ensure a complete
solution by checking that the web service is available. Sec-
ondly, calls to ensure a sound solution by checking that the
web service behavior is the correct one.
Automated generation of domains and heuristics. As
new web services are connected or disconnected to the Info-
Center the domain knowledge changes and the planner need
to know it to compose the sequences of calls to web ser-
vices (plans). We need to make an ontology inside the Info-
Center that stores the web service information (the domain)
and define an automatic process that translates the ontology
knowledge into the PDDL readable by the planner (Sirin et
al. 2004). In addition, this web service has to be evaluated

to make optimal plans. We need to implement automated
heuristics generations (Zimmerman & Kambhampati 2003).
To judge the optimality of the plans we need to evaluate the
web services by using metrics about the network behavior
(response time, transfer rating) and the final user preferences
(it could be the price of a product, the duration of a trip, etc).

Distributed planning capabilities. As we have said in the
Introduction section, Internet is turning into a new paradigm
named the ”Collaborative Web” where services collaborate
between them. Therefore the InfoCenter has to be able to
share with other intelligent servers its plans (or part of them)
or to ask others intelligent servers for plans (or part of them).
In order to do that we need to consider all the work done in
collaborative planning environments (desJardins & Wolver-
ton 1999). Furthermore, the InfoCenter has to be able to
understand standard web service description languages such
as WSDL (Christensen et al. 2001) and to generate plan out-
puts as web service flows with standard specifications such
as BEPEL4WS (Curbera 2002) or OWL-S (Coalition 2003).

Concluding remarks
We have described a new approach in the SIADEX planning
system architecture in order to prepare it for the new trends
on web services environments. The main challenges faced at
planning time are in dynamic conditions and the need to col-
laborate with others web services architectures. We sketch
an extension of our planner to check the completeness and
soundness of the solutions in these environments and to be
able to communicate with others web services architectures.
All the changes proposed are about the central component
of the architecture: the InfoCenter. That is the one in charge
to compose the sequences of calls to web services with the
new planning techniques that will be developed. These se-
quences of calls to web services have to be formulated in
standards specifications such as BPEL4WS or OWL-S.

Acknowledgements
This research was supported by the contract NET033957
with the Andalusian Regional Ministry of Environment for

ICAPS 2006

Doctoral Consortium 101

the assisted design of forest fighting plans.

References
Carzaniga, A.; Rosenblum, D.; and Wolf, A. 2001. De-
sign and evaluation of a widearea event notification service.
ACM Transactions on Computer Systems 19:332–383.
Castillo, L.; Fdez-Olivares, J.; Garcia-Perez, O.; and Palao,
F. 2006. Efficiently handling temporal knowledge in an htn
planner. In International Conference on Automated Plan-
ning & Scheduling.
Christensen, E.; Curbera, F.; Meredith, G.; and Weer-
awarana, S. 2001. The web services descriptio nlanguage
wsdl. http://www-4.ibm.com/software/solutions/web-
services/resources.html.
Coalition, O. S. 2003. Owl-s: Semantic
markup for web services. OWL-S White Paper
http://www.daml.org/services/owl-s/0.9/owl-s.pdf.
Curbera, F. e. a. 2002. Business process exe-
cution language for web services. http://www-
106.ibm.com/developerworks/webservices/library/ws-
bpel.
desJardins, M., and Wolverton, M. 1999. Coordinat-
ing planning activity and information flow in a distributed
planning system. AI Magazine 20:45–53.
ESRI. http://www.esri.com.
Giunchiglia, F., and Traverso, P. 1999. Planning as model
checking. In In Proc. 5th European Conference on Plan-
ning.
Madhusudan, T., and Uttamsingh, N. 2006. A declarative
approach to composing web services in dynamic environ-
ments. In Decision Support System 41 (2) 325-357.
Mithum, S.; desJardins, M.; and Finin, T. 2003. A planner
for composing services described in daml-s. In ICAPS2003
Workshop on Planning for Web Services.
Pallot, M.; Prinz, W.; and Schaffers, H. 2005. Fu-
ture workplaces, towards the ’collaborative web’. In 1st
AMI@WORK Communities Forum Day.
Sirin, E.; Parsia, B.; Wu, D.; Hendler, J.; and Nau, D. 2004.
A declarative approach to composing web services in dy-
namic environments. In J. Web Sem 1(4): 377-396.
Zimmerman, T., and Kambhampati, S. 2003. Learning-
assisted automated planning: Looking back, taking stock,
going forward. AAI Magazine 24:(2) 7396.

ICAPS 2006

102 Doctoral Consortium

Exploiting Portfolio Strategy to Explore the Interaction of Problems and
Algorithms in AI Planning ∗

Mark Roberts
Computer Science Department

Colorado State University
Fort Collins, Colorado 80523
mroberts@cs.colostate.edu

It is well known that a problem-speci�c approach can lead
to an algorithm that does well on one problem but fails on
other problems with a markedly different structure ((Wolpert
& Macready 1997) consider the discrete case). Portfolios are
a general way to overcome algorithm bias and maintain ro-
bustness across a range of problems. A portfolio controls the
run time of a suite of algorithms with a strategy consisting
of: selecting which algorithms to run; ranking the selected
algorithms; and allocating computational time to them. An
ideal strategy maximizes success and minimizes total com-
putation. This means the strategy must be accurate and fast.

Previous portfolios used a variety of strategies. One of
the �rst formulations calculated the risk of selecting an al-
gorithm (Huberman, Lukose, & Hogg 1997). Gomes and
Selman (1997) explicitly computed the value of multiple
restarts of the same algorithm. The Bus meta-planner (Howe
et al. 1999) used a round robin allocation based on a trade-
off between a simple model of success and expected cost.
Other portfolio approaches (e.g., (Gratch & Chien 1996;
Minton 1996; Fink 1998; Baptista & Silva 2000; Leyton-
Brown et al. 2003; Lagoudakis & Littman 2000)) used eas-
ily extracted features of the problems and solution progress
and rely, for their portfolio strategy, on models generated
off-line from problem instances. Most approaches also
leverage statistical run-time distribution information (e.g.,
(Horvitz et al. 2001; Beck & Freuder 2004)) while some,
such as (Guerri & Milano 2004), focus on extracting fea-
tures that uncover structure of the problem instance.

The goodness or utility of a portfolio strategy can be mea-
sured in different ways. For example, we can examine the
raw number of problems it solves and examine its robust-
ness on unseen problems. We can compare portfolio perfor-
mance against the individual or aggregate performance of
the suite of algorithms. We can examine the selection, rank-
ing, and allocation strength of the portfolio strategy against
the best it could have done. Finally, we can study the port-
folio strategy for clues about why one algorithm is favored
over another and what led the portfolio to make the distinc-
tion. Ultimately, it is this last measure that will foster deeper
insight and explanation.

∗This research was sponsored by the National Science Founda-
tion under grant number IIS-0138690.

My research analyzes portfolio performance on planning
problems from the International Planning Competitions to
uncover algorithmic and problem structure dependencies
through:

1. Modeling planner performance of 23 planners across al-
most 4000 benchmark problems.

2. Constructing portfolio strategies using a principled
methodology based on analysis of and learning from pre-
vious off-line performance.

3. Measuring portfolio strategies to test speci�c hypotheses
about what constitutes effective selection, ranking, and al-
location.

4. Examining planner performance, models of the perfor-
mance, features used to build those models, domain infor-
mation, and dependencies between these sets to develop
and test speci�c hypotheses leading to stronger explana-
tions of search performance in planning.
What follows are highlights of some of my �ndings with

regard to questions (1) and (2) that form the core of a re-
cently submitted AAAI workshop paper. My dissertation
research will address all four of these questions.

Modeling Planner Performance
We study 23 classical planners, and for each planner, we
construct two models: success and time. Success estimates
P (solution found|problem, planner). Time predicts compu-
tation time needed for a given planner to complete a given
problem.

Each problem instance is de�ned by 57 features that can
be automatically extracted from problem and domain de�ni-
tions. The set starts with features from (Howe et al. 1999)
and (Hoffmann 2001) and adds others. We divide the fea-
tures into four categories of increasing knowledge and com-
putational cost: domain speci�c, instance speci�c, action in-
teraction and Hoffmann’s state space topology1 (Hoffmann
2001). Based on the amount of computation time to com-
pute features, we designate the domain and instance-speci�c
as ’fast’ features and the action interaction and topological
features as ’expensive’ features.

We run all planners on 3959 STRIPS PDDL problems
from 77 domains. The problems are taken from Hoffmann’s
dataset (Hoffmann 2004), the UCPOP Strict benchmark,

1We thank Jörg Hoffmann for supplying the code.

ICAPS 2006

Doctoral Consortium 103

IPC sets (IPC1, IPC2, IPC3 Easy Typed and IPC4 Strict
Typed) and 37 other problems from two domains (Sodor and
Stek) that have been made publicly available. Each planner
is allowed 30 minutes and 768 Meg. We used 22 identically
con�gured Pentium 4 3.4Ghz computers.

We use the WEKA data mining package (Witten & Frank
2005) to build the models. We tried several different mod-
els from WEKA; to begin with, we focused our work on
two simple models that worked well: OneR and J48. OneR
selects the single feature that yields the highest prediction
value on the training set, while J48 is a simple decision tree
based on Quinlan’s C4.5. By default, we use 10-fold cross
validation.

We distinguish our models based on the data we use to
build them: all data and old data (all but IPC4). The
time3 model divides 30 minutes of possible time into
10 equal sized (three minute) bins. The logTime model
uses 5 bins of time based on the division (in seconds):
{1, 10, 100, 1000, 10000}.

Predicting Success The distribution of results in the raw
data values tends to be skewed. 35.4% of the runs suc-
ceed over all planners and problems. 97.1% (successful)
and 96.4% (failure) of runs complete in under 3 minutes.
The distributions do vary across planners from a range of
5%-70% for success and 65.5%-100% for % successful runs
under 3 minutes and 72.6%-100% for % failed runs under 3
minutes. We found that J48 predicts success for old with
96.7% average accuracy (sd of 3.2) and for all with 96.8%
average accuracy (sd of 2.12).

Predicting Time The run-time distributions (RTDs) are
heavily skewed for each planner. Over all planners, 77.8%
of the runs �nish in less than one second and 6.9% �nished
in greater than 1000 seconds2. Given these heavy tails, we
found that logTime predictions are much more accurate than
time3 predictions. The average prediction accuracy using
J48 with binned data was 93.52% (sd of 6.55) for logTime.

Which features are informative? To examine if spe-
ci�c features are informative we constructed OneR mod-
els, which rely on a single feature for classi�cation. For
success on the old problems, the average number of
negations in effects was the best predictor for
nine of the planners; the predicate arity was best for
another four. The �rst feature may indicate where the of-
ten used h+ heuristic may have trouble; the second roughly
influences branching in the search space.

When we examined the features used for the old data, we
found that fast features had been selected for predicting suc-
cess for 16 of the 23 planners and for predicting time for 5
of the 12 planners. All of the expensive features selected
were from Hoffmann’s set. The mean accuracy for the suc-
cess models was 91.8% using fast features and 93.6% us-
ing expensive features. The mean accuracy for time models
was 96.2% using fast features and 78.2% using expensive
features; however, the skews on the distribution for models
using the expensive features tended to be more extreme.

2We did not construct time models for nine planners that either
always finished in less than 1 second or that too rarely succeeded
in less than 30 minutes.

Do we need all of the features? We noted a considerable
(100 to 1000-fold) difference in computing the feature cost
for the fast features and the expensive features. We won-
dered if we could use only the fast features without sacri�c-
ing accuracy. On a subset of the data for which we had all
feature information, a paired sample T-test of using or re-
moving the expensive features was not signi�cant (p < 0.61
for success and p < 0.49 for time3); it appears that expen-
sive features are not necessary for accurate models.

Do models for older problems generalize? To test this
question, we trained models using old and tested with cross-
validation as well as with IPC4. A paired sample T-test com-
paring accuracy of each of the planner models when tested
on old versus IPC4 is highly signi�cant (P < .0001); the
models are statistically signi�cantly more accurate for the
old problems. This suggests that the IPC4 problems must be
classi�ed differently than the older problems.

Portfolio Construction
We construct our portfolio in a principled manner from the
model analyses. To date, we have tried several variants that
are increasingly informed by deeper insight.

Pruning with static allocation We developed and tested
a simple model of portfolio allocation by applying the RTDs.
We noted that the highest median planner time was 5 sec-
onds. Our �rst strategy selected only those planners to those
that were predicted to succeed, ranked that pruned set by
probability of success, and allocated ten seconds (5 seconds
rounded to the next largest bin) to each planner. We found
that this strategy was not very robust, though it did signi�-
cantly outperform the average planner performance. In hind-
sight, a simple explanation is that the planners were stopped
too soon; we effectively stopped some planners somewhere
between their 50th and 80th percentiles for time-to-success.

Using unique planners We �rst examined how we might
reduce the number of algorithms that the portfolio uses. Let
A be the entire set of algorithms under consideration. In
general, we seek to �nd the minimum covering of unique
planners,U ⊂ A , such that all problems solved byA remain
solved by U . A minimum covering is equivalent to a set cov-
ering, which is NP-Complete, but has a known polynomial
algorithm, Greedy-Set-Cover, that has an approximation ra-
tio ρ(n) = ln |A|+1 (Cormen et al. 2003). We implemented
Greedy-Set-Cover and found that at least 14 planners could
be removed.

Quiting with confidence A closer look at the RTDs
showed us that we could set a reasonable pausing time for
the planners on each iteration of a round robin portfolio. In
this way, we start with a higher con�dence than the median,
and we gradually increase the con�dence in each pass of the
algorithm. For the unique planners, all but one achieve the
80th percentile at 10 seconds. At 100 seconds, one plan-
ner achieves each of the 89th, 94th, and 97th percentiles,
�ve reach the 98th percentile, and three achieve the 99th
percentile. At 200 seconds, six have reached the 99th per-
centile. This observation suggests a stepped approach for
allocating time.

The current portfolio begins with the set of planners under
consideration (either A or U); it does not itself perform any

ICAPS 2006

104 Doctoral Consortium

selection. For these planners, the portfolio ranks the plan-
ners according to the learned models in decreasing probabil-
ity of success then in increasing probability of failure. This
ensures that the portfolio tries the planner most likely to suc-
ceed �rst and the planner most likely to fail last.

The portfolio allocates time to the planners in a series of
round robin stages. The �rst stage tries the �rst �ve planners
for ten seconds each; we chose the �rst �ve because it is half
of |U|. The second stage starts at the top of the ranking and
runs all planners up to 100 seconds. Every stage thereafter
adds 100 seconds. The portfolio stops when 1) a planner
succeeds, 2) no planners are alive to run, or 3) max-time is
exceeded.

We trained the models for this portfolio using a random
sampling of 90% of the problems and tested it on the re-
maining 10% (394). Of this 394 problems, 371 (94.2%)
were solved by at least one planner. The best single planner,
SGPlan-04 solved 291 (73.9%) of these problems. To exam-
ine the impact of using the culled set, we compare the per-
formance of the portfolio using all planners (Aport) against
the portfolio using the unique planners (Uport). In terms of
robustness,Aport solved 307 (77.9%) problems while Uport

solved 325 (82.5%). Both portfolios signi�cantly perform
faster than the average planner run time (by about 6 seconds)
according to a paired sample T-test.

Future Work
Incorporating learning from prior experience into a portfo-
lio yielded some promising results. But there still remains
much work toward the primary goal of linking the search
bias of various planners with their performance on speci�c
problems. In this section, we present several key points of
continuing work that we hope will reveal deeper insight into
understanding speci�c planning approaches.

Features To date, we have examined three basic fea-
ture types: domain/problem instance, action interaction, and
topological. The OneR and J48 models provide some evi-
dence linking particular features to performance prediction.
Already, we have begun to examine other features for im-
pact on performance prediction. We expect to identify new
features that help explain less direct action interactions as
we perform richer domain analysis. Further, we hope to ex-
amine the feature set for overlap and uniqueness similar to
what we have done for planners.

Planners We began our research with the widest set of
planners possible. We plan to examine the data for interac-
tions based on planner type (such as SAT-based, POCL-base,
Graphplan, Relaxed Graphplan, or Hybrid). We use the de-
fault settings of all planners; our work can easily be extended
to include some limited parameter tuning of the planners by
viewing each change in parameters as a new planner. Most
of the planners we used came from the IPCs. This com-
ing IPC5 will provide another set of planners to extend our
work. Attending ICAPS during an IPC year will also pro-
vide direct interaction (and possible collaboration with) the
authors of these planners to aid in gaining deeper insight.

Problems This work is based in the classical planning
paradigm. Recent extensions to PDDL were intended to

push the community toward more realistic problems (Hoff-
mann & Edelkamp 2005); our work indicates that there is
a signi�cant difference between the old and new problems.
My hope is to fully develop a principled methodology for
portfolio construction and then extend it to the newer Tem-
poral and Probabilistic tracks of the IPC. Another potential
area for understanding the planner behavior is through the
problem generators from the IPCs - these could be used to
test speci�c hypotheses about the dependencies we notice.

Classifiers We mined our data with two simple classi�ers
to predict success and run time. We conjecture that there
is a wealth of information beyond this utilitarian approach,
so we hope to extend these analyses by incorporating more
sophisticated classi�cation techniques (such as Bayesian or
k-nearest neighbor clustering) to mine relationships between
the features, the problems, and the algorithms.

Unified Model Work by (Kambhampati, Knoblock, &
Yang 1995) and (Kautz & Selman 1999) unifying planning
approaches under the same framework provides a founda-
tion for exploring deeper analysis of planners.

On-line learning Our current system uses prior, off-line
learning to inform the portfolio strategy. It seems reasonable
to consider that we could extend the models into an on-line
learning paradigm.

Computational Trade-offs Our preliminary research in-
dicates we may be able to use only fast features to predict
success and time. But we need to examine this hypothesis in
light of newer domains and problems (especially since the
models built on old models didn’t generalize). If we do �nd
that expensive features are necessary, we expect to examine
in more detail the question of determining the appropriate
level of computational effort for a strategy. Classi�ers that
incorporate feature cost into classi�cation would be helpful
determining an appropriate trade-off point.

The focus of incorporating these extensions is to identify
dependencies between the domains, heuristics, algorithms,
and run time dynamics in classical planning. The main di-
rections of this research are 1) in providing a principled
methodology for portfolio construction and 2) in providing a
framework for exploiting the portfolio strategy to re�ne our
understanding of planning approaches.

Acknowledgments
I want to thank Adele Howe, my dissertation adviser, and
the reviewer of this paper who both provided feedback and
ideas for further directions for this work. Finally, a thanks to
all the authors who make their planners available for study.

ICAPS 2006

Doctoral Consortium 105

References
Baptista, L., and Silva, J. P. M. 2000. Using randomization
and learning to solve hard real-world instances of satis�a-
bility. In Principles and Practice of Constraint Program-
ming, 489–494.
Beck, J. C., and Freuder, E. C. 2004. Simple rules for low-
knowledge algorithm selection. In Proc. of 1st CPAIOR.
Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2003.
Introduction to Algorithms. MIT press, Cambridge, MA,
second edition.
Fink, E. 1998. How to solve it automatically: Selection
among problem solving methods. In Proc. of 4th AIPS,
128–136.
Gomes, C. P., and Selman, B. 1997. Algorithm portfolio
design: Theory vs. practice. In Proc. of 13th UAI. Linz,
Austria.: Morgan Kaufman.
Gratch, J., and Chien, S. 1996. Adaptive problem-solving
for large-scale scheduling problems: A case study. JAIR
4:365–396.
Guerri, A., and Milano, M. 2004. Learning techniques for
automatic algorithm portfolio selection. In Proc. of 16th
ECAI, 475–479.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. JAIR 24:519–579.
Hoffmann, J. 2001. Local search topology in planning
benchmarks: An empirical analysis. In Proc. of 17th IJCAI,
453–458.
Hoffmann, J. 2004. Utilizing Problem Structure in
Planning: A local Search Approach. Berlin, New York:
Springer-Verlag.
Horvitz, E.; Ruan, Y.; Gomes, C. P.; Kautz, H.; Selman,
B.; and Chickering, D. M. 2001. A bayesian approach
to tackling hard computational problems. In Proc. of 17th
UAI, 235–244.
Howe, A. E.; Dahlman, E.; Hansen, C.; von Mayrhauser,
A.; and Scheetz, M. 1999. Exploiting competitive planner
performance. In Proc. of 5th ECP.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
economics approach to hard combinatorial problems. Sci-
ence 275:51–54.
Kambhampati, S.; Knoblock, C. A.; and Yang, Q. 1995.
Planning as re�nement search: A uni�ed framework for
evaluating design tradeoffs in partial-order planning. Arti-
ficial Intelligence 76(1-2):167–238.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
graph-based planning. In Proc. IJCAI-99.
Lagoudakis, M. G., and Littman, M. L. 2000. Algo-
rithm selection using reinforcement learning. In Proc. 17th
ICML, 511–518.
Leyton-Brown, K.; Nudelman, E.; Andrew, G.; McFadden,
J.; and Shoham, Y. 2003. A portfolio approach to algorithm
selection. In Proc. of 18th IJCAI.
Minton, S. 1996. Automatically con�guring constraint
satisfaction programs: A case study. Constraints 1(1/2):7–
43.

Witten, I. H., and Frank, E. 2005. Data Mining: Practical
machine learning tools and techniques. Number ISBN 0-
12-088407-0. San Francisco: Morgan Kaufmann, 2nd edi-
tion.
Wolpert, D. H., and Macready, W. G. 1997. No free lunch
theorems for optimization. IEEE Trans./ on Evolutionary
Comp. 1(1):67–82.

ICAPS 2006

106 Doctoral Consortium

Infeasible Search Analysis for Oversubscribed Scheduling Problems

Mark F. Rogers
Computer Science Dept., Colorado State University

Ft. Collins, CO 80523 USA
rogersma@cs.colostate.edu

Introduction
Researchers have expended considerable effort developing
local search neighborhoods and heuristics that restrict search
to feasible space. However, some have discovered that a
variety of problems may be solved efficiently if an algo-
rithm includes both feasible and infeasible solutions in its
search. In a procedure called strategic oscillations (Glover
1989), Glover defined a local search strategy that alternates
a search between feasible and infeasible states and uses a
span to control the number of moves the search makes in ei-
ther region. An algorithm may increase or decrease its span
periodically to vary the search intensity in feasible and in-
feasible regions.

Strategic oscillation algorithms appear to hold two advan-
tages over feasible-only search: first, the oscillations tend
to focus a search around the feasible-infeasible frontier, or
boundary region, where optimal solutions reside for many
constrained optimization problems (Glover 1989; Schoe-
nauer & Michalewicz 1996). Second, some researchers
claim that infeasible search opens new routes to optima
and permits an algorithm to exploit short-cuts in the space
(Glover 1989; LeRiche, Knopf-Lenoir, & Haftka 1995;
Kelly, Golden, & Assad 1993; Michalewicz 1996).

