

ICAPS 2006
International Planning Competition

Table of contents

Preface 3

Part I: The Deterministic Track

Plan Constraints and Preferences in PDDL3 7
Alfonso Gerevini and Derek Long

The Benchmark Domains of the Deterministic Part of IPC-5 14
Yannis Dimopolus, Alfonso Gerevini, Patrik Haslum and Alessandro Saetti

Planning with Temporally Extended Preferences by Heuristic Search 20
Jorge Baier, Jeremy Hussell, Fahiem Bacchus and Sheila McIllraith

YochanPS: PDDL3 Simple Preferences as Partial Satisfaction Plan-
ning

23

J. Benton and Subbarao Kambhampati

IPPLAN: Planning as Integer Programming 26
Menkes van den Briel, Subbarao Kambhampati and Thomas Vossen

Large-Scale Optimal PDDL3 Planning with MIPS-XXL 28
Stefan Edelkamp, Shahid Jabbar and Mohammed Nazih

Optimal Symbolic PDDL3 Planning with MIPS-BDD 31
Stefan Edelkamp

FDP: Filtering and Decomposition for Planning 34
Stephane Grandcolas and Cyril Pain-Barre

Fast (Diagonally) Downward 37
Malte Helmert

New Features in SGPlan for Handling Preferences and Constraints in
PDDL3.0

39

Chih-Wei Hsu, Benjamin W. Wah, Ruoyun Huang and Yixin Chen

OCPlan - Planning for soft constraints in classical domains 42
Bharat Ranjan Kavuluri, Naresh Babu Saladi, Rakesh Garwal and Deepak
Khemani

SATPLAN04: Planning as Satisfiability 45
Henry Kautz and Bart Selman

The resource YAHSP planner 47
Marie de Roquemaurel, Pierre Regnier and Vincent Vidal

The New Version of CPT, an Optimal Temporal POCL Planner based
on Constraint Programming

50

Vincent Vidal and Sebastien Tabary

MaxPlan: Optimal Planning by Decomposed Satisfiability and Back-
ward Reduction

53

Zhao Xing, Yixin Chen and Weixiong Zhang

Abstracting Planning Problems with Preferences and Soft Goals 56
Lin Zhu and Robert Givan

Part II: The Probabilistic Track

POND: The Partially-Observable and Non-Deterministic Planner 58
Daniel Bryce

Conformant-FF 61
Joerg Hoffmann

COMPLAN: A Conformant Probabilistic Planner 63
Jinbo Huang

cf2sat and cf2cs+cf2sat: Two Conformant Planners 66
Hector Palacios

The Factored Policy Gradient planner (IPC-06 Version) 69
Olivier Buffet and Douglas Aberdeen

Paragraph: A Graphplan-based Probabilistic Planner 72
Iain Little

Probabilistic Planning via Linear Value-approximation of First-order
MDPs

74

Scott Sanner and Craig Boutilier

Symbolic Stochastic Focused Dynamic Programming with Decision
Diagrams

77

Florent Teichteil-Koenigsbuch and Patrick Fabiani

http://icaps06.icaps-conference.org/

ICAPS 2006
International Planning Competition

Preface

The international planning competition is a biennial event with several goals, including
analyzing and advancing the state-of-the-art in automated planning systems; providing
new data sets to be used by the research community as benchmarks for evaluating
different approaches to automated planning; emphasizing new research issues in plan-
ning; promoting the acceptance and applicability of planning technology.

The fifth international planning competition, IPC-5 for short, has attracted many re-
searchers. As in the fourth competition, IPC-5 and its organization is split into two parts:
the Deterministic Track, that considers fully deterministic and observable planning (pre-
viously also called ”classical” planning), and the Probabilistic Track, that considers non
deterministic planning.

The deterministic part is organized by two groups of people: an organizing commit-
tee, that is in charge of the various activities for running the competition, and a consult-
ing committee, that was mainly involved in the early phase of the organization to discuss
an extension to the language of the competition (PDDL) to be used in IPC-5.

The deterministic part of IPC-5 has two main novelties with respect to previous
competition. Firstly, while considering the CPU-time, we intend to give more emphasis
to the importance of plan quality, as defined by the problem plan metric. Partly motivated
by this reason, we significantly extended PDDL to include some new constructs, aiming
at a better characterization of plan quality by allowing the user to express strong and
”soft” constraints about the structure of the desired plans, as well as strong and soft
problem goals. The new language, called PDDL3, was developed in strict collaboration
with Derek Long, a member of the IPC-5 consulting committee.

In PDDL3.0, the version of PDDL3 used in the competition, we can express prob-
lems for which only a subset of the goals and plan trajectory constraints can be achieved
(because they conflict with each other, or because achieving all them is computationally
too expensive), and where the ability to distinguish the importance of different goals
and constraints is critical. A planner should try to find a solution that satisfies as many
soft goals and constraints as possible, taking into account their importance and their
computational costs. Soft goals and constraints, or preferences, as they are called in
PDDL3.0, are taken into account by the plan metric, which can give a penalty for failure
to satisfy each of the preferences (or, conversely, a bonus for satisfying them). The
extensions made in PDDL3.0 seem to have gained fairly wide acceptance, with more
than half the competing planners in the deterministic track supporting at least some of
the new features.

Another novelty of the deterministic part of IPC-5 which required considerable ef-
forts concerns the test domains: we designed five new planning domains, together with
a large collection of benchmark problems. In order to make PDDL3.0 language more
accessible to the competitors, for each test domain, we developed various variants using
different fragments of PDDL3.0 with increasing expressiveness. In addition, we re-used
two domains from previous competitions, extended with new variants including some
of the features of PDDL3.0. The IPC-5 test domains have different motivations. Some
of them are inspired by real world applications; others are aimed at exploring the ap-
plicability and effectiveness of automated planning for new applications or for problems
that have been investigated in other field of computer science; while the domains from
previous competitions are used as sample references for measuring the advancement
of the current planning systems with respect to the existing benchmarks.

The probabilistic track of the competition appeared for the first time in the fourth edi-
tion of the competition in 2004. The probabilistic track consists of probabilistic planning
problems with complete observability specified in the PPDDL language. The focus of
the competition is in planners that can deliver real-time decision making as opposed
to complete policies. The planners are evaluated using the client/server architecture
developed for the probabilistic track of IPC-4. Thus, any type of planner can enter the
competition as long as it is able to choose and send actions to the server. The planners
are evaluated in a number of episodes for each instance problem from which an esti-
mate of the average cost to the goal of planner’s policy is computed. The planners are
then ranked using such scores.

This year’s competition includes, for the first time, a conformant planning subtrack
within the probabilistic track. In conformant planning, the planners are faced with non-
deterministic planning problems and required to output a contingency-safe and linear
plan that solves the problem. Planners in this subtrack are evaluated in terms of the
CPU time required to output a valid plan.

We have included novel and interesting domains in the probabilistic and conformant
tracks which aims to reveal interesting tradeoffs in non-deterministic planning. The do-
main codifications are as simple as possible trying to avoid complex syntactic constructs
such as nested conditional effects, disjunctive preconditions and goals, etc. Indeed,
some domains are grounded codifications (as some domains in the deterministic track
of IPC-4), while others are ’lifted’ first-order codifications of problems, which can be ex-
ploited by some of the planners. We have included problem generators for almost all the
domains so to allow the competitors to tune their planners. The competition benchmark
consisted of a set of domains for practice and another set for the actual competition.

In the deterministic track of IPC-5, there are 14 competing teams (initially they were
18, but 4 of them had to withdraw their planners during the competition), each of which
can participate with at most two planners (or variants of the same planner), and 40
participating researchers from various universities and research institutes in Europe,
USA, Canada and India.

The probabilistic track consists of 8 teams divided into 2 groups of 4 teams each for
probabilistic and conformant planning respectively. The teams are from various univer-
sities and research institutes in USA, Canada, Europe and Australia.

At the time of writing the competition is still running. The results will be announced
at ICAPS’06 and made available from the deterministic and probabilistic websites of the
competition. This booklet contains the abstracts of the IPC-5 planners that are currently
running the competition tests. The descriptions of the planners may be in many cases
preliminary, since the systems continue to evolve as they are faced with new problem
domains.

The planner abstracts of the deterministic part of IPC-5 are preceded by an ex-
tended abstract describing the main features of PDDL3.0, which was distributed about
six month before starting the competition, and by an extended abstract giving a short
description of the benchmark domains.

The organizing committees of both tracks would like to send their best wishes and
a great thanks to all the competing teams - it is mainly their hard efforts that make the
competition such an exciting event!

Blai Bonet (Co-Chair Probabilistic Track)
Alfonso Gerevini (Chair Deterministic Track)
Bob Givan (Co-Chair Probabilistic Track)

Organizers (Deterministic track)

• Yannis Dimopoulos - University of Cyprus (Cyprus)

• Alfonso Gerevini (chair) - University of Brescia (Italy)

• Patrik Haslum - Linköping University (Sweden)

• Alessandro Saetti - University of Brescia (Italy)

Organizers (Probabilistic track)

• Blai Bonet (co-chair) - Universidad Simn Bolvar (Venezuela)

• Robert Givan (co-chair) - Purdue University (U.S.A.)

Consulting Committee (Deterministic Track)

• Stefan Edelkamp

• Maria Fox

• Joerg Hoffmann

• Derek Long

• Drew McDermott

• Len Schubert

• Ivan Serina

• David Smith

• Dan Weld

Consulting Committee (Probabilistic Track)

• Hector Geffner

• Sylvie Thiebaux

Plan Constraints and Preferences in PDDL3
The Language of the Deterministic Part of the Fifth International Planning Competition

Extended Abstract

Alfonso Gerevini+ and Derek Long∗

+ Department of Electronics for Automation, University of Brescia (Italy), gerevini@ing.unibs.it
∗ Department of Computer and Information Sciences, University of Strathclyde (UK), derek.long@cis.strath.ac.uk

Abstract

We propose an extension to the PDDL language, called
PDDL3.0, that aims at a better characterization of plan qual-
ity by allowing the user to express strong and soft constraints
about the structure of the desired plans, as well as strong and
soft problem goals. PDDL3.0 was the reference language of
the 5th International Planning competition (IPC-5). This pa-
per contains most of the document about PDDL3.0 that was
discussed by the Consulting Committee of IPC-5, and then
distributed to the IPC-5 competitors.

Introduction
The notion of plan quality in automated planning is a prac-
tically very important issue. In many real-world planning
domains, we have to address problems with a large set of
solutions, or with a set of goals that cannot all be achieved.
In these problems, it is important to generate plans of good
or optimal quality achieving all problem goals (if possible)
or some subset of them.

In the previous International planning competitions, the
plan generation CPU-time played a central role in the eval-
uation of the competing planners. In the fifth International
planning competition (IPC-5), while considering the CPU-
time, we would like to give greater emphasis to the impor-
tance of plan quality. The versions of PDDL used in the pre-
vious two competitions (PDDL2.1 and PDDL2.2) allow us
to express some criteria for plan quality, such as the number
of plan actions or parallel steps, and relatively complex plan
metrics involving plan makespan and numerical quantities.
These are powerful and expressive in domains that include
metric fluents, but plan quality can still only be measured by
plan size in the case of propositional planning. We believe
that these criteria are insufficient, and we propose to extend
PDDL with new constructs increasing its expressive power
about the plan quality specification.

The proposed extended language allows us to express
strong and soft constraints on plan trajectories (i.e. con-
straints over possible actions in the plan and intermediate
states reached by the plan), as well as strong and soft prob-
lem goals (i.e. goals that must be achieved in any valid plan,
and goals that we desire to achieve, but that do not have to be
necessarily achieved). Strong constraints and goals must be
satisfied by any valid plan, while soft constraints and goals
express desired constraints and goals, some of which may

be more preferred than others. Informally, in planning with
soft constraints and goals, the best quality plan should sat-
isfy “as much as possible” the soft constraints and goals ac-
cording to the specified preference relation distinguishing
alternative feasible plans (satisfying all strong constraints
and goals). While soft constraints have been extensively
studied in the CSP literature, only very recently has the
planning community started to investigate them (Brafman
& Chernyavsky 2005; Briel et al. 2004; Delgrande, Schaub,
& Tompits 2005; Miguel, Jarvis, & Shen 2001; Smith 2004;
Son & Pontelli 2004), and we believe that they deserve more
research efforts.

The following are some informal examples of plan trajec-
tory constraints and soft goals. Additional formal examples
will be given in the next section.

Examples in a blocksworld domain: a fragile block can
never have something above it, or it can have at most one
block on it; we would like that the blocks forming the same
tower always have the same colour; in some state of the
plan, all blocks should be on the table.

Examples in a transportation domain: we would like that
every airplane is used (instead of using only a few airplanes,
because it is better to distribute the workload among the
available resources and limit heavy usage); whenever a ship
is ready at a port to load the containers it has to transport,
all such containers should be ready at that port; we would
like that at the end of the plan all trucks are clean and at
their source location; we would like no truck to visit any
destination more than once.

When we have soft constraints and goals, it can be useful
to give different priorities to them, and this should be taken
into account in the plan quality evaluation. While there is
more than one way to specify the importance of a soft con-
straint or goal, as a first attempt to tackle this issue, for IPC-
5 we have chosen a simple quantitative approach: each soft
constraint and goal is associated with a numerical weight
representing the cost of its violation in a plan (and hence
also its relative importance with respect the other specified
soft constraints and goals). Weighted soft constraints and
goals are part of the plan metric expression, and the best
quality plans are those optimising such an expression (more
details are given in the next sections).

ICAPS 2006

International Planning Competition 7

Using this approach we can express that certain plans are
more preferred than others. Some examples are (other for-
malised examples are given in the next sections):1

I prefer a plan where every airplane is used, rather than
a plan using 100 units of fuel less, which could be expressed
by weighting a failure to use all the planes by a number 100
times bigger than the weight associated with the fuel use in
the plan metric; I prefer a plan where each city is visited
at most once, rather than a plan with a shorter makespan,
which could be expressed by using constraint violation costs
penalising a failure to visit each city at most once very heav-
ily; I prefer a plan where at the end each truck is at its start
location, rather than a plan where every city is visited by
at most one truck, which could be expressed by using goal
costs penalising a goal failure of having every truck at its
start location more heavily than a failure of having in the
plan every city visited by at most one truck.

We also observe that the rich additional expressive power
we propose to add for goal specifications allows the ex-
pression of constraints that are actually derivable necessary
properties of optimal plans. By adding them as goal con-
ditions, we have a way to express constraints that we know
will lead to the planner finding optimal plans. Similarly, one
can express constraints that prevent a planner from exploring
parts of the plan space that are known to lead to inefficient
performance.

In the next sections, we outline some extensions to
PDDL2.2 that we propose for IPC-5. We call the extended
language PDDL3.0. It should be noted that this is a pre-
liminary version of the extended language, and that a more
detailed description will be prepared in the future. More-
over, given that the proposed extensions are relatively new
in the planning community, and that the teams participating
in IPC-5 will have limited time to develop their systems, we
impose some simplifying restrictions to make the language
more accessible.

State Trajectory Constraints
Syntax and Intended Meaning
State trajectory constraints assert conditions that must be
met by the entire sequence of states visited during the ex-
ecution of a plan. They are expressed through temporal
modal operators over first order formulae involving state
predicates. We recognise that there would be value in also
allowing propositions asserting the occurrence of action in-
stances in a plan, rather than simply describing properties of
the states visited during execution of the plan, but we choose
to restrict ourselves to state predicates in this extension of
the language. The use of the extensions described here im-
ply a new requirements flag, :constraints.

The basic modal operators we propose to use in IPC-5
are: always, sometime, at-most-once, and atend (for
goal state conditions). We use a special default assumption
that unadorned conditions in the goal specification are auto-
matically taken to be “at end” conditions. This assumption

1The benchmark domains and problems of IPC-5 contain many
additional examples; some samples of them are described in
(Gerevini & Long 2006).

is made in order to preserve the standard meaning for exist-
ing goal specifications, despite the fact that in a standard
semantics for an LTL formula an unadorned proposition
would be interpreted according to the current state. We add
within which can be used to express deadlines. In addition,
rather than allowing arbitrary nesting of modal operators,
we introduce some specific operators that offer some limited
nesting. We have sometime-before, sometime-after,
always-within. Other modalities could be added, but we
believe that these are sufficiently powerful for an initial level
of the sublanguage modelling constraints.

It should be noted that, by combining these modalities
with timed initial literals (defined in PDDL2.2), we can ex-
press further goal constraints. In particular, one can spec-
ify the interval of time when a goal should hold, or the
lower bound on the time when it should hold. Since these
are interesting and useful constraints, we introduce two
modal operators as “syntactic sugar” of the basic language:
hold-during and hold-after.

Trajectory constraints are specified in the planning prob-
lem file in a new field, called :constraints that will usu-
ally appear after the goal. In addition, we allow constraints
to be specified in the action domain file on the grounds that
some constraints might be seen as safety conditions, or op-
erating conditions, that are not physical limitations, but are
nevertheless constraints that must always be respected in any
valid plan for the domain (say legal constraints or operating
procedures that must be respected). This also uses a sec-
tion labelled (:constraints ...). The interpretation of
(:constraints ...) in the conjunction of a domain and
a problem file is that it is equivalent to having all the con-
straints added to the goals. The use of trajectory constraints
(in the domain file or in the goal specification) implies the
need for the :constraints flag in the :requirements
list.

Note that no temporal modal operator is allowed in pre-
conditions of actions. That is, all action preconditions are
with respect to a state (or time interval, in the case of
overall action conditions).

The specific BNF grammar of PDDL3.0 is given in
(Gerevini & Long 2005). The following is a fragment of
the grammar concerning the new modalities of PDDL3.0 for
expressing constraints (con-GD):
<con-GD> ::= (at end <GD>) | (always <GD>) |

(sometime <GD>) | (within <num> <GD>) |

(at-most-once <GD>) |

(sometime-after <GD> <GD>) |

(sometime-before <GD> <GD>) |

(always-within <num> <GD> <GD>) |

(hold-during <num> <num> <GD> |

(hold-after <num> <GD> | ...

where <GD> is a goal description (a first order logic for-
mula), <num> is any numeric literal (in STRIPS domains
it will be restricted to integer values). There is a minor com-
plication in the interpretation of the bound for within and
always-withinwhen considering STRIPS plans (and sim-
ilarly for hold-during and hold-after): the question is
whether the bound refers to sequential steps (in other words,
actions) or to parallel steps. For STRIPS plans, the numeric
bounds will be counted in terms of plan happenings. For

ICAPS 2006

8 International Planning Competition

instance, (within 10 φ) would mean that φ must hold
within 10 happenings. These would be happenings of one
action or of multiple actions, depending on whether the plan
is sequential or parallel.

Notes on Semantics
The semantics of goal descriptors in PDDL2.2 evaluates
them only in the context of a single state (the state of ap-
plication for action preconditions or conditional effects and
the final state for top level goals). In order to give meaning
to temporal modalities, which assert properties of trajecto-
ries rather than individual states, it is necessary to extend
the semantics to support interpretation with respect to a fi-
nite trajectory (as it is generated by a plan). We propose a
semantics for the modal operators that is the same basic in-
terpretation as is used in TLPlan (Bacchus & Kabanza 2000)
for LT and other standard LTL treatments. Recall that a
happening in a plan for a PDDL domain is the collection of
all effects associated with the (start or end points of) actions
that occur at the same time. This time is then the time of the
happening and a happening can be “applied” to a state by si-
multaneously applying all effects in the happening (which is
well defined because no pair of such effects may be mutex).

Definition 1 Given a domain D, a plan π and an initial
state I , π generates the trajectory

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉

iff S0 = I and for each happening h generated by π, with
h at time t, there is some i such that ti = t and Si is the
result of applying the happening h to Si−1, and for every
j ∈ {1 . . . n} there is a happening in π at tj .

Definition 2 Given a domain D, a plan π, an initial state
I , and a goal G, π is valid if the trajectory it gen-
erates, 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉, satisfies the goal:
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= G.

This definition contrasts with the original semantics of
goal satisfaction, where the requirement was that Sn |= G.
The contrast reflects precisely this requirement that goals
should now be interpreted with respect to an entire trajec-
tory. We do not allow action preconditions to use modal
operators and therefore their interpretation continues to be
relative to the single state in which the action is applied. The
interpretation of simple formulae, φ (containing no modali-
ties), in a single state S continues to be as before and con-
tinues to be denoted S |= φ. In the following definition we
rely on context to make clear where we are using the inter-
pretation of non-modal formulae in single states, and where
we are interpreting modal formulae in trajectories.

Definition 3 Let φ andψ be atomic formulae over the predi-
cates of the planning problem plus equality (between objects
or numeric terms) and inequalities between numeric terms,
and let t be any real constant value. The interpretation of
the modal operators is as specified in Figure 1.

Note that this interpretation exploits the fact that modal
operators are not nested. A more general semantics for
nested modalities is a straight-forward extension of this one.

Note also that the last four expressions in Figure 1 are ex-
pressible in different ways if one allows nesting of modali-
ties and use of the standard LTL modality until (more details
on this in (Gerevini & Long 2005)).

The constraint at-most-once is satisfied if its argument
becomes true and then stays true across multiple states and
then (possibly) becomes false and stays false. Thus, there is
only at most one interval in the plan over which the argu-
ment proposition is true.

For general formulae (which may or may not contain
modalities):

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (and φ1...φn) iff, for
every i, 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= φi

and similarly for other connectives.
Of the constraints hold-during and hold-after,

(hold-during t1 t2 φ) states that φ must be true during
the interval [t1, t2), while (hold-after t φ) states that φ
must be true after time t. The first can be expressed by using
timed initial literals to specify that a dummy timed literal d
is true during the time window [t1, t2) together with the goal
(always(implies d φ)).
A variant of hold-during where φ must hold exactly dur-
ing the specified interval could be easily obtained in a similar
way. The second can be expressed by using timed initial lit-
erals to specify that d is true only from time t, together with
the goal (sometime-after d φ).

Soft Constraints and Preferences
A soft constraint is a condition on the trajectory generated by
a plan that the user would prefer to see satisfied rather than
not satisfied, but is prepared to accept might not be satisfied
because of the cost of satisfying it, or because of conflicts
with other constraints or goals. In case a user has multiple
soft constraints, there is a need to determine which of the
various constraints should take priority if there is a conflict
between them or if it should prove costly to satisfy them.
This could be expressed using a qualitative approach but,
following careful deliberations, we have chosen to adopt a
simple quantitative approach for this version of PDDL.

Syntax and Intended Meaning
The syntax for soft constraints falls into two parts. Firstly,
there is the identification of the soft constraints, and sec-
ondly there is the description of how the satisfaction, or lack
of it, of these constraints affects the quality of a plan.

Goal conditions, including action preconditions, can be
labelled as preferences, meaning that they do not have to be
true in order to achieve the corresponding goal or precondi-
tion. Thus, the semantics of these conditions is simple, as
far as the correctness of plans is concerned: they are all triv-
ially satisfied in any state. The role of these preferences is
apparent when we consider the relative quality of different
plans. In general, we consider plans better when they satisfy
soft constraints and worse when they do not. A complication
arises, however, when comparing two plans that satisfy dif-
ferent subsets of constraints (where neither set strictly con-
tains the other). In this case, we rely on a specification of
the violation costs associated with the preferences.

ICAPS 2006

International Planning Competition 9

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (atend φ) iff Sn |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= φ iff Sn |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (always φ) iff ∀i : 0 ≤ i ≤ n · Si |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (sometime φ) iff ∃i : 0 ≤ i ≤ n · Sj |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (within t φ) iff ∃i : 0 ≤ i ≤ n · Si |= φand ti ≤ t
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (at-most-once φ) iff ∀i : 0 ≤ i ≤ n · if Si |= φ then

∃j : j ≥ i · ∀k : i ≤ k ≤ j · Sk |= φ
and ∀k : k > j · Sk |= ¬φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (sometime-after φ ψ) iff ∀i · if Si |= φ then ∃j : i ≤ j ≤ n · Sj |= ψ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (sometime-before φ ψ) iff ∀i · if Si |= φ then ∃j : 0 ≤ j < i · Sj |= ψ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (always-within t φ ψ) iff ∀i · if Si |= φ then ∃j : i ≤ j ≤ n · Sj |= ψ

and tj − ti ≤ t

Figure 1: Semantics of the basic modal operators in PDDL3.

The syntax for labelling preferences is simple:

(preference [name] <GD>).

The definition of a goal description can be extended to
include preference expressions. However, in PDDL3.0, we
reject as syntactically invalid any expression in which pref-
erences appear nested inside any connectives, or modalities,
other than conjunction and universal quantifiers. We also
consider it a syntax violation if a preference appears in the
condition of a conditional effect. Note that where a named
preference appears inside a universal quantifier, it is consid-
ered to be equivalent to a conjunction (over all legal instan-
tiations of the quantified variable) of preferences all with the
same name.

Where a name is selected for a preference it can be used to
refer to the preference in the construction of penalties for the
violated constraint. The same name can be shared between
preferences, in which case they share the same penalty.

Penalties for violation of preferences are calculated using
the expression

(is-violated <name>)

where <name> is a name associated with one or more
preferences. This expression takes on a value equal to the
number of distinct preferences with the given name that are
not satisfied in the plan. Note that in PDDL3.0 we do not
attempt to distinguish degrees of satisfaction of a soft con-
straint — we are only concerned with whether or not the
constraint is satisfied. Note, too, that the count includes each
separate constraint with the same name. This means that:

(preference VisitParis
(forall (?x - tourist)

(sometime (at ?x Paris))))

yields a violation count of 1 for (is-violated
VisitParis), if at least one tourist fails to visit Paris
during a plan, while

(forall (?x - tourist)
(preference VisitParis

(sometime (at ?x Paris))))

yields a violation count equal to the number of people who
failed to visit Paris during the plan. The intention behind

this is that each preference is considered to be a distinct pref-
erence, satisfied or not independently of other preferences.
The naming of preferences is a convenience to allow dif-
ferent penalties to be associated with violation of different
constraints.

Plans are awarded a value through the plan metric, intro-
duced in PDDL2.1 (Fox & Long 2003). The constraints can
be used in weighted expressions in a metric. For example,
(:metric minimize

(+ (* 10 (fuel-used))
(is-violated VisitParis)))

would weight fuel use as ten times more significant than vi-
olations of the VisitParis constraint. Note that the vi-
olation of a preference in the preconditions of an action is
counted multiple times, depending on the number of the ac-
tion occurrences in the plan. For instance, suppose that p is
a preference in the precondition of an action a, which occurs
three times in plan π. If the plan metric evaluating π con-
tains the term (* k (is-violated p)), then this is in-
terpreted as if it were (* v (* k (is-violated p))),
where v is the number of separate occurrences of a in π for
which the preference is not satisfied.

Semantics
We say that

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (preference Φ)

is always true, so this allows preference statements to be
combined in formulae expressing goals. The point in mak-
ing the formula always true is that the preference is a soft
constraint, so failure to satisfy it is not considered to falsify
the goal formula. In the context of action preconditions, we
say Si |= (preference Φ) is always true, too, for the same
reasons.

We also say that a preference (preference Φ) is sat-
isfied iff 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= Φ and violated
otherwise. This means that (or Φ(preferenceΨ)) is the
same as (preference(or ΦΨ)), both in terms of the sat-
isfaction of the formulae and also in terms of whether the
preference is satisfied. The same idea is applied to action
precondition preferences. Hence, a goal such as:
(and (at package1 london)

ICAPS 2006

10 International Planning Competition

(preference (clean truck1)))

would lead to the following interpretation:

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(and (at package1 london)

(preference (clean truck1)

iff

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(at package1 london)

and

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(preference (clean truck1))

iff Sn |= (at package1 london)
iff (at package1 london) ∈ Sn, since the preference

is always interpreted as true. In addition, the preference
would be satisfied iff:

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(at end (clean truck1))

iff (clean truck1) ∈ Sn.

If the preference is not satisfied, it is violated.
Now suppose that we have the following preferences and

plan metric:

(preference p1 (always (clean truck1)))

(preference p2 (and (at end (at package2 paris))

(sometime (clean track1))))

(preference p3 (...))

(:metric (+ (* 10 (is-violated p1)) (* 5 (is-violated p2))

(is-violated p3))).

Suppose we have two plans, π1, π2, and π1 does not satisfy
preferences p1 and p3 (but it satisfies preference p2) and
π2 does not satisfy preferences p2 and p3 (but it satisfies
preference p1), then the metric for π1 would yield a value
(11) that is higher than that for π2 (6) and we would say that
π2 is better than π1.

Formally, a preference precondition is satisfied if the state
in which the corresponding action is applied satisfies the
preference. Note that the restriction on where preferences
may appear in precondition formulae and goals, together
with the fact that they are banned from conditional effects,
means that this definition is sufficient: the context of their
appearance will never make it ambiguous whether it is nec-
essary to determine the status of a preference. Similarly, a
goal preference is satisfied if the proposition it contains is
satisfied in the final state. Finally, an invariant (overall)
condition of a durative action is satisfied if the correspond-
ing proposition is true throughout the duration of the action.

In some case, it can be hard to combine preferences with
an appropriate weighting to achieve the intended balance be-
tween soft constraints and other factors that contribute to the
value of a plan (such as plan make span, resource consump-
tion and so on). For example, to ensure that a constraint
takes priority over a plan cost associated with resource con-
sumption (such as make span or fuel consumption) is partic-
ularly tricky: a constraint must be weighted with a value that
is higher than any possible consumption cost and this might

not be possible to determine. With non-linear functions it
is possible to achieve a bounded behaviour for costs associ-
ated with resources. For example, if a constraint, C, is to be
considered always to have greater importance than the make
span for the plan then a metric could be defined as follows:
(:metric minimize (+ (is-violated C)

(- 1 (/ 1 (total-time))))).

This metric will always prefer a plan that satisfiesC, but will
use make span to break ties.

Nevertheless, for the competition, where it is important
to provide an unambiguous specification by which to rank
plans, the use of plan metrics in this way is clearly very
straightforward and convenient. We leave for later proposals
the possibilities for extending the evaluation of plans in the
face of soft constraints.

Some Examples
The following state trajectory constraints could be stated ei-
ther as strong constraints or soft constraints.
“A fragile block can never have something above it”:
(always (forall (?b - block)

(implies (fragile ?b) (clear ?b))))

“A fragile block can have at most one block on it”:
(always (forall (?b1 ?b2 - block)

(implies (and (fragile ?b1) (on ?b2 ?b1))

(clear ?b2))))

“The blocks forming the same tower always have the same
color”:
(always (forall (?b1 ?b2 - block ?c1 ?c2 - color)

(implies (and (on ?b1 ?b2) (color ?b1 ?c1)

(color ?b2 ?c2))

(= ?c1 ?c2))))

“Each block should be picked up at least once”:
(forall (?b - block) (sometime (holding ?b)))

“Each block should be picked up at most once”:
(forall (?b - block) (at-most-once (holding ?b)))

“In some state visited by the plan all blocks should be on the
table”:
(sometime (forall (?b - block) (on-table ?b)))

This constraint requires all the blocks to be on the table
in the same state. In contrast, if we only require that every
block should be on the table in some state we can write:
(forall (?b - block) (sometime (on-table ?b)))

“Whenever I am at a restaurant, I want to have a reserva-
tion”:
(always (forall (?r - restaurant)

(implies (at ?r) (have-reservation ?r)))

“Each truck should visit each city at most once”:
(forall (?t - truck ?c - city) (at-most-once (at ?t ?c)))

“At some point in the plan all the trucks should be at city1”:
(sometime (forall (?t - truck) (at ?t city1)))

“Each truck should visit each city exactly once”:
(and (forall (?t - truck ?c - city)

(at-most-once (at ?t ?c)))

(forall (?t - truck ?c - city)

(sometime (at ?t ?c))))

ICAPS 2006

International Planning Competition 11

“Each city is visited by at most one truck at the same time”:

(forall (?t1 ?t2 - truck ?c1 city)

(always (implies (and (at ?t1 ?c1)

(at ?t2 ?c1)) (= ?t1 ?t2))))

The following two examples use the IPC-3 Rovers domain
involving numerical fluents. “We would like that the energy
of every rover should always be above the threshold of 5
units”:

(always (forall (?r - rover) (> (energy ?r) 5))))

“Whenever the energy of a rover is below 5, it should be at
the recharging location within 10 time units”:

(forall (?r - rover)

(always-within 10 (< (energy ?r) 5)

(at ?r recharging-point)))

The next two examples illustrate the usefulness of
sometime-before and sometime-after. The first one
states that “a truck can visit a certain city (where initially
there is no truck) only after having visited another particular
one”; the second one that “if a taxi has been used and it is at
the depot, then it has to be cleaned” (if a taxi is used but it
does not go back to the depots, then there is no need to clean
it).