The boundary region is defined as feasible states that have
infeasible neighbors, or infeasible states that have feasible
neighbors. When a search reaches a boundary-region state,
its next move may introduce or resolve constraint viola-
tions as the search moves into the opposite region. Thus
boundary-region search is motivated by the conjecture that
optima for constrained optimization problems frequently in-
clude binding or active constraints. A constraint becomes
active whenever a variable reaches its minimum or maxi-
mum allowed value. Research has verified that boundary
region search finds good solutions for domains such as lam-
inate design (LeRiche & Haftka 1994), numerical optimiza-
tion (Schoenauer & Michalewicz 1996) and single-machine
scheduling (Hurink & Keuchel 2001).

That a search may benefit from short-cuts is an appealing
concept, but until now we have seen no direct established
evidence that infeasible search finds paths that could not be
reached as directly using feasible solutions. In addition, the
concept of short-cuts appears to conflict with the goal of
boundary-region search; to uncover efficient paths through
infeasible space, a search must move away from the bound-

ary region, effectively postponing boundary exploration un-
til the search returns from infeasible space. We have con-
firmed that a strategic oscillation algorithm finds short-cuts
through infeasible space, but it is difficult to justify extensive
infeasible search.

We have experimented with two satellite scheduling do-
mains that each consist of a single oversubscribed satel-
lite: each problem instance has many more requests than
the satellite can accommodate. The first domain is the 2003
ROADEF Challenge problems: satellite scheduling prob-
lems designed for a competition (Cung 2003). We have ap-
plied a strategic oscillation algorithm, TabuCL (Cordeau &
Laporte 2003) to the ROADEF problems and to a synthetic
earth observing satellite (EOS) domain. In both domains
the best solutions are likely to contain tasks with active con-
straints. The search spaces are large: ROADEF has n! · 2n

possible states in a problem with n tasks; for EOS the num-
ber of states is bounded by n! ·mn, where n is the number
of tasks and m is the maximum number of time windows
allocated to a task. Both domains include time window con-
straints which we relax in order to introduce infeasible solu-
tions into a search.

Infeasible Path Segments
We define a path segment as any sequence of schedules ex-
plored during a search. A feasible segment is one in which
each schedule is feasible. An infeasible segment is one
where each schedule in the segment contains at least one
constraint violation except for the start and end schedules,
which are feasible. This restriction on the start and end
schedules helps us divide infeasible search into distinct in-
feasible segments.

We further distinguish between infeasible segments that
stay within the boundary region and those that move outside
the boundary region. We define a boundary-region segment
as an infeasible segment whose states all reside along the
boundary. When at least one infeasible state has no feasi-
ble neighbors, we refer to its segment as a deep infeasible
segment. These distinctions allow us to evaluate the rela-
tive merits of large and small oscillation span values, and
provide insights into how likely infeasible search is to yield
significant benefits.

To assess the efficiency gained through infeasible search,
we consider three phenomena: cycles, detours and short-

ICAPS 2006

Doctoral Consortium 107

cuts. When a segment’s start and finish state are identical,
then the segment is a cycle. If there is a cycle contained
within an infeasible segment from one infeasible state to an-
other, then we identify the segment as a detour. Cycles and
detours degrade search performance by wasting moves. The
final infeasible segment we consider is the short-cut: an in-
feasible segment whose length is shorter than any feasible
segment between two feasible states.

We have conducted experiments to test the hypothesis
that infeasible solutions facilitate efficient search by open-
ing short-cuts in a search space. For our oversubscribed
scheduling problems, we have found that short-cuts do exist
for segments that leave the boundary region, but their effi-
ciency may be offset by infeasible segments that yield little
or no benefit to a search.

Tabu Search

The TabuCL implementation uses three neighborhood op-
erators: insert that inserts an image into the schedule;
remove that removes an image from the schedule, and
replace that changes the image that will be acquired. The
insert operator finds the first possible location for an im-
age by examining each possible slot in the schedule. Thus a
schedule is biased towards placing tasks in the earliest pos-
sible slot. This strategy ignores possible time window vio-
lations for images other than those immediately adjacent to
the candidate image, so an insert operation may generate
infeasible schedules.

The replace operator attempts to remove an image
from the schedule and to replace it with an equivalent image
from the same request. Thus the replace operator may
also introduce time window violations whenever the transi-
tion times or the time window for an alternate image differ
from those of the original.

TabuCL strategic oscillations with a simple linear penalty
function and a scale factor, α. For a schedule s, a profit value
p(s), and time window violation count w(s), the evaluation
function f(s) is given by:

f(s) = p(s)− αw(s) (1)

As a search progresses, the value α controls oscillations
about the boundary region. As a search moves through fea-
sible space, α decreases stochastically, thus encouraging the
search to admit infeasible schedules. Once the search enters
infeasible space, α begins to increase and eventually forces
the search back toward feasible schedules.

We applied a modified version of this algorithm to the
EOS problems using the same neighborhood operators.
The EOS problems use a different objective function than
ROADEF, but the strategic oscillation behavior is the same.

To account for the boundary region’s influence, we imple-
mented a restricted version of the tabu search (TabuBR) that
prevents a search from moving away from the boundary. We
compared TabuCL with TabuBR, to see how much a search
benefits from boundary-region search and how much it gains
from traversals away from the boundary.

Infeasible Segment Analysis

During each run, whenever a search transitioned from a
feasible state to an infeasible state, we recorded the fea-
sible state and each move in the infeasible path segment.
When the search transitioned again back to feasible space,
we recorded the ending feasible state and allowed the search
to continue until it started another infeasible segment.

We conducted infeasible path analysis using a separate
program to assess each infeasible segment recorded during a
search. To categorize infeasible segments, we implemented
an algorithm that detects the characteristic infeasible seg-
ment types defined in the previous section. In addition to
categorizing infeasible paths we also differentiate between
boundary region traversals and deep traversals that move be-
yond the boundary region.

Results
We have confirmed the existence of short-cuts for algorithms
that include infeasible states. Our infeasible path statistics
confirm that short-cuts, cycles and detours all occur during
infeasible search. However, the value of deep infeasible tra-
jectories varies between problems.

When we use strategic oscillations to allow a search to
probe deeply into infeasible regions, we find that in most
cases, deep traversals generate a higher proportion of im-
proving moves than boundary-region search. At the same
time, they tend to enter fewer cycles, and they uncover a
higher proportion of short-cuts in the space. Each of these
attributes implies that deep infeasible traversals have the po-
tential to make a search highly efficient.

However, when we compare TabuBR with TabuCL on
the ROADEF problems we do not find consistent perfor-
mance improvements. Possibly this is because short-cuts
still comprise a minority of deep traversals (roughly 20-
40%), while deep traversals themselves consume more it-
erations than boundary-region traversals. Thus while deep
traversals may occasionally yield promising short-cuts, this
benefit is offset by the number of iterations squandered on
non-improving deep path segments. To address this issue,
we have begun exploring ways to eliminate unproductive
segments.

Infeasible Tabu List

Our first approach was to augment TabuCL with a tabu list
for infeasible paths. With this enhancement we have been
able to eliminate most of the cycles and detours found in
infeasible traversals. We hoped that an infeasible tabu list
would also force a search to explore a more diverse selec-
tion of infeasible paths than the original search and thus
exploit more shortcuts. Although the enhanced algorithm
nearly doubled the proportion of shortcuts for the ROADEF
problems, we saw little improvement for most problems and
the new tabu list tended to degrade performance overall.

For the EOS problems we found that an infeasible tabu
list made the search more efficient than the original search
in some cases, but made little difference in others. Evidently
it is not sufficient merely to increase the proportion of short-

ICAPS 2006

108 Doctoral Consortium

cuts: in addition we need to consider where a shortcut begins
in a space, and whether it finds an improving path.

Future Work
Infeasible path metrics should give us new ways to assess
strategic oscillation search. By creating tools that enable us
to measure infeasible search attributes, we obtain more com-
prehensive algorithm performance metrics than we would by
merely charting an objective function during a run. By ex-
amining the relationships between algorithm features and in-
feasible search metrics, we should be able to improve these
algorithms further or demonstrate that improvements are un-
likely. Ultimately our goal is to identify a “best” algorithm
for a given problem domain, but there are still questions we
want to answer regarding the ROADEF and EOS domains.

Although an infeasible tabu list yielded good results for
some problems, it provides little insight into search behavior
that leads to unimproving shortcuts. We want to examine the
states where we find cycles, detours and unproductive short-
cuts to see if there are trends common to these phenomena
that will allow us to eliminate a proportion of wasted moves.
As our results show, the difference between boundary region
search and deep infeasible search can be subtle; eliminating
even a small number of detrimental moves could improve
search performance.

“Jump” Tabu
Our TabuCL ROADEF results revealed that for many infea-
sible paths longer than two moves, the best moves in each
neighborhood changed little as the search proceeded into
infeasible space. We are investigating the possibility we
could make TabuCL more efficient simply by eliminating
the neighborhood searches for some initial infeasible steps.
By sorting the best moves in the initial infeasible step and
then applying several of them at once, we could “jump”
ahead in the search by generating the same infeasible path
using fewer evaluations.

A naı̈ve approach is simply to apply k of these moves at
the start of each infeasible path to make a jump. The av-
erage infeasible path length for ROADEF problems ranges
from 2 to 5 moves and of these, approximately half will
be insert or replace moves at the start of an infeasi-
ble segment. Thus the simplest implementation applies the
first k = 2 moves from an initial infeasible neighborhood,
skipping one set of evaluations. A more sophisticated ap-
proach will attempt to predict an optimal number of moves
to make in a single jump as a function of the penalty param-
eter value, the current gain and the violation counts for the
best infeasible moves.

The “jump” approaches may allow us to reduce wasted
evaluations by applying multiple moves at once. We also
wish to determine whether it is possible to predict when an
infeasible traversal is likely to produce a productive short-
cut. At this point, our infeasible path statistics do not reveal
any obvious trends. Currently we are investigating whether a
machine learning tool such as a C4.5 classifier could identify
subtle indications that lead to productive infeasible paths. If
we can construct such a classifier, then we may gain further

insight into what causes unproductive infeasible paths, or
incorporate the classifier directly into a search.

Neighborhoods and Algorithms
To date, our work has focused on TabuCL and its per-
formance with two oversubscribed scheduling problems.
Our results hint that an algorithm’s neighborhood operators
may dictate shortcuts’ frequency and influence during local
search. Thus we want to expand our investigation to exam-
ine shortcut behavior with different neighborhood operators
and algorithms.

In TabuCL, neighborhood operators are not symmetric: it
may not be possible to undo a move in a single step. For ex-
ample, if we remove a task and immediately insert the
same task, the resulting schedule may change. The algo-
rithm greedily schedules tasks at the earliest possible time,
so a task that is removed and reinserted may move to an ear-
lier slot in the schedule. We hypothesize that this kind of
asymmetry may explain the large number of shortcuts we
find with TabuCL. Thus we would like to know how rel-
evant symmetry is for finding shortcuts whether algorithms
that use symmetric neighborhoods can find shortcuts as well.

If we are able to identify search characteristics that lead
to productive infeasible search, a related goal will be to
apply our results to other search algorithms such as simu-
lated annealing or genetic algorithms. Research has shown
that strategic oscillation strategies are compatible with tem-
perature schedules in simulated annealing (Anagnostopou-
los et al. 2003). In addition, researchers have applied
strategic oscillations successfully to genetic algorithms in a
number of domains (for example, (Joines & Houck 1994;
Coit, Smith, & Tate 1996; Eiben & Ruttkay 1996; Bean &
Hadj-Alouane 1997)).

Strategic oscillations can be an effective method for solv-
ing constrained optimization problems by relaxing problem
constraints to introduce infeasible solutions into a search.
Infeasible space provides access to both sides of the bound-
ary region and allows a search to focus its attention on good
solutions that may reside there. However if we want to de-
velop efficient search algorithms, then we need to under-
stand what characteristics make infeasible search successful.
By studying infeasible path statistics, we hope to uncover
the infeasible search features that yield insights into how a
search behaves and may thus allow us to exact the benefits
while avoiding the unproductive forays.

References
Anagnostopoulos, A.; Michel, L.; Hentenryck, P. V.; and
Vergados, Y. 2003. A simulated annealing approach to the
traveling tournament problem. In Proceedings of CPAIOR
2003.
Bean, J. C., and Hadj-Alouane, A. B. 1997. A genetic algo-
rithm for the multiple-choice integer program. Operations
Research 45(1):92–101.
Coit, D. W.; Smith, A. E.; and Tate, D. M. 1996. Adaptive
penalty methods for genetic optimization of constrained
combinatorial problems. INFORMS Journal on Comput-
ing 8(2):173–182.

ICAPS 2006

Doctoral Consortium 109

Cordeau, J. F., and Laporte, G. 2003. Maximizing the value
of an earth observation satellite orbit. Technical Report
CRT-2003-27, Centre de recherche sur les transports.
Cung, V.-D. 2003. ROADEF’2003: Results of the final
stage (base X) of the challenge. http://www.prism.
uvsq.fr/˜vdc/ROADEF/CHALLENGES/2003/
results030203_final.html.
Eiben, A. E., and Ruttkay, Z. 1996. Self-adaptivity for con-
straint satisfaction: Learning penalty functions. In Interna-
tional Conference on Evolutionary Computation, 258–261.
Glover, F. 1989. Tabu search–Part I. ORSA Journal on
Computing 1(3):190–206.
Hurink, J. L., and Keuchel, J. 2001. Local search algo-
rithms for a single-machine scheduling problem with posi-
tive and negative time-lags. Discrete Applied Mathematics
112(1-3):179–197.
Joines, J. A., and Houck, C. R. 1994. On the use of non-
stationary penalty functions to solve nonlinear constrained
optimization problems with GA’s. In International Con-
ference on Evolutionary Computation, 579–584.
Kelly, J. P.; Golden, B. L.; and Assad, A. A. 1993. Large-
scale controlled rounding using tabu search with strategic
oscillation. Annals of Operations Research 41:69–84.
LeRiche, R., and Haftka, R. T. 1994. Improved genetic
algorithm for minimum thickness composite laminate de-
sign. In Proceedings of the International Conference on
Composite Engineering, Aug 28–31.
LeRiche, R.; Knopf-Lenoir, C.; and Haftka, R. T. 1995. A
segregated genetic algorithm for constrained structural op-
timization. In Proceedings of the Sixth International Con-
ference on Genetic Algorithms, 558–565. Morgan Kauf-
mann Publishers Inc.
Michalewicz, Z. 1996. Genetic Algorithms + Data Struc-
tures = Evolution Programs. London: Springer.
Schoenauer, M., and Michalewicz, Z. 1996. Evolutionary
computation at the edge of feasibility. In Parallel Problem
Solving from Nature IV, 245–254. Berlin: Springer.

ICAPS 2006

110 Doctoral Consortium

Thesis Summary: First-order Decision-Theoretic Planning

Scott Sanner
Department of Computer Science

University of Toronto
ssanner@cs.toronto.edu

1 Overview
MDPs have become the de facto standard for modelling
decision-theoretic planning problems. Recent work on
MDPs has focused primarily on two research areas:

1. Language extensions for MDP models. The language
used to specify an MDP determines how succinctly a
given domain can be described. In addition, the struc-
ture used in succinct model specification often has a direct
impact on the design of algorithms that can efficiently ex-
ploit this structure.

2. Exploiting MDP structure for efficient solution algo-
rithms. There are many types of MDP structure that can
be exploited by solution algorithms to avoid full state and
action enumeration. By exploiting this structure, solution
algorithms can scale to MDPs that would be otherwise
unsolvable with full state and action enumeration.

In recent years, first-order MDPs (FOMDPs) (Boutilier,
Reiter, & Price 2001) have become a popular formalism for
modelling decision-theoretic planning problems, owing to
their ability to succinctly represent planning problems stated
as stochastic variants of STRIPS (Fikes & Nilsson 1971) or
PDDL (McDermott et al. 1998). In this thesis summary, I
outline current work and future directions for research in the
areas of language extensions and exploitation of structure to
efficiently represent and solve first-order decision-theoretic
planning problems.

2 Previous and Current Research
To date, previous and current research has focused primarily
on exploiting various types of structure that naturally occurs
in decision-theoretic planning problems.

2.1 Exploiting Independence for Exact Solutions

Previous work (Boutilier, Dearden, & Goldszmidt 2000;
Hoey et al. 1999) for solving propositionally factored MDPs
has used tree and ADD (R.I. Bahar et al. 1993) data struc-
tures to exploit context-specific independence (Boutilier et
al. 1996). Very recent work on affine extensions of
ADDs (Sanner & McAllester 2005) has provided a data
structure that extends ADDs to compactly exploit additive,
multiplicative, and context-specific independence in MDP

inference. Empirical results suggest that the AADD outper-
forms both traditional tabular representations and ADDs on
a variety of problems containing additive and multiplicative
structure.

In another vein, current research on first-order ADDs
(FOADDs) has examined methods for generalizing the ADD
data structure from propositional to first-order representa-
tions. This work allows decision diagram nodes to con-
sist of full first-order formulae that are lexicographically or-
dered with respect to a fixed relation ordering. Then, or-
dered resolution can be efficiently applied during a gener-
alization of the standard ADD Reduce(·) and Apply(·) op-
erations to prune out inconsistent nodes in the resulting de-
cision diagram. With the FOADD data structure and algo-
rithms properly defined, it is then straightforward to extend
them to a first-order affine ADD (FOAADD), thus allow-
ing FOMDP solution algorithms to exploit context-specific,
additive, and multiplicative structure. Initial empirical re-
sults with the FOADD approach for value iteration have
been promising, showing a marked increase in performance
over a simple enumerated case representation. However,
more comprehensive experimentation with both FOADDs
and FOAADDs is needed to fully evaluate the impact of
each of these data structures on the efficiency of FOMDP
inference algorithms.

2.2 Exploiting Basis Function Representations for
Approximate Solutions

Given the complexity of solving first-order MDPs, approx-
imation techniques offer an efficient alternative to finding
an exact solution. One popular method for approximating
MDP solutions has been to represent the value function as
a linear combination of weighted basis functions. Previous
work (Guestrin et al. 2002; Schuurmans & Patrascu 2001)
has provided efficient solution techniques for finding good
sets of basis function weights by exploiting the structure of
propositionally factored MDPs.

More recent work on first-order approximate linear
programming (FOALP) solution approaches (Sanner &
Boutilier 2005) has extended these basis function tech-
niques to efficiently solve for approximate value functions
in FOMDPs. This work represents the value function as a
weighted set of first-order basis functions. It then uses a
first-order generalization of cost network maximization in

ICAPS 2006

Doctoral Consortium 111

tandem with constrain generation techniques to efficiently
solve for settings of these weights. Empirical results have
shown that these techniques are relatively efficient in prac-
tice and yield policies that outperform both handcoded
heuristics and myopically optimal policies. In addition,
these solutions yield error bounds on policy quality that ap-
ply equally to all domain instantiations of a problem – a
novel result for the relational and first-order MDP literature.

However, despite the successes of the FOALP work, there
are many future refinements to this work that could further
improve results. One interesting question for future work is
whether the uniform relevance weighting of partitions cur-
rently used in the FOALP objective is the best approach.
It would be informative to explore alternative FOALP ob-
jective specifications and to evaluate their impact on value
function quality over a variety of domains. In addition, it
is an interesting question as to whether dynamic reweight-
ing schemes could improve solution quality by identifying
state partitions with large error and adjusting their relevance
weights so they receive more emphasis on the next LP iter-
ation. Altogether, such improvements to FOALP could bol-
ster an already promising approach for efficiently and com-
pactly approximating FOMDP value functions.

3 Future Research Directions
Future research directions build on current research direc-
tions and additionally look at first-order MDP modelling
language extensions and the generalization of solution al-
gorithms to handle such extensions.

3.1 Modelling Language Extensions

Perhaps one of the most important frontiers for FOMDP
and general decision-theoretic planning research is that of
providing the user with a rich set of language features that
enable them to naturally model real-world problems. Fol-
lowing are a number of modelling language extensions that
were motivated by actual planning problems along with a
brief discussion of the modifications to solution algorithms
to handle such extensions.

Sum and Counting Aggregators In first-order domains,
it is often very natural to predicate transition function and re-
ward dependencies on the count of objects satisfying some
criteria. For example, in a logistics domain, the probabil-
ity that a delivery truck leaves on time may depend on the
number of packages being loaded on the truck, and the re-
ward might be the count of packages successfully delivered.
While counting and inequalities can be stated for specific
values within first-order logic, generic counting for poten-
tially infinite domains cannot be done without augmenta-
tions of the FOMDP specification language. For example,
using a count aggregator #p φ(p) which counts the num-
ber of instantiations of p that make φ(p) true, one can eas-
ily state a reward that scales with the number of packages
successfully delivered: #p [Package(p) ∧ Delivered(p)].
However, there is no finite representation of such a reward
for potentially infinite domains when using only standard
first-order quantifiers; Such a specification would need to

provide a condition and corresponding reward value for ev-
ery possible count of packages.

The specification of sum and counting aggregators and the
necessary extension of the regression operator is straightfor-
ward for FOMDPs. Thus, a general research approach for
solving FOMDPs with sum and count aggregators would
rely on defining the general backup operators and a full
dynamic programming (DP) solution algorithm. However,
solving such extensions of FOMDPs with a full DP algo-
rithm presents a number of technical complications. Specif-
ically, simplification and consistency checking are needed by
full DP solution algorithms and the complex interaction be-
tween quantifiers and sum aggregators makes both of these
operations very difficult.

Consequently, once the full DP solution to FOMDPs with
sum and count aggregators has been defined, this defini-
tion could be applied to a more tractable approximate so-
lution approach using basis functions. Basis function so-
lution techniques would pose an elegant and tractable so-
lution approach since they do not require that formulae be
simplified and since sampling techniques can be used to re-
duce the sum aggregators to first-order formulae for which
consistency checking is straightforward. Although sampling
and the avoidance of simplification considerably blowup the
representation, these solution methods discard this represen-
tational blowup and project the value function down to a set
of basis function weights, thus maintaining compactness.

Handling Quantity Sum and counting aggregators are
useful for counting domain objects satisfying some cri-
teria, but discrete and continuous quantities can also
be represented directly as relational attributes, e.g.
hasPackages(Paris, 5). While this specification does not
allow one to model the specific properties of individual el-
ements contributing to the quantity, it is a commonly used
construct in planning domains and is simple to formalize
in a FOMDP using the + and − arithmetic functions and
equality/inequality predicates. The primary difficulty with
reasoning in such domains is introducing relevant rules of
inference for performing tractable inconsistency detection
with the intended interpretation of these additional language
elements.

Topological Structure Topological structure occurs com-
monly in a number of planning domains, especially those
with underlying location constraints. For example, logistics
problems may require that trucks can only travel on certain
roads to reach different cities, and that planes can only fly
to certain airports in certain cities. While these domains can
be formalized in FOMDPs for arbitrary underlying topolo-
gies, the solutions to such FOMDPs are often intractable as
they have to take into account every possible topology for a
potentially infinite number of locations.

When considering problems with an underlying topology,
it is reasonable to assume that the topology is fixed and to
solve the FOMDP with respect to that specific topology. In
doing this, one can then make use of efficient graph algo-
rithms in place of first-order reasoning during the FOMDP
solution process. Such techniques have the capacity to yield
efficient solutions for problems with underlying topologies

ICAPS 2006

112 Doctoral Consortium

– solutions which would otherwise prove difficult with first-
order reasoning techniques alone.

Concurrent Actions Many real-world planning domains
allow multiple non-interfering actions to be executed sim-
ulataneously. While this can currently be done within the
FOMDP framework, it involves specifying primitive actions
corresponding to all possible joint action combinations that
could take place. This approach is inefficient in that it re-
quires an inordinately (if not infinitely) large number of
joint actions, but also the specification of positive and neg-
ative effects for each of these actions. What is needed for
efficient reasoning with concurrent actions is an efficient
method for factoring both the effects and the value of si-
multaneously executed primitive actions in order to tractably
deal with the combinatorial explosion of potential action ex-
ecutions. Two potential sources of ideas for this work are
ConGolog (De Giacomo, Lesperance, & Levesque 2000)
which specifies transition semantics for situation calculus
domains with concurrent and exogenous actions, and work
in MDPs (Meuleau et al. 1998) that deals with weakly cou-
pled MDPs, each MDP having its own set of actions and
local effects.

Program Constraints Quite often, one has a good idea of
the general sequence of actions that an agent should follow
and there are simply a few choice points which should be left
to the agent to decide according to some decision-theoretic
criterion. In this case, it is useful to extend FOMDP solution
techniques to handle program constraints such as those spec-
ified by DT-GOLOG (Boutilier et al. 2000). The primary
approach to solving a FOMDP under such constraints should
be a relatively straightforward extension of the hierarchical
abstract machine (HAM) framework (Parr & Russell 1998;
Andre & Russell 2001; 2002) for solving MDPs. However,
modifications will be required to generalize this technique
to first-order state spaces.

3.2 Efficient Approximation Algorithms

There appear to be two distinct approaches taken by
FOMDP solution algorithms: extensions of value and policy
iteration for MDPs and extensions of linear programming
techniques for basis function approximations of MDP value
functions. Each of these techniques has its own advantages
and disadvantages and thus it is worth examining possible
extensions that can be made to both classes of algorithms.

Approximation Techniques that Exploit Indepen-
dence Value iteration techniques based on FOADDs and
FOAADDs hold the promise of yielding efficient exact
solutions to FOMDPs. However, it is also interesting to
look at approximation extensions of these algorithms in
the flavor of the APRICODD (St-Aubin, Hoey, & Boutilier
2000) extension of SPUDD (Hoey et al. 1999). In brief,
APRICODD approximates an MDP value function by inter-
leaving SPUDD value iteration steps with an approximation
step that prunes nodes from the value function ADD in order
to maintain a tractable representation. If the approximation
is carried out so that it keeps track of the minimum and
maximum bounds for the value function, then it is still

possible to achieve convergence of the approximated value
function under certain conditions. Following this work,
APRICODD-style extensions to SPUDD could likewise be
generalized to FOMDP value iteration algorithms based
on FOADDs and FOAADDs, thus creating a new class of
FOMDP approximate solution algorithms.

There are two main research questions for such exten-
sions that have not been considered yet. First, while efficient
ADD-based value function approximation techniques have
been explored in APRICODD, approximation with AADDs
is still an open research area. AADDs pose a number of
difficulties for approximation techniques, namely that the
properties of the data structure do not permit the direct
extension of methods used for approximation with ADDs.
Second, while efficient MDP value function approximation
techniques have been explored for propositional MDPs, it is
an open question as to whether these same techniques will
apply to FOMDPs or whether modifications must be made
that take into consideration the first-order structure found in
FOADDs and FOAADDs. Both of these questions will need
to be resolved for efficient FOMDP approximate solution
techniques based on FOAADDs.

Alternate Basis Function Approximation Approaches
Currently, only the first-order approximate linear program-
ming (ALP) (Sanner & Boutilier 2005) approach to approx-
imating the FOMDP value function as a linear combination
of basis functions has been considered. However there are
two alternate approaches to finding basis function weights
that have also been considered in the propositional MDP lit-
erature. These two methods are approximate value iteration
(AVI) and approximate policy iteration (API), the latter hav-
ing been identified as typically offering higher quality solu-
tions than ALP.

While it is relatively straightforward to define the first-
order extensions of the propositional versions of AVI and
API in the spirit of the extension for ALP, this leaves a num-
ber of computational issues which have posed problems for
such extensions. Both AVI and API require that a policy be
derived at each step for their respective weight projection
tasks.1 However, naive methods for deriving a policy from
a set of Q-functions have turned out to yield extremely large
policies and have proved intractable to work with in prac-
tice. Before AVI and API can be effective techniques for
approximate FOMDP solutions, a compact method for rep-
resenting the policy and computing it must be derived. For
now, one promising approach appears to involve structuring
the policy using a FOADD or FOAADD to avoid unneces-
sary redundancy and to provide as compact a representation
of the policy as possible.

References
Andre, D., and Russell, S. 2001. Programmable reinforce-
ment learning agents. In In Advances in Neural Informa-

1While the fact that a policy needs to be derived for API is
obvious, this may not be the case for AVI. However it turns out
that given the infinite action space of FOMDPs, deriving the max
over the Q-functions inherently requires carrying out an operation
equivalent to finding the policy for a given value function.

ICAPS 2006

Doctoral Consortium 113

tion Processing Systems, volume 13.
Andre, D., and Russell, S. 2002. State abstraction for
programmable reinforcement learning agents. In In Proc.
AAAI-02. Edmonton, Alberta: AAAI Press.
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller,
D. 1996. Context-specific independence in Bayesian net-
works. In UAI 96, 115–123.
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-theoretic, high-level agent programming
in the situation calculus. In AAAI 00, 355–362.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored represen-
tations. Artificial Intelligence 121:49–107.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic
dynamic programming for first-order MDPs. In IJCAI 01,
690–697.
De Giacomo, G.; Lesperance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2):109–
169.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new
approach to the application of theorem proving to problem
solving. AI Journal 2:189–208.
Guestrin, C.; Koller, D.; Parr, R.; and Venktaraman, S.
2002. Efficient solution methods for factored MDPs. JAIR.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
UAI 99, 279–288.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL—The planning domain definition language.
Meuleau, N.; Hauskrecht, M.; Kim, K.-E.; Peshkin, L.;
Kaelbling, L. P.; Dean, T.; and Boutilier, C. 1998. Solving
very large weakly coupled Markov decision processes. In
AAAI 98, 165–172.
Parr, R., and Russell, S. 1998. Reinforcement learning
with hierarchies of machines. In M. Jordan, M. K., and
Solla, S., eds., Advances in Neural Information Processing
Systems 10. Cambridge: MIT Press. 1043–1049.
R.I. Bahar; E.A. Frohm; C.M. Gaona; G.D. Hachtel; E.
Macii; A. Pardo; and F. Somenzi. 1993. Algebraic De-
cision Diagrams and Their Applications. In IEEE /ACM
International Conference on CAD.
Sanner, S., and Boutilier, C. 2005. Approximate linear
programming for first-order mdps. In UAI 2005.
Sanner, S., and McAllester, D. 2005. Affine algebraic de-
cision diagrams (aadds) and their application to structured
probabilistic inference. In IJCAI 2005.
Schuurmans, D., and Patrascu, R. 2001. Direct value ap-
proximation for factored MDPs. In Advances in Neural In-
formation Processing Systems 14 (NIPS-2001). to appear.
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2000. APRI-
CODD: Approximate policy construction using decision
diagrams. In Advances in Neural Information Processing
Systems 13 (NIPS-2000), 1089–1095.

ICAPS 2006

114 Doctoral Consortium

Say “No” to Grounding: An Inference Algorithm for First-Order MDPs

Olga Skvortsova
International Center for Computational Logic

Technische Universität Dresden
skvortsova@iccl.tu-dresden.de

Abstract

We propose an algorithm, referred to asALLTHETA , for per-
forming efficient domain-independent symbolic reasoning in
a planning system FLUCAP that solves first-order MDPs.
The computation is done avoiding vicious grounding.

Introduction
Markov Decision Processes (MDPs) are de facto stan-
dard representational and computational model for decision-
theoretic planning problems. Recently, several com-
pact representations for propositionally-factored MDPs
have been proposed, including dynamic Bayesian net-
works (Boutilier, Dean, & Hanks 1999) and algebraic deci-
sion diagrams (Hoeyet al. 1999). For instance, the SPUDD
algorithm (Hoeyet al. 1999) has been used to solve MDPs
with hundreds of millions of states optimally, producing log-
ical descriptions of value functions that involve only hun-
dreds of distinct values.

Meanwhile, many realistic planning domains are best
specified in first-order terms. However, most existing im-
plemented solutions for first-order MDPs (FOMDPs) rely on
grounding, i.e., eliminate all variables at the outset of a so-
lution attempt by instantiating terms with all possible com-
binations of domain objects, e.g., (2002). This technique is
very impractical because the number of propositions grows
considerably with the number of domain objects and rela-
tions. This has a dramatic impact on the complexity of the
algorithms that depends directly on the number of proposi-
tions. Moreover, as soon as the universe of objects is infinite,
these algorithms cannot be made to work. Finally, systems
for solving FOMDPs that rely on state grounding also per-
form action grounding which is problematic in first-order
domains, because the number of ground actions also grows
drastically with domain size.

To address these difficulties, we have recently proposed
a first-order generalization of LAO∗ algorithm (Karabaev
& Skvortsova 2005), referred to as FOLAO∗, in which our
contribution was to show how to perform heuristic search
for FOMDPs, circumventing their grounding. In order to en-
sure first-order reasoning without descending to the propo-
sitional level, a planning system should be equipped with
highly-optimized domain-independent inference algorithms
that compute sets of successor and predecessor states of a

given state wrt. a given action. Such inference algorithms
rely on non-trivial symbolic computations as, e.g., unifica-
tion or subsumption problem under some equational theory
between two states specified as first-order terms.

In this paper, we develop an algorithm, referred to as
ALLTHETA , that solves the subsumption problem under
AC11 equational theory and delivers all possible substitu-
tions. The computation is done avoiding aggressive ground-
ing. ALLTHETA has been recently integrated into the plan-
ning system FLUCAP (Hölldobler, Karabaev, & Skvortsova
2006).

First-order Representation of MDPs
First, we propose a concise representation of FOMDPs
within Probabilistic Fluent Calculus (PFC). PFC is a log-
ical approach to modelling dynamically changing and un-
certain environments based on first-order logic (Hölldobler,
Karabaev, & Skvortsova 2006).

MDPs An MDP is a tuple(Z,A,P,R, C), whereZ and
A are finite sets of states and actions, resp.;P : Z × Z ×
A → [0, 1], writtenP(z′|z, a), specifies transition probabil-
ities of reaching a statez′ by executinga in z. R : Z → <
is a real-valued reward function associating with each statez
its immediate utilityR(z). C : A → < is a real-valued cost
function associating a costC(a) to each actiona. A solution
of an MDP is a policyπ : Z → A that maximizes the to-
tal expected discounted reward received when executing the
policy π over an infinite horizon. The value of a statez with
respect to a policyπ is defined recursively as:

Vπ(z) = R(z) + C(π(z)) + γ
∑
z′∈Z

P(z′|z, π(z))Vπ(z′),

where0 ≤ γ < 1 is a discount factor.

Probabilistic Fluent Calculus: Formally, letΣ denote a
set of function symbols. We distinguish two function sym-
bols in Σ, namely◦/2 which is associative (A), commuta-
tive (C), and admits the unit element, and a constant 1. Let
Σ− = Σ \ {◦, 1}. Non-variableΣ−-terms are called fluents.

1A - associative, C - commutative, 1 - unit element.

ICAPS 2006

Doctoral Consortium 115

LetF denote the set of fluents. Fluent terms are defined in-
ductively as follows: 1 is a fluent term; each fluent is a fluent
term;F ◦G is a fluent term, ifF andG are fluent terms.

A state is a fluent term. We assume that each fluent
may occur at most once in a state, i.e., states of the form
euro ◦ euro are disallowed. For example, a stateZ =
on(X ′, Y ′) ◦ on(Y ′, t) ◦ cl(X ′) ◦ e denotes that some clear
blockX ′ is on the blockY ′, which is on the table, the grip-
per is empty and something else might be also true. We
note that the negation can be effortlessly included in the lan-
guage (Ḧolldobler, Karabaev, & Skvortsova 2006). The in-
terpretation overF , denoted asI, is the pair(∆, ·I), where
the domain∆ is a set of all finite sets of ground fluents from
F ; and an interpretation function·I which assigns to each
stateZ a setZI = {d ∈ ∆|∃θ.(Z ◦ U)θ =AC1 d}, whereθ
is a substitution andU is a new AC1-variable. Thus, states in
PFC represent clusters of individual states. In this way, they
embody a form of state space abstraction, referred to as first-
order state abstraction, and, hence, can be treated as abstract
states. E.g, the statez1 = on(b, c)◦on(c, t)◦cl(b)◦e◦cl(f),
wheret stands for table andb, c andf are blocks, is repre-
sented by the abstract stateZ above; whereasz2 = on(b, c)
is not, since other three ‘mandatory’ fluents ofZ are miss-
ing in z2. In essence, abstract states are defined under in-
complete semantics, viz., other fluents that are not explicitly
present in the state description might also hold, as e.g.,cl(f)
appears in the statez1 ∈ ZI .

Actionsare first-order terms leading with an action func-
tion symbol. For example, the action of picking up
some blockX from another blockY might be denoted as
pickup(X, Y). Stochastic actions are described via decom-
position into deterministic primitives under nature’s control,
referred to as nature’s choices. E.g., actionpickup(X, Y)
can be defined by means of successfulpickupS(X, Y)
and failure pickupF(X, Y) nature’s choices. Precondi-
tions and effects of an actiona, denoted asPre(a) and
Eff(a), respectively, are abstract states. E.g., for pre-
conditions and effects of the actionpickupS(X, Y), we
have: Pre(pickupS(X, Y)) := on(X, Y) ◦ cl(X) ◦ e and
Eff(pickupS(X, Y)) := h(X), whereh(X) stands for the
fact of holding a blockX. Probabilities of each nature’s
choice, rewards and action costs can be defined in an obvi-
ous way.

An Inference Algorithm for FOMDPs
Systems for solving FOMDPs that rely on state ground-
ing also perform action grounding which is problematic in
first-order domains, because the number of ground actions
grows drastically with domain size. Herein, we show how to
perform inferences, i.e., compute successors and predeces-
sors of a given abstract state, with action schemata directly,
avoiding unnecessary grounding.

For this, an inference problem of finding alla-successors
(all a-predecessors) of an abstract stateZ is represented
in terms of the AC1-unification problem2, referred to as
AC1-UNIFY(Z1, Z2), whereZ1 represents the preconditions

2AC1-unification problem is a unification problem under the
equational theory AC1.

(effects) ofa andZ2 = Z. AC1-UNIFY(Z1, Z2) is defined
by: ∃θ. (Z1 ◦ U)θ =AC1 (Z2 ◦W)θ , whereU andW are
new AC1-variables.

Intuitively, an actiona is applicable to an abstract state
Z iff it is applicable toall individual states that constitute
ZI . In order to determine all fragments ofZ, an actiona
is applicable to, we compute all solutions for the following
AC1-unification problem:(Pre(a) ◦ U)θ =AC1 (Z ◦W)θ.
In this way, the bindings forW define the fragmentsZi =
(Z ◦ W)θ of Z, an actiona is applicable to. Moreover,
the bindings forU allow us to construct the successors of
Zi, i.e., Zi

succ := (Eff(a) ◦ U)θ. In essence, in order to
compute the set of alla-successors of all fragments ofZ, a
is applicable to, it is enough to find all solutionsθ for the
above AC1-unification problem.

In this work, we present a restricted case of AC1-
unification, i.e., AC1-subsumption, referred to as
AC1-SUBSUME(Z1, Z2), where(Z2 ◦W)θ = Z2:

∃θ. (Z1 ◦ U)θ =AC1 Z2 .

There are at least two applications of
AC1-SUBSUME(Z1, Z2) in the FOLAO∗ algorithm.
First, for detecting a more specific abstract state betweenZ1

andZ2, that can be removed from the state space thereafter.
Second, for computing a set ofall states that are reachable
from an initial state wrt. all actions.

In the following, we exploit the fact that the AC1-
subsumption problem is a specialization of theθ-
subsumption problem on general clauses, since abstract
states are Horn clauses with empty head (Scheffer, Herbrich,
& Wysotzki 1996). Theθ-subsumption problem for clauses
C andD is a problem of whether there exists a substitution
θ such thatCθ ⊆ D (or, in our terms,(C ◦ U)θ =AC1 D).

In general,θ-subsumption isNP-complete (Scheffer, Her-
brich, & Wysotzki 1996). It is known that deterministic sub-
sumption, i.e., when there exists an ordering of fluents, such
that in each step there is a fluent which has exactly one match
that is consistent with the previously matched fluents, can be
solved in polynomial time. Unfortunately, in general, there
are only few, or none at all, fluents in a state that can be
matched deterministically.

Following (Scheffer, Herbrich, & Wysotzki 1996), we
have developed two approaches to reduce the complex-
ity of non-deterministicθ-subsumption, and hence, AC1-
subsumption. Both approaches have been reconciled in an
algorithm, referred to asALLTHETA , that returns all solu-
tions for the AC1-subsumption problem.

Phase one: context-based subsumption.One approach
is context-based matching candidate elimination. In gen-
eral, a fluentf in an abstract stateZ1 can be matched with
several fluents in an abstract stateZ2, that are referred to
as matching candidates off . The approach is based on the
idea that fluents inZ1 can be only matched to those fluents
in Z2, the context of which include the context of the flu-
ents inZ1. The context is given by occurrences of identi-
cal variables or chains of such occurrences and is defined
up to some fixed depth. In effect, matching candidates that
do not meet the above context condition can be effortlessly
pruned. In most cases, such pruning results in deterministic

ICAPS 2006

116 Doctoral Consortium

subsumption, thereby considerably extending the tractable
class of abstract states. Deterministic subsumption that ex-
ploits the context information is referred to as context-based
deterministic subsumption.

For example, two abstract statesZ1 = on(X, Y) ◦
on(Y, t) andZ2 = on(a, b) ◦ on(b, c) ◦ on(c, t) ◦ on(d, t)
cannot be subsumed deterministically because each fluent
in Z1 has more than one matching candidate inZ2. How-
ever, exploiting the context information already at depth 1
enables us to conclude thatZ1 subsumesZ2. At depth 1,
the context ofon(X, Y) contains the pathon · 2 → 1 · on,
i.e., a variableY appears at position2 in on(X, Y) and at
position1 in on(Y, t). The context ofon(Y, t) contains the
pathon · 1 → 2 · on, i.e., the variableY appears at posi-
tion 2 in on(X, Y) and at position1 in on(Y, t). The con-
texts of the fluents inZ2 are{on · 2 → 1 · on}, {on · 1 →
2 ·on, on ·2 → 1 ·on}, {on ·1 → 2 ·on, on ·2 → 2 ·on} and
{on·2 → 2·on}, resp. The fluenton(Y, t) has two matching
candidates, viz.,on(c, t) andon(d, t). Since the context of
on(Y, t) can only be embedded in the context ofon(c, t), the
matching candidateon(d, t) is excluded andon(Y, t) can be
matched deterministically. Then, the matching substitution
µ1 = {Y 7→ c} is applied toZ1. As a result, the fluent
on(X, Y)µ1 = on(X, c) can be matched deterministically
to on(b, c) with µ2 = {X 7→ b}. Hence, both fluents can
be matched deterministically and the substitutionθ = µ1µ2

was found without backtracking.
There is a well-known tradeoff. The deeper inside the

abstract state we look, thus devoting the considerable effort
for computing the context itself, the higher the pruning rate
is. Alternatively, if the depth value is underestimated, we
save time and space for constructing the context but end up
with a larger search space. Very often, the optimal depth has
the value of 2.

Phase two: ALL -CLIQUES. In some cases, however, af-
ter performing the context-based deterministic subsumption,
there still remain some fluents that cannot be matched deter-
ministically. Thus, a remaining space of matching candi-
dates has to be searched for a substitution. For this, a second
approach that reduces the complexity of non-deterministic
AC1-subsumption, referred to asALL -CLIQUES, has been
developed.ALL -CLIQUES is a modified version of its ances-
tor CLIQUE (Scheffer, Herbrich, & Wysotzki 1996), where
all cliques are computed and additional pruning techniques
have been developed in order to alleviate the search for sub-
stitutions.

ALL -CLIQUES exploits a well-known correspondance be-
tween the AC1-subsumption problem and the clique prob-
lem, i.e., a problem of finding a clique3 of the fixed size in
a graph. More precisely, an abstract stateZ1 subsumes an
abstract stateZ2 iff there is a clique of size|Z1| in the space
of matching candidates for fluents inZ1. By the size|Z|, we
mean the number of fluents comprisingZ. The candidates
that do not form a clique can be effortlessly excluded from
the search space.

We start with constructing a substitution graph(V,E) for
abstract statesZ1 andZ2 with nodesv = (µ, i) ∈ V , where

3A clique in a graph is a set of pairwise adjacent nodes.

Function findPath(V , E, Paths,v, currPath,i)
if valid(v) then1

currPath:=currPath∪{v}2
if i = |Z1| then3

Paths:= Paths∪ {currPath}4
else5

foreachu = (µ′, i + 1) ∈ V with (v, u) ∈ E do6
if clique(u, currPath) then7

findPath(V , E, Paths,u, currPath,8
i + 1)

elseV := V \ {v}9
return Paths10

µ matches some fluent at positioni in Z1 to some fluent
in Z2 and i ≥ 1 is referred to as a layer ofv. Two nodes
(µ1, i1) and(µ2, i2) are connected with an edge iffµ1µ2 =
µ2µ1 andi1 6= i2.