(forall (?t - truck)

(sometime-before (at ?t city1) (at ?t city2)))

(forall (?t - taxi)

(sometime-after (and (at ?t depot) (used ?t))

(clean ?t)))

“We want a plan moving package1 to London such that
truck1 is always maintained clean, and at some point truck2
is at Paris. Moreover, we also prefer that truck3 is always
clean and that at the end of the plan package2 is at London”:

(:goal (and (at package1 london)

(preference (at package2 london))))

(:constraints

(and (always (clean truck1))

(sometime (at truck2 paris))

(preference (always (clean truck3)))

(preference (at end (at package2 london)))))

“We prefer that every fragile package to be transported is
insured”.

(forall (?p - package)

(preference P1

(always (implies (fragile ?) (insured ?p)))))

We now consider an example with a plan metric.
“We want three jobs completed. We would prefer to take a
coffee-break and that we take it when everyone else takes
it (at coffee-time) rather than at any time. We would also
like to finish reviewing a paper, but it is less important than
taking a break. Finally, we would like to be finished so that
we can get home at a reasonable time, and this matters more
than finishing the review or having a sociable coffee break”:

(:goal (and (finished job1)

(finished job2)

(finished job3)))

(:constraints

(and (preference break

(sometime (at coffee-room)))

(preference social

(sometime (and (at coffee-room) (coffee-time))))

(preference reviewing (reviewed paper1))))

(:plan-metric minimize

(+ (* 5 (total-time))

(* 4 (is-violated social))

(* 2 (is-violated break))

(is-violated reviewing)))

Now consider three plans, π1, π2 and π3, such that all
three plans complete the three jobs. Suppose π1 achieves
this in 4 hours, but takes no break and does not include re-
viewing the paper. Suppose π2 completes the jobs in 8 hours,
but takes a coffee-break at coffee-time and reviews the pa-
per. Finally, π3 completes the jobs in 6 hours, including
reviewing the paper, but only by taking a short break when
the coffee room is empty. Then the values of the plans are:

Plan Quality
π1 5*4 + 4*1 + 2*1 + 1 = 27
π2 5*8 + 4*0 + 2*0 + 0 = 40
π3 5*6 + 4*1 + 2*0 + 0 = 34

This makes π1 the best plan and π2 the worst.

Plan Validation and Evaluation
A plan validator will be developed as an extension of the
existing validator used in the previous competitions. The
two key aspects of this extension are checking state tra-
jectory constraints in the goal, which does not complicate
the execution simulation for a plan, and the checking of
preferences in order to compare plans. This latter exten-
sion will involve identifying the constraint violations as-
sociated with each plan and their violation times, in or-
der to evaluate the plan quality according to the specified
metric (which may include terms for the preference viola-
tions). The organizers of IPC-5 are considering the pos-
sibility of using different variants of the test problems in-
volving only strong constraints or soft constraints, with a
possible additional distinction between simple preferences,
involving only goals or action preconditions, and more com-
plex preferences involving general soft constraints. More
details about this organization of the benchmarks will be an-
nounced in the the web page of the deterministic track of
IPC-5: http://ipc5.ing.unibs.it.

Extensions and Generalization
There is considerable scope for developing the proposed ex-
tension. First, and most obviously, modal operators could be
allowed to nest. This would allow a rich expressive power
in the specification of modal temporal goals. Nesting would
allow constraints to be applied to parts of trajectories, as is
usual in modal temporal logics. In addition, we could in-
troduce propositions representing that an action appears in a
plan.

Other modal operators could be added. We have excluded
them PDDL3.0 because we have found that many interest-
ing and challenging goals can be captured without them,

ICAPS 2006

12 International Planning Competition

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (always-persist t φ) iff ∀i : 0 < i ≤ n · if Si |= φ and Si−1 |= ¬φ then
∃j : j − i ≥ t · ∀z : i ≤ z ≤ j · Sz |= φ and
if S0 |= φ then ∀z : z ≤ t · Sz |= φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (always-persist t φ) iff ∃i : 0 < i ≤ n · if Si |= φ and Si−1 |= ¬φ then
∃j : j − i ≥ t · ∀z : i ≤ z ≤ j · Sz |= φ, or
if S0 |= φ then ∀z : z ≤ t · Sz |= φ

Figure 2: Semantics of always-persist and sometime-persist.

and we do not wish to add unnecessarily to the load on
potential competitors. The modal operator until would be
an obvious one to add. Without nesting, a related always-
until and sometime-until would allow expression of goals
such as “every time a truck arrives at the depot, it must stay
there until loaded” or “when the truck arrives at the depot,
it must stay there until cleaned and fully refuelled at least
once in the plan”. The formal semantics of always-until
and sometime-until can be easily derived from the one of
until in LTL. By combining always-until and other modali-
ties we can express complex constraints such as that “when-
ever the energy of a rover is below 5, it should be at the
recharging location within 10 time units and remain there
until recharged”:
(and (always-until (charged ?r) (at ?r rechargepoint))

(always-within 10 (< (charge ?r) 5)

(at ?r rechargingpoint)))

Another modality that would be an useful extension of
the expressive power is a complement for within, such as
persist, with the semantics that a proposition once made
true must persist for at least some minimal period of time.
Without nesting, a related always-persist and sometime-
persist would allow expression of goals such as “I want to
spend at least 2 days in each of the cities on my tour”, or
“every time the taxi goes to the station it must wait for at
least 10 without a passenger”.
The formal semantics of always-persist and sometime-
persist is given in Figure 2. A generalisation that would
allow within and persist to be combined would be to al-
low the time specification to be associated with a compar-
ison operator to indicate whether the bound is an upper or
lower bound.

We have deliberately not introduced the operator next,
which is common in modal temporal logics. This is because
concurrent fragments of a plan might cause a state change
that is not relevant to the part of the state in which the next
condition is intended to apply. Furthermore, the fact that
PDDL plans are embedded on a real time line means that the
intention behind next is less obviously relevant. We realise
that next has been particularly useful in expressing control
rules for planners like TALPlanner (Kvarnström & Magnus-
son 2003) and TLPlan (Bacchus & Kabanza 2000), but our
intention in developing this extension is to focus on provid-
ing a language that is useful for expressing constraints that
govern plan quality, rather than for control knowledge. We
believe that the use of always-within captures a much
more useful concept for plan quality that is actually a far
more realistic constraint in modelling planning problems.

Extensions to the use of soft constraints include the def-

inition of more complex preferences, such as conditional
preferences, and a possible qualitative method for express-
ing priorities over preferences. Moreover, the evaluation
of the soft constraints could be extended by considering
a degree of constraint violation, such as the amount of
time when an always constraint is violated, the delay that
falsifies a within constraint, or the number of times an
always-after constraint is violated.

Acknowledgments
We would like to thank Y. Dimopoulos, C. Domshlak, S.
Edelkamp, M. Fox, P. Haslum, J. Hoffmann, A. Jonsson, D.
McDermott, A. Saetti, L. Schubert, I.Serina, D. Smith and
D. Weld for some very useful discussions about PDDL3.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logic to
express search control knowledge for planning. Artificial Intelli-
gence 116(1-2):123–191.
Brafman, R., and Chernyavsky, Y. 2005. Planning with goal
preferences and constraints. In Proc. of ICAPS-05.
Briel, M.; Sanchez, R.; Do, M.; and Kambhampati, S. 2004.
Effective approaches for partial satisfaction (over-subscription)
planning. In Proc. of the AAAI-04.
Delgrande, P. J.; Schaub, T.; and Tompits, H. 2005. A gen-
eral framework for expressing preferences in causal reasoning and
planning. In Proc. of the 7th Int. Symposium on Logical Formal-
izations of Commonsense Reasoning.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of AI Re-
search 20:pp. 61–124.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in PDDL3. Technical Report RT-2005-08-47, Dep. di
Elettronica per l’Automazione, Universitá di Brescia, Italy. An
extension with the BNF grammar of PDDL3.0 is available from
http://ipc5.ing.unibs.it.
Gerevini, A., and Long, D. 2006. Preferences and soft constraints
in PDDL3. In Proc. of ICAPS Workshop on Preferences and Soft
constraints in Planning.
Kvarnström, J., and Magnusson, M. 2003. Talplanner in the 3rd
international planning competition: Extensions and control rules.
Journal of AI Research 20.
Miguel, I.; Jarvis, P.; and Shen, Q. 2001. Efficient flexible plan-
ning via dynamic flexible constraint satisfaction. Engineering Ap-
plications of Artificial Intelligence 14(3):301–327.
Smith, D. 2004. Choosing objectives in over-subscription plan-
ning. In Proc. of ICAPS-04.
Son, T., C., and Pontelli, E. 2004. Planning with preferences us-
ing logic programming. In Proc. of LPNMR-04. Springer-Verlag.
LNAI 2923.

ICAPS 2006

International Planning Competition 13

The Benchmark Domains of the Deterministic Part of IPC-5

Yannis Dimopoulos+ Alfonso Gerevini? Patrik Haslum◦ Alessandro Saetti?
+ Department of Computer Science, University of Cyprus, Nicosia, Cyprus

? Department of Electronics for Automation, University of Brescia, Brescia, Italy
◦ Department of Computer and Information Science, Linköping University, Linköping, Sweden

+yannis@cs.ucy.ac.cy ?{gerevini,saetti}@ing.unibs.it ◦pahas@ida.liu.se

Abstract

We present a set of planning domains and problems
that have been used as benchmarks for the fifth Inter-
national planning competition. Some of them were in-
spired by different types of logistics applications, others
were obtained by encoding known problems from op-
eration research and bioinformatics. For each domain,
we developed several variants using different fragments
of PDDL3 with increasing expressiveness.

Introduction
The language of the fifth International planning com-
petition (IPC-5), PDDL3.0 (Gerevini & Long 2005), is
an extension of the previous versions of PDDL (Fox &
Long 2003; Edelkamp & Hoffmann 2004) that aims at
a better characterization of plan quality. The new lan-
guage allows us to express strong and soft constraints
on plan trajectories (i.e., constraints over intermediate
states reached by the plan), as well as strong and soft
problem goals. Strong trajectory constraints and goals
must be satisfied by any valid plan, while soft trajec-
tory constraints and goals (called preferences) express
desired constraints and goals, which do not necessarily
have to be achieved. In PDDL3.0, the plan metric ex-
pression can include weighted penalty terms associated
with the violation of the soft trajectory constraints and
goals in the problem.

This paper gives an informal presentation of the
benchmark domains and problems that we developed
for IPC-5, and that include most of the new features of
PDDL3.0.1 We designed five new domains, as well as
some new variants of two domains that have been used
in previous planning competitions. In order to make
the language more accessible to the the IPC-5 competi-
tors, we developed for each domain several variants,
using different fragments of PDDL3.0. The “proposi-
tional” and “metric-time” variants use only the con-
structs of PDDL2.2 (Edelkamp & Hoffmann 2004); the
“simple preferences” variant extends the propositional

1A detailed description of the IPC-5 benchmarks is
outside the scope of this short paper; their PDDL
formalization is available from the IPC-5 website:
http://ipc5.ing.unibs.it.

with preferences over the problem goals; the “qual-
itative preferences” variant also includes preferences
over state trajectory constraints; the “metric-time con-
straints” variant extends the metric-time variant with
strong state trajectory constraints; and, finally, the
“complex preferences” variant uses the full power of
the language, including soft trajectory constraints and
goals. However, not all the different variants of each do-
main actually use the full fragment “allowed” for that
variant.

In the domain variants involving preferences we cre-
ated for each planning problem a plan metric incorpo-
rating terms specifying the penalties for violations of
the preference. The metric is a very important part of
the problem statements in such domains, since it deter-
mines which is the best trade-off between different, per-
haps mutually exclusive, preferences, and we tried with
much care to ensure that the metrics in the test prob-
lems give rise to challenging optimization problems.

The IPC-5 test domains have different motivations.
Some of them were inspired by real world applications,
(e.g., storage, trucks and pathways); others were
aimed at exploring the applicability and effectiveness of
automated planning for new applications (pathways),
or for known problems that have been addressed in
other fields of computer science (TPP and openstacks);
finally, two domains were taken from previous competi-
tions, as sample references for the advancement of auto-
mated planning with respect to the existing benchmarks
(rovers and pipesworld).

For some domains, the problems we generated have
many solutions. In these problems, the most chal-
lenging aspect is finding plans of good quality. Other
problems are challenging for different reasons: the ex-
pressiveness of the planning language used to model
the problem including some of the new features of
PDDL3.0, the large size of the problem, or the known
NP-hardness of the computational problem they model.
In most cases, the test problems were automatically (or
semi-automatically) generated by using dedicated soft-
ware tools.

ICAPS 2006

14 International Planning Competition

The Travelling Purchaser Domain
This is a relatively recent planning domain that has
been investigated in operations research (OR) for sev-
eral years, e.g., (Riera-Ledesma & Salazar-Gonzalez
2005). The Travelling Purchaser Problem (TPP) is a
known generalization of the Travelling Salesman Prob-
lem, and is defined as follows. We have a set of products
and a set of markets. Each market can provide a limited
amount of each product at a known price. The TPP
consists in selecting a subset of markets such that a
given demand for each product can be purchased, min-
imizing the combined travel and purchase cost. This
problem arises in several applications, mainly in rout-
ing and scheduling contexts, and it is NP-hard. In OR,
computing optimal or near optimal solutions for the
TPP instances is still an active research topic.

For IPC-5, we have formalized several variants of this
domain in PDDL. One of them is equivalent to the orig-
inal TPP, while the others are different formulations or
significant (we believe and hope) extensions. In all these
domain variants, plan quality is important, although for
some instances even finding an arbitrary solution could
be quite difficult for a fully-automated planner.

For this domain, we developed both a metric version
without time and a metric-time version. We begin the
description with the metric version because it is the one
equivalent to the original formulation of the TPP.

Metric
This version is equivalent to the original formulation of
the TPP in OR. There are only three operators, two of
which are used to model the purchasing actions: “buy-
all” and “buy-allneeded”. The first buys at a certain
market (?m) the whole amount of a type of goods (?g)
sold by the market (?m and ?g are operator parameters);
while the second one buys at ?m the amount of ?g that
is needed to complete the purchase of ?g (as specified
in the problem goals). In this version, every market
is directly connected to every other market and to the
depots. Moreover, there is only one depot and only one
truck.

Propositional
This version models a variant of the original TPP
where: (1) there can be more than one depot and more
than one truck; (2) the amount of goods are discrete
and represented by qualitative levels; (3) every type of
goods has the same price, independent from the mar-
ket where we buy it; (4) there are two new operators for
loading and unloading goods to/from trucks; (5) mar-
kets and depots can be indirectly connected.

Simple Preferences
The operators in this domain are the same as in the
propositional version. The difference is in the goals,
which are all soft goals (preferences). These prefer-
ences concern maximizing the level of goods that are
stored in the depots, constraints between the levels of

different stored goods, and the safety condition that all
purchased goods are stored at some market.

Qualitative Preferences
The operators in this version are the same as in the
propositional version. All goals are preferences con-
cerning maximizing, for every type of goods, the pur-
chased and stored levels. This version includes prefer-
ences over trajectory constraints. These are constraints
between the levels of two types of stored goods; con-
straints about the use of the trucks for loading goods;
constraints imposing the use of every truck. Moreover,
we have the preference that in the final state all pur-
chased goods are stored at some depot.

Metric-Time
With respect to the simpler metric version, which is
equivalent to the original formulation of the TPP, this
version has the the following main differences: same
as points (1), (4), (5) illustrated in the description of
the propositional variants; each action has a duration
and the plan quality is a linear combination of total-
time (makespan) and the total cost of traveling and
purchasing; the operator “buyall” has a “rebate” rate
(if you buy the whole amount of a type of goods that
is sold at a market, then you have a discount).

Metric-Time Constraints
The operators in this version are the same as in the
metric-time version. In addition, in the domain file, we
have some strong constraints imposing that in the fi-
nal state all purchased goods are stored, every market
can be visited by at most one truck at the same time,
every truck is used. Moreover, in the problem speci-
fication, we have several strong constraints about the
relative amounts of different types of goods stored in a
depot, the number of times a truck can visit a market,
the order in which goods should be stored, the order
in which we should store some type of goods and buy
another one, and deadlines about delivering goods once
they have been loaded in a truck.

Complex Preferences
The operators in this version are the same as in the
metric-time version. In addition, it contains many pref-
erences over state trajectory constraints that are similar
to those used for the metric-time constraints version.

The Openstacks Domain
The openstacks domain is based on the “minimum max-
imum simultaneous open stacks” combinatorial opti-
mization problem, which can be stated as follows:

A manufacturer has a number of orders, each for a
combination of different products, and can only make
one product at a time. The total required quantity of
each product is made at the same time (because chang-
ing from making one product to making another re-
quires a production stop). From the time that the first

ICAPS 2006

International Planning Competition 15

product included in an order is made to the time that all
products included in the order have been made, the or-
der is said to be “open” and during this time it requires
a “stack” (a temporary storage space). The problem is
to order the making of the different products so that
the maximum number of stacks that are in use simulta-
neously, or equivalently the number of orders that are
in simultaneous production, is minimized (because each
stack takes up space in the production area).

This problem, and many related variants, have been
studied in operations research (see, e.g., Fink & Voss
1999). It is known to be NP-hard, and equivalent to
several other problems (Linhares & Yanasse 2002). This
is a pure optimization problem: for any instance of the
problem, every ordering of the making of products is a
solution, which at worst uses as many simultaneously
open stacks as there are orders. Thus, finding a plan
is quite trivial (in the sense that there exists a domain-
specific linear-time algorithm that solves the problem),
but finding a plan of high quality is hard (even for a
domain-specific algorithm).

The openstacks problem was recently posed as a chal-
lenge problem for the constraint programming commu-
nity, and, as a result, a large library of problem in-
stances, together with results on those instances for a
number of different solution approaches, are available
(see Smith & Gent (2005)).

Propositional

This variant is simply an encoding of the original open-
stacks problem as a planning problem. The encoding
is done in such a way that minimizing the length (se-
quential or parallel) of the plan also minimizes the ob-
jective function, i.e., the maximum number of simulta-
neously open stacks. There are three basic actions to
start orders, make products, and ship orders once they
are completed, plus an action that “opens” a new stack,
but in order to ensure the correspondance between par-
allel length and the objective function, some of these
actions are split in two parts. The domain formulation
uses some ADL constructs (quantified disjunctive pre-
conditions), but these can be compiled away with only
a linear increase in size.

The problems are a selection of the problems used
in the constraint modelling challenge, including a few
problems that could not be solved (optimally) by any
of the CSP approaches, plus a small number of extra
small instances.

Time

In this variant of the domain the number of available
stacks is fixed, and the objective is instead to minimize
makespan. Makespan is dominated by the actions that
make products. The number of stacks is for each prob-
lem chosen to be somewhere between the optimal and
the trivial upper bound (equal to the number of orders).

Metric-Time

In this variant, the objective function is to minimize
a (linear) combination of the number of open stacks
and the plan makespan. The number of open stacks is
modelled using numeric fluents.

Simple Preferences

In this variant, the goal of including all required prod-
ucts in each order is softened, and a “score” (or “re-
ward”) is instead given for each product that is included
in an order when it is shipped. The objective is to max-
imize this score. The maximum number of open stacks
is fixed, like in the temporal variant, but at a number
slightly less than the optimal number required to satisfy
all the requirements of all orders.

This version of the domain uses an ADL construct (a
quantified conditional effects) that can only be compiled
away at an exponential increase in problem size.

Complex Preferences

This version, like the previous, has soft goals, but also
a variable maximum number of open stacks. The ob-
jective is to maximize a linear combination of the score
(positive) and the number of open stacks (negative).
Also like the previous version, the formulation uses a
quantified conditional effect.

The Storage Domain

“Storage” is a planning domain involving spatial rea-
soning. Basically, the domain is about moving a certain
number of crates from some containers to some depots
by hoists. Inside a depot, each hoist can move accord-
ing to a specified spatial map connecting different areas
of the depot. The test problems for this domain involve
different numbers of depots, hoists, crates, containers,
and depot areas. While in this domain it is important
to generate plans of good quality, for many test prob-
lems, even finding any solution can be quite hard for
domain-independent planners.

Altogether, the different variants of this domain, in-
volve almost all the new features of PDDL3.0. Note
that this domain is basically a propositional domain,
where the space for storing crates is represented by
PDDL literals. For this domain, instead of a metric-
time version, we have a “time-only” version (without
numerical fluents).

Propositional

The domain has five different actions: an action for
lifting a crate by a hoist, an action for dropping a crate
by a hoist, an action for moving a hoist into a depot,
an action for moving a hoist from one area of a depot
to another one, and finally an action for moving a hoist
outside a depot.

ICAPS 2006

16 International Planning Competition

Time
This variant is basically the propositional variant where
the actions have duration and the plan quality is total-
time (plan makespan).

Simple Preference
The operators in this domain are the same as those in
the propositional version. The main difference is in the
goals. All goals are soft goals (preferences). These pref-
erences concern which depots and depot areas should be
used for storing the crates, the desire that only “com-
patible” crates are stored in the same depot, the desire
that the incompatible crates stored in the same depot
are located at non-adjacent areas of the depot and, fi-
nally, the desire that the hoists are located in depots
different from those where we store the crates.

Qualitative Preferences
The operators in this domain are the same as those in
the propositional version. The differences are in the
preferences over the goals and state trajectory con-
straints. All goals are soft goals similar to some of
the soft goals specified in the simple preferences vari-
ant. The preferences over trajectory constraints con-
cern constraints about the use of the available hoists
for moving the crates, and about the order in which
crates are stored in the depots. Moreover, we have the
preference that in any state crossed by the plan, the
adjacent areas in a depot can be occupied only by com-
patible crates.

Time Constraints
The operators in this version are the same as those
in the temporal version. The problem goals are speci-
fied by an “at-end” constraint imposing that all crates
are stored in a depot. The problems have several con-
straints imposing that a crate can be lifted at most once,
ordering constraints about storing certain crates before
others, deadlines for storing the crates, and maximum
time a hoist can stay outside a depot. There are also
constraints imposing a safety condition, that in the fi-
nal state, all hoists are inside a depot; some constraints
imposing that every hoist is used; and some constraints
imposing that incompatible crates are not stored at ad-
jacent areas of the depot.

Time Preferences
The operators in this version are the same as those in
the temporal version. In addition, this version contains
many preferences over state trajectory constraints that
are similar to those used for the time constraints ver-
sion.

The Trucks Domain
Essentially, this is a logistics domain about moving
packages between locations by trucks under certain con-
straints. The loading space of each truck is organized
by areas: a package can be (un)loaded onto an area

of a truck only if the areas between the area under
consideration and the truck door are free. Moreover,
some packages must be delivered within a deadline. In
this domain, it is important to find good quality plans.
However, for many test problems, even finding one plan
could be a rather difficult task.

Like the Storage domain, this domain has a “time-
only” variant instead of a metric-time variant (i.e., there
are no numerical fluents). The other variants make ex-
tensive use of the new features of PDDL3.0. We start
the description from the time constraint version, be-
cause it is the one closest to a realistic problem.

Time Constraints

The domain has four different actions: an action for
loading a package into a truck, one for unloading a pack-
age from a truck, one for moving a truck, and finally
one for delivering a package. The durations of load-
ing, unloading and delivering packages are negligible
compared to the durations of the driving actions. The
problem goals require that certain packages are at their
final destinations by certain deadlines. For this variant,
we also created an equivalent version, “Time-TIL”, in
which the trajectory constraints of type “within” are
compiled into timed initial literals. Each competing
team is free to choose one of the two alternative vari-
ants.

Time

The operators are the same as those in the time con-
straints version, but there is no deadline for delivering
packages. Finding a valid plan in this version is signif-
icantly easier, but finding a plan with short makespan
is still challenging.

Complex Preferences

The operators in this version are the same as those in
the constraints version. The deadlines are modeled by
preferences. Moreover, this version contains preferences
over trajectory constraints. These are constraints im-
posing some ordering about when delivering packages,
constraints about the usage of the areas in the trucks,
and constraints about loading packages.

Propositional

The operators in this version are similar to those in
the constraints version, with the main difference that
time is modeled as a discrete resource (with a fixed
number of levels). Moreover, the driving actions cannot
be executed concurrently.

Simple Preferences

The operators in this domain are the same as those
in the propositional version. The difference concerns
the problem goals where the delivering deadlines are
modeled by preferences.

ICAPS 2006

International Planning Competition 17

Qualitative Preferences
The operators in this domain are the same as those
in the propositional version. The difference concerns
the problems goals including soft delivering deadlines.
Moreover, this version includes many preferences over
state trajectory constraints that are similar to those
used for the complex preferences version.

The Pathways Domain
This domain is inspired by the field of molecular biol-
ogy, specifically biochemical pathways. “A pathway is
a sequence of chemical reactions in a biological organ-
ism. Such pathways specify mechanisms that explain
how cells carry out their major functions by means of
molecules and reactions that produce regular changes.
Many diseases can be explained by defects in pathways,
and new treatments often involve finding drugs that cor-
rect those defects.” (Thagard 2003) We can model parts
of the functioning of a pathway as a planning problem
by simply representing chemical reactions as actions.
The goal in these planning problems is to construct a
sequence of reactions that produces one or more sub-
stances, using a limited number of substances as input.
The planner is partly free to choose which input sub-
stances to use, i.e., to choose some aspects of the initial
state of the problem. This aspect of the problem is
modelled by means of additional actions.

The biochemical pathway domain of the competition
is based on the pathway of the Mammalian Cell Cycle
Control as it described in (Kohn 1999) and modelled in
(Chabrier 2003). There are three different kinds of basic
actions corresponding to the different kinds of reactions
that can appear in a pathway.

Propositional
This is a simple qualitative encoding of the reactions
of the pathway. The domain has five different actions:
an action for choosing the initial substances, an action
for increasing the quantity of a chosen substance (in
the propositional version, quantity coincides with pres-
ence, and it is modeled through a predicate indicating
if a substance is available or not), an action model-
ing biochemical association reactions, an action mod-
eling biochemical association reactions requiring cata-
lysts, and an action modeling biochemical synthesis re-
actions. Also, there is an additional set of “dummy”
actions used to encode the disjunctive problem goals.

The goals refer to substances that must be synthe-
sized by the pathway, and are disjunctive with two dis-
juncts each. Furthermore, there is a limit on the num-
ber of input substances that can be used by the path-
way.

Simple Preferences
This is similar to the propositional version, with the
difference that both the products that must be syn-
thesized by the pathway and the number of the input
reactants that are used by the network are turned into

preferences. The challenge here is finding plans that
achieve a good tradeoff between the different kinds of
preferences.

Metric-Time
In this version of the domain, reactions have different
durations. The reactions can only happen if their input
reactants reach some concentration level, and reactions
generate their products in specific quantities. The goals
in this version are summations of substance concentra-
tions that must be generated by the reactions of the
pathway. The plan metric minimizes some linear com-
bination of the number of input substances and the plan
duration.

Complex Preferences
This is an extension of the metric-time version with dif-
ferent preferences concerning the concentration of sub-
stances of the pathway, or the order in which substances
are produced. The metric is a combination of these pref-
erences, the number of substances used and the plan
makespan.

The Extended Rovers Domain

The Rovers domain was introduced in the 2002 planning
competition (Long & Fox 2003). It models the problem
of planning for a group of planetary rovers to explore
the planet they are on (taking pictures and samples
from interesting locations).

Propositional and Metric-Time
The propositional and metric-time versions of the do-
main are the same as in IPC 2002, with the addition of
some planning problems.

The domain has nine different actions: an action for
moving rovers on a planet surface, two actions for sam-
pling soil and rock, an action for dropping rock or soil,
an action for calibrating rover instruments, an action for
taking image of interesting objective, and finally three
actions for transmitting soil data, rock data or image
data.

Qualitative Preferences
This is the IPC 2002 propositional version with soft
trajectory constraints added (constraint types always,
sometime and at-most-once are used). The objective is
simply to maximize the number of preferences satisfied.
The preferences are “artificial”, in the sense that they
do not encode any “real” preferences on the plan, but
are constructed in a way as to make the problem of
maximizing the satisfaction of preferences challenging.

Metric Simple Preferences
This version is a special case of the complex preferences
version, which has preferences only on the goals of the
problem.

ICAPS 2006

18 International Planning Competition

This version of the domain poses a so-called “net ben-
efit” problem: goals (atoms, and in some cases conjunc-
tion of atoms) have values and actions have cost, and
the objective is to maximize the sum values of achieved
goals minus the sum of costs of actions in the plan.
Only the actions that move the rovers have non-zero
cost. The domain uses simple (goal state) preferences
to encode goal values and fluents to encode action costs.
There are three different sets of problems, with some-
what different properties. In the first, goals are inter-
fering, meaning that the cost of achieving any two goals
is greater than the sum of achieving them individually.
The second has instead synergy between the goals, i.e.,
the cost of achieving several goals is less than the sum
of achieving each of them separately, while the third
contains goals with relationships of both kinds.

The Extended Pipesworld Domain

The Pipesworld domain was introduced in the previous
planning competition (Hoffmann & Edelkamp 2005).
It models the transportation of batches of petroleum
products in a network of pipelines.

Propositional and Time
The propositional and temporal versions of the domain
are the “tankage” variant of the domain used in IPC
2004 The domain has six actions: two actions for mov-
ing a batch from a tankage to a pipeline segment (one
for the start and one for the end of the activity), two
actions for moving a batch from a tankage to a pipeline
segment, and two actions for moving a batch from a
tankage (or pipeline segment) to a pipeline segment (or
tankage) in case the pipes consist of only one segment.

Time Constraints
The time constraints variant is based on the temporal
no-tankage variant from IPC 2004, but adds hard dead-
lines on when each of the goals must be reached. Dead-
lines are specified using the PDDL3 within constraint.
The problems also have a number of “triggered” dead-
line constraints, specified with PDDL3 always-within
constraint.

Complex Preferences
This variant is similar to the previous, but has soft
deadlines instead, encoded with preferences on the con-
straints. Each goal can have several (increasing) dead-
line, with different (increasing) penalties for missing
them.

Conclusions

We have given an informal description of the benchmark
domains that we developed for the deterministic part
of the 2006 International Planning Competition. The
general aim was to create a new set of problems for the
planning community involving new and interesting –
and hopefully also useful – issues, in particular planning

with (possibly contradicting) preferences over problem
goals and state trajectory constraints.

Several competing teams have declared their that
their planners are capable of handling parts of the ex-
tended PDDL3 language. At the time of writing, bench-
mark tests are still being run. In addition to their use
for the competition, we hope that the new benchmarks
will provide a challenging extension to the existing set
of planning benchmarks, both those involving PDDL3
constructs and those that can be specified through the
previous versions of PDDL.

References
Chabrier, N. 2003. http://contraintes.inria.fr/
BIOCHAM/EXAMPLES/∼cell cycle/cell cycle.bc.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The
language for the classic part of the 4th international
planning competition. Technical Report 195, Institut
für Informatik, Freiburg, Germany.
Fink, A., and Voss, S. 1999. Applications of modern
heuristic search methods to pattern sequencing prob-
lems. Computers & Operations Research 26:17 – 34.
Fox, M., and Long, D. 2003. PDDL2.1: An ex-
tension to PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research
(JAIR) 20:pp. 61–124.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in PDDL3. Technical report rt-2005-08-47,
Universitá di Brescia, Dipartimento di Elettronica per
l’Automazione.
Hoffmann, J., and Edelkamp, S. 2005. The deter-
ministic part of IPC-4: An overview. Journal of AI
Research 24:519 – 579.
Kohn, K. 1999. Molecular interaction map of the
mammalian cell cycle control and dna repair systems.
Mol Biol Cell 10(8).
Linhares, A., and Yanasse, H. 2002. Connection be-
tween cutting-pattern sequencing, VLSI design and
flexible machines. Computers & Operations Research
29:1759 – 1772.
Long, D., and Fox, M. 2003. The 3rd international
planning competition: Results and analysis. Journal
of Artificial Intelligence Research 20:1 – 59.
Riera-Ledesma, J., and Salazar-Gonzalez, J., J. 2005.
A heuristic approach for the travelling purchaser
problem. European Journal of Operational Research
160(3):599–613.
Smith, B., and Gent, I. 2005. Constraint mod-
elling challenge 2005. http://www.dcs.st-and.ac.
uk/∼ipg/challenge/.
Thagard, P. 2003. Pathways to biomedical discovery.
Philosophy of Science 70.

ICAPS 2006

International Planning Competition 19

Planning with Temporally Extended Preferences by Heuristic Search

Jorge Baier and Jeremy Hussell and Fahiem Bacchus and Sheila McIlraith
Department of Computer Science

University of Toronto
Toronto, Canada

[jabaier
�
hussell

�
fbacchus

�
sheila]@cs.toronto.edu

Abstract

In this paper we describe a planner that extends the TLPLAN
system to enable planning with temporally extended prefer-
ences specified in PDDL3, a variant of PDDL that includes
descriptions of temporal plan preferences. We do so by com-
piling preferences into nondeterministic finite state automata
whose accepting conditions denote achievement of the prefer-
ence described by the automaton. Automata are represented
in the planning problem through additional predicates and
actions. With this compilation in hand, we are able to use
domain-independent heuristics to guide TLPLAN towards
plans that realize the preferences. We are entering our plan-
ner in the qualitative preferences track of IPC5, the 2006 In-
ternational Planning Competition. As such, the planner de-
scription provided in this paper is preliminary pending final
adjustments in the coming weeks.

Introduction
Standard goals in planning allow us to distinguish between
plans that satisfy the goal and those that do not, however,
they fail to discriminate between the quality of different suc-
cessful plans. Preferences, on the other hand, express infor-
mation about how “good” a plan is thus allowing us to distin-
guish between desirable successful plans and less desirable
successful plans.

PDDL3 (Gerevini & Long 2005) is an extension of previ-
ous planning languages that includes facilities for express-
ing preferences. It was designed in conjunction with the
2006 International Planning Competition. One of the key
features of PDDL3 is that it supports temporally extended
preference statements, i.e., statements that express prefer-
ences over sequences of events. In particular, in the qualita-
tive preferences category of the planning competition pref-
erences can be expressed with temporal formulae that are
a subset of LTL (linear temporal logic). A plan satisfies a
preference whenever the sequence of states generated by the
plan’s execution satisfies the LTL formula representing the
preference.

PDDL3 allows each planning instance to specify a
problem-specific metric used to compute the value of a plan.
For any given plan, over the course of its execution various
preferences will be violated or satisfied with some prefer-
ence perhaps being violated multiple times. The plan value
metric can depend on the preferences that are violated and

the number of times that they are violated. The aim in solv-
ing the planning instance is to generate a plan that has the
best metric value, and to do this the planner must be able to
“monitor” the preferences to determine when and how many
times different preferences are being violated. Furthermore,
the planner must be able to use this information to guide its
search so that it can find best-value plans.

We have crafted a preference planner that uses various
techniques to find best-value plans. Our planner is based
on the TLPLAN system (Bacchus & Kabanza 1998), ex-
tending TLPLAN so that fully automated heuristic-guided
search for a best-value plan can be performed. We use two
techniques to obtain heuristic guidance. First, we translate
temporally extended preference formulae into nondetermin-
istic finite state automata that are then encoded as a new set
of predicates and action effects. When added to the exist-
ing predicates and actions, we thus obtain a new planning
domain containing only standard ADL-operators. Second,
once we have recovered a standard planning domain we can
use a modified relaxed plan heuristic to guide search. In
what follows, we describe our translation process and the
heuristic search techniques we use to guide planning. We
conclude with a brief discussion of related work.

Translation of LTL to Finite State Automata
TLPLAN already has the ability to evaluate LTL formulae
during planning. It was originally designed to use such for-
mulae to express search control knowledge. Thus one could
simply express the temporally extended preference formulae
in TLPLAN directly and have TLPLAN evaluate these for-
mulae as it generates plans. The difficulty, however, is that
this approach is by itself not able to provide any heuristic
guidance. That is, there is no obvious way to use the par-
tially evaluated LTL formulae maintained by TLPLAN to
guide the planner towards satisfying these formulae (i.e., to
satisfy the preferences expressed in LTL).

Instead our approach is to use the techniques presented
in (Baier & McIlraith 2006) to convert the temporal formu-
lae into nondeterministic finite state automata. Intuitively
the states of the automata “monitor” progress towards sat-
isfying the original temporal formula. In particular, as the
world is updated by actions added to the plan, the state of
the automata is also updated dependent on changes made to
the world. If the automata enters an accepting state then the

ICAPS 2006

20 International Planning Competition

sequence of worlds traversed by the partial plan has satisfied
the original temporal preference formula.

There are various issues involved in building efficient au-
tomata from an arbitrary temporal formula, and more details
are provided in (Baier & McIlraith 2006). However, once
the automaton is built, we can integrate it with the planning
domain by creating an augmented planning domain. In the
augmented domain there is a predicate specifying the cur-
rent set of states that the automata could be in (it is a non-
deterministic automata so there are a set of current states).
Moreover, for each automata, we have a single predicate (the
accepting predicate) that is true iff the automata has reached
an accepting condition, denoting satisfaction of the prefer-
ence. In addition, we define a post-action update sequence
of ADL operators, which take into account the changes just
made to the world and the current state of the automata in
order to compute the new set of possible automata states.
This post-action update is performed immediately after any
action of the domain is performed. TLPLAN is then asked
to generate a plan using the new augmented domain.

To deal with multiple preference statements, we apply this
method to each of the preferences in turn. This generates
multiple automata, and we combine all of their updates into
a single ADL action (actually to simplify the translation we
use a pair of ADL actions that are always executed in se-
quence).

A number of refinements must be made however to deal
with some of the special features of PDDL3. First, in
PDDL3 a preference can be scoped by a universal quanti-
fier. Such preferences act as parameterized preference state-
ments, representing a set of individual preference statement
one for each object that is a legal binding of the universal
variable. To avoid the explosion of automata that would
occur if we were to generate an distinct automata for each
binding, we translate such preferences into “parameterized”
automata. In particular, instead of having a predicate de-
scribing the current set of states the automata could be in, we
have a predicate with extra arguments which specifies what
state the automata could be in for different objects. Simi-
larly, the automata update actions generated by our translator
are modified so that they can handle the update for all of the
objects through universally quantified conditional effects.

Second, PDDL3 allows preference statements in action
preconditions. These preferences refer to conditions that
must ideally hold true immediately before performing an ac-
tion. These conditions are not temporal, i.e., they refer only
to the state in which the action is performed. Therefore, we
do not model these preferences using automata but rather as
conditional effects of the action. If the preference formula
does not hold and the action is performed, then, as an effect
of the action, a counter is incremented. This counter, repre-
senting the number of times the precondition preference is
violated, is used to compute the metric function, described
below.

Third, PDDL3 specifies its metric using an “is-violated”
function. The is-violated function takes as an argument
the name of a preference type, and returns the number of
times preferences of this type were violated. Individual
preferences are either satisfied or violated by the current

plan. However, many different individual preferences can
be grouped into a single type. For example, when a prefer-
ence is scoped by a universal quantifier, all of the individual
preference statements generated by different bindings of the
quantifier yield a preference of the same type. Thus the is-
violated function must be able to count the number of these
preferences that are violated. Similarly, action precondition
preferences can be violated multiple times, once each time
the action is executed under conditions that violated the pre-
condition preference. The automata we construct utilizes
TLPLAN’s ability to manipulate functions to keep track of
these numbers.

Finally, PDDL3 allows specification of hard temporal
constraints, which can also be viewed as being hard tem-
porally extended goals. We also translate these constraints
into automata. The accepting predicate of these automata
are then treated as additional final-state goals. Moreover,
we use TLPLAN’s ability to incrementally check temporal
constraints to prune from the search space those plans that
already have violated the constraint.

Heuristic Search
The new augmented planning domain no longer has tempo-
rally extended preferences. Instead, the domain is much like
a standard planning domain. Thus, we can compute relaxed
plans and use those relaxed plans to compute heuristics.

In particular, we have augmented TLPLAN to allow it to
compute relaxed state sequences: sequences of states that
can be generated from the current state when ignoring the
delete effects of actions. Notice that since the automata
predicates are part of the new domain, the relaxed state se-
quences include predicates describing the “relaxed state” of
the automata. Thus in the relaxed sequence of states not
only can we compute various goal distance functions, but
we can also compute various functions that depend on au-
tomata states. That is, we can compute information about
the distance to satisfying various preferences. Since each
preference is given a different weight in valuing a plan we
can even weight the “distance to satisfying a preference” dif-
ferently depending on the value of the preference.

Specifically, our heuristic function is a combination of the
following functions, which are evaluated over partial plans.
(We continue to work on these functions.)

Goal distance A function that is a measure of how hard it
is to reach the goal. It is computed using the relaxed plan
graph (similar to the one used by the FF planner (Hoff-
mann & Nebel 2001)). It computes a heuristic distance to
the goal facts using a variant of the heuristic proposed by
(Zhu & Givan 2005). The exact value of the � exponent
in this heuristic is still being finalized.

Preference distance A measure of how hard it is to reach
the preference goals, i.e., how hard it is to reach the ac-
cepting states of the various preference automata. Again,
we use Zhu & Givan’s heuristic to compute this distance.

Optimistic metric A lower bound1 for the metric function
1Without loss of generality, we assume that we are minimizing

the metric function.

ICAPS 2006

International Planning Competition 21

of any plan that completes the partial plan, i.e., the best
metric value that the partial plan could possibly achieve
if completed to satisfy the goal. We compute this num-
ber assuming that no precondition preferences will be vi-
olated in the future, and assuming that all temporal for-
mulae that are not currently violated by the partial plan
will be true in the completed plan. To determine whether
a temporal formula is not violated by the partial plan, we
simply verify that its automaton is currently in a state from
which there is a path to an accepting state. Finally, we as-
sume that the goal will be satisfied at the end of the plan.

Discounted metric A weighting of the metric function
evaluated in the relaxed states. Let ��������� be the met-
ric value of a state �	� , and ��
���	��������� be the relaxed states
reachable from state � until a fixed point is found. The
discounted metric for � and discount factor � , ���������� , is
computed as:

������������������������� � �!
" #
$ � �������

#&%

	�(')�����

#
���*�

#
�

The factor of � we are finally going to use is not yet de-
cided.

The final heuristic function is obtained by a combination of
the functions defined above.

Our planner is able to return plans with incrementally
improving metric value. It does best-first search using the
heuristic described above. At all times, it keeps the met-
ric value of the best plan found so far. Additionally, the
planner prunes from the search space all those plans whose
optimistic metric is worse than the best metric found so far.
This is done by dynamically adding a new TLPLAN hard
constraint into the planning domain.

Discussion
The technique we use to plan with temporally extended pref-
erences presents a novel combination of techniques for plan-
ning with temporally extended goals, and for planning with
preferences.

A key enabler of our planner is the translation of LTL
preference formulae into automata, exploiting work de-
scribed in (Baier & McIlraith 2006). There are several pa-
pers that address related issues. First is work that compiles
temporally extended goals into classical planning problems
such as that of Rintanen (Rintanen 2000), and Cresswell
and Coddington (Cresswell & Coddington 2004). Second
is work that exploits automata representations of temporally
extended goals (TEGs) in order to plan with TEGs, such
as Kabanza and Thiébaux’s work on TLPLAN (Kabanza &
Thiébaux 2005) and work by Pistore and colleagues (Lago,
Pistore, & Traverso 2002). A more thorough discussion of
this work can be found in (Baier & McIlraith 2006).

There is also a variety of previous work on planning with
preferences. In (Bienvenu, Fritz, & McIlraith 2006) the au-
thors develop a planner for planning with temporally ex-
tended preferences. Their planner performs best first-search
based on the optimistic and pessimistic evaluation of partial
plans relative to preference formulae. Preference formulae

are evaluated relative to partial plans and the formulae pro-
gressed, in the spirit of TLPLAN, to determine aspects of
the formulae that remain to be satisfied. Also noteworthy
is the work of Son and Pontelli (Son & Pontelli 2004) who
have constructed a planner for planning with temporally ex-
tended goals using answer-set programming (ASP). Their
work holds promise however ASP’s inability to deal effi-
ciently with numbers has hampered their progress. Brafman
and Chernyavsky (Brafman & Chernyavsky 2005) recently
addressed the problem of planning with preferences by spec-
ifying qualitative preferences over possible goal states us-
ing TCP-nets. Their approach to planning is to compile the
problem into an equivalent CSP problem, imposing variable
instantiation constraints on the CSP solver, according to the
TCP-net. This is a promising method for planning, though
at the time of publication of their paper, their planner did not
deal with temporal preferences.

References
Bacchus, F., and Kabanza, F. 1998. Planning for temporally ex-
tended goals. Ann. of Math Art. Int. 22(1-2):5–27.

Baier, J. A., and McIlraith, S. 2006. Planning with first-order
temporally extended goals. In Proceedings of the Twenty-First
National Conference on Artificial Intelligence (AAAI-06). To ap-
pear.

Bienvenu, M.; Fritz, C.; and McIlraith, S. 2006. Planning with
qualitative temporal preferences. In Proceedings of the Tenth In-
ternational Conference on Knowledge Representation and Rea-
soning (to appear).

Brafman, R., and Chernyavsky, Y. 2005. Planning with goal
preferences and constraints. In Proceedings of The International
Conference on Automated Plann ing and Scheduling.

Cresswell, S., and Coddington, A. 2004. Compilation of LTL
goal formulas into PDDL. In ECAI-04, 985–986.

Gerevini, A., and Long, D. 2005. Plan constraints and prefer-
ences for pddl3. Technical Report 2005-08-07, Department of
Electronics for Automation, University of Brescia, Brescia, Italy.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Art. Int.
Research 14:253–302.

Kabanza, F., and Thiébaux, S. 2005. Search control in planning
for temporally extended goals. In Proc. ICAPS-05.

Lago, U. D.; Pistore, M.; and Traverso, P. 2002. Planning with a
language for extended goals. In Proc. AAAI/IAAI, 447–454.

Rintanen, J. 2000. Incorporation of temporal logic control into
plan operators. In Proc. ECAI-00, 526–530.

Son, T., and Pontelli, E. 2004. Planning with preferences us-
ing logic programming. In Lifschitz, V., and Niemela, I., eds.,
Proceedings of the 7th International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR-2004), num-
ber 2923 in Lecture Notes in Computer Science. Springer. 247–
260.

Zhu, L., and Givan, R. 2005. Simultaneous heuristic search for
conjunctive subgoals. In Proceedings of the Twentieth National
Conference on Artificial Intelligence (AAAI-2005), 1235–1241.

ICAPS 2006

22 International Planning Competition

YochanPS: PDDL3 Simple Preferences as Partial Satisfaction Planning

J. Benton & Subbarao Kambhampati
Computer Sci. & Eng. Dept.

Arizona State University
Tempe, AZ 85287

{j.benton,rao}@asu.edu

Minh B. Do
Embedded Reasoning Area
Palo Alto Research Center

Palo Alto, CA 94304
minhdo@parc.com

Introduction
YochanPScompiles a problem using PDDL3 “simple prefer-
ences” (PDDL3-SP), as defined in the 5th International Plan-
ning Competition (IPC5), into a partial satisfaction planning
(PSP) (van den Briel et al. 2004). The commonality of the
semantics between these problem types enable the conver-
sion. In particular, both planning problem definitions in-
clude relaxations on goals and both define plan quality met-
rics. We take advantage of these commonalities and pro-
duce a problem solvable by PSP planners from a PDDL3-SP
problem definition. A minor restriction is made of resulting
PSP plans so the compilation may be simplified to avoid ex-
traneous exponential increases in the number of actions. We
chose SapaPS to solve the new problem.

PSP Net Benefit and PDDL3-SP
In partial satisfaction planning (Smith 2004; van den Briel
et al. 2004), goals g ∈ G have utility values u(g) ≥ 0, rep-
resenting how much each goal is worth to a given user. Each
action a ∈ A has an associated positive execution cost ca

where A is the set of all actions in the domain. Moreover,
not all goals in G need to be achieved. Let P be the low-
est cost plan that achieves a subset G′ ⊆ G of those goals.
The objective is to maximize the net benefit, that is tradeoff
between total utility u(G′) of G′ and total cost of actions
a ∈ P :

maximizeG′⊆G u(G′)−
∑

a∈P

ca (1)

In PDDL3 “simple preferences” (PDDL-SP), preferences
can be defined in goal conditions g ∈ G and action precon-
ditions pre(a) | a ∈ A (Gerevini & Long 2005). Conditions
defined in this way do not need to be achieved for a plan
to be valid. This relates well to goals as defined in PSP.
However, unlike PSP, cost is acquired by failing to satisfy
preferences. There is also no explicit utility defined. Let Φ
be a preference condition, then Cost(Φ) = α, where α is
a constant value.1 Let pref(G) be the set of all preference
conditions on goals and pref(a) be all preference precon-
ditions on a ∈ A. For a plan P , if a preference precondi-
tion, prefp ∈ pref(a) where a ∈ P , is applied in state S,

1In PDDL3, many preferences may have the same name. For
PDDL3-SP, this is syntactic sugar and we therefore refer to prefer-
ences as if each is uniquely identified to simplify the discussion.

without satisfying p then cost Cost(prefp) is incurred. In
the case of a preference on a goal, prefg ∈ pref(G), cost
Cost(prefg) is applied when the preference goal is not sat-
isfied at the end state of a plan. In PDDL3-SP, we want to
find a plan P that incurs the least cost.

Compiling PDDL3-SP to PSP
Both PSP and PDDL3-SP use a notion of cost on actions,
though their view differs on how to define cost. PSP defines
cost directly on each action, while PDDL3-SP uses a less
direct approach by defining conditions for when cost is gen-
erated. In one sense, PDDL3-SP can be viewed as consid-
ering action cost as a conditional effect on an action where
cost is increased on the preference condition’s negation. We
use this observation to inspire our action compilation to PSP.
That is, we compile PDDL3 “simple preferences” on actions
in a manner that is similar to how (Gazen & Knoblock 1997)
compiles conditional effects.

We handle goal preferences differently. In PSP, we gain
utility for achieving goals. In PDDL3-SP, we add cost for
failing to achieve goals. Taken apart these concepts are com-
plements of one another (i.e. cost for failing and utility for
succeeding). The idea is that not failing to achieve a goal
reduces our cost (i.e. gains utility for us). Therefore, as part
of our compilation to PSP we transform a “simple prefer-
ence” goal to an equivalent goal with utility equal the cost
produced for not satisfying it in the PDDL3-SP problem. In
this way we can view goal achievement as canceling out the
cost of obtaining the goal. That is, we can compile a goal
preference prefp to an action that takes p as a condition.
The effect of the action would be that we “have the prefer-
ence” and hence we would place that effect in our goal state
with a utility equal to Cost(prefp).

Figure 1 shows the algorithm for compiling a PDDL3-SP
problem into a PSP problem. We begin by first creating a
temporary action a for every preference prefp in the goals.
The action a has p as a precondition, and a new effect, gp. gp

takes the name of prefp. We then add gp to the goal set G,
and give it utility equal the cost of violating the preference.
The process then removes prefp from the goal set.

After processing the goals into a set of actions and new
goals, we proceed by compiling each action in the prob-
lem. For each a ∈ A we take each set precSet of the
power set P (pref(a)). This allows us to create a version

ICAPS 2006

International Planning Competition 23

forall pref(p) ∈ pref(G) do
pre(a) := p
gp := name(prefp)
eff(a) := gp

forall b ∈ A do
eff(b) := eff(b) ∪ ¬{gpref}

endfor;
A := A ∪ {a}
U(gpref) := Cost(prefp)
G := (G ∪ {gpref}) \ {p}

endfor;
i := 0
forall a ∈ A do

for each precSet ∈ P (pref(a)) do
pre(ai) := pre(a) ∪ precSet
eff(ai) := eff(a)
cai := Cost(pref(a) \ precSet)
A := A ∪ {ai}
i := i + 1

endfor;
A := A \ {a}

endfor;

Figure 1: PDDL3-SP to PSP compilation process.

of a for every combination of its preferences. The cost of
the action is the cost of failing to satisfy the preferences in
pref(a) \ precSet. We remove a from the domain after all
of its compiled actions are created. Notice that because we
use the power set of preferences, this results in an exponen-
tial increase in the number of actions.

When we output a plan, we must remove all new actions
that produce preference goals and our metric value is calcu-
lated as follows:

∑

g∈G

U(g) −
∑

g′∈G′
U(g′) +

∑

a∈P

ca (2)

Plan Criteria
The reader may notice that the above algorithm will gen-
erate a set of actions Aa from an original action a that are
all applicable in states where all preferences are met. That
is, actions that have cost may be inappropriately included
in the plan at such states. This would mean that the PSP
compilation could produce incorrect metric values in the
final plan. One way to fix this issue would be to explic-
itly negate the preference conditions that are not included
in the new action preconditions. This is similar to the ap-
proach taken in (Gazen & Knoblock 1997) for conditional
effects. We decided against this for three related reasons.
First, all known PSP planners require domains be specified
using STRIPS actions and this technique would introduce
non-STRIPS actions–specifically, actions with negative pre-
conditions and those with disjunctive preconditions (due to
the negation of conjunctive preferences). Second, compil-
ing disjunctive preconditions to STRIPS may require an ex-
ponential number of new actions (Gazen & Knoblock 1997;
Nebel 2000) and since we are already potentially adding an

exponential number of actions in the compilation from pref-
erences, we thought it best to avoid adding more. Lastly, and
most importantly, we can use a simple criteria on the plan
that removes the need to include the negation of preference
conditions: We require that for every action generated from
a, only the least cost applicable action ai ∈ Aa can be in-
cluded in P at a given state. This criteria is already inherent
in some PSP planners such as SapaPS (Do & Kambhampati
2004) and OptiPlan (van den Briel et al. 2004).

Example
As an example, let us see how an action with a preference
would be compiled. Consider the following PDDL3 action
taken from the IPC5 TPP domain:

(:action drive
:parameters
(?t - truck ?from ?to - place)

:precondition (and
(at ?t ?from) (connected ?from ?to)
(preference p-drive (and
(ready-to-load goods1 ?from level0)
(ready-to-load goods2 ?from level0)
(ready-to-load goods3 ?from level0))
))

:effect (and (not (at ?t ?from))
(at ?t ?to)))

A plan metric assigns a weight to our preferences:

(:metric (+ (* 10 (is-violated p-drive))
(* 5 (is-violated P0A))))

This action can be compiled into PSP style actions:

(:action drive-0
:parameters
(?t - truck ?from ?to - place)

:precondition (and
(at ?t ?from) (connected ?from ?to)
(ready-to-load goods1 ?from level0)
(ready-to-load goods2 ?from level0)
(ready-to-load goods3 ?from level0)))

:effect (and (not (at ?t ?from))
(at ?t ?to)))

(:action drive-1
:parameters
(?t - truck ?from ?to - place)

:cost 10
:precondition (and
(at ?t ?from) (connected ?from ?to))

:effect (and (not (at ?t ?from))
(at ?t ?to)))

ICAPS 2006

24 International Planning Competition

Let us also consider the following goal preference in
the same domain:

(:goal
(preference P0A (stored goods1 level1)))

The goal will be compiled into the following PSP ac-
tion:

(:action p0a
:parameters ()
:precondition (and (stored goods1 level1))
:effect (and (hasPref-p0a)))

With the goal:

((hasPref-p0a) 5.0)

5th International Planning Competition
For the planning competition, we used the compilation de-
scribed in combination with SapaPS (Do & Kambhampati
2004) to create YochanPS . SapaPS inherently meets the
plan criteria required for our compilation. It performs an
A* search, and its cost propagated relaxed planning graph
heuristic ensures that, given any set of actions with the
same effects, the branch with the least cost action will be
taken. As another point, SapaPS is capable of handling
“hard” goals, which are prevalent in the competition do-
mains. It has also shown to be successful in solving PSP
problems (van den Briel et al. 2004).

Conclusion
We outlined a method of converting domains specified in
the “simple preferences” category of the Fifth International
Planning Competitions (PDDL3-SP) to partial satisfaction
planning (PSP) problems. The technique uses ideas for com-
piling action conditional effects into STRIPS actions as a
basis. Though the process has the potential for adding sev-
eral actions to the domain, in practice the number of added
actions appears manageable.

References
Do, M., and Kambhampati, S. 2004. Partial satisfaction
(over-subscription) planning as heuristic search. In Knowl-
edge Based Computer Systems.
Gazen, B., and Knoblock, C. 1997. Combining the ex-
pressiveness of ucpop with the efficiency of graphplan. In
Fourth European Conference on Planning.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in PDDL3: The language of the fifth interna-
tional planning competition. Technical report, University
of Brescia, Italy.
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of Artificial
Intelligence Research (12):271–315.

Smith, D. 2004. Choosing objectives in over-subscription
planning. In Proc. of ICAPS-04.
van den Briel, M.; Sanchez, R.; Do, M. B.; and Kambham-
pati, S. 2004. Effective approaches for partial satisfaction
(over-subscription) planning. In Proc. of AAAI-04.

ICAPS 2006

International Planning Competition 25

IPPLAN: Planning as Integer Programming

Menkes van den Briel
Department of Industrial Engineering

Arizona State University
Tempe AZ, 85287-8809

menkes@asu.edu

Subbarao Kambhampati
Department of Computer Science

Arizona State University
Tempe AZ, 85287-8809

rao@asu.edu

Thomas Vossen
Leeds School of Business

University of Colorado at Boulder
Boulder CO, 80309-0419

vossen@colorado.edu

Overview

IPPLAN is an integer programming based planning sys-
tem. It builds on the previous work of planning as in-
teger programming, including that of: ILP-PLAN by
Kautz and Walser (1999), the state change encoding by
Vossen et al. (1999), Optiplan by van den Briel and
Kambhampati (2005), and most significantly the state
change flow encodings by van den Briel, Vossen, and
Kambhampati (2005). Moreover, it adds on to the ex-
isting planning compilation approaches, including that
of: SATPLAN by Kautz and Walser (1992), and GP-
CSP by Do and Kambhampati (2000).

The current version of IPPLAN consists of two sep-
arate modules: (1) a translator written in Python, and
(2) an integer programming modeler written in C++.

In order to solve a planning problem, the two mod-
ules are run consecutively. The translator is run first,
and transforms a PDDL input into a state variable rep-
resentation based on the SAS+ formalism. The inte-
ger programming modeler is run second, and generates
the needed data structures and formulates the plan-
ning problem as an integer programming problem. The
resulting integer programming problem is then solved
using CPLEX (ILOG 2002).

The translator is an extension to the preprocessing
algorithm of MIPS (Edelkamp & Helmert 1999). It was
designed and developed by Helmert (2006) as one of
the components for the Fast Downward planner. The
translator is a stand alone component and therefore can
easily be incorporated into other applications. The pur-
pose of the translator is to ground all operators and
axioms, convert the propositional (binary) representa-
tion to a state variable (multi-valued) representation of
the planning problem, and to compile away most of the
ADL features. A detailed description of the translator
and its translation algorithm is described by Helmert
(2006).

IPPLAN can support a collection of integer program-
ming formulations. Currently, IPPLAN supports the
One State Change (1SC) and the Generalized One State
Change (G1SC) formulations as described by van den
Briel, Vossen, and Kambhampati (2005). Both these
formulations are restricted to solve propositional plan-
ning problems only, so currently IPPLAN is a propo-

sitional planning system. In the future, however, we
would like to add more formulations to IPPLAN and
broaden the scope of planning problems that it can han-
dle.

When the 1SC formulation is used IPPLAN will find
optimal makespan plans. With the G1SC formulation
IPPLAN will not guarantee optimality, but generally
find plans with few number of actions. In both these for-
mulations state changes in the state variables are mod-
eled as flows in an appropriately defined network. As
a consequence, the integer programming formulations
can be interpreted as a network flow problems with ad-
ditional side constraints.

IPPLAN uses CPLEX (ILOG 2002) for solving the
integer programming problems. CPLEX is a commer-
cial software package that solves linear programming,
mixed integer programming, network flow, and convex
quadratic programming problems.

References

Do, M., and Kambhampati, S. 2000. Solving planning
graph by compiling it into a CSP. In Proceedings of the
5th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS-2000), 82–91.

Edelkamp, S., and Helmert, M. 1999. Exhibiting
knowledge in planning problems to minimize state en-
coding length. In Proceedings of the European Con-
ference on Planning (ECP-99), 135–147. Springer-
Verlag.

Helmert, M. 2006. The fast downward planning sys-
tem. Journal of Artificial Intelligence Research 25:(Ac-
cepted for publication).

ILOG Inc., Mountain View, CA. 2002. ILOG CPLEX
8.0 user’s manual.

Kautz, H., and Selman, B. 1992. Planning as satisfi-
ability. In Proceedings of the European Conference on
Artificial Intelligence (ECAI-1992).

Kautz, H., and Walser, J. 1999. State-space plan-
ning by integer optimization. In AAAI-99/IAAI-99
Proceedings, 526–533.

van den Briel, M., and Kambhampati, S. 2005. Op-

ICAPS 2006

26 International Planning Competition

tiplan: Unifying IP-based and graph-based planning.
Journal of Artificial Intelligence Research 24:623–635.

van den Briel, M.; Vossen, T.; and Kambhampati, S.
2005. Reviving integer programming approaches for
ai planning: A branch-and-cut framework. In Pro-
ceedings of the International Conference on Automated
Planning and Scheduling (ICAPS-2005), 161–170.

Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 1999. On
the use of integer programming models in AI planning.
In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI-99), 304–309.

ICAPS 2006

International Planning Competition 27

Large-Scale Optimal PDDL3 Planning with MIPS-XXL

Stefan Edelkamp1, Shahid Jabbar2, and Mohammed Nazih3 ∗

Computer Science Department
University of Dortmund, Dortmund, Germany

Introduction
State trajectory and preference constraints are the two
language features introduced in PDDL3 (Gerevini &
Long 2005) for describing benchmarks of the 5th in-
ternational planning competition. State trajectory con-
straints provide an important step of the agreed frag-
ment of PDDL towards the description of temporal con-
trol knowledge and temporally extended goals They as-
sert conditions that must be met during the execution
of a plan and are often expressed using quantification
over domain objects.

We suggest to compile the state trajectory and prefer-
ence constraints into PDDL2 (Edelkamp 2006). Trajec-
tory constraints are compiled into Büchi automata that
are synchronized with the exploration of the planning
problem, while preference constraints are transformed
into numerical fluents that are changed upon violation.
An internal weighted best-first search is invoked that
tries to find a solution. Once a solution is found, the
solution quality is inserted in the problem description
and a new search is started using earlier solution cost as
the minimization parameter. If the internal search fails
to terminate with in a specified amount of time, we
switch to a cost-optimal external breadth-first search
procedure that utilizes harddisk to store the generated
states.

Compilation of State Trajectory
Constraints

State trajectory constraints impose restrictions on
plans. Their semantics can best be captured by using
a special kind of automata structure called as Büchi
automata. Büchi automata has long been used in
automata-based model checking (Clarke, Grumberg, &
Peled 2000), where both the model to be analyzed and
the specification to be checked are modeled as non-
deterministic Büchi automata. Syntactically, Büchi au-
tomata are ordinary automata, but with a special ac-
ceptance condition. Let ρ be a run and inf(ρ) be the
set of states reached infinitely often in ρ, then a Büchi

∗All three authors are supported by the German Re-
search Foundation (DFG) projects Heuristic Search Ed 74/3
and Directed Model Checking Ed 74/2.

automaton accepts, if the intersection between inf(ρ)
and the set of final states F is not empty. In automata-
based model-checking, a specification property is fal-
sified if and only if there is a non-empty intersection
between the language accepted by the Büchi automata
of the model and of the negated specification.

For trajectory constraints, we need a Büchi automa-
ton for the model and one for each trajectory con-
straints, together with some algorithm that validates
if the language intersection is not empty. By the se-
mantics of (Gerevini & Long 2005) it is clear that all
sequences are finite, so that we can interpret a Büchi
automaton as a non-deterministic finite state automa-
ton (NFA), which accepts a word if it terminates in a
final state. The labels of such an automaton are condi-
tions over the propositions and fluents in a given state.
During the exploration, we simulate a synchronization
of all Büchi automata.

To encode the simulation of the synchronized au-
tomata, we devise a predicate (at ?n - state ?a -
automata) to be instantiated for each automata state
and each automata that has been devised. For detecting
accepting states, we include instantiations of predicate
(accepting ?a - automata).

As we require a tight synchronization between the
constraint automaton transitions and the operators in
the original planning space, we include synchronization
flags that are flipped when an ordinary or a constraint
automaton transition is chosen.

Compilation of Preferences

For preference p we include numerical fluents
is-violated-p to the grounded domain description.
For each operator and each preference we apply the
following reasoning. If the preferred predicate is con-
tained in the delete list then the fluent is increased, if it
is contained in the add list, then the fluent is decreased,
otherwise it remains unchanged1.

1An alternative semantic to (Gerevini & Long 2005)
would be to set the fluent to either 0 or 1. For rather com-
plex propositional or numerical goal conditions in a prefer-
ence condition, we can use conditional effects.

ICAPS 2006

28 International Planning Competition

For preferences p on a state trajectory con-
straint that has been compiled to an automaton a,
the fluents (is-violated-a-p) substitute the atoms
(is-accepting-a) in an obvious way. If the au-
tomata accepts, the preference is fulfilled, so the value
of (is-violated-a-p) is set to 0. In the transition that
newly reaches an accepting state (is-violated-a-p)
is set to 0, if it enters a non-accepting state it is set to
1. The skip operator also induces a cost of 1 and the
automaton moves to a dead state.