ALL -CLIQUES returns all pathsPathsin the graph(V,E)
that start at the first layer and form a clique of size|Z1|.
Its core is the functionFINDPATH. If valid(v) is true,
i.e., v has at least one edge to each layer,v is added to the
current pathcurrPath. If v is located at the last layer then
Paths is updated with thecurrPath. Otherwise, if a next-
layer neighbouru of v forms a clique with the nodes in
currPath, i.e., clique(u, currPath) holds in line 7, then
findPath is called recursively foru. The removal of in-
valid nodes in line 9 is a distinct feature ofALL -CLIQUES,
which was not introduced before. Another important prun-
ing technique, employed inALL -CLIQUES, relies on the idea
of a layered substitution graph. In contrast to (Scheffer, Her-
brich, & Wysotzki 1996), we organize a substitution graph
in layers, i.e., each nodev = (µ, i) ∈ V belongs to a layeri.
The layers should be visited in the order of their appearance.
The layered architecture of the substitution graph is a natu-
ral way to avoid duplicate occurrences of the same clique
in the set of all cliques. In effect, context-based determi-
nacy andALL -CLIQUES are combined into an algorithm, re-
ferred to asALLTHETA , that delivers all substitutions for the
AC1-SUBSUME(Z1, Z2) problem.

Experimental Evaluation
We demonstrate the advantages of using the context infor-
mation for efficient domain-independent symbolic reason-
ing in FOMDPs on a system, referred to asALLTHETA .
ALLTHETA has been recently integrated as a module into
the FLUCAP 1.1 planning system, that is a successor of
FLUCAP 1.0 (Ḧolldobler, Karabaev, & Skvortsova 2006)
that has entered the probabilistic track of the International
Planning Competition IPC’2004. The experimental results
were all obtained using a Linux RedHat machine running at
2.4 GHz Intel Celeron with 1 Gb of RAM.

Table 1 presents the comparison results ofALLTHETA
with the systemFASTTHETA (Ferilli et al. 2003) on theCBW
dataset.CBW stems from the colored Blocksworld scenario
that was first introduced during the IPC’2004.CBW is, cur-
rently, one of a few probabilistic scenarios that are repre-
sented in first-order terms and, hence, enable to make use

ICAPS 2006

Doctoral Consortium 117

Total time, sec.

B C AllTheta

F
T

he
ta

d=
0

d=
1

d=
2

d=
3

d=
4

d=
5

5 3 0.5 2.9 0.4 0.3 0.3 0.4 1.0
4 0.4 2.0 0.3 0.2 0.2 0.3 0.6
5 0.4 1.7 1.3 0.2 0.2 0.2 0.5

10 3 1.5 44.7 1.1 0.5 0.5 1.0 4.3
4 1.1 22.4 1.1 0.4 0.4 0.5 1.4
5 0.9 13.5 1.0 0.5 0.5 0.8 3.1

15 3 3.9 n/a 2.3 0.9 0.9 1.7 7.7
4 3.5 243.3 2.4 0.8 0.9 2.0 10.6
5 2.8 84.7 2.0 0.7 0.7 1.2 4.9

20 3 8.7 n/a 10.1 4.6 3.1 4.2 15.7
4 9.2 n/a 3.3 1.1 1.0 1.8 8.5
5 7.3 n/a 3.0 1.0 1.1 2.1 11.6

25 3 16.5 n/a 7.2 2.0 1.8 4.1 28.3
4 17.1 n/a 7.8 1.8 1.7 4.2 30.7
5 15.7 n/a 7.3 1.7 1.8 4.2 34.0

50 3 164.9 n/a n/a 38.8 29.5 28.6 52.2
4 201.1 n/a 186.8 33.0 26.0 27.9 42.7
5 175.1 n/a 140.4 30.8 26.3 29.1 57.7

75 5 702.5 n/a 240.8 58.0 47.2 52.3 121.8

100 5 n/a n/a 452.6 96.7 78.1 74.0 155.0

Table 1: Performance comparison ofALLTHETA (denoted
asAllTheta) with FASTTHETA (denoted asFTheta) on the
CBW dataset.

of symbolic reasoning.CBW differs from the classical case
in that, along with the unique identifier, each block is as-
signed a specific color. A goal formula, specified in first-
order terms, provides an arrangement of colors instead of an
arrangement of blocks.FASTTHETA, that is motivated by the
field of Inductive Logic Programming (ILP), can be applied
to compute all solutions of the AC1-subsumption problem.

In the following, we motivate the importance of the con-
text depth parameter. Altogether, there are 100 abstract
states that lead to 10000 subsumption tests. The column la-
belled Total time presents the time needed to solve all of
10000 subsumption tests. A 30-mins slot is allocated for
each problem. The cells marked with ‘n/a’ mean that the
limit was exceeded. EachCBW problem is defined by a num-
berB of blocks and a numberC of colors.

In CBW case, on small problems of size up to 25 blocks,
the depth parameterd posesses the optimal value of 2.
Whereas, on larger problems, this value grows. This re-
flects the necessity to store an additional context informa-
tion about the fluents in an abstract state. The special case
of d=0 means that no context information is considered. In
comparison toALLTHETA , the runtime ofFASTTHETA grows
considerably faster in the size of a problem. For example,
at depth of 2, for the five-colored 15, 25 and 75 problems,
FASTTHETA is by factor of 4, 8 and 15 slower. As a result,
it could scale to problems up to the size of 75 blocks only.
Whereas, the limit ofALLTHETA comprises 360 blocks.

Neither FASTTHETA nor ALLTHETA are sensitive to the
number of colors in a problem. In contrast, grounding-based
reasoners are severely affected by this parameter. The timing
results for a special case ofd=0 demonstrate the dramatic
loss in runtime in comparison even with the case ofd=1,
where the context information about the direct neighbours
of a fluent is counted.

Most importantly, present results indicate that the
domain-independent inference algorithmALLTHETA per-

forms symbolic reasoning for first-order MDPs in about the
same time as the domain-specific subsumption solver that
was integrated in FLUCAP 1.0. We note that the latter re-
duces the AC1-subsumption problem to a quadratic variant
of the subset problem. Whereas, the former solves the gen-
eral case, which isNP-complete. For example, for a single
subsumption test at depth of 2 in the problem of 15 blocks
and 3 colors,ALLTHETA requires of about 92 microseconds.
Whereas, for its domain-specific counterpart, the runtime
comprises 85 microseconds. Finally,FASTTHETA has out-
performedALLTHETA by a factor of four, on the Mutagene-
sis dataset that is a classical ILP testbed.

Conclusions, Related and Future Work
We have proposed an algorithm, referred to asALLTHETA ,
for performing automated domain-independent symbolic
reasoning in FOMDPs. The construction is done avoiding
grounding. In comparison toFASTTHETA, our approach
scales better on larger FOMDPs. Some related approaches
are known. For example, Django (Maloberti & Sebag 2004)
is, nowadays, the fastestθ-subsumption checker that is based
on the constraint satisfaction. Yet, it returns a binary answer
‘yes/no’ only and provides no solutions, even in the positive
case. In (Kersting, van Otterlo, & de Raedt 2004), authors
employ a generalized AC1-subsumption framework in the
ReBel algorithm. ReBel treats abstract states as sets of flu-
ents. Whereas,ALLTHETA can potentially work with multi-
sets. We plan to incorporate these and disequalities into our
setting. It is also important to extend our results towards the
case of the AC1-unification problem.

Acknowledgements
We thank reviewers for their comments. Many thanks to
Eldar Karabaev and Georg Rammé for fruitful discussions.
This work is supported by the grant GRK 334 under auspices
of DFG.

References
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-theoretic
planning: Structural Assumptions and Computational Leverage.
JAIR11.

Feng, Z., and Hansen, E. 2002. Symbolic heuristic search for
factored markov decision processes. InAAAI.

Ferilli, S.; Di Mauro, N.; Basile, T.; and Esposito, F. 2003. A
complete subsumption algorithm. InAI*IA .

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999. SPUDD:
Stochastic Planning using Decision Diagrams. InUAI.

Hölldobler, S.; Karabaev, E.; and Skvortsova, O. 2006. FLUCAP:
A heuristic search planner for first-order MDPs.JAIR. To appear.

Karabaev, E., and Skvortsova, O. 2005. A Heuristic Search Al-
gorithm for Solving First-Order MDPs. InUAI.

Kersting, K.; van Otterlo, M.; and de Raedt, L. 2004. Bellman
goes relational. InICML.

Maloberti, J., and Sebag, M. 2004. Fast theta-subsumption with
constraint satisfaction algorithms.ML 55(2).

Scheffer, T.; Herbrich, R.; and Wysotzki, F. 1996. Efficientθ-
subsumption based on graph algorithms. InILP Workshop.

ICAPS 2006

118 Doctoral Consortium

Extending the Use of Plateau-Escaping Macro-Actions in Planning

Amanda Smith
Department of Computer and Information Sciences,

University of Strathclyde,
26 Richmond Street,
Glasgow, G1 1XH

email:amanda.smith@cis.strath.ac.uk

Abstract

Many fully automated planning systems use a single, domain-
independent heuristic to guide search and no other problem-
specific guidance. While these systems exhibit excellent per-
formance, they are often out-performed by systems which
are either given extra human-encoded search information, or
spend time learning additional search control information off-
line. The benefit of systems which do not require human in-
tervention is that they are much closer to the ideal of auton-
omy. This document discusses a system which learns addi-
tional control knowledge, in the form of macro-actions, dur-
ing planning, without the additional time required for an on-
line learning step. The results of various techniques for man-
aging the collection of macro-actions generated are also dis-
cussed. Finally, an explanation of the extension of the tech-
niques to other planning systems is presented.

Introduction
This document introduces the core ideas in the investiga-
tion into the management, and extension of use, of plateau-
escaping macro-actions in planning. The ideas are explored
in a planner called Marvin (Coles & Smith 2004), which
competed in the Fourth International Planning Competition
(IPC 4). In the competition Marvin generatedplateau-
escaping macro-actionsand used them later in the search
process to solve each problem. This investigation extends
this approach to allow the caching of these macro-actions
for use again in solving future problems, and the issues
of library management this entails. Further ideas related
to widening the applicability of plateau-escaping macro-
actions to other heuristics and other planning technologies
are also explored. Many previous approaches to macro-
action generation and management require an offline learn-
ing step (Botea, Muller, & Schaeffer 2004) (or human inter-
vention (Nauet al. 2003)) to generate a set of macro-actions
which are then used, unchanged, in solving the remainder of
the problem. This approach differs from existing approaches
in that it does not require additional offline learning time to
generate and filter macro-actions: they are filtered and se-
lected dynamically.

Plateau Escaping Macro-Actions
The underlying search strategy used by Marvin is based on
enforced hill-climbing as used in FF (Hoffmann & Nebel

2001). In the process of using EHC to perform forward-
chaining heuristic search, guided by the RPG ‘h+’ heuris-
tic, plateaux are encountered. Plateaux occur when a local
minimum in the search space has been reached and all suc-
cessor steps require either a sideways move (not changing
the current heuristic value) or an uphill move (increasing the
current heuristic value). It is these plateaux that are the core
difficulty encountered when planning: it is relatively easy
to make progress towards the goal when the heuristic is be-
ing informative; however, the exhaustive search performed
to escape a plateau is expensive. On inspection of the steps
required to escape plateaux in a given domain, it is often
the case that the same sequence of actions is used to escape
many plateaux, but with different parameter bindings.

As exhaustive search is required to escape from a plateau,
construction of plateau-escaping action sequences is compu-
tationally expensive. Since plateau-escaping sequences of-
ten have similar structure, it is clear that memoising these
action sequences for later use—when plateaux are once-
again encountered—can potentially reduce planning time.
Plateau-escaping action sequences are used to construct
plateau-escaping macro-actions; these can be applied by
the planner upon reaching later plateaux. The extraction of
plateau-escaping macro-actions from plateau-escaping se-
quences is computationally inexpensive: the planner sim-
ply notes the sequence of actions applied since the start of
the plateau. Generation of plateau-escaping sequences is ex-
pensive but since the search to find these sequences is being
done anyway, to solve the planning problem, no additional
search must be done to generate the macro-actions. The im-
pact on planner performance caused by these macro-actions
has been evaluated (Coles & Smith 2005).

Inferring Plateau-Escaping Macro-Actions
When the start of a plateau is detected—that is, when no
successor state with a strictly-better heuristic value canbe
found—best-first search commences from the current state.
During best-first search, each successor state stores the ac-
tions that have been applied to reach it since the start of the
plateau: when a strictly-better state is eventually found,this
list of actions is the plan segment that forms the basis of the
plateau-escaping macro-action.

In order to make the macro-actions produced as useful and
reusable as possible the plan segment is processed before

ICAPS 2006

Doctoral Consortium 119

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

H
eu

ris
tic

Plan Time Step

Without Macro-Actions
With Macro-Actions

Figure 1: Heuristic Landscape over Makespan, With and
Without Macro-Actions

being made into a macro-action. Any independent threads
of execution that exist in the plan are separated to produce
macro-actions involving as few entities as possible.

Caching Macro-Actions
Having solved one problem in a given domain it would be
wasteful to disregard everything that has been learnt in doing
so when going on to solve another problem in the same do-
main. Many of the plateau-escaping macro-actions provide
a useful insight into the structure of the search landscape,
under the RPG heuristic, across many problems in a given
domain not just for a single problem. For example, figure
1 shows the heuristic profile across the solution plan, with
and without plateau-escaping macro-actions, to a problem in
the philosophers domain taken from IPC 4. The structure is
common to all of the problems in the philosophers domain.
It can clearly be seen that the macro-actions allow the plan-
ner to skip across plateaux exploiting the knowledge gained
during previous search to solve a given problem. It would
be useful to store macro-actions for use in solving future
problems in the same domain. In doing this, however, the
issue of increasing the branching factor in the search space
by adding macro-actions becomes even more critical.

A large library of macro-actions is generated; a good
pruning strategy is therefore essential. If the planner were
to store all macro actions generated during the process of
solving all problems, and then consider their application at
every point during the search, the performance of the planner
would almost certainly degrade significantly. One macro-
action caching strategy was shown to improve planning per-
formance over a configuration using no macro-actions and
over the configuration generating macro-actions on a per-
problem basis (Coles & Smith 2005).

Managing a Library of Cached Macro-Actions
Many machine learning techniques work by solving the
problems with and without using a given feature, in this case
macro-action, and compare the results obtained from both

tests to decide whether or not that feature is beneficial. In
this approach, however, since the goal is to do the learning
online, without the need to solve additional problems, a dif-
ferent strategy is required. Online learning has two major
benefits, the first being the removal of the requirement to
solve additional problems; the second is that learning can
be done not only on small instances (which may not accu-
rately represent the larger, more interesting, problems) but
also on the larger instances giving information that is poten-
tially more useful.

Each problem is solved only once, this means that the con-
ventional supervised learning techniques used by many sys-
tems cannot be used. Due to the nature of the macro-actions
used, it is possible to do learning without the need to test the
performance of the system with and without each macro-
action. The only information available to the system is the
number of times the macro-action has been used and the
number of problems that have been solved since the macro-
action was last used. The strategy for pruning will therefore
be based on the usage statistics. If a macro-action is going
to be rated based solely on usage statistics there must be a
strong reason to believe that use of such a macro-action will
improve planner performance. In the general case it may be
that a macro-action is used frequently but does not greatly
improve search performance: the heuristic may have led
search quickly in the appropriate direction without the need
for the macro-action. Plateau-escaping macro-actions, how-
ever, avoid exhaustive search; it is therefore far more rea-
sonable to use the premise that the application of a plateau-
escaping macro-action implies a time saving as a basis for
this caching strategy. A similar observation was made by
Minton (Minton 1985). The evaluation of the caching strat-
egy itself will determine whether or not this is a reasonable
premise on which to base a caching strategy.

The information available from the usage statistics of
macro-actions is stored with each macro-action in the li-
brary: that is, the number of times the given macro-action
has been used and the number of problems solved since the
macro-action was last used. Three different approaches to
caching macro-actions have been considered, each with var-
ious different parameters.

Search-Time Pruning
The most obvious approach to library management is sim-
ply to keep all of the macro actions ever generated. The
advantage of this is that no useful macro-actions will ever
be pruned as a result of an overly aggressive pruning strat-
egy. The disadvantage is the the library of stored macro-
actions will grow indefinitely and macro-actions which are
of no use will be kept and may have to be considered during
search. This has the potential to greatly increase the branch-
ing factor and make search to find a solution to the problem
considerably more difficult.

Time-Out Pruning
The motivation for time-out pruning is to reduce the size
of the library of macro-actions by removing those macro-
actions which have not been useful in solving recent prob-
lems. The basis of this strategy is to remove macro-actions

ICAPS 2006

120 Doctoral Consortium

that have not been used in solving the lastn problems from
the library. Some macro-actions are never re-used after be-
ing discovered once: such actions will be removed from the
library reasonably quickly, thus only being present increas-
ing the branching factor in a few problems.

The success of this strategy will clearly depend on the
decided value ofn, thecaching interval. If the caching in-
terval is very short, i.e.n is small, then potentially useful
macro-actions may be discarded too hastily; if the caching
interval is too large then it is likely that the planner will have
to deal with large numbers of non-reusable macro-actions.
The value ofn that gives the best results varies on a domain-
dependent basis; however, in order to create a fully auto-
mated system a single value ofn must be decided upon.
Investigations so far show that value giving the best perfo-
mance considering all of the domains evaluated isn = 2.

Survival of the Fittest
The pruning strategy employed in this approach is to keep
only then most used macro-actions in the library. The larger
the value ofn is, the more the branching factor is poten-
tially increased; the smaller the value ofn, the greater risk
of discarding useful macro-actions. The advantage of this
approach over the time-out approach is that macro-actions
that are useful in many problems will not be deleted from
the library simply because they are not used in a (potentially
short) run of adjacent problems. This approach also imposes
an upper limit on the size of the library meaning that the in-
crease in branching factor is more tightly controlled but a
number of the best macro-actions can still be kept.

Investigating the Properties of Useful
Macro-Actions

Many systems using macro-actions impose arbitrary limits
on both the number of macro-actions to be used by the sys-
tem at any given time and the maximum length of macro-
actions. A flexible system that can dynamically select which
macro-actions to use can, however, allow a thorough investi-
gation of the characteristics of useful macro-actions without
disregarding certain classes of macro-actions.

Figure 2 shows the mean number of uses of macro-actions
of various lengths across a range of domains, most of which
are taken from IPC 3 and IPC 4. Many previous approaches
have been based on the idea that only macro-actions with
short lengths should be used, without necessarily fully in-
vestigating usage statistics. It can be seen from the re-
sults that plateau-escaping macro-actions of length 2 are
used the most frequently but it is interesting to note that
macro-actions of other lengths are quite often used. Further-
more logic suggests that use of a longer plateau-escaping
sequence will result in a greater performance improvement
as more exhaustive search is potentially avoided. Of note
is a very large macro-action, of length 71, that was gener-
ated in the blocksworld-4ops domain. Further experiments
have shown that the use of this macro-action allows three
extra problems to be solved within the 30 minute time limit.
It is worth noting though that, despite this, performance is
degraded slightly on some problems.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Usage Frequency for each Length of Macro-Action

Normalised

Figure 2: Normalised Usage Statistics for Differing Lengths
of Macro-Actions

Generation and Use of Plateau-Escaping
Macro-Actions Under Other Heuristics

Although this technique has been developed and discussed
primarily using enforced hill-climbing under the RPG
heuristic the idea can extend to other types of planning tech-
nology using different heuristics.

Generating Plateau-Escaping Macro-Actions for
the Downward Heuristic

The idea of plateau-escaping macro-actions can be easily
mapped to other heuristics used in forward chaining search.
Different heuristics give rise to different search landscape
profiles; it is, however, the case that all heuristics will have
a weakness somewhere1. In forward chaining search this
can often be characterised by the plateau-like situations ob-
served in FF.

Experiments suggest that the generation of macro-actions
can improve the performance of a planner using the down-
ward heuristic to perform enforced hill-climbing. It is how-
ever often the case, contrary to the results generated using
the RPG heuristic, that a version of the planner generating
macro-actions on a per-problem basis generally performs
better than a version caching these macro-actions for future
use. This is due to the different nature of the two heuris-
tics: the relaxation formed by the RPG heuristic is fixed
and will model problems in the same domain in a similar
manner. During the calculation of the downward heuris-
tic, however, a step that breaks links based on dependencies
is introduced, and the number of dependencies on a given
graph-link varies between problems. It is therefore, oftenthe
case, that the downward heuristic will give a more different
landscape between problems in the same domain, render-
ing caching of plateau-escaping macro-actions less effective.

1That is, of course unless a solution to the problem is to be
used as a heuristic which is, of course, not useful: if a solution to
the plan construction problem is found it is no longer necessary to
search for one.

ICAPS 2006

Doctoral Consortium 121

Macro-actions generated on the same problem, however, ap-
pear to give a greater performance improvement than using
the equivalent technique under the RPG heuristic.

Further Work
The investigation is to be extended further to explore the
wider applicability of plateau-escaping macro-actions. This
includes use of plateau-escaping macro-actions, generated
under the RPG heuristic, in planners that do not use this
heuristic. The motivation for this is that the core hard part
of a problem exists when solving it using any approach, and
that part does not lie where the relaxed planning graph can
accurately model the problem polynomially. Other work to
be pursued in conjunction with Adi Botea and Andrew Coles
is to investigate the observation that some macro-actions ap-
pear to improve search performance due to their role in im-
proving accuracy of the heuristic estimate rather than their
application during search.

The extraction of plateau-escaping macro-actions from
solution plans for use in various planners is to be consid-
ered. Extraction of macro-actions from optimal plans is an
extension of this approach: such macro-actions have the po-
tential to reduce the makespan of plans by encouraging the
planner to take a route that has previously resulted in an op-
timal solution.

References
Botea, A.; Muller, M.; and Schaeffer, J. 2004. Us-
ing component abstraction for automatic generation of
macro-actions. InProceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS 2004), June 3-7 2004, Whistler, British Columbia,
Canada, 181–190.
Coles, A., and Smith, A. 2004. Marvin: Macro-actions
from reduced versions of the instance. IPC4 Booklet, Four-
teenth International Conference on Automated Planning
and Scheduling (ICAPS 2004). Extended Abstract.
Coles, A. I., and Smith, A. J. 2005. On the inference and
management of macro-actions in forward-chaining plan-
ning. In Tuson, A., ed.,Proceedings of the 24th UK Plan-
ning and Scheduling SIG.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.
Minton, S. 1985. Selectively generalizing plans for
problem-solving. InIn Proceedings of the Ninth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
’85), 596–599.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning sys-
tem. Journal of Artificial Intelligence Research20:379–
404.