External Exploration
For complex planning problems, the size of the state
space can easily surpass the main memory limits. Most
modern operating systems provides a facility to use
larger address spaces through virtual memory that can
be larger than internal memory. For the programs that
do not exhibit any locality of reference for memory ac-
cesses, such general purpose virtual memory manage-
ment can instead lower down their performances.

Algorithms that explicitly manage the memory hier-
archy can lead to substantial speedups, since they are
more informed to predict and adjust future memory
access. In (Korf & Schultze 2005) we see a complete
exploration of the state space of 15-puzzle made pos-
sible utilizing a 1.4 Terabytes of secondary storage. In
(Jabbar & Edelkamp 2005) a successful application of
external memory heuristic search for LTL model check-
ing is presented.

The standard model (Aggarwal & Vitter 1988) for
comparing the performance of external algorithms con-
sists of a single processor, a small internal memory
that can hold up to M data items, and an unlim-
ited secondary memory. The size of the input problem
(in terms of the number of records) is abbreviated by
N . Moreover, the block size B governs the bandwidth
of memory transfers. External-memory algorithms are
evaluated in terms of number of I/Os, where each block
transfer amounts to one I/O.

It is convenient to express the complexity of external-
memory algorithms using a number of frequently occur-
ring primitive operations: Scanning, scan(N) with an
I/O complexity of Θ(N

B) that can be achieved through
trivial sequential access; Sorting, sort(N) with an I/O
complexity of Θ(N

B logM/B
N
B) that can be achieved

through external Merge or Distribution Sort.

Cost-Optimal External BFS
An implicit variant of Munagala and Ranade’s algo-
rithm (Munagala & Ranade 1999) for explicit BFS-
search in implicit graphs has been coined to the term
delayed duplicate detection for frontier search. It as-
sumes an undirected search graph. Let I be the ini-
tial state, and N be the implicit successor generation
function. Figure 1 displays the pseudo-code for exter-
nal BFS exploration incrementally improving an upper
bound U on the solution quality. The state sets corre-
sponding to each layer are represented in form of files.

Procedure Cost-Optimal-External-BFS
U ←∞; i← 1
Open(−1)← ∅; Open(0)← {I}
while (Open(i− 1) 6= ∅)

A(i)← N(Open(i− 1))
forall v ∈ A(i)

if v ∈ G and Metric(v) < U
U ← Metric(v)
ConstructSolution(v)

A′(i)← remove duplicates from A(i)
for l← 1 to loc

A′(i)← A′(i)\ Open(i− l)
Open(i)← A′(i)
i← i + 1

Figure 1: Cost-Optimal External BFS Planning Algo-
rithm.

The search frontier denoting the current BFS layer is
tested for an intersection with the goal, and this in-
tersection is further reduced according to the already
established bound.

Layer Open(i−1) is scanned and the set of successors
are put into a buffer of size close to the main memory
capacity. If the buffer becomes full, internal sorting fol-
lowed by a duplicate elimination scanning phase gener-
ates a sorted duplicate-free state sequence in the buffer
that is flushed to disk. A sets in the pseudo-code cor-
responds to temporary sets.

In the next step, external merging is applied to merge
the flushed buffers into Open(i) by a simultaneous scan.
The size of the output files is chosen such that a single
pass suffices. Duplicates are eliminated while merging.
Since the files were sorted, the complexity is given by
the scanning time of all files. One also has to elim-
inate the previous layers from Open(i) to avoid re-
computations. The number of previous layers that have
to be subtracted are dependent on the locality(loc) of
the graph. In case of undirected graphs, two layers are
sufficient. For directed graphs, we suggest to calculate
this parameter by searching for a sequence of operators
that when applied to a state produces no effect. Such a
sequence can be computed by just looking at all possible
sequences of operators. The length of the shortest such
sequence dictates the locality of a planning graph. The
process is repeated until Open(i−1) becomes empty, or
the goal has been found.

The I/O Complexity of External BFS for undirected
graph can be computed as follows. The successor
generation and merging involves O(sort(|N(Open(i −
1))|) + (

∑loc
l=1 scan(|Open(i − l)|) I/Os. However, since∑

i |N(Open(i))| = O(|E|) and
∑

i |Open(i)| = O(|V |),
the total execution time is O(sort(|E|)+ loc · scan(|V |))
I/Os.

In an internal non memory-limited setting, a plan
is constructed by backtracking from the goal node to
the start node. This is facilitated by saving with every

ICAPS 2006

International Planning Competition 29

node a pointer to its predecessor. However, there is one
subtle problem: predecessor pointers are not available
on disk. This is resolved as follows. Plans are recon-
structed by saving the predecessor together with every
state, by using backtracking along the stored files, and
by looking for matching predecessors. This results in a
I/O complexity that is at most linear to the number of
stored states.

In planning with preferences, we often have a mono-
tone decreasing instead of a monotonic increasing cost
function. Hence, we cannot prune states with an eval-
uation larger than the current one. Essentially, we are
forced to look at all states. In order to speed up the
external search with a compromise on the optimality,
we can apply a procedure similar to beam-search where
we can limit our search to expand only a small portion
of the best nodes within each layer. On competition
problems, we have managed to have good accelerations
through this approach.

Implementation

We first transform PDDL3 files with preferences and
state trajectory constraints to grounded PDDL3 files
without them. For each state trajectory constraint, we
parse its specification, flatten the quantifiers and write
the corresponding LTL-formula to disk.

Then, we derive a Büchi-automaton for each LTL for-
mula and generates the corresponding PDDL code to
modify the grounded domain description2. Next, we
merge the PDDL descriptions corresponding to Bc̈hi
automata and the problem file. Given the grounded
PDDL2 outcome, we apply efficient heuristic search
forward chaining planner Metric-FF (Hoffmann 2003).
Note that by translating plan preferences, otherwise
propositional problems are compiled into metric ones.
For temporal domains, we extended the Metric-FF
planner to handle temporal operators and timed initial
literals. The resulting planner is slightly different from
known state-of-the-art systems of adequate expressive-
ness, as it can deal with disjunctive action time windows
and uses an internal linear-time approximate scheduler
to derive parallel (partial or complete) plans. The plan-
ner is capable of compiling and producing plans for all
competition benchmark domains.

Due to the numerical fluents introduced for prefer-
ences, we are faced with a search space where cost is not
necessarily monotone. For such state spaces, we have
to look at all the states to reach to an optimal solu-
tion. The issue then arises is if it is possible to reach an
optimal solution fast. We propose to use a branch-and-
bound like procedure on top of the best-first weighted
heuristic search as offered by the extended Metric-FF
planning system. Upon reaching a goal, we terminate
our search and create a new problem file where the goal
condition is extended to minimize the found solution

2www.liafa.jussieu.fr/∼oddoux/ltl2ba. Similar
tools include LTL→NBA and the never-claim converter in-
herent to the SPIN model checker.

cost. The search is restarted on this new problem de-
scription. The procedure terminates when the whole
state space is looked at. The rationale behind this is
to have improved guidance towards a better solution
quality. If internal search failed to terminate within a
specified amount of time, we switch to external BFS
search.

Conclusions
We propose to translate temporal and preference con-
straints into PDDL2. Temporal constraints are con-
verted into Büchi automata in PDDL format, and
are executed synchronously with the main exploration.
Preferences are compiled away by a transformation into
numerical fluents that impose a penalty upon violation.
Incorporating better heuristic guidance, especially, for
preferences is still an open research frontier.

Search is performed in two stages. Initially, an in-
ternal best-first is invoked that keeps on improving its
solution quality till the search space is exhausted. Af-
ter a given time limit, the internal search is terminated
and an external breadth-first search is started.

The crucial problem in external memory algorithms
is the duplicate detection with respect to previous lay-
ers to guarantee termination. Using the locality of
the graph calculated directly from the operators them-
selves, we provide a bound on the number of previous
layers that have to be looked at.

Since states are kept on disk, external algorithms
have a large potential for parallelization. We noticed
that most of the execution time is consumed while
calculating heuristic estimates. Distributing a layer
on multiple processors can distribute the internal load
without having any effect on the I/O complexity.

References
Aggarwal, A., and Vitter, J. S. 1988. The in-
put/output complexity of sorting and related prob-
lems. Journal of the ACM 31(9):1116–1127.
Clarke, E.; Grumberg, O.; and Peled, D. 2000. Model
Checking. MIT Press.
Edelkamp, S. 2006. On the compilation of plan con-
straints and preferences. In ICAPS. To Appear.
Gerevini, A., and Long, D. 2005. Plan constraints
and preferences for PDDL3. Technical Report R.T.
2005-08-07, Department of Electronics for Automa-
tion, University of Brescia, Brescia, Italy.
Hoffmann, J. 2003. The Metric FF planning sys-
tem: Translating “Ignoring the delete list” to numeri-
cal state variables. JAIR 20:291–341.
Jabbar, S., and Edelkamp, S. 2005. I/O efficient
directed model checking. In Conference on Verifi-
cation, Model Checking and Abstract Interpretation
(VMCAI), 313–329.
Korf, R. E., and Schultze, P. 2005. Large-scale parallel
breadth-first search. In AAAI, 1380–1385.
Munagala, K., and Ranade, A. 1999. I/O-complexity
of graph algorithms. In SODA, 687 – 694.

ICAPS 2006

30 International Planning Competition

Optimal Symbolic PDDL3 Planning with MIPS-BDD

Stefan Edelkamp∗

Computer Science Department
University of Dortmund, Dortmund, Germany

Introduction
State trajectory and plan preference constraints are the two
language features introduced in PDDL3 (Gerevini & Long
2005) for describing benchmarks of the5th international
planning competition.State trajectory constraintsprovide
an important step of the agreed fragment of PDDL towards
the description of temporal control knowledge (Bacchus &
Kabanza 2000) and temporally extended goals (DeGiacomo
& Vardi 1999). They assert conditions that must be met dur-
ing the execution of a plan and are often expressed using
using quantification over domain objects. Annotating goal
conditions and state trajectory constraints withpreferences
modelssoft constraints. For planning with preferences, the
objective function scales the violation of the constraints.

Symbolic exploration based on BDDs (Bryant 1985) acts
on sets of states rather than on singular ones and exploit
redundancies in the joint state representation. BDDs are
directed acyclic automata for the bitvector representation
of a state. The unique representation of a state set as a
BDD is much more memory-efficient than an explicit rep-
resentation for the state set. In MIPS-BDD we make op-
timal BDD solver technology applicable to planning with
PDDL3 domains. We compile state trajectory expressions
to PDDL2 (Fox & Long 2003). The grounded representa-
tion is annotated with propositions that maintain the truth
of preferences and operators that model that the synchro-
nized execution or an associated property automaton. We
contributeCost-Optimal Breadth-First-Searchand adapt it
to the search with preference constraints.

Symbolic Breadth-First Search
Symbolic search is based on satisfiability checking. The
idea is to make use of Boolean functions to avoid (or at
least lessen) the costs associated with the exponential mem-
ory blow-up for the state set involved as problem sizes get
bigger. For propositional action planning problems we can
encode the atoms that are valid in a given planning state in-
dividually by using the binary representation of their ordinal
numbers, or via the bit vector of atoms being true and false.

There are many different possibilities to come up with an
encoding of states for a problem. The more obvious ones

∗The author is supported by the German Research Foundation
(DFG) projectHeuristic SearchEd 74/3

seem to waste a lot of space, which often leads to bad perfor-
mance of BDD algorithms. We implemented the approach
of (Helmert 2004) to infer a minimized finite domain encod-
ing of a propositional planning domain1

Given a fixed-length binary encoding for the state vector
of a search problem, characteristic functions represent state
sets. The function evaluates to true for the binary represen-
tation of a given state vector, if and only if, the state is a
member of that set. As the mapping is 1-to-1, the charac-
teristic function can be identified with the state set itself.
Transitions are formalized as relations, i.e., as sets of tuples
of predecessor and successor states, or, alternatively, as the
characteristic function of such sets. Thetransition relation
has twice as many variables as the encoding of the state. If
x is the binary encoding of a state andx′ is the binary en-
coding of a successor state, thenT (x, x′) evaluates to true.
We observe thatT is the disjunct of all individual state tran-
sitionsTO, with O being an operator inO. What we are
really interested in, is to compute the (partitioned)image∨
O∈O ∃x (TO(x, x′) ∧ Open(x)) of a state set represented

by Openwrt. a transition relationT .
For symbolic breadth-first search, letOpeni be the

boolean representation of a set of states reachable from the
initial stateI in i steps, initialized withOpen0 = I, and
Openi+1(x

′) =
∨
O∈O ∃x (TO(x, x′) ∧ Openi(x)). Note

thatS on the right hand side of the equation depends onx
compared tox′ on the left hand side. Thus, it is necessary to
substitutex′ with x in Openi, written asOpeni[x↔ x′]. To
terminate the exploration, we check, whetherOpeni ∧ G is
equal to thefalsefunction⊥.

In order to retrieve the solution path we assume that all
setsOpen0, . . . ,Openi are available. We start with a state
that is in the intersection ofOpeni and the goalG. This state
is the last one on the sequential optimal solution path. We
take its characteristic functionS into the relational product
with T to compute its potential predecessors. Next we com-
pute the second last state on the optimal solution path in the
intersection ofPredandOpeni−1, and iterate until the entire
solution has been constructed.

1We found an application for further improvement of the en-
coding through a specialized BDD exploration. A set of atoms
a1 ∨ . . . ∨ an can be merged to a fact/SAS+ group if the planning
goal

∑
1≤i6=j≤n

ai∧aj cannot be reached from the initial state. A
BDD backward search terminates usually fast.

ICAPS 2006

International Planning Competition 31

We employ BDDs for symbolic exploration. A BDD is
a data structure for a concise and unique representation of
Boolean functions in form of a DAG with a single root node
and two sinks, labeled “1” and “0”, respectively. For eval-
uating the represented function for a given input, a path is
traced from the root node to one of the sinks. The variable
ordering has a large influence on the size of a reduced and
ordered BDD. In an interleaved representation, that we em-
ploy for the transition relation, we alternate betweenx and
x′ variables. Moreover, we have experimented that prefer-
ence variables are better to be queried at the top of the BDD.

BDDs for Bounded Arithmetic Constraints
The computation of a BDDF (x) for a linear objective func-
tion f(x) =

∑n
i=1 aixi, we first compute the minimal and

maximal value thatf can take. This defines the range that
has to be encoded in binary. For the ease of presentation we
assume that we considerxi ∈ {0, 1}.

The work of (Bartzis & Bultan 2006) shows that the BDD
for representingf has at mostO(n

∑n
i=1 ai) nodes and can

be constructed with matching time performance. Even wile
taking the most basic representation, this result improves on
alternative, more expressive structures like ADDs. More-
over, the result generalizes to variablesxi ∈ {0, . . . , 2b}
and the conjunction/disjunction of several linear arithmetic
formulas. This implies that Metric Planning for bounded lin-
ear arithmetic expressions in the preconditions and effects is
actually efficient for BDDs.

The BDD construction algorithm in MIPS-BDD for the
objective function differs from the specialized construction
in (Bartzis & Bultan 2006) but computes the same result.

Symbolic Cost-Optimal Breadth-First Search
We build the binary representation for the objective
function as follows. For goal preferences of type
(preference p φp) we associate a Boolean variablevp
(denoting the violation ofp) and construct the following in-
dicator function:Xp(v, x) = (vp∧φp(x))∨ (¬vp∧φp(x)).

Figure 1 displays the pseudo-code for a symbolic BFS-
exploration incrementally improving an upper boundU on
the solution length. The state sets that are used are repre-
sented in form of BDDs. The search frontier denoting the
current BFS layer is tested for an intersection with the goal,
and this intersection is further reduced according to the al-
ready established bound.

Theorem The latest plan stored by the algorithmCost-
Optimal-Symbolic-BFShas minimal cost.

Proof The algorithm eliminates duplicates and traverses the
entire planning state space. It generates each possible plan-
ning state exactly once. Only inferior states are pruned.

State Trajectory Constraints
State trajectory constraints can be interpreted Linear Tem-
poral Logic (LTL) (Gerevini & Long 2005) and translated
into automata that run concurrent to the search and accept
when the constraint is satisfied (Gastin & Oddoux 2001).
LTL includes temporal modalities likeA for always, F for

Procedure Cost-Optimal-Symbolic-BFS
Input: State space problem with transition relationT

Goal BDDG, and initial BDDI
Output: Optimal solution path is stored

U ←∞
loop

Reach(x′)← I(x′); Open(x′)← I(x)
Intersection(x)← I(x) ∧ G(x)
Bound(v)← F (v) ∧

∨U
i=0[v = i]

Eval(v, x)← Intersection(x) ∧
∧
pXp(v, x)

Metric(x)← ∃v : Eval(v, x) ∧Bound(v)
while (Metric(x) 6= ⊥)

if (Open= ⊥) return ”Exploration completed”
Succ(x′) =

∨
O∈O ∃x TO(x, x′) ∧Open(x)

Open(x)← (Succ(x′) ∧ ¬Reach(x′))[x′ ↔ x]
Reach(x′)← Reach(x′) ∨ Succ(x′)
Intersection(x)← Open(x) ∧ G(x)
Eval(v, x)← Intersection(x) ∧

∧
pXp(v, x)

Metric(x)← ∃v : Eval(v, x) ∧Bound(v)
U ← ConstructAndStoreSolution(Metric(x))− 1

Figure 1: Cost-Optimal BFS Planning Algorithm.

eventually, andU for until. We propose to compile the au-
tomata back to PDDL with each transition introducing a new
operator (Edelkamp 2006). Each automaton state for each
automaton results in an atom. For detecting accepting states
we additionally includeacceptingpropositions. The initial
state of the planning problem includes the start state of the
automaton and an additional proposition if it is accepting.
For all automata, the goal includes their acceptance.

Including state trajectory constraints in the Cost-Optimal
Breadth-First Search algorithm is achieved as follows.

For (hold-after t φ) we impose thatφ is satis-
fied for the search frontier in all stepsi > t. For
(hold-during t1 t2 φ) as similar reasoning applies.

For (sometimes φ) we apply automata-based model
checking to build a (B̈uchi) automata for the LTL formula
Fφ. Let S be the original planning space andAFφ be
the constructed (B̈uchi) automaton for formulaAFφ and
⊗ the cross product between two automata, thenP ←
P ⊗ AFφ andG ← G ∪ {accepting (Aφ)}. The initial
state is extended by the initial state of the automaton, which
in this case is not accepting.

For (sometimes-before φ ψ) the temporal formula
is more complicated, but the reasoning remains the same.
We compileP ← P⊗A(¬φ∧¬ψ)U((¬φ∧ψ)∨(A(¬φ∧¬ψ))) and
adapt the planning goal and the initial state accordingly.

For (always φ) we apply automata theory to construct
P ← P ⊗ AGφ. Alternatively, for all i we could im-
poseOpeni ← Openi ∧ φ in analogy tohold-during
and hold-after . For (at-most-once φ) we assign
the planning problemP to P ⊗ AAφ→(φU(G¬φ))). For
(within t φ) we build the cross productP ← P ⊗ AFφ.
Moreover, we setOpent ← Opent ∧{accepting (AFφ)}.

ICAPS 2006

32 International Planning Competition

Preferences for State Trajectory Constraints
For state trajectory constraints that are constructed via au-
tomata theory, we apply the following construction. Instead
of adding the automaton acceptance to the goal state we
combine the acceptance with the violation predicate. If the
automaton accepts then the preference is not violated; if it is
located in a non-accepting state, then it is violated. For ex-
ample, given(preference p (at-most-once φ)) we
explore the cross productP ← P ⊗ AAφ→(φU(G¬φ)). Let
a = {accepting (AAφ→(φU(G¬φ))))}. If a ∈ add(O)
thendel(O) ← del(O) ∪ {vp},add(O) ← add(O) \ {vp}.
If a ∈ del(O) thenadd(O) ← add(O) ∪ {vp},del(O) ←
del(O) \ {vp}. An specialized operatorskip allows to fail
the automata completely. If automaton is ignored once, it
remains invalid for the rest of the computation.

Memory Limitation
BDDs already save space for large state sets. For purely
propositional domains we additionally apply bidirectional
symbolic BFS, which is often much faster as unidirectional
search. Symbolic BFS is supposed to have small search
frontiers (Jensenet al. 2006).

One implemented idea is an extension toFrontier-
Search(Korf et al. 2005), which has been proposed for undi-
rected or directed acyclic graph structures. In more general
planning problems we have established that a duplicate de-
tection scope (a.k.a.locality) of 4 is sufficient to guarantee
termination forCost-Optimal-Symbolic-BFSin the compe-
tition domains. Moreover, we do not store any intermedi-
ate BDD layer that corresponds to state trajectory automata
transitions. Only the layers that correspond to the original
unconstrained state space are stored.

Our competition results are eitherstep-optimal(Proposi-
tional domains) orcost-optimal(Simple Preferences/ Qual-
itative Preferencesdomains). We have not yet implemented
support for metric and temporal planning operators. There
is 3 restrictions to the optimality in state-trajectory domains.

1. We do not supportpreference preconditions. Actually, we
can parse and process the conditions, but as the domain of
theis-violated variables is in fact unbounded this af-
fects a possible encoding as a BDD. Nonetheless, as these
variables are monotone increasing, it is not difficult to de-
sign a specialized solution for them.

2. We assume that the automaton that is built does not affect
the optimality. An automaton that constructed via the LTL
translation in LTL2BA is in fact optimized in the number
of states and not for the preserving path lengths. On the
other hand, there some LTL converters that preserve opti-
mal paths (Schuppan & Biere 2005).

3. The exploration is terminated by limited time or space re-
sources. In this case the reported plans for preference do-
mains are optimal only wrt. the search depth reached.

For larger problems, we looked at suboptimal solutions.
We have tested an in-built support for canceling the explo-
ration if the BDD node count for optimal search exceeds
a threshold on BDD nodes that corresponds to the limi-
tations of main memory. Subsequently, the entire mem-

ory for all BDD nodes is released. We successfully tested
two strategies,heuristic symbolic searchbased on pattern
databases andsymbolic beam-searchremoving unpromising
states. For the competition, we switched this feature off.

Conclusion
We have devised an optimal propositional PDDL3 planning
algorithm based on BDDs. Besides using the same LTL2BA
converter, the algorithm shares no code with our explicit-
state planner MIPS-XXL. As the approach for state trajec-
tory constraints relies on a translation to LTL, it has the po-
tential to deal with much larger temporal constraint language
expressiveness than currently under consideration.

After the competition, we will likely extend the above
planning approach to general domains with linear expres-
sions in the actions. As a prerequisite to apply (Bartzis &
Bultan 2006) numerical state variables have to fit into some
finite domains. Most of the metric planning domains around
belong to this group. Moreover, we encountered that model
checkers like nuSMV and CadenceSMV can already deal
with LTL formula. For this cases, the LTL formula is di-
rectly encoded into a transition relation without using an in-
termediate explicit automaton (Schuppan & Biere 2005).

References
Bacchus, F., and Kabanza, F. 2000. Using temporal logics
to express search control knowledge for planning.Artificial
Intelligence116:123–191.
Bartzis, C., and Bultan, T. 2006. Efficient BDDs for
bounded arithmetic constraints.STTT8(1):26–36.
Bryant, R. E. 1985. Symbolic manipulation of boolean
functions using a graphical representation. InACM/IEEE
DAC, 688–694.
DeGiacomo, G., and Vardi, M. Y. 1999. Automata-
theoretic approach to planning for temporally extended
goals. InECP, 226–238.
Edelkamp, S. 2006. On the compilation of plan constraints
and preferences. InICAPS, To Appear.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research20:61–124.
Gastin, P., and Oddoux, D. 2001. Fast LTL to Büchi au-
tomata translation. InCAV, 53–65.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in PDDL3. Technical report, Department of
Electronics for Automation, University of Brescia.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. InICAPS, 161–170.
Jensen, R.; Hansen, E.; Richards, S.; and Zhou, R. 2006.
Memory-efficient symbolic heuristic search. InICAPS, To
Appear.
Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search.Journal of the ACM52(5):715–748.
Schuppan, V., and Biere, A. 2005. Shortest counterex-
amples for symbolic model checking of LTL with past. In
TACAS, 493–509.

ICAPS 2006

International Planning Competition 33

FDP: Filtering and Decomposition for Planning

Stéphane Grandcolas et Cyril Pain-Barre
LSIS – UMR CNRS 6168

Domaine Universitaire de Saint-Jérôme
Avenue Escadrille Normandie-Niemen

13397 MARSEILLE CEDEX 20 France
{stephane.grandcolas,cyril.pain-barre}@lsis.org

Overview
FDP is a planning system based on the paradigm of plan-
ning as constraint satisfaction, that searches for optimal se-
quential plans. The input langage is PDDL with typing and
equality.FDPworks directly on a structure related to Graph-
plan’s planning graph: given a fixed bound on the length
of the plan, the graph is incrementally built. Each time the
graph is extended, a search for a sequential plan is made.

FDP does not use any external solver. The reason is that
using an up-to-date CSP solver allows to take benefits from
recent advances in the CSP field, but has also the disadvan-
tage that the resulting system can not take into account the
specificities of planning nor the structure of the problem.
Hence, as theDPPLAN system (Baioletti, Marcugini, & Mi-
lani 2000),FDP integrates consistency rules and filtering and
decomposition mechanisms suitable for planning.

A structure that represents the planning problem is incre-
mentally extended until a solution is found or a fixed bound
of the number of steps is reached. The current implemen-
tation extends the structure with one step more. Each time
a depth-first search is performed, based on problem decom-
position with actions sets partitioning. Nevertheless, it is
basicallyDepth-First Iterative Deepening(Korf 1985) (or
IDA∗ with admissible heuristic of constant cost1).

FDP does not detect unsolvability of problems, as many
other similar approaches (Rintanen 1998; Baioletti, Marcug-
ini, & Milani 2000; Lopez & Bacchus 2003). Then, it must
be given a fixed bound of plan length in order to stop on
unsolvable instances of problems. This weakness of the al-
gorithm will be adressed in future work.

The search procedure is complete. Then if a solution is
found, it is minimal in terms of plan length. On the other
hand, the current search procedure ofFDP requires that any
solution must contain only one single action per step. Hence,
solutions returned byFDPare optimal in terms of the number
of actions.

Problem representation
FDP works on a structure that resembles the well-known
GRAPHPLAN planning graph (Blum & Furst 1995). It is a
leveled graph that alternatespropositions levelsandactions
levels. Thei-th propositions level represents the validity of
the propositions at stepi. The i-th actions level represents

the possible values for the action that is applied at stepi.
SinceFDP searches for optimal sequential plans,FDP struc-
tures do not contain no-ops actions.

ConsistentFDP-structures
FDP makes use of consistency rules to remove fromFDP-
structures some values of proposition variables or actions
that cannot occur in any valid plan. For example an action
whose one precondition is not valid should not be consid-
ered, and then can be removed without loss of completeness.
The search procedure maintains the consistency of theFDP-
structure, so as to discard as soon as possible invalid litterals
or actions. A consistent structure in which each action level
contains a single action and such that the first proposition
level corresponds to the initial state of the planning problem
and the last level contains the goals, represents a solution
plan.

FDP consistency rules are the following. A litterall at
level i is inconsistent (cannot betrue) if one of the following
situations hold:

1. (forward persistency)
l is not true at leveli − 1 and no possible action at level
i− 1 hasl as effect,

2. (all actions delete)
any possible action at leveli− 1 deletesl,

3. (backward persistency)
l is not true at leveli + 1 and no possible action at leveli
deletesl,

4. (opposite always required)
any possible action at leveli has¬l as precondition.

A possible actiona at stepi is inconsistent (cannot occurs)
if one of the following situations hold:

1. (falsified precondition)
a precondition ofa is inconsistent at leveli,

2. (falsified effects)
an effect ofa is inconsistent at leveli + 1,

3. (effect required)
there exists a litterall such thatl is inconsistent at leveli,
¬l is inconsistent at leveli + 1, andl is not an effect ofa.

ICAPS 2006

34 International Planning Competition

Maintaining consistency
Making aFDP-structure consistent consists in removing in-
consistent values and actions until none exists or a domain
becomes empty. The mechanism is similar to arc consis-
tency enforcing procedures in the domain of constraint satis-
faction (Dechter 2003; Mackworth 1977). One major aspect
of the procedure is that the removals are propagated forward
and backward through theFDP-structure. Propagation stops
with failure if a domain becomes empty and the procedure
returns FALSE. In the other case the procedure stops with
the consistentFDP-structureS.

Search procedure
To find an optimal plan,FDP starts with a one stepFDP-
structure, and extends it until a plan is found or a given fixed
bound is reached. Each time theFDP-structure is extended, a
depth-first search is performed. This ensures the optimality
of the solution plan if one exists.FDP employs adivide and
conquerapproach to search for a plan of a given length: the
structure is decomposed into smaller substructures and the
procedure searches recursively each of them. The substruc-
tures are filtered so as to detect failures as soon as possible.

The decomposition mechanism currently performed is
splitting action sets. It consists in partitionning the set of
actions at a given stepi so as to put together actions which
have common deletions: The procedure searches for the un-
defined proposition variablep at stepi + 1 for which the
number of actions that delete it and the number of actions
that do not are the closest. TheFDP-structure is then de-
composed into two substructures, one containing the actions
at stepi which deletep, the other containing the remaining
actions at stepi. The two substructures are then filtered.

When searching for a plan of lengthk, FDP uses aFDP-
structureS:Initially each action set ofS is set toA and each
proposition variable is undefined. Then, the values which
are not in the initial state and the opposites of the goals are
removed and a preliminary filtering is performed onS. If S
is inconsistent then the search stops with failure, there are
no plans of lengthk. In the other case,FDP starts searching
with the consistent structureS, which is decomposed into
two substructures according to the splitting of an actions set.
Nevertheless, the search procedure remains a depth first it-
erative deepening search, since it always chooses the first
non singleton actions set for splitting, starting from the ini-
tial state. To produce each of the two substructures by ac-
tions set splitting,FDP just removes from the actions set the
actions belonging to other actions subset. Then, each re-
sulting substructure is filtered so as to remove inconsistent
values and actions. If it is consistent, the search is recur-
sively performed. These transformations continue until the
(sub)structure becomes inconsistent or a valid plan.

Improving performance
FDP uses several techniques to avoid search efforts and then
improve performance. They are: recording nogoods, evalua-
tion of minimal plan length, avoidance of redundant actions
sequences, elimination of literals and actions that are not rel-
evant. These techniques are briefly discussed below.

Nogoods recording. Whenever the system produces a to-
taly defined state at a leveli such that the recursive search
from that state returns failure, this state and its distance to
the golas are recorded as a nogood. Later, if the same state
is reached but its distance to the goal step is less than or
equal to the memorized distance, then there is no need to
pursue the search. Recording nogoods improves drastically
the performances of the search.

Minimal plan length. Anytime a propositional levelFi is
completely instantiated,FDP performs a greedy evaluation
of the length of a plan to achieve the goals from that state.
It consists in choosing at each of the following steps the ac-
tion which adds the most unsatisfied goals. In the best case
these actions will constitute a valid plan. This heuristic is ad-
missible: The number of steps needed to achieve the goals
with this evaluation process cannot be greater than the num-
ber of steps actually needed in any valid plan. If at stepk
some goals are not achieved by the selected actions, then the
search from the current state is aborted.

Redundant actions sequences.Since FDP searches se-
quential plans, it can generate equivalent permutations of
“independent” actions and perform as many redundant pro-
cessings. To avoid these useless processings,FDP discards
the sequences of independent actions that do not verify an
arbitrary total order on the actions denoted≺.

Definition 1 (Ordered 2-Sequences)The actionsa1 and
a2 are independentif the following situations hold:

1. no precondition ofa1 is an effect ofa2 and no precondi-
tion ofa2 is an effect ofa1

1,
2. no deletion ofa2 is a precondition ofa1 and no deletion

of a1 is a precondition ofa2.

The sequence(a1, a2) is anordered 2-sequenceif either a1

anda2 are independent anda1 ≺ a2, or a1 anda2 are not
independent.

FDP discards unordered 2-sequences. Besides, it also
discards sequences whose actions have exactly opposite
effects, as such sequences are useless in a plan.

To avoid sequences that do not verify the order, the fol-
lowing rules are added to the definition of inconsistent ac-
tions:

4. (no backward ordered 2-sequence)
a is inconsistent at leveli if there exists no actiona′ at
level i− 1 such that(a′, a) is an ordered 2-sequence,

5. (no forward ordered 2-sequence)
a is inconsistent at leveli if there exists no actiona′ at
level i + 1 such that(a, a′) is an ordered 2-sequence.

Relevant literals and actions. FDP searches optimal se-
quential plans. Then actions which do not help effectively to
achieve the goals are useless and should not be considered.
Basically relevant actions are the ones which add goals at the

1If a1 requires a fact which is added bya2, it is possible in some
situations that the sequence(a2, a1) must be authorized. Thena1

anda2 should not be considered as independent.

ICAPS 2006

International Planning Competition 35

last level. This property can be propagated backwards itera-
tively introducing the notion ofrelevant literals and actions
at some steps:

1. a literall is relevant at leveli if there exists an actiona at
level i such thatl is a precondition ofa anda is relevant
at leveli,

2. an actiona is relevant at leveli if one of its effects is
relevant at leveli + 1.

At any moment during the search, actions that are not rel-
evant at a given level can be removed from this step as it
could not serve in any minimal solution.

Mutually exclusive propositions and actions FDP does
not implement any specific processing for mutual exclusion
relations, in particular those handled in GRAPHPLAN. In-
deed, they are useless sinceFDP produces only sequential
plans, and the effects of mutual exclusions of propositions
are redundant withFDP inconsistency rules.

Conclusion and perspectives
Compared to other optimal sequential plannersFDP seems
to be competitive. Its advantage is its regularity: maintain-
ing consistency, memorizing invalid states, and discarding
redundant sequences, in addition with a fast and light search
procedure, letFDP quickly detect deadends.

Its consistency rules and its decomposition strategies al-
low to operate backward chaining search or bidirectional
search and more generally undirectional search.FDP could
be improved with other evaluations of the minimal distance
to the goals (Haslum, Bonet, & Geffner 2005) and concur-
rent bidirectional searches which could cooperate through
valid or invalid states. The lack of termination criterion
will be also addressed in future work. FinallyFDP could
be extended to handle valued actions and to compute plans
of minimal costs. Also, planning with ressource will be a
matter of development.

References
Baioletti, M.; Marcugini, S.; and Milani, A. 2000. Dpplan:
An algorithm for fast solutions extraction from a planning
graph. InAIPS, 13–21.

Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. InProceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
95), 1636–1642.

Dechter, R. 2003.Constraint Processing.Morgan Kauf-
mann, San Francisco.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New ad-
missible heuristics for domain-independent planning. In
Veloso, M. M., and Kambhampati, S., eds.,AAAI, 1163–
1168. AAAI Press AAAI Press / The MIT Press.

Korf, R. 1985. Macro-operators: A weak method for learn-
ing. Artificial Intelligence26(1):35–77.

Lopez, A., and Bacchus, F. 2003. Generalizing graphplan
by formulating planning as a CSP. In Gottlob, G., and
Walsh, T., eds.,IJCAI, 954–960. Morgan Kaufmann.

Mackworth, A. 1977. Consistency in networks of relations.
In Artificial Intelligence, 8:99–118.
Rintanen, J. 1998. A planning algorithm not based on
directional search. InKR, 617–625.

ICAPS 2006

36 International Planning Competition

Fast (Diagonally) Downward

Malte Helmert
Institut für Informatik, Albert-Ludwigs-Universität Freiburg

Georges-Köhler-Allee, Gebäude 052, 79110 Freiburg, Germany
helmert@informatik.uni-freiburg.de

Abstract

Fast Downward is a propositional planning system based on
heuristic search. Compared to other heuristic planners such
as FF or HSP, it has two distinguishing features: First, it is
tailored towards planning tasks with non-binary (but finite
domain) state variables. Second, it exploits the causal de-
pendency between state variables to solve relaxed planning
tasks in a hierarchical fashion.
Fast Downward won the propositional satisficing track of the
4th International Planning Competition (IPC4). At the 5th
International Planning Competition (IPC5), a (mostly) un-
changed version of the planner was entered to provide a ref-
erence point for comparing to the earlier state of the art.

Introduction
Fast Downward is a planning system based on heuristic state
space search, in the spirit of HSP or FF (Bonet & Geffner
2001; Hoffmann & Nebel 2001). It makes use of the causal
graph (or CG) heuristic, introduced in an ICAPS 2004 paper
(Helmert 2004). Fast Downward itself is described in much
detail in a JAIR article (Helmert 2006). For this reason, we
only provide a very brief overview in the following.

Structure of the planner
Fast Downward consists of three separate programs:

1. the translator (written in Python),
2. the knowledge compilation module (written in C++), and
3. the search engine (also written in C++).
To solve a planning task, the three programs are called in
sequence; they communicate via text files.

Translator
The purpose of the translator is to transform the planner in-
put, specified in the propositional fragment of PDDL (in-
cluding ADL features and derived predicates, but not the
preferences and constraints introduced for IPC5), into a
multi-valued state representation similar to the SAS+ for-
malism (Bäckström & Nebel 1995).

The main components of the translator are an efficient
grounding algorithm for instantiating schematic operators
and axioms and an invariant synthesis algorithm for deter-
mining groups of mutually exclusive facts. Such fact groups

are consequently replaced by a single multi-valued state
variable encoding which fact (if any) from the group is sat-
isfied in a given world state, rather than encoding the truth
of each fact in a separate state variable.

The translator can be used independently from the rest of
the planner, and has already proved to be a useful component
in planning systems not related to Fast Downward (van den
Briel, Vossen, & Kambhampati 2005).

Knowledge Compilation
Using the multi-valued task representation generated by the
translator, the knowledge compilation module is responsible
for building some data structures which play a central role
in Fast Downward’s search engine.

First and foremost, it determines the causal graph of
the input task, whose purpose is to encode the information
which state variables are relevant to changing which other
state variables of the task. Together with domain transition
graphs for each state variable, which encode the ways in
which a given state variable may change its value through
operator applications, it forms the basis for the recursive
computation of the CG heuristic.

The knowledge compilation module also generates suc-
cessor generators and axiom evaluators, data structures for
efficiently determining the set of applicable actions in a
given state of the planning task and for evaluating the val-
ues of derived state variables.

Search Engine
Using these data structures, the search engine attempts to
find a plan using greedy best-first search with some enhance-
ments such as the use of preferred operators (similar to help-
ful actions in FF) and deferred heuristic evaluation, which
mitigates the impact of large branching factors in planning
tasks with accurate heuristic estimates.

The search engine can also be configured to use sev-
eral heuristic estimators (namely, the CG heuristic and the
FF heuristic) in tandem within an algorithm called multi-
heuristic best-first search. This search algorithm attempts
to exploit strengths of the utilized heuristics in different
parts of the search space in an orthogonal way. The plan-
ner configuration using multi-heuristic best-first search is
called Fast Diagonally Downward, because it combines the

ICAPS 2006

International Planning Competition 37

“downward” thrust of the CG heuristic with the “forward”
thrust of the FF heuristic.

Fast Downward also includes a third search algorithm
called focused iterative-broadening search, but as of this
writing, it is not clear whether or not this algorithm will be
used for the IPC5 benchmark set.

New Developments
Since IPC4, apart from some bug fixes, we made only one
modification to Fast Downward.

In some planning domains, it is clear from the multi-
valued task description that some state variables can change
their value in essentially arbitrary ways without further con-
ditions on other state variables. For example, state variables
which encode vehicle locations in transportation domains
such as LOGISTICS or DEPOTS never have causal depen-
dencies on other state variables in the task (i. e., they are
source nodes in the causal graph) and can never assume a
value from which the initial value cannot be restored any-
more (i. e., their domain transition graphs are strongly con-
nected).

In tasks where such state variables are present, Fast
Downward can now apply safe abstraction to remove the
state variables from the planning task altogether and plan in
the resulting abstract planning task. After planning, the nec-
essary actions to convert the generated abstract plan to the
concrete level can be inserted in a straight-forward manner.

Safe abstractions can substantially speed up planning; in-
deed, in very simple cases like the LOGISTICS domain, re-
peated application of safe abstraction can completely solve
the planning task, without requiring any search. However,
there is often a price to pay in plan quality.

At IPC5, we have run Fast Downward both in a version
that does use safe abstractions where possible and in a ver-
sion which never uses them. The latter version of the planner
is identical to Fast Downward at IPC4 (modulo bug fixes)
and thus serves as a useful reference point.

References
Bäckström, C., and Nebel, B. 1995. Complexity results for
SAS+ planning. Computational Intelligence 11(4):625–
655.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS 2004, 161–170.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research. Accepted for
publication.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
van den Briel, M.; Vossen, T.; and Kambhampati, S. 2005.
Reviving integer programming approaches for AI plan-
ning: A branch-and-cut framework. In Proc. ICAPS 2005,
310–319.

ICAPS 2006

38 International Planning Competition

New Features in SGPlan for Handling Preferences and Constraints in PDDL3.0∗

Chih-Wei Hsu and Benjamin W. Wah
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

Urbana, IL 61801, USA
{chsu,wah}@manip.crhc.uiuc.edu

Ruoyun Huang and Yixin Chen
Department of Computer Science and Engineering

Washington University in St Louis
St Louis, MO 63130, USA

rh11@cec.wustl.edu
chen@cse.wustl.edu

Abstract

In this paper, we describe our enhancements incorpo-
rated in SGPlan (hereafter called SGPLan5) for sup-
porting the new features of the PDDL3.0 language used
in the Fifth International Planning Competition (IPC5).
Based on the architecture of SGPlan that competed in
the Fourth IPC (hereafter called SGPLan4), SGPLan5

partitions a large planning problem into subproblems,
each with its own subgoal, and resolves those incon-
sistent solutions using our extended saddle-point condi-
tion. Subgoal partitioning is effective for solving large
planning problems because each partitioned subprob-
lem involves a substantially smaller search space than
that of the original problem. In SGPLan5, we generalize
subgoal partitioning so that the goal state of a subprob-
lem is no longer one goal fact as in SGPLan4, but can
be any fact with loosely coupled constraints with other
subproblems. We have further developed methods for
representing a planning problem in a multi-valued form
in order to accommodate the new features in PDDL3.0,
and for carrying out partitioning in the transformed
space. The multi-valued representation leads to more
effective heuristics for resolving goal preferences and
trajectory and temporal constraints.

DESIGN GOALS
SGPLan5 has participated in the suboptimal track of the de-
terministic part of the Fifth International Planning Competi-
tion (IPC5). It was designed to fully support the PDDL3.0
language (Gerevini & Long 2005) specifications.

PDDL3.0, the modeling language used in IPC5, extends
the previous PDDL2.2 (Edelkamp & Hoffmann 2004) speci-
fications by introducing several new features: a) simple pref-
erences over only action preconditions or goals, b) qualita-
tive preferences that are logical preferences over trajectory
constraints, c) complex constraints that are trajectory con-
straints with metric time and possibly numeric fluents, and
d) complex preferences that are preferences over trajectory
constraints with metric time and possibly numeric fluents.

SGPLan5 uses a multi-valued domain formulation (MDF)
based on the SAS+ formalism. MDF has been used by other

∗Research supported by the National Science Foundation Grant
IIS 03-12084.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

20

40

60

80

100

120

140

160

0 200 400 600 800 1000 1200
V

ar
ia

bl
e

ID

Constraint ID

Figure 1: The locality of the constraint-variable structure in the
fifth instance of the TPP-SimplePreferences domain.

planning systems, such as Fast Downward (Helmert 2004)
and IP planner (van den Briel, Vossen, & Kambhampati
2005). We have implemented our own preprocessing en-
gine for translating a PDDL3.0 problem into MDF. There
are several reasons for using MDF.

a) MDF provides a more compact representation than a
binary-valued representation and leads to a more effective
partitioning of the constraints.

b) Using transition graphs, MDF facilitates the analysis of
the causal dependencies among variables. The analysis
leads to much more accurate heuristic guidance values
than those of the Metric-FF heuristic used in SGPLan4.

c) Using the new heuristic function, high-quality approx-
imate plans can be found for resolving temporal con-
straints in PDDL3.0 problems efficiently.

CONSTRAINT LOCALITY
Constraint partitioning in SGPLan5 is based on the local-
ity of constraints observed in IPC5 planning domains. Fig-
ure 1 illustrates the constraint-variable structure in the fifth
instance of the TPP-SimplePreferences domain. Each vari-
able represents an action and its schedule in the plan, and a
constraint can be a mutual exclusion, an inconsistent state

ICAPS 2006

International Planning Competition 39

Search−space
reduction

Temporal
engine

engine

Trajectory

MCDC Heuristic Planner

constraints

Techniques
Studied

Resolution
Constraint

Engine

Granularity
Control

Search-
Space

Reduction

Global-

Constraint
Partitioning

on MDF
G1 G2 GN

P1,1 P1,c1 PN,cN
PN,1

Update Strategy
Plan

Evaluation
Penalty-Value

G
lo

ba
l-

L
ev

el
P

la
nn

in
g

Global Constraints on Subproblems

Su
bg

oa
l-

L
ev

el
P

la
nn

in
g

Preferences

constraints

Temporal
Engine

Trajectory

Handling

Figure 2: Architecture of SGPLan5.

variable assignment, or a trajectory constraint. It is obvi-
ous that a majority of the constraints can be localized af-
ter identifying those (global) constraints with variables that
have strong causal dependencies to many other variables.

We have developed SGPLan5 to exploit constraint local-
ity in all IPC5 domains. However, constraints in PDDL3.0,
both hard and soft, can be over the intermediate states of a
plan, in addition to those hard constraints on the final states
as in PDDL2.2. Hence, we must extend SGPLan4 (Chen,
Wah, & Hsu 2006) that only aims to satisfy a conjunctive
list of the conditions on the final states. In SGPLan5, we
have extended our partitioning approach based on MDF. The
multi-valued domain analysis allows us to eliminate a num-
ber of mutual exclusions as well as inconsistencies among
the soft constraints before the constraints are partitioned.

Note that, although constraint locality is common in all
IPC5 benchmarks, the difficulty of resolving the constraints
varies across domains. For instance, we have found that
all the subproblems in the OpenStacks domain are trivial to
solve, but the major challenge is to enforce the consistency
of its shared variables.

ARCHITECTURE OF SGPLan5

By formulating a subproblem in such a way that each has
one goal state, SGPLan5 partitions a planning problem into
subproblems and finds a feasible plan for each subgoal (Fig-
ure 2). In the global level, it partitions the problem by its
multi-valued state variables and resolves its violated global
constraints using the theory of extended saddle points (Wah
& Chen 2006). In the local level, it calls a basic planner
for solving each partitioned subproblem, using the violated
global constraints and the global preferences as biases.

Global-Level Search

Partitioning Strategy. We have observed that many con-
straints have a strong locality if we can identify those con-
straints that involve many state variables. From the causal
graph, we can extract those (low-level) state variables that
influence many other state variables. Dependencies due to
these state variables would cause active mutual exclusions
across subproblems no matter how the constraints are parti-
tioned. On the other hand, there are (high-level) state vari-
ables whose state transitions require a set of other (low-
level) variables. Since constraint locality is associated with
high-level state variables, we can formulate constraints that
involve state variables across partitions as global constraints.
Also, we have chosen an optimal grain size that minimizes
the number of shared variables in order to reduce the number
of global constraints.

Resolution of Global Constraints. A planning problem
solved by SGPLan5 is defined in mixed space with a non-
linear objective and one or more constraints that may be
procedural. SGPLan5 implements a search to find extended
saddle points (ESPs) of a penalty function derived from the
problem (Wah & Chen 2006), where the penalty function
consists of the sum of the objective and the transformed con-
straint functions weighted by penalties, and an ESP is a local
minimum of the penalty function with respect to the original
variables and a local maximum with respect to the penalties.
The search algorithm is based on the extended saddle-point
condition (ESPC) that shows the one-to-one correspondence
between the ESPs and the feasible local optima.

An important property of the ESPC is that it is true for
all penalty values larger than a minimum threshold. This
property allows the search of points that satisfy the ESPC
to be found iteratively, with an inner loop that looks for a
local minimum of the penalty function, and an outer loop
that looks for any penalty values larger than the threshold.
The property also allows the search of ESPs to be partitioned
into multiple searches, each looking for a local ESP in a sub-
problem, and an outer loop that resolves the inconsistencies
among the subproblems.

A direct implementation of the ESPC in a search algo-
rithm may get stuck in an infeasible region when the objec-
tive is too small or when the penalty values and/or constraint
violations are too large. To address this issue, SGPLan5 per-
forms backtracking to escape from infeasible local traps.

Handling Constraints by the MCDC Heuristic. Since
the minimum causal dependency-cost (MCDC) heuristic
can generate a highly accurate approximate plan for each
state, we can obtain a tight lower bound on the estimated
makespan from each state and use it to eliminate the state
when temporal constraints are violated. For temporal con-
straints in the form of deadlines, we prune a state whose
MCDC value exceeds the deadlines. For side trajectory con-
straints, we prune a state whose approximate MCDC plan
violates the constraints.

ICAPS 2006

40 International Planning Competition

Handling Preferences. We have classified all trajectory
preferences into two categories.

The first class of preferences consists of those soft con-
straints on the final state and the persistent soft constraints
(model operator always). We consider them with the orig-
inal goal definitions because they have temporal overlaps
on the final state. Although it is not easy to find an op-
timal set of soft constraints to be satisfied, it is trivial to
compute their violation cost, when given an assignment of
all state variables involved in the goal preferences. There-
fore, we enumerate all reachable elements of each state vari-
able involved and choose an optimal combination of facts to
achieve. The enumerations can be highly decomposed be-
cause those constraints on the final state also have strong
localities. It is still possible to make an unreachable as-
signment, even though the MDF analysis can detect many
implicit mutual exclusions. For those unreachable assign-
ments, we perform backtracking to find alternative assign-
ments. When the cost of the assignment (such as in the form
of a weighted sum of preference violations and plan quality)
is unknown until planning ends, we also perform backtrack-
ing to find better solutions after a plan has been found.

The second class of preferences are those with insuffi-
cient information on their satisfiability. This may happen
because the related soft constraints are not always active. To
address this issue, we have devised a relax-and-tighten strat-
egy that initially ignores all those preferences belonging to
this class and that penalizes those unsatisfied preferences in
order to generate a solution. As is done earlier in resolving
constraints, we have developed a number of heuristics for
estimating the reachability of preferences and have applied
iterative refinements until no better solutions can be found.

Local-Level Basic Planner
Our basic planner follows the heuristic search algorithm
used in Metric-FF (Hoffmann 2003), but employs a new
heuristic based on the multi-valued formulation.

MCDC Heuristic Planner. Using the multi-valued for-
mulation, we have implemented a new search heuristic by
exploring the value transition graph of each variable and the
causal dependencies between the transition graphs. The gen-
eral idea is inspired by and similar to the heuristic used in
the Fast Downward planner (Helmert 2004). However, our
MCDC heuristic is very different from the Fast Downward
heuristic in a number of aspects.

First, our MCDC heuristic employs a recursive depth-
first search for generating a heuristic plan with the mini-
mum cost without pruning the causal graphs. In contrast,
the Fast Downward heuristic is incomplete since it performs
strongly-connected-component analysis and removes nodes
with low connectivity. We have found that our complete re-
cursive search leads to much less node expansions.

Second, we have developed a set of strong necessary
conditions for pruning infeasible or dominated paths when
searching for the best approximate plan. We have also de-
veloped an algorithm for detecting symmetric objects in a
given state to further reduce the cost of the MCDC heuristic

calculations. These pruning rules can reduce the computing
time of our heuristic by one to two orders of magnitude.

Third, in addition to sequential propositional planning
supported by the Fast Downward heuristic, MCDC supports
parallel temporal planning and can generate estimates of
makespans for temporal plans.

The heuristic plan found by MCDC is approximate be-
cause the transition graphs found are not complete and some
of its actions may not be supported. Moreover, numerical
and trajectory constraints are ignored in MCDC.

MCDC is not admissible because, when computing an ap-
proximate plan, we consider each subgoal individually and
add up the costs of all subgoals in order to estimate the over-
all heuristic value. Thus, MCDC ignores the positive inter-
actions among the subgoals and is not admissible.

Search-Space Reduction. Before solving a partitioned
subproblem, we can often eliminate many irrelevant actions
in its search space. We identify those relevant actions by
traversing the causal graphs in MDF and by ignoring ac-
tions that are not useful for achieving the current subgoal
state variables. We also prioritize actions that do not cause
an inconsistent assignment of multi-valued state variables.
This is done by following our partitioning setting to com-
pute a set of local state variables for each subproblem, and
by applying the helpful action idea introduced in FF (Hoff-
mann & Nebel 2001) to defer those actions that change the
value of shared state variables.

References
Chen, Y. X.; Wah, B. W.; and Hsu, C. W. 2006. Tem-
poral planning using subgoal partitioning and resolution in
SGPlan. J. of Artificial Intelligence Research.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classic part of the 4th International Planning
Competition. Technical report, Tech. Rep. 195, Institut für
Informatik, Freiburg, Germany.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences for PDDL3. Technical report, R.T. 2005-08-07,
Dept. of Electronics for Automation, U. of Brescia, Bres-
cia, Italy.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In ICAPS, 161–170.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. J. of
Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2003. The Metric-FF planning sys-
tem: Translating ignoring delete lists to numeric state
variables. J. of Artificial Intelligence Research 20:291–
341. http://www.mpi-sb.mpg.de/˜hoffmann/
metric-ff.html.
van den Briel, M.; Vossen, T.; and Kambhampati, S. 2005.
Reviving integer programming approaches for AI plan-
ning: A branch-and-cut framework. In ICAPS, 310–319.
Wah, B., and Chen, Y. X. 2006. Constraint partitioning in
penalty formulations for solving temporal planning prob-
lems. Artificial Intelligence 170(3):187–231.

ICAPS 2006

International Planning Competition 41

OCPlan – Planning for soft constraints in classical domains

Bharat Ranjan Kavuluri Naresh Babu Saladi Rakesh Garwal Deepak Khemani
bharat@cs.iitm.ernet.in snaresh@cse.iitm.ernet.in rakesh@cse.iitm.ernet.in khemani@iitm.ac.in

Department of Computer Science and Engineering
Indian Institute of Technology Madras Chennai-36, India

Introduction
Recent research in AI Planning is focused on improving
the quality of the generated plans. PDDL3 [Alfonso and
Gerevini 2005] incorporates hard and soft constraints on
goals and the plan trajectory. Plan trajectory constraints
are conditions that need to be satisfied at various stages of
the plan. Soft goals are goals, which need not necessarily
be achieved but are desirable. To deal with these, we use
an extension of Constraint Satisfaction Problem (CSP),
called Optimal Constraint Satisfaction Problem (OCSP)
[Sachembacher and Williams 2005]. OCSP has allowance
for defining soft constraints. Each soft constraint is

associated with a penalty, which will be levied if the
constraint is violated. The solver arrives at a solution that
minimizes the total penalty (Objective function) and
satisfies all hard constraints. In this system, we introduce
an OCSP encoding for the classical planning problems
with plan trajectory constraints, soft and hard goals.
Modal operators are handled by preprocessing and
imposing new constraints over the existing GP-CSP
encoding [Minh Binh and Khambampati 2001]. The
obtained OCSP is solved using A* search and forward
checking [Vipin Kumar 1992]. Figure 1 describes the
overall planning process.

Figure 1 The overall planning process

ICAPS 2006

42 International Planning Competition

mailto:bharat@cs.iitm.ernet.in
mailto:snaresh@cse.iitm.ernet.in
mailto:rakesh@cse.iitm.ernet.in

The overall planning process
Initially, the planning graph is expanded until all the
required predicates appear in various predicate levels and
there is a non-mutex goal set available for the hard goals.
At this stage, the planning graph is encoded to OCSP and
passed to the solver. Until there is no solution satisfying
all the constraints, the planning graph is expanded,
encoded into OCSP and checked for a solution. This loop
continues until either the solution for the hard constraints
is found or the planning graph levels off (in which case
the planning process is abandoned and failure is
announced). If there is a solution satisfying all hard
constraints, then the current optimal plan is updated along
with its cost and the system checks whether the penalty
incurred due to the remaining soft constraints (RSCP,
Remaining Soft Constraints Penalty) is greater than the
plan step penalty (PSP). If that is the case (RSCP ≥ PSP),
then the system looks to satisfy the remaining soft
constraints by expanding the planning graph by one more
level. This loop continues until either the planning graph
levels off or RSCP ≤ PSP. The optimal plan is returned at
the termination of this loop. The PSP is obtained from the
problem file. If PSP is not specified in the problem file,
then it is taken as zero. In this case, the planner will try to
improve the plan until the soft penalty is zero or the
planning graph levels off. As the OCSP can only deal
with unary soft constraints, the plan step penalty cannot
be embedded into the OCSP directly and hence it is taken

care in the overall planning process. The OCSP solution
method is shown in Figure 2.

OCSP solution method
Each soft constraint in the OCSP is associated with a
decision variable. Solution to OCSP contains assignment
to decision variables as well as non-decision variables.
We follow a hybrid algorithmic approach for solving the
generated OCSP. This algorithm exploits the distinction
between decision variables (which determine the
valuation of an assignment) and non-decision variables
(which determine only the consistency of an assignment).
The algorithm uses forward checking for solving hard
constraints and A* search [Hart, Nilsson, & Raphael
1968] for solving soft constraints. The flow chart for this
method is shown in figure 2. In this method, initially, the
algorithm performs an A* search over the assignments to
the decision variables. If, all the possible assignments to
the decision variables in A* search result in a penalty that
is more than the cost calculated in the previous iteration
of the overall planning method (see figure 1), it returns
the stored optimal solution. Otherwise, A* algorithm
passes the best possible assignment for the decision
variables to the second step in the OCSP solution process
in which it solves for the non-decision variables using
forward checking [Vipin Kumar 1992]. If a solution is not
found to the non-decision variables, A* search is again
invoked. This process continues until either a solution
that satisfies all hard constraints or all possible
assignments to the decision variables are exhausted.

Figure 2 The OCSP solution Method

ICAPS 2006

International Planning Competition 43

References
Alfonso Gerevini and Derek Long. August 2005. Plan
Constraints and Preferences in PDDL3. Technical Report,
Department of Electronics for Automation, University of
Brescia, Italy.
Hart, P.E., Nilsson, N. J., and Raphael, B. "A formal
basis for the heuristic determination of minimum cost
paths", IEEE Transactions on Systems Science and
Cybernetics, SSC-4(2), 100-107 (1968).

Martin Sachenbacher and Brian C. Williams. 2005.
Solving Soft Constraints by Separating Optimization and
Satisfiability. 7th International Workshop on Preferences
and Soft Constraints, held in conjunction with 11th
International Conference on Principles and Practice of
Constraint Programming.
Minh Binh Do and Subbarao Kambhampati. 2001.
Planning as Constraint Satisfaction: Solving the Planning
Graph by Compiling it into CSP. Artificial Intelligence
132(2): 151-182.
Vipin Kumar. 1992. Algorithms for constraint satisfaction
problems: A survey. AI magazine, 13(1):32-44.

ICAPS 2006

44 International Planning Competition

SATPLAN04: Planning as Satisfiability

Henry Kautz
Department of Computer Science & Engineering

University Of Washington
Seattle, WA 98195 USA

Bart Selman
Department of Computer Science

Cornell University
Ithaca, NY 14853 USA

SATPLAN04 is a updated version of the planning
as satisfiability approach originally proposed in (Kautz
& Selman 1992; 1996) using hand-generated transla-
tions, and implemented for PDDL input in the black-
box system (Kautz & Selman 1999). Like blackbox,
SATPLAN04 accepts the STRIPS subset of PDDL and
finds solutions with minimal parallel length: that is,
many (non-interferring) actions may occur in parallel
at each time step, and the total number of time steps
in guaranteed to be as small as possible.

Also like blackbox, SATPLAN works by:

1. Constructing a graphplan-style (Blum & Furst 1995)
style planning graph up to some length k;

2. Translating the constraints implied by the graph into
a set of clauses, where each specific instance of an
action or fact at a point in time is a proposition;

3. Using a general SAT solver to try to find a satisfying
truth assignment for the formula;

4. If the result is unsat or time out, increment k and
repeat;

5. Otherwise, translate the solution to the SAT problem
to a solution to the original planning problem;

6. Postprocess the solution to remove (some of the) un-
necessary actions.

The final step is useful because the SAT translation
of the planning graph does not guarantee that every
action proposition that is true in the solution is actually
needed in order to achieve the goals of the original plan.

SATPLAN04 supports four different encoding styles,
“action-based”, “graphplan-based”, “skinny action-
based”, and “skinny graphplan-based”, based on the
classes of clauses included in the encoding. Classes of
clauses are:

1. An action implies its preconditions.

2. A fact implies the disjuction of the actions that have
it as an effect (including “no op” actions) at the pre-
vious time slice.

Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

3. An action implies each of the disjunctions of the ac-
tions at the previous time slice that add each of its
preconditions.

4. Actions with conflicting preconditions and effects are
mutually exclusive.

5. Actions for which mutual exclusion can be inferred
using graphplan’s constraint propagation algorithm
are mutually exclusive.

“Graphplan-based” encodings use classes (1) and (2),
while “action-based” encodings use class (3). “Skinny”
encodings include class (4) while non-skinny encodings
include both (4) and (5).

In general the action-based skinny encoding gives the
most robust performance, simply because as the small-
est in terms of both variables and clauses it is least likely
to result in a formula that is too large to fit into main
memory. (Satisfiability testing and virtual memory are
an unhealthy combination.)

The single most important difference between black-
box and SATPLAN04 is the SAT solvers used. Black-
box included the original graphplan (non-translation
based) search engine, the local-search SAT solver walk-
sat (Selman, Kautz, & Cohen 1994), the forward-
checking DPLL-based solver satz (Li & Anbulagan
1997), and the clause-learning DPLL-based solvers rel-
sat (Bayardo & Schrag 1997) and zChaff (Moskewicz et
al. 2001).

By contrast, SATPLAN04 uses a single highly opti-
mized DPLL-based solver called “siege”, that was devel-
oped by Lawrence Ryan as part of his research at Simon
Fraiser University under the direction of Prof. David
Mitchell. Linux binaries of siege can be downloaded
from http://www.cs.sfu.ca/ loryan/personal/.

Siege, like relsat and zChaff, performs clause-
learning (that is, inferring new clauses at backtrack
points), and like zChaff uses optimized “watched lit-
eral” data structures for managing large clause sets
efficiently. Beyond that it appears to incorporate a
number of other optimizations that make it particu-
larly well-suited for the planning as satisfiability ap-
proach. In our initial informal tests siege signifi-
cantly outperformed all the other solvers mentioned
above. Later this summer we will post detailed

ICAPS 2006

International Planning Competition 45

comparisons of the different SAT solvers on plan-
ning formulas on our planning as satisfiability web
page, http://www.cs.washington.edu/homes/kautz
/blackbox/.

The PDDL parser in SATPLAN04 is considerably
more robust than the one in blackbox, but it does not
yet handle any non-STRIPS features other than types,
such as derived effects and conditional actions. We plan
to extend SATPLAN04 to handle these and other fea-
tures in time for the 2005 planning competition.
Acknowledgements

We thank Lawrence Ryan for permission to incor-
porate siege in SATPLAN04, and Joerg Hoffmann for
contributing code.

References
Bayardo, R. J. J., and Schrag, R. C. 1997. Using
CSP look-back techniques to solve real-world SAT in-
stances. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI’97), 203–
208.
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proceedings of the 14th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI 95), 1636–1642.
Kautz, H., and Selman, B. 1992. Planning as satisfia-
bility. In Proceedings of the 10th European Conference
on Artificial Intelligence, 359–363. Wiley.
Kautz, H., and Selman, B. 1996. Pushing the en-
velope: Planning, propositional logic, and stochastic
search. In Proceedings of the 13th National Confer-
ence on Artificial Intelligence (AAAI-96), 1194–1201.
AAAI Press. (Best Paper Award).
Kautz, H., and Selman, B. 1999. Unifying sat-based
and graph-based planning. In Proceedings of the 16th
International Joint Conference on Artificial Intelli-
gence (IJCAI-99), 318–325. Morgan Kaufmann.
Li, C. M., and Anbulagan. 1997. Heuristics based on
unit propagation for satisfiability problems. In Pro-
ceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI 97), 366–371.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an efficient
sat solver. In 39th Design Automation Conference.
Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise
strategies for improving local search. In Proceedings of
the 12th National Conference on Artificial Intelligence
(AAAI-94), 337–343. AAAI Press.

ICAPS 2006

46 International Planning Competition

The resource YAHSP planner

Marie de Roquemaurel∗, Pierre Régnier∗ and Vincent Vidal+
∗ IRIT - Université Paul Sabatier + CRIL - Université d’Artois

118, route de Narbonne rue de l’université - SP 16
31062 Toulouse, cedex 9, France 62307 Lens, France
{deroquemaurel, regnier}@irit.fr vidal@cril.univ-artois.fr

Introduction
The rYAHSP planner (resource Yet Another Heuristic
Search Planner) implements the management of resources
in the YAHSP planner (Vidal 2004) who got a 2nd place in
the suboptimal STRIPS category of the IPC’04 competition.