ICAPS 2006

122 Doctoral Consortium

Selecting Among Heuristics by Solving Thresholded
k-Armed Bandit Problems

Matthew J. Streeter1 and Stephen F. Smith2
Computer Science Department

and Center for the Neural Basis of Cognition1 and
The Robotics Institute2

Carnegie Mellon University
Pittsburgh, PA 15213
{matts, sfs}@cs.cmu.edu

Abstract

Suppose we are givenk randomized heuristics to use
in solving a combinatorial problem. Each heuristic,
when run, produces a solution with an associated qual-
ity or value. Given a budget ofn runs, our goal is to
allocate runs to the heuristics so as to maximize the
number of sampled solutions whose value exceeds a
specified threshold. For this special case of the clas-
sical k-armed bandit problem, we present a strategy
with O(

√
np∗k ln n) additive regret, wherep∗ is the

probability of sampling an above-threshold solution us-
ing the best single heuristic. We demonstrate the use-
fulness of our algorithm by using it to select among
priority dispatching rules for the resource-constrained
project scheduling problem with maximal time lags
(RCPSP/max).

1. Introduction
Suppose we are given a set ofk randomized heuristics to
solve a combinatorial optimization problem. Running the
ith heuristic produces a solution with an associated quality
or value. With (unknown) probabilitypi(t), the value is
> t. The value ofpi(t) is instance-dependent, and the
heuristics are black boxes whose only observable behavior
is the value of the solutions they return. We would like to
solve the following problem:

Problem 1: Given a budget ofn runs, allocate runs
among the heuristics so as to maximize the probability that
a solution with value> t1 is obtained.

Unfortunately, when solving Problem 1 we cannot do
better than to select heuristics at random (no information
about the probabilitiespi is gained until an acceptable
solution has been found, at which point the information is
useless). We will instead focus on the following related
problem:

Problem 2: Given a budget ofn runs, allocate runs
among the heuristics so as to maximize the expected
number of solutions with value> t2.

The idea is thatt2 < t1, that n · maxi pi(t1) is pro-
hibitively small, and thatn · maxi pi(t2) is small but not

prohibitively so. If arg maxi pi(t1) = arg maxi pi(t2)
(i.e., the heuristic that is most likely to generate a nearly-
acceptable solution is also most likely to generate an
acceptable solution), then in solving Problem 2 we will also
solve Problem 1. In practice, we have found that sets of
heuristics for real combinatorial problems often have this
property.

1.1. A Taxonomy ofk-Armed Bandit Problems
In a k-armed bandit problem, we are faced with a set of
k slot machines (“one-armed bandits”), each with a single
arm. Each arm, when pulled, returns a payoff drawn from
a fixed distribution over the interval[0, 1]. Given a budget
of n pulls, we wish to allocate pulls so as to maximize
some objective. We consider three variants of the problem,
as summarized in the following table. The “thresholded”
variant is new to this paper.

Problem Objective to maximize
Classical Total payoff
Max Maximum payoff (from any single

pull)
Thresholded Number of payoffs that exceed a

fixed thresholdt.

Note that the thresholdedk-armed bandit problem is a
special case of the classicalk-armed bandit problem where
payoffs are drawn from{0, 1}.

We denote the mean payoff of theith arm by µi, and
define µ∗ = maxi µi. For thresholdedk-armed bandit
problems, we denote bypi the probability that a payoff
from theith arm exceed the specified threshold, and define
p∗ = maxi pi.

1.2. Contributions
The contributions of this paper are twofold. First, we present
an algorithm for the classicalk-armed bandit problem with
additive regretO(

√
nµ∗k lnn). When applied to the thresh-

oldedk armed bandit problem, our algorithm has additive
regretO(

√
np∗k lnn). Our algorithm has better regret than

the algorithm of Auer, Cesa-Bianchi, and Fischer (2002b),
which has additive regretO(

√
nk lnn). Regrettably, our

bound is slightly worse than that of the algorithm of Auer

ICAPS 2006

Doctoral Consortium 123

et al. (2002a), which addresses a more general problem that
the one considered here. We hope to address this discrep-
ancy in future work.

Second, we demonstrate that an algorithm for the thresh-
oldedk-armed bandit problem can be profitably applied to
the problem of selecting among priority dispatching rules
for the RCPSP/max.

1.3. Related Work
The classicalk-armed bandit problem was first studied by
Robbins (1952) and has since been the subject of numerous
papers; see Berry and Fristedt (1986) and Kaelbling (1993)
for overviews. As discussed in§1.2, the algorithms of Auer
et al. (2002a) and Auer, Cesa-Bianchi, and Fischer (2002b)
are the most relevant to this paper.

Studies of the maxk-armed bandit problem have much
the same objectives as ours (Cicirello & Smith 2004; 2005;
Streeter & Smith 2006). These works use ideas fromex-
treme value theoryto justify assumptions about the payoff
distributions of each arm. In constrast, our work takes a
non-parametric approach. We compare our algorithm to the
maxk-armed bandit algorithm of Cicirello and Smith (2005)
in §4.

3. An Interval Estimation Algorithm
We will analyze the following procedure for solving
(thresholded)k-armed bandit problems.

ProcedureIntervalEstimation (n, δ):
1. Initializexi ← 0, ni ← 0, andui ←∞ for all

i ∈ {1, 2, . . . , k}.
2. Repeatn times:

(a) i∗ ← arg maxi ui.
(b) Pull armi∗; incrementxi by the payoff re-

ceived; and incrementni.
(c) ui ← U(xi, ni, δ).

The function U(xi, ni, δ) returns a1 − δ upper confi-
dence interval forpi. More formally, for any parameterpi

(as well as anyni, andδ), we are guaranteed that

Ppi [U(xi, ni, δ) < pi] ≤ δ . (1)

The tightest possible upper boundU can be computed ex-
actly using the binomial distribution. For the purposes of
our analysis, it is easier to consider a weaker upper bound
defined using Chernoff’s inequality.

Chernoff’s inequality. Let X =
∑n

i=1 Xi be the sum ofn
i.i.d. variables withXi ∈ {0, 1} andP[Xi = 1] = p. Then
for β > 0,

P
[
X

n
> (1 + β)p

]
< exp

(
−µβ2

3

)
and

P
[
X

n
< (1− β)p

]
< exp

(
−µβ2

2

)
.

Lemma 1. The functionU defined by

U(xi, ni, δ) = max {pi|f(pi, xi, ni) > δ}

where

f(pi, xi, ni) = exp

(
−1

2
nipi

(
1− xi

nipi

)2
)

satisfies condition(1).

Proof. Omitted.

We first establish a bound on the number of times a sub-
optimal arm will be sampled.

Lemma 2. With probability at least1 − nδ, each arm
i ∈ {1, 2, 3, . . . , k} will be sampled at most6p∗ (1 −
√

αi)
−2 ln(1

δ) times, whereαi = pi

p∗ .

Proof. Omitted.

Theorem 1. Running interval estimation forn trials with
parameterδ = 1

n3 yields at least

s− 6
√

2s(k − 1) ln(n)− 1
n

above-threshold payoffs in expectation, wheres = np∗.

Proof. We consider only the special casek = 2. The proof
for generalk is similar.

Assumep1 = p∗ and let p2 = αp1, whereα < 1.
By Lemma 2, we sample arm 2 at mostmin{n, 6

p1
(1 −

√
α)−2 ln(1

δ)} times, so (with probability at least1 − nδ)
expected regret is at most

p1(1− α) min
{

n,
6
p1

(1−
√

α)−2 ln
(

1
δ

)}
.

Forα < 1, we have

1−α
(1−

√
α)2

= 1−α
(1−

√
α)2
· (1+

√
α)2

(1+
√

α)2

= (1+
√

α)2

1−α

< 4
1−α .

Thus the expected regret is at most

min
{

s∆,
24
∆

ln
(

1
δ

)}
where we define∆ = 1 − α. Solving the equations∆ =
24
∆ ln(1

δ) gives 2
√

6
s ln(1

δ) as the value of∆ that maxi-
mizes expected regret. So the expected regret is at most

2
√

6s ln(1
δ) = 6

√
2s ln(n).

With probabilitynδ = 1
n2 , Lemma 2 cannot be applied.

Because regret can never exceedn, this increases expected
regret by at most1n .

ICAPS 2006

124 Doctoral Consortium

4. Experimental Evaluation
To evaluate the practical value of our interval estimation al-
gorithm, we use it to select among randomized priority dis-
patching rules for the resource-constrained project schedul-
ing problem with maximal time lags (RCPSP/max). Briefly,
in the RCPSP/max one must assign start times to each of
a number of activities in such a way that certain temporal
and resource constraints are satisfied. Such an assignment of
start times is called afeasible schedule. The objective is to
find a feasible schedule whose makespan is minimal, where
makespan is defined as the maximum completion time of
any activity.

Even without maximal time lags (which make the prob-
lem more difficult), the RCPSP is NP-hard and is “one of the
most intractable problems in operations research” (Möhring
et al. 2003). When maximal time lags are included, the fea-
sibility problem (i.e., deciding whether a feasible schedule
exists) as well as the optimization problem is NP-hard.

4.2. Heuristics

We consider six randomized priority dispatching rules for
the RCPSP/max. An approach that selects among ran-
domized priority dispatching rules has been shown to give
competitive performance on benchmark instances of the
problem (Cicirello & Smith 2005). We consider the six
randomized priority dispatching rules in the setH =
{LPF, LST,MST,MTS,RMS,Random}; see Cicirello
and Smith (2004; 2005) for a more complete description of
these heuristics.

4.3. Methodology

We evaluate our approach on a setI of 540 RCPSP/max in-
stances from the ProGen/max library (Schwindt 1996). For
each RCPSP/max instanceI ∈ I, we ran each heuristic
h ∈ H 10,000 times, storing the results in a file. Using this
data, we created a setK of 540 6-armed bandit problems
(each of the six heuristicsh ∈ H represents an arm). For
each instanceK ∈ K, we ran three algorithms with a bud-
get ofn = 10, 000 pulls: our interval estimation algorithm,
the QD-BEACON algorithm of Cicirello and Smith (2005),
and a straw man algorithm that simply sampled the arms in a
round-robin fashion. When running our interval estimation
algorithm, we use a thresholded version ofK. We calculated
(offline) the highest threshold such that, for some heuristic
h ∈ H, at least 5% of the schedules had quality (equal to -1
times makespan) in excess of the threshold.

4.5. Results

We first evaluate the three algorithms in terms of the number
of above-threshold schedules that were obtained. For each
algorithmA and each instanceK, we computed the ratio
of the number of above-threshold schedules sampled by
A to the number that would have been sampled using the
single best heuristic. The table below shows the minimum
and average value of this ratio over all 540 instances. In
addition, the table showspbest, the probability that the arm
sampled most often byA was an arm that would yield a

maximum-quality solution if sampled for alln trials.

Heuristic Min. ratio Avg. ratio pbest

Interval estimation 0.80 0.95 0.93
QD-BEACON 0 0.81 0.88
Round-robin 0.16 0.49 NA

The above table shows that interval estimation outper-
forms the other two algorithms in terms of its ability to ob-
tain above-threshold schedules.

We additionally computed the fraction of instances where
the best schedule generated by interval estimation was bet-
ter than the best schedule generated by QD-BEACON (resp.
round-robin). Ignoring ties, the best schedule from interval
estimation was superior to that from QD-BEACON in 84%
of the time, and superior to that from round-robin 85% of
the time.

Future Work
Below we outline two areas for potential future work.

Threshold selection. In the experiments reported in§4,
we calculated (offline) the highest threshold such that, for
some heuristich ∈ H, at least 5% of the schedules had
quality in excess of the threshold. In a real application, the
thresholds instead must be determined online, and may be
adjusted dynamically over time. We are currently investi-
gating approaches to this problem.

Variable run lengths and restarts. In this work, we have
assumed that each run of each heuristic has (approximately)
the same computational cost. It is desirable to effectively
handle a set of heuristics where the run time varies signif-
icantly across heuristics and across multiple runs of a sin-
gle heuristic. In this scenario it is also desirable to restart a
heuristic if it appears unlikely to produce an acceptable so-
lution within a reasonable amount of time. Specifically, it
is desirable to learn online, for each heuristic, a time bound
after which the heuristic should be restarted.

References
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
2002a. The nonstochastic multiarmed bandit problem.
SIAM Journal on Computing32(1):48–77.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002b. Finite-
time analysis of the multiarmed bandit problem.Machine
Learning47:235–256.
Berry, D. A., and Fristedt, B. 1986.Bandit Problems:
Sequential Allocation of Experiments. London: Chapman
and Hall.
Cicirello, V. A., and Smith, S. F. 2004. Heuristic selection
for stochastic search optimization: Modeling solution qual-
ity by extreme value theory. InProceedings of the 10th In-
ternational Conference on Principles and Practice of Con-
straint Programming, 197–211.
Cicirello, V. A., and Smith, S. F. 2005. The max k-armed
bandit: A new model of exploration applied to search

ICAPS 2006

Doctoral Consortium 125

heuristic selection. InProceedings of AAAI 2005, 1355–
1361.
Kaelbling, L. P. 1993. Learning in Embedded Systems.
Cambridge, MA: The MIT Press.
Möhring, R. H.; Schulz, A. S.; Stork, F.; and Uetz, M.
2003. Solving project scheduling problems by minimum
cut computations.Management Science49(3):330–350.
Neumann, K.; Schwindt, C.; and Zimmerman, J. 2002.
Project Scheduling with Time Windows and Scarce Re-
sources. Springer-Verlag.
Robbins, H. 1952. Some aspects of sequential design of
experiments.Bulletin of the American Mathematical Soci-
ety58:527–535.
Schwindt, C. 1996. Generation of resource–constrained
project scheduling problems with minimal and maximal
time lags. Technical Report WIOR-489, Universität Karl-
sruhe.
Streeter, M. J., and Smith, S. F. 2006. An asymptotically
optimal algorithm for the maxk-armed bandit problem.
Technical Report CMU-CS-06-110, Department of Com-
puter Science, Carnegie Mellon University.

ICAPS 2006

126 Doctoral Consortium

 Collaborative Authoring of Plan-Based Interactive Narrative

James M. Thomas

Department of Computer Science
North Carolina State University

Raleigh, NC 27695 USA
jmthoma5@ncsu.edu

Abstract
My research provides an interface for non-technical authors
to collaborate with a planning system to create interactive
narrative. I describe a domain metatheory to allow for
qualitative elaborations of narrative domains. A graphical
user interface that exploits this metatheory is used to specify
authorial preferences. These preferences are employed to
enhance the qualitative reasoning of the planning system.

Research Problem
“Interactive narratives” are the stories that develop within
virtual worlds in which human users interact with one or
more computer controlled agents. A persistent challenge in
these systems is the narrative paradox: “how to reconcile
the needs of the user who is now potentially a participant
rather than a spectator with the idea of narrative
coherence.” (Aylett 2000).

My research builds on an approach for solving this paradox
first described as the Mimesis system (Riedl, Saretto, and
Young 2003). Mimesis generates plans for actions of story
world characters based on hierarchical task decompositions
and discrete causal requirements. Although Mimesis
simultaneously solves for plot coherence and character
believability, the authors acknowledge (Riedl and Young
2004) that a primary limitation is the lack of a search space
heuristic that would allow the system to judge the relative
“goodness” of one plan over another. In other words,
there is no mechanism to ensure that particular narrative
qualities such as “suspense”, “surprise” or “romance” will
be produced in resulting plans.

One might attempt to define a generalized heuristic
function in terms of universally accepted narrative ideals,
but most planners lack a sufficiently powerful model to
make associations between such generalized ideals and the
semantics of a specific problem domain and plan space.
Even if that bridge were built, there is no consensus view
of the ideals that guarantee “good” narrative in the first
place. As author Somerset Maugham quipped, “There are
three rules for writing the novel. Unfortunately, no one
knows what they are”.

Research Strategy
My plan is to define heuristic functions for each interactive
narrative based on the author’s preferences of setting and
story. For the system to capture these preferences and
report them to the planner, it must have an integrated
understanding of the definitions of actions and entities in
the problem domain (the setting) and the effects that the
constraints on those actions have in defining the topology
of the plan space (story experiences). To best create that
integrated understanding, my research asks a patient author
to remain “in the loop” throughout the plan construction
process.

A major challenge of this strategy is how to best conserve
and apply the limited time and attention of the author.
One of the artifacts of my research strategy is a GUI tool
called Bowman that allows the plan author to:

1. Describe the domain.
2. Describe the goals for the story.
3. Describe selection criteria (heuristics).
4. Request possible story plans.
5. View graphs of story plans.
6. Compare story plans.
7. Refine and reiterate.

Bowman is part of the Zócalo suite of planning tools
available at NCSU at http://zocalo.csc.ncsu.edu. Like
Mimesis, the planning component of Zócalo is based on
Longbow, a decompositional (HTN) partial order causal
link planner described by Young, Pollack and Moore
(1994). To allow the author to “request story plans” as
shown above, Bowman passes an XML representation of
the planning problem to a planning web-service to generate
plans. The Bowman user may specify an arbitrary URL at
which the web service resides, or the user may direct plan
request to an on-board instance of the planner bundled with
Bowman. The planner interface supports several styles of
plan requests. The user may request ask for the next
complete plan, or for the next N plans, or for as many plans
as can be generated by in N seconds. The Bowman user
can explore the details of individual plans as well as the

ICAPS 2006

Doctoral Consortium 127

entire plan space through scalable vector graphics (SVGs)
that can be navigated through mouse over and mouse click.
For example, as shown in figure 1, each step in the plan is
represented by a collection of rounded rectangles and
labeled arrows between steps represent causal and ordering
links.

Figure 1: Bowman - Plan Node View

The smaller rectangle on the left side of each step labeled
with the letter “P” contains the preconditions of the step.
The precondition bubble for a step is filled in with a green
colored background if all the preconditions are satisfied for
the plan. If the user moves the mouse over the
precondition bubble, a semi-transparent window pops up
containing each of the preconditions in the plan. As the
user moves the mouse down over each precondition, it is
highlighted in yellow, as is the causal link which
establishes that condition.

Figure 2 contains a Bowman depiction of the plan space as
a tree of nodes, where each node is a partial plan.

Figure 2: Bowman - Plan Space View

Plan nodes are colored and labeled according to the
number of plan flaws they contain. A plan flaw is an open
precondition, a threatened causal link, or a flawed

decomposition. Plan nodes with zero flaws are shown in
green and plans with one or more flaws are shown in
progressively lighter shades of yellow. The author can
move from the plan space view to view a particular plan
node by clicking on it.

Although a modern graphical interface to the planning
system certainly affords some efficiency and expressivity
advantages, exploration of any reasonably interesting
planning problem will quickly exhaust the patience of even
the most patient and computer-friendly human author. The
core of my research is knowledge representation and
elicitation strategies that optimize the use of the human
author’s creativity. A key requirement is to provide
reasonable default strategies for elements of the knowledge
representation so that the author need not explicitly express
neutral opinions and may focus efforts on those areas for
which they are most opinionated. To make this problem
more tractable, these strategies are informed by the
requirements of planning for interactive narrative.

Interactive narrative domains occupy a promising
intermediate level of complexity between the “blocks
world” and the real world. Because interactive narrative
takes place in a virtual world, its domains are both fully
knowable and fully malleable. An advantage for planning
research is that these domains may be amended or
contracted to suit the requirements of the planning
problem. But interactive narrative also introduces special
challenges for planning. For example, it is not enough to
find a single complete and consistent plan. Authors are
interested in understanding how unplanned user actions
may affect story goals. This in turn raises issues about the
variability of narrative experiences that are possible with
each construction and how those possibilities shift as
authors make changes.

In fact, the plan author may be responsible not only for the
story, but is likely responsible for the domain
representation as well. Furthermore, the author may be
involved in the creation of the virtual world that is the
planning domain. As interactive narrative planning is a
component within this larger creative process, there are
possibilities and requirements for experimentation and
exploration than are not found working with real world
domains. This affords researchers new ways to investigate
relationships between domains, their representations,
planning problems, and the resulting plan spaces. The
most fervent hope I hold out for my research is that it leads
to new insights into these relationships.

Increasing Domain Knowledge in Planning
Traditional automated planners are not designed
specifically to facilitate iterative collaboration with the
plan author. Research into collaborative planning
methodologies has generally been referred to as advisable

ICAPS 2006

128 Doctoral Consortium

or mixed-initiative planning. Advisable planning (Myers
1996) attempts to shape the behavior of the planner by
adding additional information to the definition of the
planning problem prior to planner invocation. Mixed-
initiative planners allow for the iterative and incremental
construction of the plan with both the user and the planner
capable of proposing or initiating requests to change
aspects of the problem or solution. In essence, advisable
planning is a special case of mixed-initiative planning,
where the initiative is first taken by the plan author, then
by the planning system. As such, the success of advisable
planning is strongly tied to the knowledge representation it
employs to describe the domain. Myers has demonstrated
the value of a “domain metatheory” (Myers 2000) that
describes the planning domain in terms an author can use
to evaluate resulting plans (Myers and Lee 1999). Further
research in this area has shown methods for prioritizing the
decision choices made available to the plan author to
maximize the impact on plan quality (Wolverton 2004).
This is a promising method for conserving the limited time
and attention of the human author in a mixed-initiative
system.

Myers’ domain metatheory serves two masters in that it is
meant to be intelligible and relevant to human plan authors
but also serves as a basis for automated reasoning about
plans. My research tool, Bowman, translates abstract
domain metatheoretic constructs presented to human
authors into a more compact representation for use by the
planner. I call this representation the Domain Elaboration
Framework, or DEF. The basis of DEF is a STRIPS-style
(Fikes and Nilsson 1971) planning domain characterized
by objects, conditions and operators. Where the domain
metatheory introduced by Myers relies on a description
logic of roles, role-fills, features, and measures, DEF uses
an alternate grammar of types, dimensions, weights, and
measurements.

A type is a symbolic name of a node in a global hierarchy
of author-defined types with a unique root node named
“anyThing”. Every operator, parameter, and object
instance has at least one associated type, and zero or more
associated measurements. A measurement consists of a
dimension and a weight. A dimension is a symbolic name
selected from a global list of unique author-defined
dimensions. A weight specifies a relative intensity of the
dimension on a normalized interval. Thus, DEF provides a
very simple and general elaboration of planning domains at
a fine level of granularity. An application employing DEF
must provide greater expressive power at the level of the
user interface.

Application of DEF to Interactive Narrative

A series of conventions, mostly enforceable through the
Bowman GUI, facilitate the application of DEF to the
domain of interactive narrative.

Agent Types
A mechanism is needed to distinguish between user-
controlled agents and system-controlled agents. System
controlled agents are often referred to as bots, or as NPCs -
Non Player-Controlled characters. This distinction can be
realized through a convention applied to the population of
the type hierarchy of DEF. For interactive narrative
domains, the type hierarchy can be rooted with “agent” and
“non-agent”. “Agent” can be further subdivided into
“NPC” and “User”. Bowman can ensure that all operators
contain explicit representations of the types of agent
capable of invoking the action.