Many state-space heuristic planners work in the classi-
cal framework such as FF (Hoffmann & Nebel 2001) and
YAHSP (Vidal 2004) or in the numerical one such as Metric-
FF (Hoffmann 2003), SAPA (Do & Kambhampati 2003) and
TP4 (Haslum & Geffner 2001). FF, YAHSP and Metric-FF
use a relaxed planning graph to compute a heuristic that es-
timates the distance to the goal. This distance is obtained
by building a planning graph from the current state and
from a relaxation of the original task. The heuristic value is
the number of actions of the relaxed solution-plan extracted
from this graph.

One can observe that the actions contained in the relaxed
plans are generally contained in the solution-plan of the orig-
inal problem. Using this observation, YAHSP uses these ac-
tions in a lookahead strategy to try to build a valid plan. If
this plan exists, it leads to a state that is potentially closer to
the goal. This state is then treated as a direct descendant of
the current state by a complete best-first search algorithm.
Moreover, YAHSP improves the classification, introduced
by FF, of the applicable actions in helpful actions and rescue
actions.

rYAHSP adapts the strategy of YAHSP to the numeric
framework, taking into account the plan metric only if
it can be transformed into additive action cost minimiza-
tion. rYAHSP can parse and plan with PDDL domains with
:fluents and :typing requirements.

After some definitions, we present the computation of the
heuristic that uses a numeric relaxed planning graph. Fi-
nally, we describe the lookahead strategy used within the
numeric framework.

Preliminary definitions
A numeric state S is a finite set of propositions (noted
prop(S)) and a finite set of numeric variables with val-
ues (noted varNum(S)). A numeric action a is a pair
< prec(a),eff(a)> where prec(a) is a set of propositional
and numeric preconditions of a and eff(a) is a set of proposi-
tional and numeric effects of a. add(a), del(a) and effNum(a)

respectively denote add effects, del effects and the numeric
effects of a.

A proposition p is satisfied in a state S iff p ∈ S. A
numeric condition c is satisfied in a state S iff the numeric
variables contained in c have a value defined in S and verify
c. A set of propositions and conditions is satisfied in a state
S iff all its propositions and conditions are satisfied in S.

A numeric variable of an action a is updated when its
value is updated by the effects of a. updated(a) will repre-
sent the set of variables updated by a.

A numeric planning problem is a triple <A,I,G> where
A is a set of numeric actions, I is an initial numeric state and
G is a set of propositions and numeric conditions. The ap-
plication of an action a on a state S (noted S ↑ a) is possible
iff prec(a) is satisfied in S. The resulting state S′ is defined
by prop(S′) = (prop(S)−del(a))∪add(a). varNum(S′)
contains numeric variables associated with the values result-
ing of the application of all numeric effects of a. If a numeric
variable is not updated by a, it remains unchanged.

A plan is a sequence of actions. Let P =<a1,a2,. . . ,an >
be a plan. P is a valid plan for a state S if a1 is applicable on
S and leads to a state S1, a2 is applicable on S1 and leads to
S2, . . ., an is applicable on Sn−1 and leads to Sn = ((((S ↑
a1) ↑ a2) . . .) ↑ an). In that case, Sn is said to be reachable
from S for P and P is a solution-plan if G is satisfied in Sn.

The quality of a plan is estimated by a function called met-
ric1 of the plan. This function is a non temporal arithmetic
expression related to numeric variables. In this article, we
will restrict ourselves with the linear metric that we will at-
tempt to minimize.

Computation of the heuristic
In this chapter, we describe the relaxation of the numeric
problem, the construction of the relaxed numeric graph, the
extraction of a relaxed solution-plan and the computation of
the heuristic used in rYAHSP.

Relaxation of a numeric problem
rYAHSP uses the relaxation of a numeric problem intro-
duced by Metric-FF (Hoffmann 2003). For the relaxed prob-
lem, the termination of the construction of the planning

1This metric is expressed in the field ":metric" introduced into
language PDDL 2.1 (Fox & Long 2003).

ICAPS 2006

International Planning Competition 47

graph imposes monotonous numeric constraints. A con-
straint c is said to be monotonous if, when c is satisfied in
the state S, it is satisfied in all the states S′ in which all the
numerics variables have a value equal or greater than their
value in S.

If the deletes and the effects that decrease the value of a
variable are ignored for all the actions, then this property
is verified (Hoffmann 2003). However, this type of relax-
ation restricts the use of the language to only increasing, de-
creasing and assignments. Moreover, the preconditions, the
effects and the metric of the plan will only use arithmetic
numeric expressions.

The relaxed application of an action a in a numeric state
S (S ↑r a) is thus carried out by ignoring the deletes of
the action and the numeric effects that decrease the value
of a numeric variable. The resulting state S′ = S ↑r a =
(prop(S′), varNum(S′)) is such that :

• prop(S′) = prop(S) ∪ add(a),
• varNum(S′) contains the numeric variables resulting

from the application of the only effects of a that increase
their values : ∀ u ∈ updated(a),∀ e ∈ effNum(a), if
val(u, e, S) > val(u, S) then e is ignored2.

Expansion of the relaxed graph
The planning graph is incrementally built from a state S and
the relaxed application of the actions of A. At each level,
we add all the add effects of the applicable actions. For each
numeric variable v, we calculate :

• the sum of the values of all the increasing of v in this level,

• the maximum value of all the assignments of v.

We affect to the variable the maximum value that it could
reach. This value is the maximum of the two preceding val-
ues.

The construction of the relaxed graph stops on a success
if all the goals are satisfied, or fails if they are not and a fixed
point is reached, i.e. :

• if there is no new proposition in the level n + 1 that was
not in the level n,

• if, for all the numeric variables, either their maximum re-
mains the same in the level n and in the level n+1, or the
maximum reaches the maximum value required by all the
preconditions of the actions of the problem.

We will consider the framework of acyclic assignments.
(Hoffmann 2003) demonstrates that in this framework, if the
expansion of the graph fails from a state S, then there is no
relaxed solution-plan from S.

Extraction of a solution and computation of the
heuristic
When the construction of the relaxed graph is a success, the
graph is pruned, starting from the goals. We preserve all
the actions establishing these goals, and their preconditions

2Let u be a numeric variable, S be a state, and e be an effect,
val(u, S) indicates the value of u in S. val(u, e, S) indicates the
value of u after the application of e in S

become the new goals to solve. This process continues until
the initial level is reached.

Starting from the last level of the reduced graph, we
then try to extract a relaxed solution-plan using a backward
search algorithm. During the insertion of an action a in the
current relaxed plan, the set G of the current goal g at level
n is updated with the effects and the preconditions of a :

1. The additions of a included in G are deleted from G be-
cause they are now satisfied.

2. G is updated with the assignment effects of a :

• If the value obtained by the assignment of a variable
is lower than the value required by a goal g at level n,
then this effect is ignored,

• else, the goal g at level n is deleted. We then add in G
the fact that all numeric variables in the expression of
the affected variable must have a value required at level
n − 1 higher or equal to their maximum value at level
n− 1.

3. If a increments the variable value of a goal g at level n,
then the required value in g in the same level is decreased
by the increment.

4. The propositional preconditions of a not included in G are
added in G. If a precondition was required in G at level
n, then it becomes required at level n− 1.

5. For each numeric precondition of a, we add in G, at level
n, the fact that all numeric variables in the precondition
must have a value higher or equal to their maximum value
at level n.

During the extraction of the graph, the quality of the
relaxed solution-plan depends on the choice and on the
scheduling of the actions that establish the goals. To choose
an action a among the applicable actions that solve a goal g,
rYAHSP improves this quality combining several criteria :

1. The minimization of the number of actions of the plan :

• preferring the noop 3,
• preferring an action satisfying g thanks to an assign-

ment, rather than a set of actions satisfying g by in-
creasing.

2. The influence of the action on the metric, calculating the
difference between the metric in the current state S and
the state S′ = S ↑ a.

3. The choice of the least expensive action, the cost of an
action being a function of the levels of apparition of its
(propositionals and numerics) preconditions in the graph.

An ad-hoc combination of these criteria is used to extract a
solution-plan of the relaxed graph. The cost of this solution-
plan is then used as heuristic.

Lookahead strategy
Let < A, I,G > be a planning problem and S, S′ be two
states. Let P be a valid plan which, applied to the state S,

3The noop of a proposition p is an action that have only p as
precondition and effect to add.

ICAPS 2006

48 International Planning Competition

leads to the state S′ reachable from S that brings closer to
the goal. The state S′ is said to be a lookahead state and it
is considered by the search algorithm as a direct descendant
of S. P is said to be a lookahead plan.

One can observe that the actions contained in the relaxed
plans are generally contained in the solution-plan of the orig-
inal problem. These actions can thus be firstly used to find
a lookahead plan. Taking that into account, we use as much
as possible relaxed plan actions. When no action of the re-
laxed plan is applicable, we replace one action by another,
selected in the set of the problem actions.

The construction of the lookahead plan LP , starting from
a state S and from a relaxed plan RP , is executed in two
steps :
1. Each time that an action a of RP is applicable to S, a is

added at the end of LP . S is updated by applying a. The
actions that cannot be applied are collected in a list named
failure. When RP is entirely traversed, it is updated with
the failure list, and this process is repeated until RP is
empty or when no more action can be added to LP .

2. When no action can be added to the lookahead plan LP in
the previous step, we repair the current relaxed plan RP
that have no applicable action by replacing one of its ac-
tions. Among the set of problem actions applicable in S,
we heuristically choose an action. An effect of this action
have to satisfy at least one precondition of one unsatisfied
action of RP in S. The selected action is then added in
LP , the replaced action is deleted from RP , and we re-
turn to the previous step. If no replacing action is found,
we try to replace another action of RP .
The algorithm stops when no action can be added to the

lookahead plan LP , or when all the actions of the relaxed
plan RP are used.

Once again, the quality of the lookahead plan depends on
the scheduling of actions in the relaxed plan. It also depends
on the choice of the actions to be inserted in the lookahead
plan. To improve this quality in the first step, the actions are
inserted in the failure list according to their difficulty of
obtaining them (i.e the first layer in the relaxed graph where
the action appears), and also by taking into account certain
negative interactions between actions.

In the second step, the choice of an action in the set of
applicable actions is done by taking into account the cost
and the number of preconditions established by the action.

The classification, introduced by FF, of the applicable ac-
tions on the current state is also improved. Applicable ac-
tions on a current state S that belongs to the relaxed plan are
said to be helpful actions. Applicable actions to S that be-
longs to the graph but not to the relaxed plan are said to be
rescue actions. In opposition to the classification proposed
in (Hoffmann & Nebel 2001), this partition keeps all the ac-
tions that can be applied to S and preserves the completeness
and correctness of the algorithm. The best-first algorithm is
modified to prefer the helpful actions over rescue actions.

Conclusion
In this paper, we present the computation of the heuristic im-
plemented in rYAHSP starting from a numeric relaxed plan-

ning graph and its use with a lookahead strategy.
The preliminary results obtained by rYAHSP show that

the concept of lookahead plan is interesting in the numeric
framework. They also show that the choice of the actions
and their scheduling in the relaxed plans and lookahead
plans influence the metric of solution-plans. The combined
use of various criteria can improve their quality.

References
Do, M. B., and Kambhampati, S. 2003. Sapa: A Multi-
objective Metric Temporal Planner. Journal of Artificial
Intelligence Research 20:155–194.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In Proceedings of the 6th European
Conference on Planning (ECP-01).
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2003. The Metric-FF planning system:
Translating ”ignoring delete lists” to numeric state vari-
ables. Journal of Artificial Intelligence Research 20:291–
341.
Vidal, V. 2004. A lookahead strategy for heuristic search
planning. In International Conference on Automated Plan-
ning and Scheduling, 150–159.

ICAPS 2006

International Planning Competition 49

The New Version of CPT, an Optimal Temporal POCL Planner
based on Constraint Programming

Vincent Vidal
CRIL - Université d’Artois
rue de l’université - SP16

62307 Lens Cedex, FRANCE
vidal@cril.univ-artois.fr

Sébastien Tabary
CRIL - Université d’Artois
rue de l’université - SP16

62307 Lens Cedex, FRANCE
tabary@cril.univ-artois.fr

Overview
CPT is a domain-independent temporal planner that com-
bines a branching scheme based on Partial Order Causal
Link (POCL) Planning with powerful and sound pruning
rules implemented as constraints. Unlike other recent ap-
proaches that build on POCL planning (Nguyen & Kamb-
hampati 2001; Younes & Simmons 2003), CPT is an optimal
planner that minimizes makespan. The details of the plan-
ner and its underlying formulation are described in (Vidal &
Geffner 2004; Vidal & Geffner 2006). CPT competed in the
optimal track of IPC-4, where it got a second place.

The development of CPT is motivated by the limitation of
heuristic state approaches to parallel and temporal planning
that suffer from a high branching factor (Haslum & Geffner
2001) and thus have difficulties matching the performance of
planners built on SAT techniques such as Blackbox (Kautz
& Selman 1999). In CPT, all branching decisions (resolution
of open supports, support threats, and mutex threats), gen-
erate binary splits, and nodes σ in the search correspond to
‘partial plans’ very much as in POCL planning.

While ideally, one would like to have informative lower
bounds f(σ) on the makespan f∗(σ) of the best complete
plans that expand σ, so that the partial plan σ can be pruned
if f(σ) 6≤ B for a given bound B, such lower bounds are not
easy to come by in the POCL setting. CPT thus models the
planning domain as a temporal constraint satisfaction prob-
lem, adds the constraint f∗(σ) ≤ B for a suitable bound B
on the makespan, and performs limited form of constraint
propagation in every node σ of the search tree. The novelty
of CPT in relation to other temporal POCL planners such
as IXTET (Laborie & Ghallab 1995) and RAX (Jonsson et
al. 2000), that also rely on constraint propagation (and Dy-
namic CSP approaches such as (Joslin & Pollack 1996)), is
the formulation that enables CPT to reason about actions a
that are not yet in the plan. Often a lot can be inferred about
such actions including restrictions about their possible start-
ing times and supports. Some of this information can actu-
ally be inferred before any commitments are made; the lower
bounds on the starting times of all actions as computed in
GRAPHPLAN being one example (Blum & Furst 1995). CPT
thus reasons with CSP variables that involve all the actions
a in the domain and not only those present in the current
plan, and for each such action, it deals with two variables
S(p, a) and T (p, a) that stand for the possibly undetermined

action supporting precondition p of a, and the possibly un-
determined starting time of such an action. A causal link
a′[p]a thus becomes a constraint S(p, a) = a′, which in turn
implies that the supporter a′ of precondition p of a starts at
time T (p, a) = T (a′). A number of constraints enforce the
correspondences among these variables. At the same time,
the heuristic functions for estimating costs in a temporal set-
ting, as introduced in (Haslum & Geffner 2001), are used to
initialize variables domains and some ‘distances’ between
actions (Van Beek & Chen 1999).

Currently, the semantics of the optimal temporal plans
computed by CPT follows the one in (Smith & Weld 1999)
where interfering actions (actions that delete a precondition
or an effect of another one) are not allowed to overlap in
time. This condition has been relaxed in PDDL 2.1 where
interfering actions may overlap sometimes (e.g., when pre-
conditions do not have to be preserved throughout the exe-
cution of the action). This restriction can in some domains
produce slightly longer plans.

Additional pruning rules
CPT has been recently extended with several pruning rules.
The primary goal of these rules was to give CPT the ability to
solve planning problems in a suboptimal but backtrack-free
way. Indeed, while fixing an upper bound on the makespan
to a low value helps in pruning the search space, it has
been remarked many times that fixing the bound to a high
value (and thus, searching for a suboptimal plan) renders
constraint-based planners particularly inefficient. To over-
come this problem, we added many features to CPT, and
we got interesting results in many classical benchmarks:
BlocksWorld, Logistics, Gripper, Ferry, Satellite for ex-
ample can be solved suboptimally without any backtrack.
These results are reported in (Vidal & Geffner 2005). Some
of these additions to CPT turn out to also help for optimal
planning.

Impossible Supports
Many supports can be eliminated at preprocessing avoiding
some dead-ends during the search. For example, the action
a′ = putdown(b1) can never support the precondition p =
handempty of an action like a = unstack(b1, b3). This is
because action a has another precondition p′ = on(b1, b3)

ICAPS 2006

50 International Planning Competition

which is e-deleted1 by a′ (false after a′) and which then
would have to be reestablished by another action b before
a. Yet it can be shown that in this domain, any such action
b e-deletes p and is thus incompatible with the causal link
a′[p]a.

More generally, let dist(a′, p, a) refer to a lower bound
on the slack between actions a′ and a in any valid plan in
which a′ is a supporter of precondition p of a. We show
that for some cases, at preprocessing time, it can be shown
that dist(a′, p, a) = ∞, and hence, that a′ can be safely
removed from the domain of the variable S(p, a) encoding
the support of precondition p of a.

This actually happens when some precondition p′ of a is
not reachable from the initial situation that includes all the
facts except those e-deleted by a′ and where the actions that
either add or delete p are excluded. The reason for this ex-
clusion is that if a′ supports the precondition p of a then it
can be assumed that no action adding or deleting p can occur
between a′ and a (the first part is the systematicity require-
ment (McAllester & Rosenblitt 1991)). By a proposition
being reachable we mean that it makes it into the so-called
relaxed planning graph; the planning graph with the delete
lists excluded (Hoffmann & Nebel 2001).

This simple test prunes the action putdown(b1) as a
possible support of the precondition handempty of action
unstack(b1, b3), the action stack(b1, b3) as a possible sup-
port of precondition clear(b1) of pickup(b1), etc.

Unique Supports
We say that an action consumes an atom p when it requires
and deletes p. For example, the actions unstack(b3, b1) and
pickup(b2) both consume the atom handempty. In such
cases, if the actions make it into the plan, it can be shown
that their common precondition p must have different sup-
ports. Indeed, if an action a deletes a precondition of a′,
and a′ deletes a precondition of a, a and a′ are incompatible
and cannot overlap in time according to the semantics. Then
either a must precede a′ or a′ must precede a, and in ei-
ther case, the precondition p needs to be established at least
twice: one for the first action, and one for the second. The
constraint S(p, a) 6= S(p, a′) for pairs of actions a and a′

that consume p, ensures this, and when one of the support
variables S(p, a) or S(p, a′) is instantiated to a value b, b is
immediately removed from the domain of the other variable.

Distance Boosting
The distances dist(a, a′) precomputed for all pairs of ac-
tions a and a′ provide a lower bound on the slack between
the end of a and the beginning of a′. In some cases, this
lower bound can be easily improved, leading to stronger
inferences. For example, the distance between the actions
putdown(b1) and pickup(b1) is 0, as it is actually possible
to do one action after the other. Yet the action putdown(b1)

1An action a is said to e-delete an atom p when either a deletes
p, a adds an atom q such that q and p are mutex, or a precondition r
of a is mutex with p and a does not add p. In all cases, if a e-deletes
p, p is false after doing a; see (Nguyen & Kambhampati 2001).

followed by pickup(b1) makes sense only if some other ac-
tion using the effects of the first, occurs between these two,
as when block b1 is on block b2 but needs to be moved on
top of the block beneath b2.

Let us say that an action a cancels an action a′ when 1) ev-
ery atom added by a′ is e-deleted by a, and 2) every atom
added by a is a precondition of a′. Thus, when a cancels
a′, the sequence a′, a does not add anything that was not
already true before a′. For example, pickup(b1) cancels the
action putdown(b1).

When an action a cancels a′, and there is a precondition p
of a that is made true by a′ (i.e., p is added by a′ and is mu-
tex with some precondition of a′), the distance dist(a′, p, a)
introduced above becomes ∞ if all the actions that use an
effect of a′ e-delete p. In such case, as before, the action
a′ can be excluded from the domain of the S(p, a) vari-
able. Otherwise, the distance dist(a′, a) can be increased
to minb[dist(a′, b) + dist(b, a)] with b ranging over the ac-
tions different than a and a′ that either use an effect of a′ but
do not e-delete p or do not use necessarily an effect of a′ but
add p (because a′ may be followed by an action c before a
that e-deletes p but only if there is another action b between
c and a that re-establishes p).

In this way, the distance between the actions putdown(a)
and pickup(a) in Blocks is increased by 2, the distance be-
tween sail(a, b) and sail(b, a) in Ferry is increased by 1,
etc. The net effect is similar to pruning cycles of size two
in standard heuristic search. Pruning cycles of larger sizes,
however, appears to be more difficult in the POCL setting,
although similar ideas can potentially be used for pruning
certain sequences of commutative actions.

Improvement of the search algorithm
The original version of CPT performs a very basic back-
tracking search: its relative efficiency mainly comes from
the look-ahead techniques encoded into the pruning rules,
and from heuristics adapted to temporal planning. But even
if an advanced look-ahead technique is used, one can be in-
terested by looking for the reason of an encountered dead-
end as finding the ideal ordering of variables is intractable
in practice. A dead-end corresponds to a conflict between
a subset of decisions (variable assignments) performed so
far. In fact, it is relevant to prevent thrashing2 to identify
the most recent decision (let us call it the culprit one) that
participates to the conflict. Indeed, once the culprit has been
identified, we know that it is possible to safely backtrack up
to it – this is the role of look-back techniques such as CBJ
(Conflict-directed BackJumping) (Prosser 1993) and DBT
(Dynamic Backtracking) (Ginsberg 1993).

A new approach as been recently proposed in (Lecoutre
et al. 2006) to (indirectly) backtrack to the culprit of the
last encountered dead-end. To achieve it, the leaf conflict
variable becomes in priority the next variable to be selected
as long as the successive assignments that involves it render

2Thrashing is the fact of repeatedly exploring the same subtrees.
This phenomenon deserves to be carefully studied as an algorithm
subject to thrashing can be very inefficient.

ICAPS 2006

International Planning Competition 51

the network arc inconsistent. It then corresponds to check-
ing the singleton consistency of this variable from the leaf
towards the root of the search tree until a singleton value is
found. In other words, the variable ordering heuristic is vi-
olated, until a backtrack to the culprit variable occurs and a
singleton value is found. It is important to remark that, con-
trary to sophisticated backjump techniques, this technique
can be grafted in a very simple way to a tree search algo-
rithm without any additional data structure. This has been
implemented very easily into CPT, making it able to solve
difficult problems that were previously out of reach.

A note about the implementation
The first version of CPT planner was implemented using the
Choco CP library (Laburthe 2000) that operates on top of
Claire (Caseau, Josset, & Laburthe 1999), a high-level pro-
gramming language that compiles into C++. Due to a num-
ber of restrictions of this language, we made a completely
new implementation using the C language. This implemen-
tation is based on a minimal Constraint Programming engine
inspired by the Choco library, offering all the basic needs:
CP variables with enumerated and bounded domains, auto-
matic propagation on the change of the domains based on
events (instantiation, removal, lower bound increased, ...),
a complete backtrack mechanism for undoing the changes,
and a basic backtracking algorithm. The constraints of CPT
are implemented with propagation rules which are triggered
by the underlying CP engine. This implementation is by far
more efficient than the original one, also having very min-
imal memory requirements (except in some benchmark do-
mains such as ZenoTravel, where the formulation of the do-
main by itself leads to a high number of variables with very
large domains). This new version will soon be available on
the CPT web page3. We also plan to release the minimal CP
engine of CPT as a separate package, as it is completely inde-
pendent of CPT and could serve as a basis for many different
applications. As an example, CPT has been recently used in
an evolutionary based approach of multi-objective temporal
planning (Schoenauer, Savéant, & Vidal 2006).

Acknowledgments
Most of the work on CPT has been made with Héctor
Geffner, as well as some material of this abstract borrowed
from our common papers. Many thanks to him.

References
[Blum & Furst 1995] Blum, A., and Furst, M. 1995. Fast planning

through planning graph analysis. In Proceedings of IJCAI-95,
1636–1642.

[Caseau, Josset, & Laburthe 1999] Caseau, Y.; Josset, F. X.; and
Laburthe, F. 1999. CLAIRE: Combining sets, search and rules to
better express algorithms. In Proceedings of ICLP-99, 245–259.

[Ginsberg 1993] Ginsberg, M. 1993. Dynamic backtracking. Ar-
tificial Intelligence 1:25–46.

[Haslum & Geffner 2001] Haslum, P., and Geffner, H. 2001.
Heuristic planning with time and resources. In Proceedings of
European Conference of Planning (ECP-01), 121–132.

3http://www.cril.univ-artois.fr/∼vidal/index.en.html

[Hoffmann & Nebel 2001] Hoffmann, J., and Nebel, B. 2001.
The FF planning system: Fast plan generation through heuristic
search. JAIR 2001:253–302.

[Jonsson et al. 2000] Jonsson, A.; Morris, P.; Muscettola, N.; and
Rajan, K. 2000. Planning in interplanetary space: Theory and
practice. In Proceedings of AIPS-2000, 177–186.

[Joslin & Pollack 1996] Joslin, D., and Pollack, M. E. 1996. Is
”early commitment” in plan generation ever a good idea? In
Proceedings of AAAI-96, 1188–1193.

[Kautz & Selman 1999] Kautz, H., and Selman, B. 1999. Uni-
fying SAT-based and Graph-based planning. In Dean, T., ed.,
Proceedings of IJCAI-99, 318–327. Morgan Kaufmann.

[Laborie & Ghallab 1995] Laborie, P., and Ghallab, M. 1995.
Planning with sharable resources constraints. In Mellish, C., ed.,
Proceedings of IJCAI-95, 1643–1649. Morgan Kaufmann.

[Laburthe 2000] Laburthe, F. 2000. CHOCO: implementing a CP
kernel. In Proceedings of CP-00, Lecture Notes in CS, Vol 1894.
Springer.

[Lecoutre et al. 2006] Lecoutre, C.; Sais, L.; Tabary, S.; and Vi-
dal, V. 2006. Last conflict based reasoning. In Proceedings of
ECAI-2006 (to appear).

[McAllester & Rosenblitt 1991] McAllester, D., and Rosenblitt,
D. 1991. Systematic nonlinear planning. In Proceedings of AAAI-
91, 634–639. Anaheim, CA: AAAI Press.

[Nguyen & Kambhampati 2001] Nguyen, X. L., and Kambham-
pati, S. 2001. Reviving partial order planning. In Proceedings of
IJCAI-01, 459–466.

[Prosser 1993] Prosser, P. 1993. Hybrid algorithms for the
constraint satisfaction problems. Computational Intelligence
9(3):268–299.

[Schoenauer, Savéant, & Vidal 2006] Schoenauer, M.; Savéant,
P.; and Vidal, V. 2006. Divide-and-evolve: a new memetic
scheme for domain-independent temporal planning. In Proceed-
ings of EvoCOP-2006, 247–260.

[Smith & Weld 1999] Smith, D., and Weld, D. S. 1999. Tempo-
ral planning with mutual exclusion reasoning. In Proceedings of
IJCAI-99, 326–337.

[Van Beek & Chen 1999] Van Beek, P., and Chen, X. 1999.
CPlan: a constraint programming approach to planning. In Pro-
ceedings of AAAI-99, 585–590.

[Vidal & Geffner 2004] Vidal, V., and Geffner, H. 2004. Branch-
ing and pruning: An optimal temporal POCL planner based on
constraint programming. In Proceedings of AAAI-2004, 570–577.

[Vidal & Geffner 2005] Vidal, V., and Geffner, H. 2005. Solving
simple planning problems with more inference and no search. In
Proceedings of CP-2005, 682–696.

[Vidal & Geffner 2006] Vidal, V., and Geffner, H. 2006. Branch-
ing and pruning: An optimal temporal POCL planner based on
constraint programming. Artificial Intelligence 170(3):298–335.

[Younes & Simmons 2003] Younes, H. L. S., and Simmons, R. G.
2003. VHPOP: Versatile heuristic partial order planner. JAIR
20:405–430.

ICAPS 2006

52 International Planning Competition

MaxPlan: Optimal Planning by Decomposed Satisfiability andBackward Reduction

Zhao Xing, Yixin Chen, and Weixiong Zhang
Department of Computer Science and Engineering

Washington University in St. Louis
Saint Louis, MO 63130

{zx2,chen,zhang}@cse.wustl.edu

Abstract

Planning as satisfiability is one of the best ap-
proaches to optimal planning. In addition to being
effective and efficient on many planning domains,
this approach is general, in that a generic method for
satisfiability (SAT) can be used. As a result, it is able
to take advantage of the general research devoted to
SAT. Nevertheless, the potential of this approach has
not been fully exploited. In the MaxPlan planner, we
develop an efficient SAT solving algorithm that ef-
fectively exploits the structure of planning applica-
tions and decomposes the original SAT problem into
a series of much simpler SAT subproblems. The de-
composed SAT approach has been shown to be sig-
nificantly more efficient than the previous approach
which uses a generic SAT solver as a black-box with-
out exploiting the problem structure. Several other
novel techniques, including backward level reduc-
tion, accumulative learning of clauses, and search-
space pruning based on multi-valued domain for-
mulation, are also developed to further improve the
search efficiency for both satisfiability solving and
unsatisfiability proving.

1 Introduction

MaxPlan is an optimal planner for STRIPS-like propositional
planning problems. It is optimal in terms of the number of par-
allel steps. It, in essence, follows the paradigm of planning
as satisfiability[Selman & Kautz, 1992], which has emerged
as one of the most effective formulations for optimal plan-
ning. The method of planning as satisfiability first transforms a
STRIPS planning problem into a satisfiability (SAT) problem,
and then solves the SAT problem using a generic SAT solver.

Representative planners under the paradigm of planning as
satisfiability include Blackbox[Kautz & Selman, 1996] and
SATPLAN [Kautz,]. The latest version of SATPLAN, SAT-
PLAN04, has won the First Place prize in the optimal track of
the Fourth International Planning Competition (IPC4). Despite
its success, the current best realization of planning as satisfia-
bility still has the following limitations.

a) SATPLAN performs aforward level expansion search
that keeps increasing the estimated plan length and for each
fixed length finds a solution or proves the problem unsolvable.
We have noticed that most of the computing time that it spends

on is to prove unsatisfiability, which could be expensive be-
cause the entire search space may need to be explored. This
observation inspires us to search from the opposite direction,
i.e. to reduce the estimated plan length from an upper bound.
When the plan is long, however, finding a feasible solution can
still be expensive. Effective strategies for reducing complexity
are needed.

b) By transforming a planning problem into a SAT prob-
lem and solving the problem in a ”blackbox” fashion by a SAT
solver, the structural and goal information in the planningprob-
lem is discarded. In contrast, heuristic search-based planning
methods typically combine directed forward search with back-
ward chaining to explicitly exploit information in the planning
goals. This motivates us to study and utilize the internal struc-
ture of the SAT encoding.

c) The existing SAT planners solve a SAT problem as a
whole, which becomes prohibitively expensive for large prob-
lems. One objective in the design of MaxPlan is to decompose
a planning problem based on its structure in order to reduce
search complexity.

d) To achieve the optimal time steps, the current realization
of planning as satisfiability follows an incremental schemein
which the number of time steps is increased by one after each
failed iteration. A careful examination of the process of the
current approaches has revealed key insights into this general
planning paradigm. First, the SAT problem instances derived
at different time steps share similar structures. Second, the
knowledge learnt from solving SAT instances for shorter time
steps can be accumulated and used to speed up the processes
for solving SAT instances of longer time steps. However, the
existing SAT planners generate SAT problem instances inde-
pendently from scratch and solve them in isolation so that
knowledge learnt during previous iterations was lost.

The design of MaxPlan aims at overcoming the above limi-
tations.

2 Overall Architecture of MaxPlan
Based on an action-based SAT formulation, MaxPlan employs
a new decomposition scheme to decompose a planning prob-
lem into a series of SAT subproblems, one for each subgoal
variable, in order to reduce the search complexity. Goal-
oriented rules for selecting variables in SAT solvers are intro-
duced to exploit logic structures of planning problems. Other
novel techniques, includingbackward level reduction, accu-
mulative learning, and search space pruning based on a multi-
valued formulation, are also developed and integrated witha

ICAPS 2006

International Planning Competition 53

generic SAT solver to further speed up the solution process.
The overall process of MaxPlan works as follows.

1. Estimate an upper bound of the optimal plan length. The
search keeps tightening the upper bound until a plan
length has been proved unsolvable.

2. For a given plan length, compile the input planning prob-
lem into a SAT formulation.

3. Solve the derived SAT problem using a novel SAT solver
integrated with goal-oriented decomposition and search
space pruning. Quit if the current plan depth is proven
unsatisfiable.

4. After a plan depth is solved, use an accumulative learning
scheme for taking advantage of the structural similarities
among the SAT instances. Accumulate the knowledge (in
the form of learnt clauses and pruning rules) to accelerate
the processes of solving sebsequent instances.

5. Reduce the estimated optimal plan length and repeat from
step 2.

MaxPlan significantly differs from the previous SAT-based
planners in the overall direction of plan-length estimation and
inter-level learning. Furthermore, instead of using a generic
”blackbox” SAT solver, MaxPlan integrates in the SAT solver
a number of effective strategies for exploiting the structure of
a planning problem.

3 Backward Level Reduction and Analysis of
Action-Based Encoding

MaxPlan uses an approach to set the initial number of paral-
lel steps which is different from that used by the previous SAT
planners. Since the previous SAT planners use forward level
expansion, they typically apply the Graphplan approach[Blum
& Furst, 1997] to construct a relaxed planning graph to esti-
mate alower bound of the optimal parallel length. In contrast,
since MaxPlan uses backward level reduction, it estimates an
upper bound using a suboptimal planner to find a suboptimal
sequential plan and parallelize it. We use the Fast Forward
planner[Hoffmann & Nebel, 2001] in our current implemen-
tation.

To transform a planning problem into SAT, we use the same
action-based encoding as used by SATPLAN04, which con-
verts all fact variables to action variables.

We have closely studied the action-based SAT encoding. We
classify the clauses into several classes, including theE clauses
that are binary clauses generated from mutual exclusions, the
A clausesthat specifies the dependencies among actions, and
theG clausesthat specifies subgoals.

Most (but not all) variables in E clauses can be instantiated
by applying unit propagation in a SAT solver. In other words,
a majority of independent variables appear in the G clauses.
As a result, the variables in the binary E clauses have a lower
priority to be chosen. Therefore, the three classes of clauses
should be treated differently. The G clauses should be treated
as “core clauses” in SAT solving. In general, the G clauses only
constitute a very small portion (typically less then 2 percents)
of all the clauses. Focusing on branching those variables that
appear in the G clauses first can significantly reduce the search
space in SAT solving.

Most, if not all, existing SAT solvers lack mechanisms for
exploiting structural information of real-world instances and

for identifying independent variables. Identifying problem
structural information is a hard problem. Being generic algo-
rithms, these SAT solvers try to produce conflicts by branching
on shorter clauses (such as heuristic[Li & Anbulagan, 1997] or
the Jeroslow-Wang rule[Hooker & Vinay, 1995]), or attempt
to detect conflicts by applying the locality of conflicts (such as
the VSIDS heuristic[Moskewiczet al., 2001]). These general
heuristics can hardly detect structural properties of a planning
problem.

4 Goal-Oriented Decomposition for SAT
Solving

The majority part of the computation complexity of MaxPlan
lies in solving the SAT problems at different parallel steps.
In our implementation, we use a generic SAT solver, Min-
iSAT [Eén & Biere, 2005], enhanced with our new strategies,
as the SAT engine for MaxPlan. Note that the decomposition
and space pruning strategies proposed in MaxPlan are general
and can be incorporated into other SAT solvers.

As mentioned, SAT problems derived from real-world plan-
ning problems are often highly structured and contain a sub-
stantial portion of variables whose values can be determined
by other variables through unit propagation. In other words,
these variables aredependentvariables. In contrast, those vari-
ables whose values cannot be directly inferred from the assign-
ments of other variables areindependentvariables. Since the
assignments of independent variables determine the valuesof
most dependent variables, the number of assignments that need
to be tried can be reduced significantly if we branch on inde-
pendent variables first. In MaxPlan, independent variablesare
those appearing in the G clauses, and dependent variables are
the ones not in the G clauses.

The complexity of SAT solving can be significantly reduced
if we ignore the assignments of some independent variables.
Therefore, in MaxPlan, we propose agoal-oriented decompo-
sition scheme to decompose the SAT problem into a series of
much simpler SAT subproblems with incremental involvement
of the goal-oriented independent variables.

Suppose that there areN subgoals, we iteratively solveN
subproblems. In solving theith subproblem, we set the vari-
ables for the firsti subgoals true, and set free the other subgoal
variables. After we solve the instance, based on the solution,
we increase the priority scores of all action variables whose
assignments are true by a constant amount in MiniSat in order
to force to branch on these action variable and set them to true
first in solving the next subproblem. Therefore, in each itera-
tion, we focus on solving one subgoal. In this process, we also
try to explore first the partial solution space that is close to the
ones searched in the previous iterations by giving priorities to
the relatedG clauses.

There are several advantages of the goal-oriented decompo-
sition approach. Our preliminary experimental analysis has in-
dicated that after the G variables have been fixed, the problem
can be solved quickly by unit propagation. This means that
the G variables are the most critically constrained variables in
a planning problem. By incrementally increase the number of
active criticalG variables in a series of subproblems, the com-
plexity of solving each subproblem is significantly reduced. As
a result, the total complexity of solving all decomposed sub-
problems is still much smaller than the complexity of solving

ICAPS 2006

54 International Planning Competition

the original SAT problem without decomposition.
The proposed goal-oriented decomposition approach is dif-

ferent from incremental planning. A key difficulty of incre-
mental planning is that it fixes the solutions of solved subprob-
lems and often gets stuck at infeasible deadends. Our decom-
position approach, on the contrary, allows backtracking and is
a complete algorithm that can be used to prove unsatisfiability.

5 Search Space Pruning
In addition to goal-oriented decomposition, we develop two
novel strategies to further reduce the search space of SAT solv-
ing. A common feature of the two strategies is that they both
prune the search space by adding more constraints to the prob-
lem formulations.

5.1 Mutual Exclusion Constraints from
Multi-Valued Formulations

In the SAT formulation, the E clauses encode binary mutual
exclusion relations among actions. It is very difficult and ex-
pensive to detect all mutual exclusions, and most previous SAT
planners only detect a small subsets of mutual exclusions. In
MaxPlan, we use a new approach that can generate more mu-
tual exclusions efficiently. The approach uses a multi-valued
domain formulation (MDF) that translates the binary fact rep-
resentation into a more compact representation with multi-
valued variables. Each variable typically represents an invari-
ant group for an object, and the variable can only take one value
in the group at any time. For example, a truck may only be at
one location at any time. The location of a truck is a variable,
and different locations are the values that the variable maytake.

Based on the MDF formulation, we can derive more mu-
tual exclusions among actions. We first derive mutual exclu-
sions among facts. In fact, all the binary facts associated with
a multi-valued variable are mutually exclusive. For example,
at(truck, location1) andat(truck, location2) are mutually ex-
clusive. Based on the mutual exclusions among facts, we fur-
ther derive mutual exclusions among actions based on the orig-
inal definition of mutual exclusion[Blum & Furst, 1997]. The
new mutual exclusions among actions are added to the action-
based SAT formulation as additional constraints to prune in-
feasible regions of the search space. This technique improves
the efficiency in both finding a feasible plan and proving un-
satisfiability.

5.2 Accumulative Learning
An additional technique to further improve the search effi-
ciency is accumulative learning. Typically a SAT solver can
learn during search new redundant clauses which provide addi-
tional pruning power. This mechanism is calledclause learn-
ing, and the derived clauses are calledlearnt clauses. In the
existing SAT planners such as SATPLAN04, learnt clauses are
not inherited across iterations. In each iteration, the SATsolver
learns clauses from scratch.

Since MaxPlan uses an iterative process to search for an op-
timal plan, we note that a SAT instance at any iteration re-
sembles the SAT instance for the previous iteration, exceptfor
some G clauses due to the change of plan length. We take
advantage of such a structural similarity and propose the accu-
mulative learning scheme. This scheme has two key compo-
nents. Instead of re-encoding the whole problem from scratch

after each iteration, we simply modify and patch the previous
encoding to specify the new constraints of the next iteration.
Therefore, the time for encoding can be significantly reduced,
and such saving can be significant for large planning problems.
More importantly, we can retain all the learnt clauses (not re-
lated to goal clauses) in all the previous iterations and re-use
them in the next iteration. As a result, most learnt clauses only
need to be learnt once, which saves running time.

It is important to note that the learnt clauses that are re-
tained for the next iteration may be learnt again in the next
iteration if they were not retained. Most existing efficientSAT
solvers have efficient mechanisms for clause learning that sup-
port managing and deleting learnt clauses intelligently. There-
fore, our accumulative learning scheme incurs very little addi-
tional memory over the original SAT solver.

6 Conclusions
In summary, MaxPlan follows the general paradigm of plan-
ning as satisfiability and incorporates significant extensions.
First, MaxPlan uses backward level reduction instead of the
previous forward expansion approach. Second, MaxPlan uses
a novel goal-oriented decomposition method, developed in this
paper, to greatly improve the efficiency of solving SAT prob-
lems derived from planning. This decomposition method ex-
ploits structures of a planning problem and the effects of dif-
ferent classes of clauses in the SAT encoding. Finally, two new
strategies, MDF-based constraints and accumulative learning,
are developed to further prune the search space.

References
[Blum & Furst, 1997] Blum, A., and Furst, M. 1997. Fast

planning through planning graph analysis.Artificial Intelli-
gence90:281–300.

[Eén & Biere, 2005] Eén, N., and Biere, A. 2005. Effective
preprocessing in SAT through variable and clause elimina-
tion. In SAT.

[Hoffmann & Nebel, 2001] Hoffmann, J., and Nebel, B. 2001.
The FF planning system: Fast plan generation through
heuristic search. J. of Artificial Intelligence Research
14:253–302.

[Hooker & Vinay, 1995] Hooker, J., and Vinay, V. 1995.
Branching rules for satisfiability.J. Automated Reasoning
15:359–383.

[Kautz & Selman, 1996] Kautz, H., and Selman, B. 1996.
Pushing the envelope: Planning, propositional logic, and
stochastic search. InProceedings of AAAI-96, 1194–1201.

[Kautz,] Kautz, H. SATPLAN04: Planning as satisfiability.
IPC4 abstract, 2004.

[Li & Anbulagan, 1997] Li, C., and Anbulagan. 1997. Heuris-
tics based on unit propagation for satisfiability problems.In
Proceedings of IJCAI-97, 366–371.

[Moskewiczet al., 2001] Moskewicz, M. W.; Madigan, C. F.;
Zhao, Y.; Zhang, L.; and Malik, S. 2001. Chaff: Engi-
neering an Efficient SAT Solver. InProceedings of the 38th
Design Automation Conference (DAC’01).

[Selman & Kautz, 1992] Selman, B., and Kautz, H. 1992.
Planning as satisfiability. InProceedings ECAI-92, 359–
363.

ICAPS 2006

International Planning Competition 55

Abstracting Planning Problems with Preferences and Soft Goals

Lin Zhu and Robert Givan
Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907 USA

{lzhu, givan}@purdue.edu

Abstract

In this paper we describe the planner PATTERNPLAN that par-
ticipates in the Fifth International Planning Competition. We
put emphasis on solving the over-subscription planning prob-
lem, which characterized the major difference between this
planning competition and the previous ones. Our solution is
to abstract the over-subscription problem into a generalized
orienteering problem and use the solution of this problem
to guide the search of solving the original over-subscription
problem.

Introduction
The goal in traditional planning research is usually to gen-
erate a plan that satisfies a fixed set of subgoals, some-
times with the additional objective of minimizing costs.
This also has been the theme in previous planning compe-
titions(McDermott 2000; Bacchus 2001; Long & Fox 2003;
Hoffmann & Edelkamp 2005). In many real-world plan-
ning problems, however, it is necessary to explicitly con-
sider the trade-off between the rewards of achieving goals
against their costs. Very recently this problem was con-
sidered in the setting of over-subscription planning (Smith
2004). In this setting, there are a large number of possi-
ble goals with differing rewards. Given a limit of time and
resources, the planning system must choose to accomplish
a subset of those goals that maximizes the rewards. In the
Fifth International Planning Competition (Gerevini & Long
2005), this problem is considered more generally by setting
the objective as optimizing a linear combination of rewards
and costs. We also call these problems over-subscription
planning problems.

Given an over-subscription planning problem, there is a
cost and a reward associated with each valid plan. For
any over-subscription problem, there is a underlying re-
lation between rewards and costs. The over-subscription
problem is implicitly a linear optimization problem on this
relation. Because exactly generating this relation is dif-
ficult, previous approaches employed various approxima-
tion methods (Smith 2004; van den Briel et al. 2004;
Nigenda & Kambhampati 2005; Benton, Do, & Kambham-
pati 2005).

We also solve the over-subscription problem approxi-
mately by generating an abstraction problem. By design

the reward-cost relation on the abstraction problem approx-
imates that on the original problem. A solution with good
quality on the abstraction problem thus hopefully leads to
a solution with good quality on the original problem. With
such a guide, we employ a forward-chaining method to solve
the original over-subscription problem.

In the following section, we will describe the abstraction
method and the planning method in detail.

Abstraction
We take an approach that is similar in spirit with a previous
method that constructs orienteering problems (Keller 1989;
Blum et al. 2003) for over-subscription planning (Smith
2004). Our approach differs in two ways. First, we rec-
ognize that a generalization of the orienteering problem is
necessary. Second, we introduce a novel fully automatic
method that translates the over-subscription problem into a
generalized orienteering problem.

We start by translating the PDDL planning problems into
the SAS+ formalism (Bäckström & Nebel 1995), based on
methods previously published (Helmert 2004; Edelkamp &
Helmert 1999). In SAS+ variables can have non-binary fi-
nite domains. More compact representations are achieved
with SAS+ than with STRIPS or PDDL.

Starting with an empty abstract problem, we then incre-
mentally introduce variables to the abstract problem until a
pre-defined threshold (e.g., a certain number of variables) is
reached. Only those variables that are both a precondition
and an effect of some action are included. For each such ac-
tion, the cost of that action is associated with the variable.
The variables are added to the abstract problem in descend-
ing order of their minimal associated costs. This abstract
state space represents the part of the original problem that is
most sensitive to costs. Any action or any set of goals can
be projected onto this abstract state space by ignoring other
variables.

In the next step all the goals with rewards are embedded
into this abstract state space. A goal can be embedded into
an abstract state if and only if the abstract state satisfies the
goal after the goal is projected into the abstract state space.
Note that some abstract state might contain no goal. Also
note it is possible that the same goal is embedded into mul-
tiple abstract states. Because of this we have to introduce a
generalization of the orienteering problem.

ICAPS 2006

56 International Planning Competition

Now we are ready to define the generalized orienteering
problem. This problem consists of the abstract state space,
the distance between any pair of states, the goals that are
associated with states, and a reward for each goal. Start-
ing from the projection state of the initial original state, the
objective is to optimize a linear combination of the rewards
and costs by moving on the abstract state space. A reward
for each goal can be collected only once, even if the same
goal is available in multiple abstract states.

We solve the generalized orienteering problem by adapt-
ing heuristic local search methods that are used to solve the
original orienteering problems (Smith 2004).

The solution for the generalized orienteering problem
defines an ordering on the goals of the original over-
subscription problem. We then use a black-box cost-
optimizing planner to solve enlarging subsets of the goals
in sequence. The subset goal initially contains the first goal
solved in the generalized orienteering problem. At each
stage the planner tries to achieve all the goals in the subset
goal. A new goal is added to the subset goal if the plan-
ner succeeds. The black-box planner is stopped whenever a
subset goal is not achievable within a time limit. We call the
plan that successfully achieved the second last subset goal a
preliminary plan. The final plan is a prefix of the prelimi-
nary plan that achieves the linear optimization of costs and
rewards.

References
Bacchus, F. 2001. The AIPS ’00 planning competition. AI
Magazine 22(3):47–56.
Bäckström, C., and Nebel, B. 1995. Complexity results for
sas+ planning. Computational Intelligence 11:625–656.
Benton, J.; Do, M. B.; and Kambhampati, S. 2005. Over-
subscription planning with numeric goals. In Proceedings
of the International Joint Conferences on Artificial Intelli-
gence (IJCAI), 1207–1213.
Blum, A.; Chawla, S.; Karger, D. R.; Lane, T.; Meyer-
son, A.; and Minkoff, M. 2003. Approximation algorithms
for orienteering and discounted-reward TSP. In Proceed-
ings of the Symposium on Foundations of Computer Sci-
ence (FOCS), 46–55.
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowl-
edge in planning problems to minimize state encoding
length. In Proceedings of the European Conference on
Planning (ECP), 135–147.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences for PDDL3. Technical Report R.T. 2005-08-
07, Department of Electronics for Automation, University
of Brescia, Brescia, Italy.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proceedings of the International Con-
ference on Automated Planning and Scheduling (ICAPS),
161–170.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelli-
gence Research (JAIR) 24:519–579.

Keller, C. P. 1989. Algorithms to solve the orienteering
problem: A comparison. European Journal of Operational
Research 41(2):224–231. No online version.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artifi-
cial Intelligence Research (JAIR) 20:1–59.
McDermott, D. V. 2000. The 1998 AI planning systems
competition. AI Magazine 21(2):35–55.
Nigenda, R. S., and Kambhampati, S. 2005. Plan-
ning graph heuristics for selecting objectives in over-
subscription planning problems. In Proceedings of the
International Conference on Automated Planning and
Scheduling (ICAPS), 192–201.
Smith, D. E. 2004. Choosing objectives in over-
subscription planning. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 393–401.
van den Briel, M.; Nigenda, R. S.; Do, M. B.; and Kamb-
hampati, S. 2004. Effective approaches for partial sat-
isfaction (over-subscription) planning. In Proceedings of
the National Conference on Artificial Intelligence (AAAI),
562–569.

ICAPS 2006

International Planning Competition 57

POND: The Partially-Observable and Non-Deterministic Planner

Daniel Bryce
Department of Computer Science and Engineering

Arizona State University, Brickyard Suite 501
699 South Mill Avenue, Tempe, AZ 85281

dan.bryce@asu.edu

Abstract

This paper describes POND, a planner developed to
solve problems characterized by partial observability
and non-determinism. POND searches in the space of
belief states, guided by a relaxed plan heuristic. Many
of the more interesting theoretical issues showcased
by POND show up within its relaxed plan heuris-
tics. Namely, the exciting topics are defining distance
estimates between belief states, efficiently computing
such distance estimates on planning graphs, and shar-
ing planning graphs and relaxed plans between belief
states.

Introduction

The POND planner solves many types of planning
problems characterized by uncertainty, whether they
are non-deterministic/probabilistic, are non/partially
observable, or have deterministic/uncertain actions.
POND accepts PPDDL-like1 (Younes & Littman 2004)
problem descriptions and generates conformant and
conditional plans. POND searches forward in the space
of belief states, similar to GPT (Bonet & Geffner 2000),
using various search algorithms (A*, AO*, LAO*, En-
forced Hill-Climbing) depending on the problem and
user preferences. To compute heuristics for search,
POND can use several different planning graph tech-
niques. We start by discussing some of the theory that
goes into computing the planning graph heuristics used
by POND, and then describe the planner implementa-
tion.

Theory

Since POND can handle several types of planning
problems, we concentrate on the techniques used for
conformant non-deterministic planning. We refer to
(Bryce, Kambhampati, & Smith 2006a) and (Bryce,
Kambhampati, & Smith 2006b) for additional tech-
niques, not described here.

Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

1PPDDL extended for various things such as non-
determinism, observations, goal probability thresholds, etc.

Belief State Distance: To search in belief space,
POND estimates the conformant plan distance be-
tween the belief state(s) at the end of its current plan
prefix and a goal belief state. The distance between
belief states is taken as an aggregate measure of the
underlying distances between states in the belief states.
For instance, a possible admissible measure would find
the minimum distance from every state in the current
belief state to a state in the goal belief state, then
take the maximum of these (this is the measure used
by GPT). Since taking the maximum of the minimum
state distances assumes full positive interaction between
the states, we would not account for many of the ac-
tions that differ between the sequences for each state
(i.e., miss independence). Taking the summation of
the minimum state distances would assume full inde-
pendence, but miss the positive interaction. Instead,
we use a measure that exploits both positive interac-
tion and independence. By analogy to plan merging,
we would like to merge the action sequences for each
of the states in the current belief state so that actions
overlap as much as possible (Bryce, Kambhampati, &
Smith 2006a). The resulting merged plan contains all
actions used in common or independently by the dif-
ferent states in the belief state. We can obtain this
measure by computing a classical relaxed plan for each
state in our current belief state and merging the relaxed
plans. However, there may be many states in our belief
state and computing a planning graph for each state is
costly.

Heuristic Computation: In order to compute our
belief state distance measure without constructing mul-
tiple explicit planning graphs, we use a planning graph
generalization, called the Labeled Uncertainty Graph
(LUG) (Bryce, Kambhampati, & Smith 2006a). The
LUG represents multiple explicit planning graphs im-
plicitly. The idea is to use a single planning graph
skeleton to represent common action and proposition
connectivity, and use annotations (labels) that denote
which planning graph components exist in the explicit
planning graphs. Labels are propositional formulas,
whose models correspond to states in the belief state.
We can determine which explicit planning graphs con-
tain a proposition by examining the models of the

ICAPS 2006

58 International Planning Competition

proposition’s label. If a state entails the label of the
proposition at level k, the proposition is in the explicit
planning graph for the state at level k.

Using LUG connectivity, we can determine which ac-
tions are needed to support the goal propositions, and
using labels we know when we have chosen enough ac-
tions to support the goals from each of the states in
our belief state. Thus, we can extract a relaxed plan
that represents an implicitly merged plan for each of
the states in our belief state. This relaxed plan indi-
cates the plan distance to transition each of the states
in a belief state to a goal belief state.

State Agnostic Planning Graphs: The LUG im-
plicitly represents a set of explicit planning graphs. Us-
ing a state agnostic planning graph (SAG) (Cushing &
Bryce 2005), a generalization of the LUG, we can build
a LUG for every possible state. The SAG and LUG are
identical except for which states are represented and
how we compute relaxed plans. To extract the relaxed
plan for a belief state from the SAG (assuming the be-
lief state is represented by a propositional formula) we
need to take the conjunction of each label with the belief
state to reveal the LUG for the belief state. Those plan-
ning graph elements where the conjunction is satisfiable
are in the revealed LUG. By computing the SAG, we
construct a single, sometimes costly, LUG whose cost
is amortized over each belief state.

Global Relaxed Plan: Alternative to using the SAG
to compute a relaxed plan for each belief state, we can
compute a global relaxed plan. The global relaxed plan
continues the SAG generalization by making a state ag-
nostic relaxed plan. We extract the global relaxed plan,
which is a relaxed plan for the belief state containing
all states, and then for each belief state encountered in
search we restrict the global relaxed plan to the actions
needed for the belief state. By restricting the global
relaxed plan, we mean that we take the conjunction of
each action’s label in the global relaxed plan with the
belief state formula. Those actions where the conjunc-
tion is satisfiable are in the relaxed plan. The global
relaxed plan is admittedly less accurate than extract-
ing a relaxed plan from the SAG for a specific belief
state, but is very fast to compute.

Lazily Enforced Hill-Climbing: POND uses a
lazily enforced hill-climbing search, guided by three
heuristics: belief state cardinality (Bertoli, Cimatti, &
Roveri 2001), the global relaxed plan and the SAG re-
laxed plan. These heuristics have an increasing com-
putation cost (and accuracy). The basic idea is to the
use the cardinality heuristic in hill-climbing, as long
as it improves the heuristic distance to the goal belief
state. If the cardinality of the current children search
nodes does not decrease, then we re-evaluate the chil-
dren with the global relaxed plan (a slightly more costly,
but better heuristic). If the global relaxed plan cannot
find a better child, then we switch to the SAG relaxed
plan in an A* search rooted at our current search node.

Search:

Hill-Climbing

Heuristic:

Belief State

Cardinality

Search:

Hill-Climbing

Heuristic:

Global Relaxed

Plan (GRP)

Search:

A*

Heuristic:

SAG Relaxed

Plan

No Child with

Lower Cardinality

No Child with

Lower GRP

Found Child with

Lower GRP

No Children (Hill-Climbing Failed)

Revert to A*

Found Child with

Lower SAG

Relaxed Plan

Figure 1: Lazily Enforced Hill-Climbing strategy.

The SAG relaxed plan is the costliest heuristic, but
the most informed. Once the A* search finds a better
cost child, we resume hill-climbing with cardinality. If
search fails, we revert to A* search with the global re-
laxed plan heuristic. The automata in Figure 1 depicts
our search strategy. Since the heuristic landscape de-
fined by cardinality, the global relaxed plan, and SAG
relaxed plan are different, we say the search is lazily
enforced hill-climbing. It is not always the case that
using one heuristic to escape a heuristic plateau of an-
other heuristic decreases the original distance to the
goal belief state. However, since we use the heuristics
in order of increasing accuracy, we are more confident
in the direction chosen by the heuristics even if it means
an increase in the original heuristic distance.

Implementation
POND is implemented in C++ and uses several ex-
isting technologies. It employs the PPDDL parser
(Younes & Littman 2004) for input, the IPP planning
graph construction code (Koehler et al. 1997) for the
LUG, and the CUDD BDD package (Somenzi 1998) for
representing belief states, actions, and labels. POND
resembles MBP (Bertoli et al. 2001) because it uses
BDDs to represent belief states and actions, and uses
BDD operations to symbolically compute the transition
between belief states. POND is perhaps most simi-
lar to KACMBP (Bertoli & Cimatti 2002) because we
use both cardinality and reachability heuristics, how-
ever our reachability heuristics are based on conformant
relaxed plans.

Acknowledgements: This work was supported
by the NSF grant IIS-0308139, the ONR grant
N000140610058, the MCT/NASA summer fellowship
program, the ARCS foundation, an IBM faculty award,
and Arizona State University. We would like to thank
Subbarao Kambhampati, David E. Smith, and William
Cushing for contributing to the theory used in POND.

ICAPS 2006

International Planning Competition 59

Much additional thanks is also given to William Cush-
ing for help with implementation.

References
Bertoli, P., and Cimatti, A. 2002. Improving heuristics
for planning as search in belief space. In Proceedings
of AIPS’02.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso,
P. 2001. Planning in nondeterministic domains under
partial observability via symbolic model checking. In
Proceedings of IJCAI’01.
Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuris-
tic search + symbolic model checking = efficient con-
formant planning. In Proceedings of IJCAI’01.
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proceedings of ECP’99.
Bonet, B., and Geffner, H. 2000. Planning with incom-
plete information as heuristic search in belief space. In
Proceedings of AIPS’00.
Bryce, D.; Kambhampati, S.; and Smith, D. 2006a.
Planning graph heuristics for belief space search.
JAIR. (To appear).
Bryce, D.; Kambhampati, S.; and Smith, D. 2006b.
Sequential monte carlo in probabilistic planning reach-
ability heuristics. In Proceedings of ICAPS’06.
Cushing, W., and Bryce, D. 2005. State agnostic
planning graphs. In Proceedings of AAAI’05.
Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos,
Y. 1997. Extending planning graphs to an adl subset.
In Proceedings of ECP’97.
Somenzi, F. 1998. CUDD: CU Decision Diagram
Package Release 2.3.0. University of Colorado at Boul-
der.
Younes, H., and Littman, M. 2004. PPDDL1.0: An
extension to PDDL for expressing planning domains
with probabilistic effects. Technical report, CMU-CS-
04-167, Carnegie Mellon University.

ICAPS 2006

60 International Planning Competition

Conformant-FF

Jörg Hoffmann
Max Planck Institute for CS

Saarbr̈ucken, Germany
hoffmann@mpi-sb.mpg.de

The Conformant-FF planner, as entered into (the confor-
mant track of) IPC-5, is exactly the system as described by
(Brafman & Hoffmann 2004; Hoffmann & Brafman 2006).
The only differences amount to a slightly changed input syn-
tax, as used in IPC-5. The planner is an extension of the FF
system (Hoffmann & Nebel 2001). The main trick in the ex-
tension is the use of SAT-based techniques to reason about
uncertainty.

Conformant-FF, in its current implementation, can deal
with initial state sets given as CNF formulas, actions with
conditional effects, full ADL in effect conditions, and a
subset of ADL in action preconditions and the goal for-
mula. Constructs not supported are disjunction in pre-
conditions and the goal (unless the disjunction disappears
when processing static facts), and, most importantly, non-
deterministic action effects.

Conformant-FF performs a search in belief space, as sug-
gested first with the GPT system (Bonet & Geffner 2000),
and also done in the various versions of the MBP system
(Cimatti & Roveri 2000; Bertoli & Cimatti 2002). A be-
lief state is the set of world states that are possible at some
time point. The belief space is the space of all belief states
reachable from the initial belief state. There are two key dif-
ferences between the three systems: (1) theirrepresentation
of belief states; (2) theheuristicused to guide the search.

GPT represents the belief states explicitly, enumerating
the respective world states. Standard heuristic functions
(from deterministic planning) can then be aggregated ap-
propriately. MBP represents the belief states symbolically,
i.e., each belief state is now a BDD. The heuristic simply
prefers belief states with less uncertainty, i.e., BDDs that
represent a smaller state set. Conformant-FF uses a very
lazy representation of belief states, including only apartial
knowledge: for a belief stateB, it just computes the facts
T(B) that are true inall world statess∈ B. This knowledge
suffices to do STRIPS-style conformant planning: an action
preconditionpre (a conjunction of facts) is satisfied inB iff
pre⊆ T(B); the goalG (a conjunction of facts) is satisfied
in B iff G⊆ T(B). The factsT(B) are computed by encod-
ing the semantics of the action sequence leading toB as a
“time-stamped” CNF formulaφ , defining how fact values
change over the action sequence, in a straightforward way.
Conjoiningφ with the initial state formulaφ I , one gets that
p∈ T(B) iff φ I ∧φ |= p.

Conformant-FF’s lazy or “implicit” representation can be
seen as a way of trading space for time: on the positive side,
we do not need to keep full detail about eachB in memory;
on the negative side, not having full detail aboutB forces
us to reason all the way back to the initial state (in building
the formulasφ) when computing the successors toB. In
practice, we found even naive SAT solvers to be extremely
efficient in solving the formulas arising in this context, so
that the runtime price to pay is, in most cases, low.

The probably more crucial novelty in Conformant-FF is
its heuristic function. This is an extension of FF’s “relaxed
plan heuristic” to the conformant setting, i.e., to initial states
given as CNF formulas. The underlying relaxation is still to
ignore the delete lists. Relaxed planning, however, is still
co-NP-hard when the initial “state” is a CNF. We get around
this by making another relaxation: we ignore all but one of
the (unknown) effect conditions of each effect. This cor-
responds to a 2-projection of the CNF formula that would
encode the semantics of the relaxed actions. To obtain a
polynomial worst-case behavior, one would also have to 2-
project the initial state formula. We tried this, and found it to
produce very bad heuristic values in many examples. So, in-
stead, we keep the initial state formula unchanged, investing
the effort to reason about it with a SAT solver. This produces
good heuristic values in many cases, with a tolerable over-
head since the initial state formula is typically neither overly
large nor overly complicated.

In the traditional conformant benchmarks (Bombs, Ring,
Cube, . . .) Conformant-FF is sometimes competitive with
GPT and MBP, sometimes outperformed vastly (particularly
in Ring). In benchmarks created as classical benchmarks en-
hanced with uncertainty, however, Conformant-FF is many
orders of magnitude superior to both GPT and (all variants
of) MBP, since the heuristic function inherits, to a large ex-
tent, the quality of FF’s heuristic function in the classical
setting.

References
Bertoli, P., and Cimatti, A. 2002. Improving heuris-
tics for planning as search in belief space. In Ghallab,
M.; Hertzberg, J.; and Traverso, P., eds.,Proceedings of
the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS-02), 143–152. Toulouse,
France: Morgan Kaufmann.

ICAPS 2006

International Planning Competition 61

Bonet, B., and Geffner, H. 2000. Planning with incomplete
information as heuristic search in belief space. In Chien, S.;
Kambhampati, R.; and Knoblock, C., eds.,Proceedings of
the 5th International Conference on Artificial Intelligence
Planning Systems (AIPS-00), 52–61. Breckenridge, CO:
AAAI Press, Menlo Park.
Brafman, R., and Hoffmann, J. 2004. Conformant planning
via heuristic forward search: A new approach. In Koenig,
S.; Zilberstein, S.; and Koehler, J., eds.,Proceedings of
the 14th International Conference on Automated Planning
and Scheduling (ICAPS-04), 355–364. Whistler, Canada:
Morgan Kaufmann.
Cimatti, A., and Roveri, M. 2000. Conformant planning
via symbolic model checking.JAIR13:305–338.
Hoffmann, J., and Brafman, R. 2006. Conformant planning
via heuristic forward search: A new approach.Artificial
Intelligence170(6–7):507–541.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.

ICAPS 2006

62 International Planning Competition

COMPLAN : A Conformant Probabilistic Planner ∗

Jinbo Huang
Logic and Computation Program

National ICT Australia
Canberra, ACT 0200 Australia

jinbo.huang@nicta.com.au

Abstract

COMPLAN is a conformant probabilistic planner that finds a
plan with maximum probability of success for a given hori-
zon. The core of the planner is a a depth-first branch-and-
bound search in the plan space. For each potential search
node, an upper bound is computed on the success probability
of the best plans under the node, and the node is pruned if this
upper bound is not greater than the success probability of the
best plan already found. A major source of efficiency for this
algorithm is the efficient computation of these upper bounds,
which is possible by encoding the original planning problem
as a propositional formula and compiling the formula into de-
terministic decomposable negation normal form.