Mediation Strategies
As described in by Riedl, Saretto, and Young (2003) the
planner is responsible for detecting user actions that could
threaten the story plan. For each of these exceptional
actions, the system must determine if changing part of the
unexecuted portion of the plan can accommodate the action
or if an intervention is required. An intervention requires
that the requested action does not execute. Instead an
instance of a non-threatening action, called a failure mode
is substituted for the requested action in real-time.

Bowman can expand the depiction of complete plans to
include the application of all available mediation strategies.
The plan author can use Bowman to compare these
expanded complete plans to see how resilient each is to
user action. Authors may be interested in ensuring that the
alternative narrative paths dictated by alternative user
actions are different or similar based on various qualitative
criteria.

Bowman may also help the author in the definition of
failure modes. Since a failure mode is simply a list of
operators, Bowman can easily highlight the subset of
operators from the current library that are good candidates
for a particular failure mode, or it may prompt the author to
invent suitable operators by describing their characteristics.
For example, there may be a need for a failure mode that
causes a shoot(?shooter, ?gun, ?target) action to fail such
that ^alive(?target) is not an effect of its invocation.

Custom Heuristics
Bowman allows the plan author to construct heuristics
based on any of the attributes described in DEF to apply
relative weights on different flaws or features of a plan.
Thus, the author can encode arbitrary narrative preferences
and use iterative refinement of the plan space to ensure that
optimal levels of “kissing” are in each story, ensure that
the possible execution paths have the desired level of
conformity or diversity, or simply understand the shortest
and longest success paths through a narrative.

ICAPS 2006

Doctoral Consortium 129

Narrative Goal Conflicts
As authors build more narrative goals into their planning
problems, it may become more difficult to find complete
plans, if these preferences are treated as universally hard
constraints. In the narrative domain, it is likely that authors
would prefer a sub-optimal plan to having no solution at
all. Bowman uses the DEF vocabulary to enable the plan
author to specify degrees of “softness” of lower criticality
to goals. Methods are being explored to iteratively resolve
conflicts between narrative goals and the rules that
describe the problem domain. This resolution must be in
the form of an ‘anytime’ algorithm, as the size of the
decision space likely exceeds the patience of any human
author.

Research Status
Currently, Bowman can be used to define planning
domains and planning problems using classical constructs
of objects, conditions and operators. The only DEF
construct to be realized in Bowman to date is “type”.
Figure 3 shows how Bowman allows the preconditions of
an operator (in this case “LaunchSpaceship”) to be edited.
Note the use of “type” to color-code the parameters of the
literals and the object hierarchy. This aids the author in
dragging and dropping properly typed object instances or
operator parameters to fill these literal definitions. As
shown earlier, Bowman can send these problem definitions
to a planner and navigate the resulting plan space.

Figure 3: Bowman – Edit Operator Preconditions

Still to be implemented are the remaining DEF constructs,
narrative mediation strategies, custom heuristics and
higher-level abstractions for managing conflicting hard and
soft goals. Finally an evaluation of the expressivity and
usefulness of Bowman and DEF must be undertaken.
Given the lack of models to which this can be easily
compared, its usefulness is likely best gauged through an
ablative study to show gauge incremental changes in
effectiveness as features are added or removed. I hope to

finish this work and defend it in a dissertation within
twelve months.

Acknowledgements
This is material is based upon work supported under a
National Science Foundation Graduate Research
Fellowship and National Science CAREER award
0092586.

References
Aylett, R.S. 2000. Emergent Narrative, Social Immersion
And “Storification” Proceedings, Narrative Interaction for
Learning Environments, Edinburgh.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intellligence, 2, pp. 189-208.

Myers, K. 2000. Domain Metatheories: Enabling User-
Centric Planning. In Proceedings of the AAAI Workshop on
Representational Issues for Real-World Planning Systems,
K. Myers and Y. Gil, Eds.

Myers, K., and Lee, T. J. 1999. Generating Qualitatively
Different Plans Through Metatheoretic Biases. In
Proceedings of the Sixteenth National Conference on
Artificial Intelligence, AAAI Press.

Myers, K. L. 1996. Advisable Planning Systems. In
Advanced Planning Technology, A. Tate, Ed. AAAI Press,
Menlo Park, CA.

Riedl, M., Saretto, C., and Young, R. M. 2003. Managing
Interaction Between Users And Agents In A Multiagent
Storytelling Environment. In Proceedings of the
Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-03).

Riedl, M., and Young, R. M. 2004. An Intent-Driven
Planner For Multi-Agent Story Generation. In Proceedings
of the Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-04).

Wolverton, M. 2004. Prioritizing Planning Decisions In
Real-World Plan Authoring. In Proceedings of the
ICAPS04 Workshop on Connecting Planning Theory with
Practice.

Young, R.M., Pollack, M.E., and Moore, J.D. (1994).
Decomposition and causality in partial-order planning. In
Proceedings of the Second International Conference on AI
and Planning Systems, 188-193, Chicago, IL, 1994.

ICAPS 2006

130 Doctoral Consortium

Planning with Preferences and Trajectory Constraints
by Integer Programming

Menkes van den Briel
Department of Industrial Engineering

Arizona State University
Tempe AZ, 85287-8809

menkes@asu.edu

Abstract

The focus of my research is on the formulation and
analysis of mathematical programming techniques in
automated planning. This extended abstract provides
a brief overview of the paper that will be presented
at the ICAPS Workshop on Planning with Preferences
and Trajectory Constraints. A synopsis of some of my
future research plans is given at the end.

Introduction

Given the recent success of integer programming ap-
proaches to automated planning (van den Briel, Vossen,
& Kambhampati 2005), I believe that these approaches
are a good avenue to explore further both because of
the recent improvements, and the fact that with pref-
erences, planning becomes an optimization problem,
which integer programming is naturally equipped to
handle.

Preferences and trajectory constraints are two new
language features in PDDL3.0 that can be used to ex-
press hard and soft constraints on plan trajectories, and
that can be used to differentiate between hard and soft
goals. Hard constraints and goals define a set of condi-
tions that must be satisfied by any solution plan, while
soft constraints and goals define a set of conditions that
merely affect solution quality.

In particular, preferences assume a choice between
alternatives and the possibility to rank or order these
alternatives. In PDDL3.0, preferences can be defined
on states, on action preconditions, on trajectory con-
straints, or on some combination of these. Since prefer-
ences may or may not be satisfied for a plan to be valid
they impose soft constraints or goals on the planning
problem. Trajectory constraints, on the other hand,
define a set of conditions that must be met throughout
the execution of the plan. They can be used to express
control knowledge or simply describe restrictions of the
planning domain. Since trajectory constraints define
necessary conditions for a plan to be valid (except in
the case where the trajectory constraint is a preference)
they impose hard constraints or goals on the planning
problem.

Neither preferences nor trajectory constraints have
yet gotten a lot of attention from the planning com-

munity, but the importance of solution quality and the
efficient handling of hard and soft constraints and goals
has increasingly been addressed by some recent works.

Planning with preferences is closely related to over-
subscription planning. In oversubscription planning
goals are treated as soft goals as there are not enough
resources to satisfy all of them. This problem has been
investigated by Smith (2004) and further investigated
by several other works.

Preferences, however, are more general than soft
goals as they also include soft constraints. Son and
Pontelli (2004) describe a language for specifying pref-
erences in planning problems using logic programming.
Their language can express a wide variety of prefer-
ences, including both soft goals and soft constraints,
but it seems that it has not been used for testing yet.
Empirical results for planning with preferences are pro-
vided by Rabideau, Engelhardt and Chien (2000) and
Brafman and Chernyavsky (2005). Rabideau, Engel-
hardt and Chien describe an optimization framework
for the ASPEN planning system, and Brafman and
Chernyavsky describe a constraint based approach for
the GP-CSP planning system.

Planning with trajectory constraints is closely re-
lated to reasoning about temporal control knowl-
edge and temporally extended goals, which are dis-
cussed by Ghallab Laruelle (1994) and Muscettola 1994.
Edelkamp (2005) handles trajectory constraints by con-
verting a PDDL3.0 description into a PDDL2.2 descrip-
tion and then using a heuristic search planner.

In this extended abstract I will show a few exam-
ples of how to express preferences and trajectory con-
straints by linear constraints over 0-1 variables. These
constraints are then to be added to the integer program-
ming formulation of the planning problem after which
the model is solved. Currently, I’m in the process of
incorporating these constraints in the integer program-
ming formulations described in van den Briel, Vossen,
& Kambhampati (2005).

Simple Preferences

Simple preferences are preferences that appear in the
goal or that appear in the preconditions of an action.
Goal preferences can be violated at most once (at the

ICAPS 2006

Doctoral Consortium 131

end of the plan), whereas precondition preferences can
be violated multiple times (each time the corresponding
action is executed).

For each goal preference in the planning problem we
introduce a 0-1 variable p, where p = 1, if the goal
preference is violated and, p = 0 if the goal preference
is satisfied. Similarly, for each precondition preference
for action a at step t (1 ≤ t ≤ T) we introduce a
0-1 variable pa,t, where pa,t = 1, if the precondition
preference is violated for action a at step t and, pa,t =
0 if the precondition preference is satisfied for action
a at step t. This way all violations can be counted
for separately and given different costs in the objective
function of the formulation.

Constraints for goal and precondition preferences are
easily modeled by integer programming. There are only
finitely many operators in PDDL3.0, including some
standard operators like or, and, and imply, which can
all be represented by one or more linear constraints.

Examples

In the examples we will use variables xa,t to denote the
execution of an action a at step t, and use variables
yf,t to denote the truth value of a fluent f at step t.
This is slightly different from the notation and variables
used in the formulations by van den Briel, Vossen, and
Kambhampati 2005, but for explanation purposes we
think it is more obvious this way.

In PDDL3.0, the goal preference p1 “We would like
that person1 is at city2” is expressed as follows.

(:goal (and (preference p1
(at person1 city2))))

The inequality corresponding to preference p1 is
given by:

p1 ≥ 1 − yat person1 city2,T (1)

Thus preference p1 is violated (p1 = 1) if person1 is not
at city2 at the end of the plan (yat person1 city2,T = 0).

The goal preference p2 “We would like that person1
or person2 is at city2” is expressed as follows.

(:goal (and (preference p2 (or
(at person1 city2) (at person2 city2)))))

The inequality corresponding to preference p2 is
given by:

p2 ≥ 1 − yat person1 city2,T − yat person2 city2,T (2)

Now, preference p2 is violated if neither person1 nor
person2 is at city2 at the end of the plan. Preference
p2 is satisfied when either or both person1 and person2
are at city2 at the end of the plan.

The goal preference p3 “We would like that person2
is at city1 if person1 is at city1” is expressed as follows.

(:goal (and (preference p3 (imply
(at person1 city1) (at person2 city1)))))

The inequality corresponding to preference p3 is
given by:

p3 ≥ yat person1 city1,T − yat person2 city1,T (3)
So preference p3 is violated if person2 is not at city1
while person1 is.

Preferences over preconditions are different from
goal preferences as they depend on both the execution
of an action and on the state of the precondition of that
action. Moreover, a precondition preference is defined
for each plan step t, where 1 ≤ t ≤ T . In PDDL3.0, the
precondition preference p4,fly?a?c1?c2,t “We would like
that some person is in the aircraft” whenever we fly air-
craft ?a from city ?c1 to city ?c2 is expressed as follows:

(:action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:precondition (and (at ?a ?c1)
(preference p4

(exists (?p - person) (in ?p ?a))))
:effect (and (not (at ?a ?c1))
(at ?a ?c2)))

The inequalities corresponding to each ground
fly ?a ?c1 ?c2 action is given by:

p4,fly?a?c1?c2,t ≥ xfly ?a ?c1 ?c2,t −

∑

?p

yin ?p ?a,t

∀1 ≤ t ≤ T (4)

Thus, preference p4,fly?a?c1?c2,t is violated at step t if
we fly aircraft ?a from city ?c1 to city ?c2 at step t
(xfly ?a ?c1 ?c2,t = 1) without having any passenger ?p
onboard at step t (yin ?p ?a,t = 0, for each ?p).

Qualitative Preferences
In propositional planning, qualitative preferences in-
clude trajectory constraints and preferences over trajec-
tory constraints none of which involve numbers. Given
the space limitations we will mainly concentrate on the
trajectory constraints here that use the new modal op-
erators of PDDL3.0 in this section.

There is a general rule of thumb for the operators
forall and always. forall indicates that the trajec-
tory constraint must hold for each object to which it is
referring to. For example, forall (?b block) means
that the trajectory must hold for each instantiation of
?b, thus we generate the trajectory constraint for all
blocks ?b. always in propositional planning is equiva-
lent to saying for all t, thus we generate the trajectory
constraint for all t where 1 ≤ t ≤ T .

Constraints for trajectories are easily modeled by in-
teger programming through observing the different op-
erators carefully. It is often the case, that the trajec-
tory constraint simply represent one of the standard
relationships described earlier in this paper.

Examples

In PDDL3.0 the trajectory constraint “A fragile block
can never have something above it” is expressed as

ICAPS 2006

132 Doctoral Consortium

follows.

(:constraints (and (always (forall (?b block)
(implies (fragile ?b) (clear ?b))))))

The inequality corresponding to this trajectory
constraint corresponds to the relation that fragile
implies clear for all blocks ?b, for all steps t, where
1 ≤ t ≤ T . It is given by:

yfragile ?b,t − yclear ?b,t ≤ 0 ∀?b, 1 ≤ t ≤ T (5)

The trajectory constraint “Each block should be
picked up at most once” which is expressed as follows.

(:constraints (and (forall (?b block)
(at-most-once (holding ?b)))))

It translates to an at most once relation for all
blocks ?b and is given by:

yholding ?b,0 +
∑

a∈A,1≤t≤T :holding ?b∈ADD(a)

xa
t ≤ 1 ∀?b (6)

Likewise the trajectory constraint “Each block
should be picked up at least once” is expressed as
follows.

(:constraints (and (forall (?b block)
(sometime (holding ?b)))))

This translates to a sometime relation for all
blocks ?b and is given by:

∑

t

yholding ?b,t ≥ 1 ∀?b (7)

Continuing in the same way, the trajectory con-
straint “A truck can visit city1 only if it has visited
city2 sometime before” is expressed in PDDL3.0 as
follows.

(:constraints (and (forall (?t truck)
(sometime-before

(at ?t city1) (at ?t city2)))))

The corresponding inequality describes a sometime-
before relationship for all trucks ?t and is given
by:

∑

1≤s<t

yat ?t city2,s ≥ yat ?t city1,t ∀?t, 1 ≤ t ≤ T (8)

More examples can be presented, but it seems enough
to bring the point across that integer programming pro-
vides a natural framework for modeling propositional
planning with preferences and trajectory constraints.

Conclusions and Future Work

This extended abstract shows a few examples of how
to model preferences and trajectory constraints by in-
teger programming manually. The main challenge is to

automatically generate these constraints and add them
to the integer programming formulation of the plan-
ning problem. Especially, generating constraints for
complicated instances of preferences and trajectory con-
straints that contain nested expressions can be tricky,
but is feasible.

An interesting analysis for future work would be to
compare the performance of the integer programming
formulations that use preferences and trajectory con-
straints as side constraints (as shown in the above ex-
amples) with integer programming formulations that
handle preferences and trajectory constraints which are
compiled down into PDDL2.2.

The general focus of my future research is to extend
and improve the current integer programming formu-
lations for automated planning, and to apply integer
programming techniques to a broader range of plan-
ning problems, including resource planning and tem-
poral planning. Techniques like branch-and-cut and
branch-and-price will be at the base of most of these
extensions.

References

Brafman, R., and Chernyavsky, Y. 2005. Planning
with goal preferences and constraints. In Proceedings
of the 15th International Conference on Automated
Planning and Scheduling (ICAPS), 182–191.
Edelkamp, S. 2005. Efficient planning with state
trajectory constraints. In Sauer, J., ed., Proceed-
ings Workshop Planen, Scheduling und Konfigurieren
/ Entwerfen, 89–99.
Ghallab, M., and Laruelle, H. 1994. Representation
and control in IxTeT, a temporal planner. In Proceed-
ings of the 2nd International Conference on Artificial
Intelligence Planning and Scheduling (AIPS), 62–67.
Muscettola, N. 1994. Intelligent Scheduling. Morgan
Kaufmann. chapter HSTS: Integrating planning and
scheduling, 169–212.
Rabideau, G.; Engelhardt, B.; and Chien, S. 2000. Us-
ing generic preferences to incrementally improve plan
quality. In Proceedings of the 2nd NASA International
Workshop on Planning and Scheduling for Space, 11–
16.
Smith, D. 2004. Choosing objectives in over-
subscription planning. In Proceedings of the 14th In-
ternational Conference on Automated Planning and
Scheduling (ICAPS), 393–401.
Son, T., and Pontelli, E. 2004. Planning with prefer-
ences unsing logic programming. In Proceedings of the
7th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), 247–260.
van den Briel, M.; Vossen, T.; and Kambhampati, S.
2005. Reviving integer programming approaches for
ai planning: A branch-and-cut framework. In Pro-
ceedings of the 15th International Conference on Au-
tomated Planning and Scheduling (ICAPS), 310–319.

ICAPS 2006

Doctoral Consortium 133

Scheduling with uncertain durations: generatingβ-robust schedules using
constraint programming

Christine Wei Wu and Kenneth N. Brown
Cork Constraint Computation Center,

Department of Computer Science,
University College Cork, Ireland

{cww1, k.brown }@cs.ucc.ie

J. Christopher Beck
Toronto Intelligent Decision Engineering

Laboratory, Dept. of Mechanical and
Industrial Engineering,University of Toronto,

Canada.jcb@mie.utoronto.ca

Abstract

Many real-world scheduling problems are subject to change,
and scheduling solutions should be robust to those changes.
We consider a single-machine scheduling problem where
the processing time of each activity is characterized by a
normally-distributed random variable, and we attempt to min-
imize flowtime. We develop an initial constraint model for
generating theβ-robust schedule - the schedule that has high-
est probability of producing a flowtime less than a stated
bound. Experiments with this initial model show that a
constraint-based approach is feasible, but that better propa-
gation methods will be required.

Introduction
Many real-world scheduling problems are subject to change:
new jobs arrive, resources fail, or tasks take longer than
expected. If these changes are significant, it may be bet-
ter to generate solutions that are robust to them. A num-
ber of approaches have been proposed to handle uncertain
scheduling problems. Redundancy-based Scheduling gen-
erates schedules with temporal slack so that unexpected
events during execution can be handled by using that re-
served slack (Davenport, Gefflot, & Beck 2001; Gao 1995).
Contingent scheduling anticipates likely disruptive events
and generates multiple schedules which optimally respond
to the anticipated events (Drummond, Bresina, & Swan-
son 1994; Fowler & Brown 2003). Probabilistic schedul-
ing uses probabilities over possible events, and searches for
schedules which optimize the expected value of some per-
formance measure (Daniels & Carrillo 1997; Walsh 2002;
Beck & Wilson 2004; 2005). A number of approaches use
sampling and scenarios, in order to produce robust decisions
(Bent & Hentenryck 2004; Beck & Wilson 2004).

In particular, Daniels and Carrillo (Daniels & Carrillo
1997) introduced the concept of theβ-robust schedule for a
single machine scheduling problem with processing time un-
certainty, which aims to maximize the probability of achiev-
ing a given performance level. They considered flowtime
(the amount of time the tasks remain in the system) as the
performance metric. They solved the problem by a branch-
and-bound method with dominance rules, and heuristics for
branch selection.

Constraint-based methods have proven to be very effec-
tive in a wide range of industrial scheduling problems. The

advantage comes from the flexibility of the modeling lan-
guage, and the ability of the solvers to deliver effective per-
formance despite the presence of a wide range of different
constraints and objectives. For these reasons, we develop an
initial constraint model for solving theβ-robust scheduling
problem. For any given schedule, we will measure the prob-
ability of the total flowtime being less than a target level. We
will then generate a schedule which maximizes the proba-
bility. Also, we will show the benefits of using standard
constraint programming techniques. We introduce another
objective, which is to find a schedule which optimizes the
target level that can be achieved with a given probability.
In this paper, we present a primal CP model to solver those
problems.

The flowtime of a schedule
Before we show the primal model of theβ-robust schedul-
ing problem, we need to go through series of formal def-
initions and mathematical calculations. Those mathemati-
cal formulas will then give us a clear indication of any nec-
essary variables and values for modeling the problem as a
constraint satisfaction problem (CSP). There are several cri-
teria of measuring schedules. In this report, we use the total
flowtime to judge the solutions.

In a single machine scheduling problem, in which each
job consists of a single task, a machine can only process one
job at a time, and a job cannot be interrupted once started, a
solution is a sequence of the jobs, and we assume the jobs are
executed in sequence with no delay between them. Suppose
we have a sequenceJ1, J2, . . . Jn. Each jobJi has an arrival
time Ai (its earliest possible start time), a start timeSTi, a
durationdi, and an end timeEi. We assume that each job
is available for processing at time 0 (i.e.Ai = 0). We note
the following simple relations:Ei = STi + di, ST1 = 0,
STi = Ei−1, and henceEi =

∑i
j=1 dj .

The flowtimeis the total time the jobs are in the system:
TFT =

∑n
i=1(Ei − Ai). Because we assumeAi = 0, we

can rewrite the equation for total flowtime as follows:

TFT =
n∑

i=1

Ei =
n∑

i=1

i∑

j=1

dj =
n∑

i=1

(n + 1− i) ∗ di (1)

We now assume that each jobJi’s duration is an indepen-
dent normally distributed random variabledi ∼ N(µi, σ

2
i).

ICAPS 2006

134 Doctoral Consortium

We assume that the jobs will still be executed in the given se-
quence, regardless of the actual values of the durations. We
note that for any two independent random variablesX ∼
N(µx, σ2

x) andY ∼ N(µy, σ2
y), and two constantsa and

b, the sumaX + bY is also a normally distributed random
variable, such thataX +bY ∼ N(aµx +bµy, a2σ2

x +b2σ2
y).

Since the activity durations are independent normally dis-
tributed random variables, and flowtime is a linear combina-
tion of durations, then for any particular sequence of jobs,
the flowtime is also a normal random variable. From (1):
TFT ∼ N(

∑n
i=1(n− i + 1)µi,

∑n
i=1(n− i + 1)2σ2

i).

β-robust schedules
The β-robust schedule is useful because rather than gam-
bling on the expected performance (or the average actual
performance over a number of runs), it gives a lower limit
on the performance, and to state the confidence in being able
to achieve that level.

For example, consider the simple problem consisting
of three jobs{x, y, z}, with uncertain durations{dx ∼
N(9, 2), dy ∼N(5, 1), dz ∼N(8, 7)}. The sequencese =
〈y, z, x〉 has a flowtime which is distributed asN(40, 39).
40 is, in fact, the smallest expected flowtime possible for
this problem. An alternative sequence,sβ = 〈y, x, z〉, has
flowtime∼ N(41, 24), and thus has a higher expected flow-
time. However, suppose we now introduce a desired maxi-
mum flowtime of (for example)51: the scheduler will incur
a penalty if the actual schedule has a flow time greater than
51. Sequencese has a probability of0.04 of producing a
flowtime greater than51, while sβ has a probability of just
0.02 of delivering a flowtime greater than51, and thussβ

is likely to be less expensive.sβ is theβ-robust(Daniels &
Carrillo 1997) schedule for the maximum flowtime of51 -
that is, it has the highest probability of delivering a flowtime
no greater than51. In addition, for the confidence level of
0.98, sβ also delivers the minimal flowtime limit (51).

Definition 1. For the single machine scheduling problem
with n jobs, with normally-distributed uncertain durations,
and with a flowtime limitS, theβ-robust scheduling problem
is to find the sequence,s, which maximizes the probability
of the flowtime being less thanS. That is, find thes that
maximizesProb(flowtime(s) ≤ S) (Daniels & Carrillo
1997).

First, we show how to computeProb(flowtime ≤
S) for an arbitrary sequence of then jobs. Since the
random variables in the problem are normally distributed,
we can use the formula below to compute the probabil-
ity of flowtime ≤ S, where µ is the mean flowtime
of the sequence, andσ2 is its variance: φ(x ≤ X) =

1/σ
√

2π
∫ X

−∝ e
−(x−µ)2

2σ2 dx. An arbitrary normal distribution
can be converted to a standard normal distribution by chang-
ing variables toz = (x − µ)/σ, so the normal distribution
function becomes:

φ(x ≤ X) =
1√
2π

∫ z

−∝
e
−t2
2 dt =

1
2

+ φ(z)

whereφ(z) = 1/
√

2π
∫ z

0
e
−t2
2 dt. Hence, the probability of

flowtime ≤ S can be computed by

Prob(flowtime ≤ S) =
1
2

+ φ(z) (2)

where

z =
S −mean(flowtime)√

var(flowtime)
. (3)

For each possible schedule, we can compute the mean and
variance of the flowtime bymean(flowtime) =

∑n
i=1(n−

i + 1)µi andvar(flowtime) =
∑n

i=1(n− i + 1)2σ2
i as in

equation (1). Then,φ(z) can be obtained by checkingz in
the standard normal distribution table (Z-table).

Alternatively, there is a simple approximation ofφ(z)
which is good to two decimal places (Weisstein 2006), given
by

φ(z) ≈ ϕ(z)

{ 0.1z(4.4− z) (0 ≤ z ≤ 2.2)
0.49 (2.2 < z < 2.6)
0.50 (z ≥ 2.6)

(4)

The β-robust schedule is one of those alternative se-
quences of the jobs, such that it has the maximum probabil-
ity of flowtime ≤ S. To find aβ-robust schedule, we need
to have an objective function to maximize the probability.
We use the approximation ofφ(z) to compute the probabil-
ity, becauseϕ(z) increases on[0, +∞) that simplifies the
calculation (the proof is straightforward and omitted here).
By using that simplification, maximizing the probability of
flowtime ≤ S is the same as maximizingz.

objective = max(
1
2

+ φ(z))

≈ 1
2

+ max(ϕ(z)) =
1
2

+ ϕ(max(z)).

With above analysis and calculations, we are ready to in-
troduce our constraint models for theβ-robust scheduling
problem.

Primal model
The primal model is shown in Figure 1. We assume a set
{J1, J2, . . . Jn} of jobs, each with a normally-distributed
random variable durationDi ∼ N(µi, σ

2
i). Differing

from the previous sections, we now do not assume that the
jobs are scheduled in the given sequence. With each job
Ji, we associate a position variable,Posi, with domain
{1, 2, . . . , n}. The position variablePosi represents the po-
sition of Ji in the sequence: for instance,Pos2 = 3 states
that J2 is scheduled to be the third job to start on the ma-
chine. Besides position variables, we also introduce ad-
ditional variables for computing flowtime mean and vari-
ance and then the probability. The formula (1) indicates
that flow time can be viewed as the sum of the contribu-
tions from all jobs. We define flowtime contribution ofJi as
FTContribi = (n−Posi +1)Di. meanFTContribi and
varFTContribi are the mean and variance of the flowtime
contributions fromJi. The former has an integer value in
[µi, nµi], and the latter has a value in[σ2

i , n2σ2
i]. The goal

is to sequence those jobs, i.e. assign a distinct value to each
Posi, such that the likelihood of the sequence (schedule) to

ICAPS 2006

Doctoral Consortium 135

Figure 1: Primal Model
Variables:
Job positions:Pos1, ..., Posn

Job mean flowtime contributions:
meanFTContrib1, ..., meanFTContribn

Job variance flowtime contributions:
varFTContrib1, ..., varFTContribn

Constraints:
allDifferent (Job positions)
meanFTContribi = (n− Posi + 1)µi

varFTContribi = (n− Posi + 1)2σ2
i

mean(flowtime) =
∑n

i=1 meanFTContribi

var(flowtime) =
∑n

i=1 varFTContribi

Dominance constraints:
for 0 < i < j ≤ n,
µi ≤ µj andσ2

i ≤ σ2
j ⇒ Posi < Posj

µi ≥ µj andσ2
i > σ2

j ⇒ Posi > Posj

µi > µj andσ2
i = σ2

j ⇒ Posi > Posj

objective = max(z) = max(S−mean(flowtime)√
var(flowtime)

)

achieve a fixed system performance levelS is optimized, i.e.
max(probability(flowtime ≤ S)).

Firstly, we have a permutation constraint that ensures each
job takes a different position in the sequence. This can be
implemented as a global all-different constraint on all the
Posi. Also if we consider the flowtime as a sum of contri-
butions from each job, from formula (1), we have

mean(flowtime) =
n∑

i=1

meanFTContribi

=
n∑

i=1

(n− Posi + 1)µi,

var(flowtime) =
n∑

i=1

varFTContribi

=
n∑

i=1

(n− Posi + 1)2σ2
i .

With those additional variables, we can use formula (2), (3)
and (4) to compute the probability of a schedule’s actual
flowtime being less thanS.

We are also able to impose some dominance constraints
as in figure 1, using the properties of theβ-robust schedule.

Theorem 1. In a β-robust schedule, if jobi with Di ∼
N(µi, σ

2
i) precedes jobj with Dj ∼ N(µj , σ

2
j) , then ei-

ther the mean duration of jobi, µi, is no greater than the
mean duration of jobj, µj , or the duration variance of job
i, σ2

i , is no greater than the duration variance of jobj, σ2
j ,

that isµi ≤ µj or σ2
i ≤ σ2

j . (see Appendix for the proof)

With this property, we post further constraints: for jobi
and jobj (0 < i < j ≤ n), if µi ≤ µj andσ2

i ≤ σ2
j , then

Posi < Posj ; if µi ≥ µj andσ2
i > σ2

j thenPosi > Posj ;

if µi > µj andσ2
i = σ2

j thenPosi > Posj . Note that for
the jobs have the same duration mean and the same duration
variance, we take the lexicographical order on their indexes,
i.e. if µi = µj andσ2

i = σ2
j andi < j, thenPosi < Posj .

As stated before, modeling theβ-robust scheduling prob-
lem as a standard CSP enable us to change the objectives
easily for different purposes. In particular, we can gener-
ate a schedule which optimizes the target level that can be
achieved with a given probability.

Instead of maximizing the probability with a given sys-
tem performanceS, we might want to minimizeS such that
there exists a schedule that can achieveS with a fixed prob-
ability. That isMin(S) such thatProbability(X ≤ S) ≥
C, whereC is the fixed probability. Using the same pri-
mal model, we can getz value from formula (2) and (4)
z = ϕ−1(C − 1

2). Then, from formula (3), we have a new
objective functionmin(S) = min(z∗

√
var(flowtime)+

mean(flowtime)). Note thatϕ−1 is not a one-to-one cor-
respondence function (i.e. there are more than onez values
for each value ofC) at C = 0.99 andC = 1.0. For not
over estimatingS, we select the smallestz from all possible
values. That is we setz = 2.21 whenC = 0.99 andz = 2.6
whenC = 1.0.

Besides those constraints we discussed above, we also
implement a variable ordering heuristic to guide search.
From formula (3), we can see that theβ-robust schedule
has the optimized combination ofmean(flowtime) and
var(flowtime). In order to find theβ-robust schedule more
quickly, we prefer to first schedule a jobi, which has shorter
mean processing timeµi and smaller varianceσ2

i . We use
a family of variable ordering heuristics, ordering the jobs
by increasingµi + q ∗ σ2

i , selecting a value forq based on
the problem characteristics (probability levels). For higher
probabilities, we expect the variance to be more significant,
and so we choose higher values ofq which give increas-
ing weight to the duration variance in the variable ordering.
Note that this variable ordering heuristic does not improve
the total solving speed (i.e. the time of finding the schedule
and proving it is the optimal), but does shorten the time to
find the optimal solution.

Experimental results
We implemented theβ-robust scheduling problem as a
constraint satisfaction problem using ILOG Scheduler and
Solver 6.0. Our first aim is to verify our initial constraint
model, and so we expect to see the same pattern of results as
obtained by (Daniels & Carrillo 1997). Secondly, we want
to determine whether or not a constraint model is feasible
for such problems, and so we hope to see runtimes of a sim-
ilar order of magnitude. If we succeed in both aims, we will
then investigate more sophisticated constraint models.

We consider problems with either 10 or 15 jobs, using the
same experimental setup as (Daniels & Carrillo 1997). Ta-
ble 1 contains the results for our constraint methods and the
corresponding figures taking directly from (Daniels & Car-
rillo 1997). The CPU is the computation time for finding and
proving theβ-robust schedule. It also shows the differences
(in average and in maximum deviation) between the mean

ICAPS 2006

136 Doctoral Consortium

Table 1: Computational performance ofβ-robust solution
procedure.

Constraint model Branch-and-bound
total prob. CPU Avg. Max. CPU Avg. Max.

abv. abv. abv. abv.
jobs level (sec.) SEPT SEPT (sec.) SEPT SEPT

(%) (%) (%) (%)
10 0.85 0.1 0.1 0.4 0.2 0.1 0.8

0.95 0.1 0.3 1.7 0.2 0.3 1.9
0.99 0.1 0.5 1.9 0.3 0.6 2.5

15 0.85 2.3 0.1 0.3 1.0 0.1 0.5
0.95 2.4 0.2 0.7 1.7 0.2 1.0
0.99 3.0 0.3 1.5 2.1 0.4 1.9

processing time of theβ-robust schedule and the shortest
expected processing time (SEPT). Table 1 indicates that we
do have a similar pattern in term of the mean flowtime of
the β-robust schedule compared to the SEPT schedule. In
addition, our CPU time is comparable for the smaller prob-
lems, but is poorer for the larger problems. This indicates
that a constraint-based approach may be feasible, but that
a more sophisticated model with better propagation will be
required. Moreover, we set up a further experiment to deter-
mine the effort require to prove that the solution is optimal.
The results shows that the program takes little time (e.g. 7%
of total) to find the best solution but usually a long time (e.g.
93% of total) to prove if it is theβ-robust schedule. We be-
lieve that a problem is hard for our model if it has many jobs
with similar duration mean and variance. The program is
able to do little propagation, and thus spends a lot of time
trying different permutations of the jobs for no benefit.

With the general model, we can also give the minimum
system performanceS for a problem, so that the jobs in the
problem can be scheduled to achieve the minimizedS with a
desired probability level. The details of experimental results
have been abridged.

Future work
In constraint programming, it is sometimes very useful to
change view points to study the same problem. Particularly,
for a permutation problem (a constraint satisfaction prob-
lem in which each decision variable takes an unique value),
we can transpose the roles of the variables and the values
in presenting the underlying problem to give a new dual
model which is also a permutation problem (Hnich, Smith,
& Walsh 2004).

We are currently working on the dual model of the pri-
mal model, and a third model which channels between the
primal model and its dual. We believe using the combined
model will help us to improve the solving speed. We also
plan to investigate better bounds for pruning branches at the
top of the search tree, better heuristics to guide the search,
and the construction of a global constraint for achievingβ-

robustness. We are also conducting an investigation into the
characteristics of the problems which make some of them
much harder to solve than others. Finally, we plan to extend
this work to consider problems with multiple machines and
with non-zero arrival times, for which the probability calcu-
lations reported here will not apply.

Conclusion
In this paper, we presented a general constraint model for the
β-robust scheduling problem, which allows us to produce
schedules which are robust to uncertainty in the durations of
tasks. With flowtime as the performance measure, we can
optimize the probability and find a most promising schedule
to satisfy the system performance requirement; or we can
optimize the performance level for a fixed probability. Our
initial model demonstrates that a constraint-based approach
is feasible for this problem, but that more more sophisticated
models are required for good performance.

References
Beck, J. C., and Wilson, N. 2004. Job shop scheduling
with probabilistic durations.Proceedings of the Sixteenth
European Conference on Artificial Intelligence652–656.
Beck, J. C., and Wilson, N. 2005. Proactive algorithms
for scheduling with probabilistic durations.Proceedings of
the Nineteenth International Joint Conference on Artificial
Intelligence1201–1206.
Bent, R., and Hentenryck, P. V. 2004. Online stochastic
and robust optimization.Ninth Asian Computing Science
Conference286–300.
Daniels, R. L., and Carrillo, J. E. 1997. Beta-robust
scheduling for single-machine systems with uncertain pro-
cessing times.IIE Transactions29:977–985.
Davenport, A. J.; Gefflot, C.; and Beck, J. C. 2001. Slack-
based techniques for robust schedules.Proceedings of the
Sixth European Conference on Planning7–18.
Drummond, M.; Bresina, J. L.; and Swanson, K. 1994.
Just-in-case scheduling.Proceedings of the 12thNational
Conference on Artificial Intelligence (AAAI)1098–1104.
Fowler, D. W., and Brown, K. N. 2003. Branching con-
straint satisfaction problems and markov decision problems
compared.Annals of Operations Research118:85–100.
Gao, H. 1995. Building robust schedules using temporal
protectionan empirical study of constraint-based schedul-
ing under machine failure uncertainty.Masters thesis, De-
partment of Industrial Engineering, University of Toronto,
Toronto, Canada.
Hnich, B.; Smith, B.; and Walsh, T. 2004. Dual modelling
of permutation and injection problems.Journal of Artificial
Intelligence Research21:357–391.
Walsh, T. 2002. Stochastic constraint programming.Pro-
ceedings of 15th European Conference on Artificial Intelli-
gence111–115.
Weisstein, E. W. 2006. Normal distribution function.
Mathworld, Wolfram Research, Inc.http:// mathworld.
wolfram. com/ Normal Distribution Function. html.

ICAPS 2006

Doctoral Consortium 137

Discrepancy Search with Reactive Policies for Planning

SungWook Yoon
Electrical & Computer Engineering

Purdue University
West Lafayette, IN 47907

sy@purdue.edu

Abstract

We consider a novel use of mostly-correct reactive policies.
In classical planning, reactive policy learning approaches
could find good policies from solved trajectories of small
problems and such policies have been successfully applied
to larger problems. Often, due to the inductive nature, the
learned reactive policies are mostly correct but commit er-
rors on some portion of the states, rendering them useless in
solving every problem of the domain. When the reward is
only at goal states, the well known policy rollout approach
cannot improve the performance of such faulty policies. Dis-
crepancy Search has been developed in search to leverage the
structural information of the heuristic functions which tends
to be mostly-correct due to the human support. In this paper,
we use reactive policies in discrepancy search for planning, in
place of the heuristic functions. In our initial experiments, our
proposed approach is effective in improving the performance
of the given faulty reactive policies. The proposed approach
outperformed the policy rollout as well as the reactive poli-
cies themselves. We will conclude with our research plan in
the extension of the current proposal.

Introduction
Machine Learning (ML) has been successfully applied to
many real life application domains, from image classifi-
cation to natural language processing. AI Planning is no
exception and ML techniques have been applied to AI
planning and has shown some successes (Khardon 1999;
Martin & Geffner 2000; Yoon, Fern, & Givan 2002). The
role of ML here is producing a classifier that classifies an
optimal or good action conditioned on the current state and
the goal. Then, the sequential application of a good clas-
sifier to any problem in the target domain, will result in a
goal state with high probability. The most successful ap-
proach of ML to planning was learning from sampled so-
lution trajectories (Khardon 1999; Martin & Geffner 2000;
Yoon, Fern, & Givan 2002) and the classifier produced by
the ML techniques took the form of ordered list of rules
(Khardon 1996). The resulting classifier is called (reac-
tive) policy (Martin & Geffner 2000; Yoon, Fern, & Gi-
van 2002) following the Markov Decision Process (MDP)
framework orcontrol knowledge(Estlin & Mooney 1996;
Huang, Selman, & Kautz 2000; Aler, Borrajo, & Isasi 2002;

Fern, Yoon, & Givan 2004) following search control frame-
work. The classifier is calledreactivecontrol or policy when
the only input to the classifier is the current state and goal in-
formation, without any information on the history of the ac-
tion choices or state sequences that led to the current state.

To be useful in planning, a classifier for planning must be
highly accurate. One wrong-selection among any of the state
sequence of long plan trajectory could result in the failure
on the whole planning problem, even if the classifier made
correct choices all along the trajectory except in one state.
As reported by (Khardon 1999; Martin & Geffner 2000;
Yoon, Fern, & Givan 2002), ML technique found good re-
active policies that achieve high success ratio on some plan-
ning domains like Blocksworld. Due to the nature of induc-
tion in ML techniques, often automatically found reactive
policies, are prone to have some faults, typically caused by
overfitting. Ensemble(Breiman 1996) can overcome over-
fitting but Ensemble itself can be faulty and it takes more
time to train and get a set of reactive policies (Yoon, Fern, &
Givan 2002). From decision theoretic planning, iterative up-
dating of policy has been developed and one can use approx-
imate policy iteration (API) (Bertsekas & Tsitsiklis 1996)in
correcting the faulty policies. API (Fern, Yoon, & Givan
2003) has been shown effective in correcting faulty policies
for planning, but it needs time in updating the policies and
there is no guarantee that API always will produce improved
policy over the current policy.

Ensemble and API techniques both need the assumption
that the hypothesis space for the classifier is complete in ev-
ery state. When the hypothesis space for the classifier cannot
choose the correct action in every state of the target domain,
either of the technique has no chance in selecting the correct
actions on every state in the target domain.

In this proposal, we would like to answer the following
question, “how to use reactive policies found by an ML tech-
nique when there is some possibility that the policies can be
faulty”. Or what if the hypothesis space for the ML is not
complete, means that the knowledge representation (KR) for
the hypothesis is good for most of the states in the target
domain but for small portion of the states. We seek a de-
ductive technique in using possibly faulty policies. Policy
rollout (Bertsekas & Tsitsiklis 1996) is one such technique
that can improve the performance of the given policy by se-
quentially choosing the actions considered best in one-step

ICAPS 2006

138 Doctoral Consortium

look ahead policy evaluation. Although policy rollout is a
powerful technique that can improve upon the given policy,
when the reward is limited to a specific state like goal state
and the faulty choice of the given policy is sporadic across
the trajectory of the policy, then policy rollout may not be
able to improve the performance of the given policy. Even
multi-level policy rollout (Xiang Yan & Van Roy 2004) can-
not fix the problem unless the faulty choices are limited to
the initial part of the trajectories. In this proposal, we seek
an answer to this sporadic distribution of faulty choices ofa
policy, in search techniques.

In search community, due to the involvement of human,
many search application domains have a good set of well-
designed features and have good heuristic functions. For
some search application domains, heuristic functions are
mostly-correct in guiding the search path but though infre-
quent, they can be wrong.Discrepancy Search(William
D. Harvey 1995) is developed to leverage such structural
information about heuristic function, or when the heuristic
function is mostly-correct. In this proposal, we will employ
discrepancy search in using mostly correct reactive policies.

The remainder of this proposal is structured as follows.
We will describe the proposed technique. Then, we will
show initial experimental results. Finally, we will give re-
search direction following this proposal.

Proposed Algorithm
Figure 1 shows our proposed algorithm. The big picture of
our algorithm is the same as the Discrepancy Search (DS).
One difference is the consideration of the nature of the plan-
ning. Unlike the typical applications of the traditional DS,
the depth of the search for planning problems can be arbi-
trarily long. And one cannot follow the given policy in-
definitely. To address this issue, in theNeighbors func-
tion of figure 1, in every expansion of a node, we assign
weight. Weight can be understood as the discrepancy from
a state to another state with regard to the input policy. The
paths favored by the policy will be weighted lower, enabling
deeper search following those paths. The depth of the search
is increased by the amount of the weight calculated by the
assign-weight function. In this proposal, we suggested to
use 1 - (the probability that the policy selects the path) +ǫ,
whereǫ > 0. Investigating alternative techniques like log-
arithmic use of the probability of the choice for the assign-
weight function is in our agenda for the research. The pa-
rameterǫ gives a natural horizon to the paths that follows
the input policy, preventing paths with arbitrary depth.

Figure 1 also suggests a natural way of using stochastic
policy. The assign-weight function is designed to consider
a stochastic policy. During machine learning, based on the
purity of the coverage in training data, one can easily assign
the weight of the policy or the weight of each rule of the pol-
icy. And this information can be effectively used in stochas-
tic search and in our algorithm. Weighting the selection of
the heuristic function in DS has been studied (Walsh 1997;
Bedrax-Weiss 1999). The weight setting in these works
were on the level or depth of the tree, and not on the intrin-
sic stochastic nature of the heuristic function or the policy.
So, our suggestion of using stochastic policy in DS will be

Discrepancy-Search(S, π,D)
// D: depth limit,S: problem or state,π: input policy

Q← {(S, 0)}
// search queue: stores pairs of states and depths

s← first(Q)

repeat untilgoal-reached(first(s))
Neighbors(s, π, 0)
s← first(Q)

return Plan(s)

Neighbors(s, π, d)
// d: neighbor depth,s: state,π input policy

if second(s) > D; return // over the discrepancy limit

if d > 1; return // over the neighbor discrepancy limit

N ← Next-States(first(s))
// enumerate direct neighbors

for-each n in N
w ← assign-weight(s, n, π)
Q← add(Q, (n,w + second(s))
// add to search Q a new pair of state and depth
Neighbors((n,w + second(n)), π, d + w)

assign-weight(s′, n, π)
// example assign weight function
//s′: state,n: next state,π: input policy

return (1− p(π, s′, n) + ǫ)

// p(π, s′, n): probability that the given policy moves to
staten from the current states′

Figure 1: Discrepancy Search with a Reactive Policy: The
search algorithm is the same as that of limited discrepancy
search. The discrepancy limit isD. Note that the discrep-
ancy depth is not increased by one. The discrepancy depth
is increased with proportional to the probability that the path
is chosen by the input policy.

an interesting extension of the weighted version of the DS
technique.

Preliminary Experiments
To test the performance of discrepancy search with reac-
tive policies, we conducted experiments on Blocksworld and
Driverlog. We randomly selected a policy learned from our
previous research (Yoon, Fern, & Givan 2005) then we com-
pared the performance of the policy in 3 techniques, policy
as it is, rollout policy and discrepancy search with the policy.
The figure 2 shows the performance of the each technique
on the corresponding planning domains. Column labeled P
shows the success ratio (SR) of the policy as it is. The suc-
cess ratio here is measured as the number of solved problems
in 100 randomly generated problems. Column labeled PR
shows the SR of rollout policy of the given policy. Column
labeled DS(n) shows the SR of discrepancy search with the
policy, where we limit the number of the discrepancies ton.

ICAPS 2006

Doctoral Consortium 139

For Blocksworld, we used 20 blocks problems and for
Driverlog, we used 3 links, 4 drivers, 4 trucks and 8 pack-
age problems. As indicated in the figure 2, the rollout pol-
icy does not improve the performance of the faulty reactive
policy. The faulty selections of actions happen sporadically
across the trajectory, and the rollout policy does not address
these faults. Rather the discrepancy search cures the faulty
choices of the policy efficiently and improves the perfor-
mance of the given policy. Even with discrepancy limit 1,
the DS performs better than PR, and DS effectively correct
the faulty choices while PR could not.

Domains P PR DS(1) DS(2) DS(4)

Blocksworld 0.7 0.7 0.8 0.9 1

Driverlog 0.4 0.4 0.7 0.8 1

Figure 2: Using Reactive Policy

Research Direction
As an extension of the current proposal, we would develop
discrepancy search techniques for stochastic planning do-
mains and multi-agent planning domains, like Hearts or
WarCraft domains. For the stochastic planning domains, the
problem is the outcome distribution of the actions. We will
assume that the reactive policy can designate not only the de-
sired action choices but also the desired outcomes of the ac-
tions among possible outcomes of the actions. Similar idea
of designating the outcome of an action is used in different
purpose by (Boutilier, Dearden, & Goldszmidt 2000). Here
the idea was used in symbolic value iteration. In our pro-
posed work, the idea will reduce the branching factor to be
considered in the AND-OR or ExpectiMax search. For the
multi-agent domains, we would assume a similar situation,
where the reactive policy can designate the expected action
choices of the other agents as well as the current agent. This
will again reduce the branching factor of the MIN-MAX
search tree and will result in an effective and efficient al-
gorithm.

Also we are planning to extend the proposed algorithm in
heuristic based forward search setting in deterministic plan-
ning domains. In the heuristic search, the discrepancy search
will be used in enumerating neighbors of a node. In this ex-
tension, we consider the nodes that are within one discrep-
ancy from the current node with respect to the given pol-
icy, as neighbors of the current node. First, this will make
the planner faster when the policy favors the same actions
as the heuristics, since usually reactive policy’s execution is
faster than heuristic based action choices calculations. Sec-
ond, when the heuristic is in a local minimum, and the policy
favors orthogonal actions to the heuristic’s favorites, this ap-
proach might help in escaping the local minimum, resulting
in improvement on success ratio.

Note
Many of the ideas of this paper derive from joint work with
Robert Givan

Acknowledgement
I thank Alan Fern for the helpful comments on this work.

References
Aler, R.; Borrajo, D.; and Isasi, P. 2002. Using genetic
programming to learn and improve control knowledge.AIJ
141(1-2):29–56.
Bedrax-Weiss, T. 1999.Optimal Search Protocols. Ph.D.
Dissertation, University of Oregon.
Bertsekas, D. P., and Tsitsiklis, J. N. 1996.Neuro-Dynamic
Programming. Athena Scientific.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored represen-
tations.AIJ 121(1-2):49–107.
Breiman, L. 1996. Bagging predictors.Machine Learning
24(2):123–140.
Estlin, T. A., and Mooney, R. J. 1996. Multi-strategy learn-
ing of search control for partial-order planning. InAAAI.
Fern, A.; Yoon, S.; and Givan, R. 2003. Approximate
policy iteration with a policy language bias. InProceedings
of the 16th Conference on Advances in Neural Information
Processing.
Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-
specific control knowledge from random walks. InICAPS.
Huang, Y.-C.; Selman, B.; and Kautz, H. 2000. Learning
declarative control rules for constraint-based planning.In
ICML, 415–422.
Khardon, R. 1996. Learning to take actions. InAAAI/IAAI,
Vol. 1, 787–792.
Khardon, R. 1999. Learning action strategies for planning
domains.AIJ 113(1-2):125–148.
Martin, M., and Geffner, H. 2000. Learning generalized
policies in planning domains using concept languages. In
KRR.
Walsh, T. 1997. Depth-bounded discrepancy search. In
IJCAI, 1388–1395.
William D. Harvey, M. L. G. 1995. Limited discrepancy
search. In Mellish, C. S., ed.,Proceedings of the Four-
teenth International Joint Conference on Artificial Intel-
ligence (IJCAI-95); Vol. 1, 607–615. Montŕeal, Qúebec,
Canada: Morgan Kaufmann, 1995.
Xiang Yan, Persi Diaconis, P. R., and Van Roy, B. 2004.
Solitaire: Man versus machine. InNIPS.
Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. InUAI.
Yoon, S.; Fern, A.; and Givan, R. 2005. Learning measures
of progress for planning domains. InAAAI.

ICAPS 2006

140 Doctoral Consortium

Planning with Soft Regular Constraints

Alessandro Zanarini
Département de génie informatique
École Polytechnique de Montréal

C.P. 6079, succ. Centre-ville, Montreal, Canada H3C 3A7
azanarini@crt.umontreal.ca

Abstract

We introduce a new approach for encoding STRIPS planning
problems as Constraint Satisfaction Problems: the encoding
makes use of automata for modelling the dynamics of the
objects involved in the domain. We describe a total order
planner based on Constraint Programming that takes advan-
tage of this encoding, using global constraints to model the
automata and to reduce the search space significantly. The
planner can be easily extended, using soft global constraints,
in order to deal with preferences among the goals in infea-
sible problems. The soft planning infrastructure can also be
exploited to build an effective search heuristic and to approx-
imate the plan length.

Introduction
Constraint Programming (CP) is considered an efficient
and effective paradigm for solving classical planning prob-
lems (see (Nareyek et al. 2005)). Several optimal paral-
lel planners based on CP have been proposed by the re-
search community over the years such as CPlan (Van Beek &
Chen 1999), GP-CSP (Do & Kambhampati 2001), CSP-Plan
(Lopez & Bacchus 2003) and they have shown their effi-
ciency compared to other optimal parallel planners based on
SAT or planning graph encodings. The common approach
for CP-based planners is to encode the planning problem as
a Constraint Satisfaction Problem (CSP) and to use well-
known CP techniques to solve the CSP like generalized
arc consistency (GAC) or conflict-based backjumping (CBJ)
(see (Dechter 2003)). Most of the CP based planners encode
the CSP starting from a planning graph representation and
take advantage of this in order to add mutex constraints to
the CSP model.

We propose a new kind of encoding that exploits automata
for modelling the dynamics of the objects that are involved
in the planning problem. We show how easily this model can
be extended in order to take into account preferences on the
goals. We show some experimental results on a preliminary
version of the planner.

The remainder of the paper is organized as follow: in Sec-
tion 2 we introduce the new encoding and the planner. In
Section 3 we show the soft version of the planner that can
handle preferences on the goals, Section 4 shows the bene-
fits that the soft planner can bring also to speed up the search.

In Section 5 we give some experimental results. Finally, in
Section 6 conclusions are given.

Modelling planning problems with automata
The basic idea is to model the planning problem as a set
of automata. Each automaton describes the dynamics of a
single object (or entity) involved in the planning problem;
the states of the automata denote the states of the objects
and transitions between the automata states represent ac-
tions. Intuitively, if you look at the set of current states of the
automata as a whole, this corresponds to the current world
state. The initial state of the world and the goals are repre-
sented by the initial state and the final state of the automata.
A valid (total order) plan is a sequence of actions that is rec-
ognized by each automaton; in other words it is a sequence
of actions that brings every automaton (object) from the ini-
tial state to a final state.

Consider, for example, a simple instance of the
blocks world domain in which you have as the initial
state onTable(a), onTable(b), on(c, b) and as the goal
on(a, b), on(b, c), onTable(c). The problem is modelled
as three automata that describe the state of the blocks. Fig-
ure 1a shows the automaton for block a; automata for block
b and c are analogous.

Figure 1: Automata of blocks world example.

Formally, given a plan of length L, the definition of the

ICAPS 2006

Doctoral Consortium 141

CSP = (X,D,C) is:

• X = (X1, . . . , XL): a sequence of variables that repre-
sents the total order plan;

• D = (D1, . . . , DL): the variable domains, each domain
initially contains all the possible actions.

• C = (Regular1, . . . , Regulark): the set of constraints
defined on the set of variables; each regular constraint rep-
resents an automaton (i.e. object dynamics in the planning
problem).

Given a variable Xi, the instantiation Xi = aj denotes that
the action aj should be performed in the time step i.

Given an action aj with preconditions Pre(aj) and ef-
fects Eff(aj), we denote by Preo(aj) the subset of pre-
conditions that contain the literal (object) o and analogously
with Effo(aj) the subset of effects that contain o. We use
O to denote the set of objects involved in the planning prob-
lem. Given an object o ∈ O, we write P (o) for the set of all
the possible propositions that involve o (i.e. the propositions
that contain the literal o).

Let o be an object of the planning problem: the related
automaton Ao contains one state for each possible combi-
nation of the propositions in P (o); in order to simplify the
notation, given a state sk of Ao, we use sk to denote also the
conjunction of propositions represented by the state itself.
A transition (action ask,sq

) is present between two states sk

and sq iff Preo(ask,sq
) ⊆ sk and sq = sk ⊕ Effo(ask,sq

)
(where A ⊕ B is defined as the operation that adds to A all
the positive effects of B and deletes from A all the negative
effects of B).
The global constraint Regularo is used to model the au-
tomaton Ao. Note that the variable set is constrained by
several Regular constraints; this implies that an action aj

for a given time step can be performed iff it is consistent for
each regular constraint i.e. the preconditions of aj are met
in each automaton; formally,

⋃

o∈O
Preo(aj) = Pre(a).

Intuitively, the regular constraints filter the domains in such
a way that only the actions for which the preconditions are
met, are kept in the domains. Moreover the global nature of
the regular constraints allows to filter also the actions that
can be hypothetically instantiated in a given time step (i.e.
the action precondition are met in that time step) but that do
not lead to the final states within the given plan length hori-
zon. This kind of reasoning restricts the search space and
effectively guides the search towards the goals.

Generally, the automata built in such a way, have a high
number of states; since the regular constraint propagation al-
gorithm has a complexity that is proportional to the number
of the state of the underlying automaton hence it is worth
minimizing the number of states of the automata.

Description of the algorithm Given a lower bound (even-
tually equal to 1) and an upper bound on the plan length, the
search for a valid plan is performed, following these basic
steps:

• set the plan length L to the associated lower bound;

• solve the related CSP problem with a plan length equal to
L;

– if a solution is found then stop and return the optimal
total order plan

– if no solution is found then increase the plan length and
solve the new CSP problem; the iteration is stopped
when no valid plan is found with a length equal to the
upper bound.

Softening the planner
Soft constraints (see (Petit, Régin, & Bessière 2001) for fur-
ther explanation) are a convenient modeling feature to find
plans that can lead us ”close” to the goal, to express prefer-
ences among the goals, or in general to deal with unsatisfi-
able planning problems. The presented model and planner
can be easily extended in order to introduce soft constraints.

In each automaton we introduce a set of transitions t =
(si, sf) ∈ Tfake that go from each state to the final state;
these transitions represent fake actions and are exploited to
compute the violations. To do that, we introduce a cost func-
tion f : Tfake → R

+. In order to deal with the quantitative
approach proposed with the planning description language
PDDL 3.0, in which a goal is either satisfied or unsatisfied,
we can use the following function:

∀ t ∈ Tfake : f(t) =

0 if the transition starts from
a final state

1 if the transition starts from
a non final state

Another interesting violation function can be the distance
to a goal expressed as the number of remaining actions we
should perform to reach it without considering the interac-
tion with the other goals; this is equivalent to the number of
states that are present in the automaton between a state and
the final state. Given the function d : S → N that represents
the shortest sequence of action to achieve the goal then

∀ t = (si, sf) ∈ Tfake : fd(t) = d(si)

The CSP model and the planner are adapted in the following
way:

• Violation variables: for each automaton (regular con-
straint) we associate a cost variable that represents the
violation. A total violation variable TotalV iolation is
added to the model as a function of the previously defined
variables.

• Cost Regular Constraints: we use cost regular constraints
to deal with automata in which there is the notion of cost
associated to the transitions.

• Objective: a minimization objective is added to the model
for the total violation variable.

• Slack Variable: given a plan of length L we add a variable
XL+1 instantiated to the fake action. Clearly if all the
goals are achieved within L time steps, then all the final
transitions will be from final states to final states so the
violation will be null. In the case in which there is at least
one unachieved goal, the fake action will lead to the final
states but with a corresponding violation cost.

ICAPS 2006

142 Doctoral Consortium

Note that the function that relates TotalV iolation to the
violations of single automata can be seen as a way to ex-
press preferences among the goals. Obviously if we want
to give more importance to a given goal we should give it
more weight in the function. The underlying CP framework
also allows us to define more complex relationships between
violation variables: for example, assuming we are using the
distance violation function fd, we can use a constraint that
states that the absolute value of the difference between each
pair of variables must be less than a given threshold: this can
be seen as a way to express fairness (we do not allow a goal
to be reached while another is very far from being achieved).

Further Advantages of this (soft) planner
Building a search heuristic from the soft planner
In many traditional planners every time a valid plan is
not found, the plan length is increased and the search is
restarted. Clearly, with this approach, we revisit a large part
of the search space at each iteration. However, we can ex-
ploit soft planning infrastructure to build a heuristic to speed
up the search in soft and also traditional planning problems.

We use the distance based violation function and we
search for a plan that is as close as possible to the goals,
that is it minimizes the total violation variable. For this
variable we propose two functions: TotalV iolationsum =
∑

i
V iolationi, the sum of the violations from individual

automata, and TotalV iolationmax = maxi(V iolationi),
the greatest individual violation. Once we prove that there
is no valid plan of length L (i.e. TotalV iolation > 0) we
store the best solution found and exploit it for the next itera-
tion, in two ways:

• heuristic: we branch first on the same values as in the
stored solution, in order to quickly arrive to a promis-
ing region of the search space. Note that the proposed
heuristic slightly differs from the one proposed in (Bonet
& Geffner 2001); in that approach the chosen action is
the one that leads to a state that is as close as possible
to the goal but with the strong assumption of considering
the goals independent and without considering the inter-
ference among the actions. In our approach the stored
solution brings us as close as possible to the goal consid-
ering the goal interations and the interference among the
actions. Even though we have not compared experimen-
tally the two heuristics with this planner, we believe that
our solution should be more effective.

• violation bound: the violation cost of the best solution
found in the previous iteration is a valid upper bound on
the violation variable. Clearly this will help to prune the
search space better during the current iteration.

Plan length increase approximation
In the basic algorithm, when no solution is found for a given
plan length, the plan length is increased by 1. Again, the soft
planner gives us some information that we can use to get a
closer approximation of the plan length.

Consider the soft planner with the distance based viola-
tion function and total violation equal to the max of the au-

tomata violations. Since we are minimizing the total viola-
tion, the cost of the best solution found indicates the min-
imum number of additional actions we should perform to
achieve the goals. Hence, given a plan length Li in iteration
i and the best total violation found TotalV iolation∗

i
at iter-

ation i, we can set the plan length of the following iteration
to Li+1 = Li + TotalV iolation∗

i
.

Proposition 1. The planner with the plan length increase
approximation is optimal.

Proof. Let Li be the length of the plan at iteration i, P ∗
i

the
best plan at iteration i with TotalV iolation∗

i
> 0 where the

total violation is computed using the max function over the
distance based violations. Suppose that there exists an opti-
mal valid plan P ∗ of length L∗ < Li + TotalV iolation∗

i
.

Consider then the partial plan P ∗
partial

in which the first Li

actions are equal to the plan P ∗. With P ∗
partial

all the goals
can be achieved with a number of actions at most equal to
L∗ − Li < TotalV iolation∗

i
. So P ∗

partial
has a violation

strictly less than P ∗
i

, hence P ∗
i

is not the best plan with
length Li.

Experimental results
The planner was implemented in ILOG Solver 6.1. To illus-
trate its behavior, we report preliminary experiments on re-
duced instances of the Zeno Travel problem (see (ICAPS06
2006)) in which two airplanes (A1 and A2), two persons (P1
and P2) and four cities (C1, C2, C3 and C4) are present. The
instance has been modelled with four automata representing
the two airplanes and the two persons. The violation func-
tion used is fd that considers the distance to the final state of
the automata. We consider different goals in order to test the
soft and hard planners; the following table shows the differ-
ent instances in terms of initial state and final state:

A1 A2 P1 P2
Instance 1 C3→C2 C3→C3 C3→C1 C3→C2
Instance 2 C3→C4 C3→C3 C3→C1 C3→C2
Instance 3 C3→C2 C1→C3 C2→C1 C3→C2

The tests were performed on a Pentium-M 1.6GHz with
1GB RAM; the following table shows the results (plan
length and the time expressed in seconds for finding a fea-
sible plan) for solving the instances with the soft planner
and the hard (traditional) planner; some basic techniques for
breaking the symmetries have been introduced in the plan-
ners.

Plan Length Hard Planner Soft Planner
Instance 1 6 1.6 1.5
Instance 2 7 23.4 3.9
Instance 3 8 23.2 5.2

We tested the impact of the different features of the soft
planner on an instance with a feasible plan of length 9. The
following table show the results (B: violation bound, P: plan

ICAPS 2006

Doctoral Consortium 143

length increase approximation, S: basic symmetry breaking
techniques, H: search heuristic, Back: backward search):

Planner features Time Planner Features Time
Basic 153.3 +B+P+S+H 34.7
+B 160.0 +B+P+H+Back 28.9
+B+P 141.3 +P+S+H+Back 25.3
+B+P+S 123.8 +B+P+S+H+Back 24.3

In these preliminary tests, we can see that the search
heuristic allows an interesting performance boost and in
general each proposed feature brings some performance in-
crease.

In order to experiment with preferences, we defined some
preferences on the goals of the first 3 instances: particularly,
we expressed the total violation as TV = VA1 + VA2 + 2 ∗
VP1 + 2 ∗ VP2 where VA1, VA2, VP1 and VP2 are the viola-
tions of the airplanes and of the persons; with this objective
function the preference is clearly given to the persons. We
used the distance based violation function for the single vio-
lations and we searched for the best plan with a tighter plan
length upper bound:

Plan Length Time Violations
Instance 1 4 2.2 4
Instance 1 5 4.4 2
Instance 2 5 8.8 3
Instance 2 6 6.1 1
Instance 3 6 2.0 2
Instance 3 7 3.9 1

With a tighter upper bound on the plan length, it was
not possible to satisfy all the goals hence the plan with the
minimum violation has been found. The time for solving
the instances with preferences is comparable to the time for
solving instances without preferences (with the same plan
length). Note that the flexibility of the framework allowed us
to introduce preferences among the goals simply by adding
an ad hoc objective function.

Discussion and open issues
The presented encoding raises one main challenge: it is not
always obvious how to choose the set of objects to fully
and correctly model the problem (actually we could choose
each entity of the planning problem but then the number of
automata would become intractable). Furthermore, the ter-
mination condition for the soft planner is actually given by
achieving all the goals or reaching the upper bound on the
plan length. Both issues are currently under investigation.

An interesting aspect that we are currently studying, is the
introduction of no-goods recording in the planner. Most of
the current state-of-the-art planners showed that it is a very
powerful method to improve the performance of the planner.

Another aspect to investigate in future studies is the in-
troduction of stronger symmetry breaking techniques. It is
well known that total order plans present a lot of symmetries
(two or more actions can be executed in whatever order) and

this can degrade the performance in cases where there is no
valid plan for a given plan length. In order to prove the in-
feasibility of a problem for a given plan length, the actual
planner explores all the search space while symmetry break-
ing methods can help to reduce it significantly.

To the best of our knowledge, no proposed CP-based plan-
ner exploits global constraints that are commonly known as
a powerful tool to speed up the search. The contributions of
this paper are:

• a new encoding for the planning problem;

• use of global constraints for solving planning problems;

• a new violation measure for the soft regular constraint;

• a CP-based planner that provides tools to express prefer-
ences on goals;

• exploitation of the soft planning infrastructure for build-
ing an effective heuristic.

The implementation of the planner in ILOG Solver (proba-
bly the best CP framework commonly used by the research
community and by industry) will allow us to introduce and
exploit several of the sophisticated techniques that the CP
community has proposed. Even if the proposed planner has
some limitations, the actual implementation and the possible
improvements that can be introduced to speed up the search
seem promising.

References
Bonet, B., and Geffner, H. 2001. Planning as Heuristic
search. Artificial Intelligence 129:5–33.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann Publishers.
Do, M. B., and Kambhampati, S. 2001. Planning as con-
straint satisfaction: Solving the planning garph by compil-
ing it into CSP. Artificial Intelligence 132:151–182.
ICAPS06. 2006. Workshop on Pref-
erences and Soft Constraint in Planning.
http://www.cis.strath.ac.uk/derek/PSCinP.html.
Lopez, A., and Bacchus, F. 2003. Generalizing Graph-
Plan by Formulating Planning as a CSP. International Joint
Conference on Artificial Intelligence IJCAI-2003 954–960.
Nareyek, A.; Freuder, E. C.; Fourer, R.; Giunchiglia, E.;
Goldman, R. P.; Kautz, H.; Rintanen, J.; and Tate, A. 2005.
Constraints and AI Planning. IEEE Intelligent Systems
20:62–72.
Petit, T.; Régin, J.-C.; and Bessière, C. 2001. Specific
Filtering Algorithms for Over Constrained Problems. In
Principles and Practice of Constraint Programming – CP-
2001: Proceedings of the Seventh International Confer-
ence. Springer-Verlag LNCS 2239.
Van Beek, P., and Chen, X. 1999. CPlan: A Constraint
Programming Approach to Planning. Proceedings of the
16th National Conference on Artificial Intelligence 585–
590.

ICAPS 2006

144 Doctoral Consortium

	Página 29
	Página 30
	Página 31
	Página 32