Conformant Probabilistic Planning
Consider theSLIPPERY-GRIPPER domain (Kushmerick,
Hanks, & Weld 1995), where a robot needs to have a block
painted and held in his gripper, while keeping his gripper
clean. The gripper starts out clean, but may be wet, which
may prevent him from holding the block; painting the block,
while certain to succeed, may make his gripper dirty; a dryer
is available to dry the gripper. Given probability distribu-
tions quantifying these uncertainties and a planning horizon,
the robot requires a plan that achieves the goal with maxi-
mum probability.

A probabilistic planning problem can be characterized by
a tuple〈S, I,A,G,n〉 whereS is the set of possible world
states,I is a probability distribution overS quantifying the
uncertainty about the initial state,A is the set of actions, all
of which are assumed to be applicable in every state,G is
the set of goal states, andn is the planning horizon.

To quantify the uncertainty in action effects, each action
a ∈ A is a function that maps each states ∈ S to a prob-
ability distributionPra

s over all statesS. Starting from our
initial belief stateB0, which is equal toI, each actiona ∈ A
taken will bring us to a new belief state with updated proba-
bilities for the world statesS:

Bn(s′) =
∑

s∈S

Bn−1(s) · Pra
s (s′).

A solution to theconformantprobabilistic planning prob-
lem is then a sequence ofn actions, or ann-step plan, lead-

∗This document is based on (Huang 2006).

ing to belief stateBn, such that the sum of the probabilities
assigned byBn to the goal states is maximized.

Propositional Encoding
A probabilistic planning problem can be encoded by a
propositional formula, where a subset of the propositional
variables are labeled with probabilities (Littman 1997).
As an example we consider the encoding ofSLIPPERY-
GRIPPER. The state spaceS of SLIPPERY-GRIPPER can
be encoded by four propositional variables:BP (block-
painted),BH (block-held),GC (gripper-clean),GD (gripper-
dry). Suppose initially the block is not painted and not held,
and the gripper is clean but dry only with probability 0.7.

To encode this initial belief state, we introduce achance
variablep, and label it with the number 0.7. We then write:

¬BP,¬BH, GC,¬p ∨ GD, p ∨ ¬GD.

This five-clause formula has the property that each setting
of variablep will simplify the formula, resulting in a single
world state, whose probability is given by the label ofp (if p
is set totrue), or 1 minus that (ifp is set tofalse).

We now consider the encoding of uncertain action ef-
fects. First we introduce a new set of state variables—
BP′, BH′, GD′, GC′—to encode the states reached after ex-
ecuting an action. There are three actions available:A =
{dry, paint, pickup}. Suppose actiondry dries a wet gripper
with probability 0.8, and does not affect a dry gripper. We
introduce a chance variableq, label it with 0.8, and write:
¬dry∨GD∨¬q∨GD′,¬dry∨GD∨q∨¬GD′,¬dry∨¬GD∨GD′.

We also need a set of clauses, known as aframe axiom,
saying that the other variables are not affected by the action:
¬dry∨ (BP ⇔ BP′),¬dry∨ (BH ⇔ BH′),¬dry∨ (GC ⇔ GC′).

After all actions are encoded, we write the following saying
that exactly one of the three actions will be taken:

dry ∨ paint ∨ pickup,

¬dry ∨ ¬paint,¬dry ∨ ¬pickup,¬paint ∨ ¬pickup.

Finally, our goal that the block be painted and held and the
gripper be clean translates into three unit clauses:

BP′, BH′, GC′.

This completes our propositional encoding of the planning
problem, for horizon 1. The resulting set of clauses∆1 can
be characterized as the conjunction of three components:

∆1 ≡ I(P−1, S0) ∧ A(S0, A0, P0, S1) ∧ G(S1),

ICAPS 2006

International Planning Competition 63

whereI(P−1, S0) is a set of clauses over the initial chance
variablesP−1, and the state variablesS0 at time 0, encoding
the initial belief state;A(S0, A0, P0, S1) is a set of clauses
over the state variablesS0, action variablesA0, and chance
variablesP0 at time 0, and state variablesS1 at time 1, en-
coding the action effects; andG(S1) is a set of clauses over
the state variablesS1 at time 1, encoding the goal condition.

From this characterization, an encoding∆n for n-step
planning can be produced in a mechanical way by repeat-
ing the middle component with a new set of variables for
each additional time step, and updating the goal condition:

∆n ≡ I(P−1, S0)∧A(S0, A0, P0, S1)∧A(S1, A1, P1, S2)

∧ . . . ∧ A(Sn−1, An−1, Pn−1, Sn) ∧ G(Sn). (1)

In this encoding, ann-step plan is an instantiationπ of the
action variablesA = A0 ∪A1 ∪ . . . ∪ An−1, aneventuality
is an instantiation of the chance variablesP = P−1 ∪ P0 ∪
. . . ∪ Pn−1, and the probability of an eventuality is given
by multiplying together the label of each chance variable, or
1 minus that, depending on its sign in the instantiation. A
solution to the conformant probabilistic planning problem is
then a planπ∗ such that the sum of the probabilitiesPr(ε)
of all eventualitiesε consistent withπ is maximized:

π∗ = arg max
π

∑

π∧ε∧∆nis consistent

Pr(ε). (2)

Compilation to Deterministic DNNF
COMPLAN exploits the particular structure of probabilistic
planning problems, as characterized by Equation 1, by com-
piling ∆n into deterministic decomposable negation normal
form (deterministic DNNF, or d-DNNF) (Darwiche & Mar-
quis 2002) using the publicly availableC2D compiler (Dar-
wiche 2004; 2005), before the search starts.

Deterministic DNNF A propositional formula is in d-
DNNF if it (i) only uses conjunction, disjunction, and nega-
tion, and negation only appears next to variables; and (ii)
satisfiesdecomposabilityanddeterminism. Decomposabil-
ity requires that conjuncts of any conjunction share no vari-
ables; determinism requires that disjuncts of any disjunction
be pairwise inconsistent. The formula shown in Figure 1, for
example, is in d-DNNF, and is equivalent to the 2-step en-
coding∆2 of SLIPPERY-GRIPPER, after the state variables
S = S0 ∪ S1 ∪ S2 have been existentially quantified.

Recall that existential quantification of a variable is de-
fined as: ∃x.∆ ≡ ∆|x ∨ ∆|x, where∆|x (∆|x) denotes
setting variablex to true (false) in ∆. In these planning
problems, existential quantification of the state variables is
useful because these variables do not appear in Equation 2
and their absence can reduce the size of the problem.

Efficient Plan Assessment Compilation of the planning
problem into d-DNNF provides an efficient method for plan
assessment: The computation of the success probability of
any complete planπ for then-step planning problem∆n,

Pr(π) =
∑

π∧ε∧∆nis consistent

Pr(ε), (3)

or

and

and

¬pt’

and

s’p ¬dry paint ¬pickup ¬r ¬dry’ ¬paint’ pickup’

Figure 1: The 2-stepSLIPPERY-GRIPPERin d-DNNF.

which is necessary for computing Equation 2, can be done in
time linear in the size of a d-DNNF compilation of∃S.∆n,
whereS is the set of the state variables.

The source of this efficiency lies in that the d-DNNF
graph can be viewed as afactorizationof Equation 3, by
regarding the conjunction nodes as multiplications and dis-
junction nodes as summations. Specifically, given the label
Pr(p) of each chance variablep, and a planπ, Pr(π) can
be obtained by a single bottom-up traversal of the d-DNNF
graph, where a value is assigned to each nodeN of the graph
as described in Algorithm 1.

Algorithm 1 Plan Assessment

val(N, π) =

1, if N is a leaf node that
mentions an action variable
and is consistent withπ;

0, if N is a leaf node that
mentions an action variable
and is inconsistent withπ;

Pr(p), if N is a leaf nodep where
p is a chance variable;

1− Pr(p), if N is a leaf node¬p where
p is a chance variable;∏

i

val(Ni, π), if N =

∧
i

Ni;

∑
i

val(Ni, π), if N =
∨

i

Ni.

The value assigned to the root is thenPr(π). For ex-
ample, given the 2-step planpaint-pickup′ for SLIPPERY-
GRIPPER, which is actually a 6-variable instantiation
(¬dry, paint,¬pickup,¬dry′,¬paint′, pickup′), Algorithm 1
run on Figure 1 computes its success probability as 0.7335.

Depth-First Branch-and-Bound
Given a method for plan assessment (Algorithm 1), an opti-
mal conformant plan can be found by a systematic search in
the space of all possible plans.COMPLAN uses a depth-first
branch-and-bound for this purpose, where upper bounds on
values of partial plans are efficiently computed by traversing
the d-DNNF compilation of the planning problem.

Computing Upper Bounds Recall that our goal is to com-
pute Equation 2, which is a sequence of maximizations over
the action variables followed by a sequence of summations
over the chance variables. Note that maximizations com-
mute, and therefore the maximizations over action variables
can be performed in any order. Similarly, the summations
over chance variables can be performed in any order. These

ICAPS 2006

64 International Planning Competition

two sequences cannot be swapped or mixed, though, as max-
imization does not commute with summation.

However, if we disregard this constraint and allow the
maximizations and summations to be mixed in any order, it
is not difficult to see that we will get a result thatcannot be
lower than the correct value. The motivation for lifting the
variable ordering constraint is that we can now take advan-
tage of the bounded treewidth of these planning problems
by performing these maximizations and summations on the
compact d-DNNF compilation, and using the results as up-
per bounds to prune a search.

Specifically, Algorithm 2 computes an upper bound on the
success probability of the best completions of a partial plan
π, by a single bottom-up traversal of the d-DNNF graph for
∃S.∆ (note that we are using the same name for the value
function as in Algorithm 1, which can now be regarded as a
special case of Algorithm 2 whereπ is a complete plan).

Algorithm 2 Upper Bound

val(N, π) =

1, if N is a leaf node that
mentions an action variable
and is consistent withπ;

0, if N is a leaf node that
mentions an action variable
and is inconsistent withπ;

Pr(p), if N is a leaf nodep where
p is a chance variable;

1− Pr(p), if N is a leaf node¬p where
p is a chance variable;∏

i

val(Ni, π), if N =
∧

i

Ni;

max
i

val(Ni, π), if N =
∨

i

Ni andN is a

decision node over an action
variable not set byπ;∑

i

val(Ni, π), if N =
∨

i

Ni andN is not

of the above type.

COMPLAN keeps the d-DNNF graphG on the side during
search. For ann-step planning problem, the maximum depth
of the search will ben. At each node of the search tree, an
unused time stepk, 0 ≤ k < n, is chosen (this need not
be in chronological order), and branches are created corre-
sponding to the different actions that can be taken at stepk.
The path from the root to the current node is hence a partial
planπ, and can be pruned ifval(G, π) computed by Algo-
rithm 2 is less than or equal to thelower boundon the value
of an optimal plan. This lower bound is initialized to 0 and
updated whenever a leaf is reached and the corresponding
complete plan has a greater value. When search terminates,
the best plan found together with its value is returned.

Variable Ordering Let a1
k, a2

k, . . . , a
|A|
k be the proposi-

tional action variables for stepk, whereA is the set of ac-
tions. At each node of the search tree, letlb be the current
lower bound on the success probability of an optimal plan,
let π be the partial plan committed to so far, and letk be
some time step that has not been used inπ. We are to select
ak and branch on the possible actions to be taken at stepk.

We consider the following:

hbk = max{bi : bi = val(G, 〈π, ai
k〉), bi > lb}, (4)

where〈π, ai
k〉 denotes the partial planπ extended with one

more actionai
k (andaj

k for all j 6= i, implicitly). This quan-
tity hbk gives the highest value among the upper bounds for
the prospective branches that will not be pruned, and we pro-
pose to select ak such thathbk is minimized.

The intuition is that the minimization ofhbk gives the
tightestupper bound on the value of the partial planπ, and
by selecting stepk as the next branching point, upper bounds
subsequently computed are likely to improve as well.

Value Ordering After a time stepk is selected for branch-
ing, we will explore the unpruned branchesai

k in decreas-
ing order of their upper bounds. The intuition here is that
a branch with a higher upper bound is more likely to con-
tain an optimal solution. Discovery of an optimal solution
immediately gives the tightest lower bound possible for sub-
sequent pruning, and hence its early occurrence is desirable.

Value Elimination In the process of computing Equa-
tion 4 to selectk, some branchesai

k may have been found to
be prunable. Although only onek is ultimately selected,
all such branches can be pruned as they are discovered.
This can be done by assertingai

k (and adding it toπ im-
plicitly) in the d-DNNF graphG for all k and i such that
val(G, 〈π, ai

k〉) ≤ lb. Upper bounds computed after these
assertions will generally improve, because there is now a
smaller chance for the first case of Algorithm 2 to execute.

Acknowledgments
National ICT Australia is funded by the Australian Govern-
ment’sBacking Australia’s Abilityinitiative, in part through
the Australian Research Council.

References
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal of Artificial Intelligence Research
17:229–264.
Darwiche, A. 2004. New advances in compiling CNF
into decomposable negation normal form. InProceedings
of the 16th European Conference on Artificial Intelligence
(ECAI), 328–332.
Darwiche, A. 2005. TheC2D compiler user manual.
Technical Report D-147, Computer Science Department,
UCLA. http://reasoning.cs.ucla.edu/c2d/.
Huang, J. 2006. Combining knowledge compilation and
search for conformant probabilistic planning. InProceed-
ings of the 16th International Conference on Automated
Planning and Scheduling (ICAPS).
Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning.Artificial Intelligence
76(1-2):239–286.
Littman, M. L. 1997. Probabilistic propositional planning:
Representations and complexity. InProceedings of the
14th National Conference on Artificial Intelligence (AAAI),
748–754.

ICAPS 2006

International Planning Competition 65

cf2sat and cf2cs+cf2sat: Two Conformant Planners

Héctor Palacios
Departamento de Tecnologı́a

Universitat Pompeu Fabra
Pg Circunvalación, 8

08003 Barcelona, SPAIN
hector.palacios@upf.edu

Abstract

Even under polynomial restrictions on plan length, confor-
mant planning remains a very hard computational problem as
plan verification itself can take exponential time. We present
two planners for the IPC-5. The first is an optimal com-
plete conformant planner called cf2sat, which transform the
PDDL into a propositional theory, that is later compiled into
normal form called d–DNNF to obtain a new formula that en-
codes all the possible plans. This planner gives good results
on pure conformant problems as emptyroom and sorting-nets,
but fails to scale on problems more close to classical planning
as bomb-in-the-toilet. Although the heavy price of confor-
mant planning cannot be avoided in general, in many cases
conformant plans are verifiable efficiently by means of sim-
ple forms of disjunctive inference. We present a second plan-
ner cf2cs+cf2sat which is a suboptimal conformant plan-
ner that try first to solve a problem by translating it (cf2cs)
into an equivalent classical problem, that is then solved by an
off-the-shelf classical planner. This translation leads to an ef-
ficient but incomplete planner capable of solving non-trivial
problems quickly. The translation accommodates simple ’rea-
soning by cases’ by means of an ’split-and-merge’ strategy. If
cf2cs is not able to solve the problem, cf2cs+cf2sat switch
to cf2sat to ensure completeness. Even thought cf2cs is
incomplete, it deals successfully with simple problems as
bomb-in-the-toilet, and other non-trivial problems as empty-
room.

Introduction
Conformant planning is a form of planning where a goal is
to be achieved when the initial situation is not fully known
and actions may have non-deterministic effects (Goldman
& Boddy 1996)1. Conformant planning is computationally
harder than classical planning, as even under polynomial
restrictions on plan length, plan verification remains hard
(Turner 2002).

We present two conformant planners based on two strate-
gies combined properly. The first, cf2sat, is an optimal
complete conformant planner that translates the problem
into a logic theory, as in SATPLAN (Kautz & Selman 1996).
A SAT solver call over this theory would result in one of the
possible executions (actions and fluents), which assume a

1We assume that actions are deterministic and all the uncer-
tainty is on the initial state. This assumption does not lead to loss
of expressivity.

particular initial state, but we want to obtain a plan confor-
mant to all the initial states. From this theory we generate
a new one encoding all the possible conformant plans, and
call a SAT solver once to obtain a plan. We obtained good
results running cf2sat on some very complex domains but
failed to scale in more simple problems (Palacios & Geffner
2005).

For this reason we have proposed an incomplete method
for mapping from conformant planning to classical plan-
ning, cf2cs (Palacios & Geffner 2006). This works by do-
ing limited disjunctive reasoning and allow to solve popular
benchmarks like bomb-in-the-toilet, trying to fill the gap left
by cf2sat between pure conformant planning and classical
planning. The second planner, cf2cs+cf2sat, is a subop-
timal complete conformant planning that starts by trying to
solve the problem using cf2cs. If it is not possible, the al-
gorithm switch to cf2sat, which is complete.

In the rest of the report we present with more detail the
conformant2sat planner and the conformant2classical trans-
formation. Later, we comment about their performance and
integration to obtain the presented planners.

Mapping Conformant Planning to SAT
For a conformant planning problem, if the number m of pos-
sible initial states s0 ∈ Init is bounded (e.g., bounded num-
ber of disjunctions of bounded size in the initial situation)
and actions are deterministic, the conformant planning prob-
lem P with a fixed horizon n can be mapped in the SAT
problem over the formula (Palacios & Geffner 2005)∧

s0∈Init

T s0(P, n) (1)

where T (P, n) is the propositional theory that encodes the
problem P with horizon n. T s0(P, n) is T (P, n) with two
modifications: first, fluent literals L0 (L at time 0) are re-
placed by true/false iff L is true/false in the (complete) state
s0, and second, fluent literals Li, i > 0, are replaced by
’fresh’ literals Ls0

i , one for each s0 ∈ Init.
Eq. 1 can be thought as expressing m ’classical planning

problems’, one for each possible initial state s0 ∈ Init, that
are coupled in the sense that they all share the same set of
actions; namely, the action variables are the only variables
shared across the different subtheories T s0(P, n) for s0 ∈
Init.

ICAPS 2006

66 International Planning Competition

However, a planner using Eq. 1 naively will not scale. We
have already proposed two approaches to optimal classical
conformant planning based on logical formulations (Pala-
cios et al. 2005; Palacios & Geffner 2005). Both of them
translate the problem into CNF, and obtain a plan by doing
logical operations and search. In cf2sat (Palacios & Geffner
2005) (for conformant2sat) we construct a new proposi-
tional formula:

Tcf (P) =
∧

s0∈Init

project[T (P) | s0 ; Actions] (2)

by doing logical operations as projection (dual of forgetting)
and conditioning. The project operation allows to safely And
over each theory depending on each initial state. The models
of the formula project[T (P) | s0 ; Actions] are the models
of T (P) | s0 but looking only at the action variables.

Theorem 1 (Palacios & Geffner, 2005) The models of
Tcf (P) in (2) are one-to-one correspondence with the
conformant plans for the problem P .

We feed Tcf (P) into a SAT solver to obtain a plan. Log-
ical operations became feasible by compiling the proposi-
tional theory into d–DNNF (Darwiche 2002), a formal norm
akin to OBDD. The result of compiling a propositional the-
ory φ to d–DNNF is a logical circuit that encodes all the
possible models of φ. Summarizing, the cf2sat algorithm
is:

• The following operations are repeated starting from a
planning horizon N = 0 which is increased by 1 until
a solution is found2.

1. The theory T (P) is compiled into the d–DNNF theory
Tc(P)

2. From Tc(P), the transformed theory

Tcf (P) =
∧

s0∈Init

project[Tc(P) | s0 ; Actions]

is obtained by operations that are linear in time and
space in the size of the DAG representing Tc(P).

3. The theory Tcf (P) is converted into CNF and the SAT
solver is called upon it.

The plan obtained can be optimal in terms of the number
of actions if we forbidden the concurrent execution of every
pair of actions. This is known as the sequential setting. If we
allow non-interfering actions to be executed simultaneously,
parallel setting, the total executing time or makespan will be
minimized.

Actually, it is not necessary to do projection and condi-
tioning for every initial state. By compiling the theory T (P)
doing case analysis first on the variables of initial state, we
can obtain each project[T (P) | s0 ; Actions] as a sub-circuit
of Tcf (P). Therefore, Eq. 2 can be obtained in linear time
over the compiled theory Tcf (P). Translation from this new
circuit into CNF is done by introducing propositional vari-
ables for each gate and adding clauses to encode the relation
between them.

2A better lower bound can be the length of an optimal classical
plan for one initial state

Compiling uncertainty away:
Conformant to Classical Planning (sometimes)
The main motivation of cf2cs is to narrow the gap between
conformant planning and classical planning by developing
an approach that targets ’simple’ conformant problems ef-
fectively. The approach is not complete but it provides so-
lutions to non-trivial problems. For instance, simple rules
suffice to show that a robot that moves n times to the right
in an empty grid of size n, will necessarily end up in the
rightmost column.

We have proposed to solve some non-trivial conformant
planning problems by translating them intro classical plan-
ning problems (Palacios & Geffner 2006). New problems
are fed into a off-the-shelf classical planner. The translation
is sound as the classical plans are all conformant, but it is
incomplete as the converse does not always hold. The trans-
lation scheme accommodates ’reasoning by cases’ by means
of an ’split-and-merge’ strategy; namely, atoms L/Xi that
represent conditional beliefs ’if Xi then L’ are introduced
in the classical encoding that are then combined by suitable
actions when certain invariants in the plan are verified.

The translation scheme maps a conformant planning prob-
lem P into a classical planning problem K(P). For each
atom a in P we add to K(P) new atoms Ka and K¬a. At
time t if Ka ∧ ¬K¬a (resp. ¬Ka ∧ K¬a) holds, then a is
true (resp. false) in all the states of the belief state. The ini-
tial state of K(P) indicates the atoms that are known to be
true or false in the initial belief state of P . Otherwise it states
that the value of those atoms is unknown: ¬Ka ∧ ¬K¬a.
The goal of P is assumed to be a list of atoms {g1, . . . , gn}.
Therefore, the goal of K(P) requires all those atoms to be
known: {Kg1, . . . ,Kgn}. This encoding is related to 0-
approximation (Baral & Son 1997). In general, it allow to
capture that after doing some actions, the effect can be un-
sure if the real value of the conditions is not known.

This encoding, so far, does not allow any kind of disjunc-
tive reasoning. We extend the translation further so that the
disjunctions in P are taken into account in a form that is
similar to the Disjunction Elimination inference rule used in
Logic

If X1 ∨ · · · ∨Xn, X1 ⊃ L, . . . , Xn ⊃ L then L (3)

For doing this, we add to K(P) atoms L/Xi to encode
that L ⊃ Xi holds. For example, if for problem P we have
the disjunction X1∨ · · ·∨Xn in the initial state, and actions
a1, . . . , an with conditional effect A ∧ Xi → L; In K(P)
those actions will have also conditional effect A → L/Xi.
Informally, A → L/Xi can be read as: “If we apply ai when
A is true, we conclude that L is true if Xi is true”3. After ap-
plying every action ai, if some invariants were preserved, we
can conclude L because L/X1∧· · ·∧L/Xn holds. To allow
this conclusion, we add to K(P) a new action mergeX,L

with conditional effect L/X1 ∧ · · · ∧ L/Xn → KL.
These rules more detailed and other rules can be read in

(Palacios & Geffner 2006). They yield expressivity with-
out sacrificing efficiency, as they manage to accommodate

3It is true if ai does not modify Xi. In general it is more subtle.
More details on (Palacios & Geffner 2006)

ICAPS 2006

International Planning Competition 67

non-trivial forms of disjunctive inference in a classical the-
ory without having to carry disjunctions explicitly in the be-
lief state: some disjunctions are represented by atoms like
L/Xi, and others are maintained as invariants enforced by
the resulting encoding.

Theorem 2 (Soundness K(P)) (Palacios & Geffner, 2006)
Any plan that achieves the literal KL in K(P) is a plan that
achieves L in the conformant problem P .

Results
We ran the optimal planner cf2sat with the Darwiche’s
d–DNNF compiler c2d v2.18 (Darwiche 2004) and the SAT
solver siege_v4, obtaining very good results on problems
as Emptyroom, Cube-Center, Ring And Sorting-Nets. In
general, the compiling step was not the bottleneck. It was
not the case in domains like Bomb-in-the-Toilet, where the
big number of objects lead to huge theories impossible to be
compiled. A middle case was the Ring domain, which lead
to big d–DNNFs but later they were very easy for the SAT
solver.

We also ran the translator cf2cs from conformant to clas-
sical planning on domains where it was able to work, as
Emptyroom, Cube-Center, Bomb-in-the-Toilet, Safe, Grid,
Logistics. Then we solve those new classical instances by
calling the FF (Hoffmann & Nebel 2001) classical planner.
Among the popular benchmarks, there are three domains,
Sorting-Nets, (Incomplete) Blocks, and Ring, which can-
not be handled by this translation scheme. The results were
excellent. We were surprised to obtain in general optimal
plans even though FF is a suboptimal planner. An interest-
ing point is that the instances resulting of cf2cs have actions
with many conditional effects, and many planners available
were not able to deal with these instances.

All the relevant programs were written in C++:

• For cf2sat

– Translator from PDDL to CNF, cconf. It was written
by Blai Bonet in joint work (Palacios et al. 2005).

– Translator from Tcf (P), in d–DNNF, to CNF.

• For cf2cs

– Translator from a PDDL of conformant problem to a
PDDL of the equivalent classical problem. The parser
was taken from cconf.

Planners for the IPC-5
For the IPC-5, we present two complete planners.

• cf2sat: An optimal parallel conformant planning, using
the d–DNNF compiler c2d v2.20 (Darwiche 2004) and
the SAT solver siege_v4, by Lawrence Ryan, or zChaff
(Moskewicz et al. 2001)4.

4siege v4 was reported to be fast on planning theories (Kautz
2004). Our experiments confirmed that affirmation. Sometimes the
CNFs are too big for siege v4. On these case we try with solve the
instances with zChaff which is slower in general for our theories.

• cf2cs(FF)+cf2sat: A suboptimal conformant planning. It
starts trying to solve the problem with cf2cs(FF). If not
possible to try with cf2cs(FF) or not solution is found,
cf2cs(FF)+cf2sat switch to cf2sat.

References
Baral, C., and Son, T. C. 1997. Approximate reasoning
about actions in presence of sensing and incomplete infor-
mation. In Proc. ILPS 1997, 387–401.
Darwiche, A. 2002. On the tractable counting of the-
ory models and its applications to belief revision and truth
maintenance. J. of Applied Non-Classical Logics.
Darwiche, A. 2004. New advances in compiling cnf into
decomposable negation normal form. In Proc. ECAI 2004,
328–332.
Goldman, R. P., and Boddy, M. S. 1996. Expressive plan-
ning and explicit knowledge. In Proc. AIPS-1996.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research 14:253–302.
Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of AAAI-96, 1194–1201. AAAI Press / MIT
Press.
Kautz, H. 2004. Satplan04: Planning and satisfiability. In
Proceedings of IPC-4.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an Efficient SAT
Solver. In Proc. of the 38th Design Automation Conference
(DAC’01).
Palacios, H., and Geffner, H. 2005. Mapping confor-
mant planning to sat through compilation and projection.
In Spanish Conference on Artificial Inteligence (CAEPIA).
Palacios, H., and Geffner, H. 2006. Compiling uncertainty
away: Solving conformant planning problems using a clas-
sical planner (sometimes). Technical report. Submitted to
AAAI-06.
Palacios, H.; Bonet, B.; Darwiche, A.; and Geffner, H.
2005. Pruning conformant plans by counting models on
compiled d-DNNF representations. In Proc. of the 15th
Int. Conf. on Planning and Scheduling (ICAPS-05). AAAI
Press.
Turner, H. 2002. Polynomial-length planning spans the
polynomial hierarchy. In JELIA ’02: Proc. of the European
Conference on Logics in AI, 111–124. Springer-Verlag.

ICAPS 2006

68 International Planning Competition

The Factored Policy Gradient planner (IPC-06 Version)

Olivier Buffet and Douglas Aberdeen
National ICT Australia & The Australian National University

Canberra, Australia
firstname.lastname@nicta.com.au

Abstract

We present the Factored Policy Gradient (FPG) plan-
ner: a probabilistic temporal planner designed to scale
to large planning domains by applying two significant
approximations. Firstly, we use a “direct” policy search
in the sense that we attempt to directly optimise a pa-
rameterised plan using gradient ascent. Secondly, the
policy is factored into a per action mapping from a par-
tial observation to the probabilility of executing, reflect-
ing how desirable each action is. These two approxi-
mations — plus memory use that is independent of the
number of states — allow us to scale to significantly
larger planning domains than were previously feasible.
Unlike other probabilistic temporal planners, FPG can
attempt to optimisebothmakespan and the probability
of reaching the goal. The version of FPG used in the
IPC-06 competition optimises the makespan only, and
turns off concurrent planning.

Introduction
To date, only a few planning tools have attempted to han-
dle general probabilistic temporal planning domains. These
tools have only been able to produce good or optimal poli-
cies for relatively small or easy problems. We designed the
Factored Policy Gradient (FPG) planner with the goal of cre-
ating tools that produce good policies in real-world domains
rather than perfect policies in toy domains. We achieve this
by: 1) using gradient ascent for direct policy search; 2) fac-
toring the policy into simple approximate policies for start-
ing each action; 3) presenting each policy with critical ob-
servations instead of the entire state (implicitly aggregating
similar states); and 4) using Monte-Carlo style algorithms
with memory requirements that are independent of the state
space size.

The AI planning community is familiar with the value-
estimation class of reinforcement learning (RL) algorithms,
such as RTDP (Barto, Bradtke, & Singh 1995), and ar-
guably AO*. These algorithms represent probabilistic plan-
ning problems as a state space and estimate the long-term
value, utility, or cost of choosing each action from each
state (Mausam & Weld 2005; Little, Aberdeen, & Thiébaux
2005). The fundamental disadvantage of such algorithms is
the need to estimate the values of a huge number of state-
action pairs. Even algorithms that prune most states still fail

to scale due to the exponential increase of relevant states as
the domains grow.

On the other hand, the FPG planner borrows from Policy-
Gradient reinforcement learning. This class of algorithms
does not estimate planning state-action values. Instead,
policy-gradient RL algorithms estimate the gradient of the
unique long-term average reward of the process. In the con-
text of stochastic shortest path problems, such as the IPC-06
domains, we can view this as estimating the gradient of long-
term value of only the initial state. Gradients are computed
with respect to the parameters governing the choice of ac-
tions at each decision point. These parameters summarise
the policy, or plan, of the system. Stepping the parameters
in the direction given by the gradient increases the expected
return, or value from the initial state. Specifically, we will
use the OLPOMDP policy-gradient RL algorithm described
by Baxter, Bartlett, & Weaver (2001).

The policy takes the form of a parameterised function that
accepts a description of the planning state as input, and re-
turns a probability distribution over legal actions. In our
temporal planning setting, anaction is defined as a single
groundeddurative-action (in the PDDL 2.1 sense).

We factor the parameterised policy by using a function
approximator for each action. Only when an action’s pre-
conditions are satisfied do we evaluate the desirability (as a
probability of executing at this decision point) of the action.
By doing this, the number of policy parameters grows lin-
early with the number of actions and predicates. Our param-
eterised action policy is a simple multi-layer perceptron that
takes the truth value of the predicates at the current planning
state, and outputs a probability distribution over whether to
start the action. We require that the truth value of the pred-
icates be a good (but not necessarily complete) indicator of
the total state of the plan so far.

Background

Input Language

FPG’s input language is the complete language handled by
mdpsim , i.e., PDDL with some minor extensions (Younes
& Littman 2004; Youneset al. 2005). Indeed, FPG is us-
ing mdpsim’s data structures and functions to implement the
planning domain simulator.

ICAPS 2006

International Planning Competition 69

POMDP Formulation of Planning
We deliberately use factored policies that only consider par-
tial state information. Policy gradient methods still converge
under partial observability, but their value-based counter-
parts may not (Singh, Jaakkola, & Jordan 1994).

A finite partially observable Markov decision process
consists of: a finite set of statess ∈ S; a finite set of actions
a ∈ A; probabilitiesP[s′|s, a] of making state transition
s → s′ under actiona; a reward for each stater(s) : S → R;
and a finite set of observation vectorso ∈ O seen by action
policies in lieu of complete state descriptions. FPG draws
observations deterministically given the state, but more gen-
erally observations may be stochastic.Goal statesoccur
when the predicates match a goal state specification. From
failure statesit is impossible to reach a goal state, usually
because time or resources have run out. These two classes of
state combine to form the set ofterminalstates that produce
an immediate reset to the initial states0. A single trajectory
through the state space, used to estimate gradients, consists
of concatenated simulated plan executions that reset tos0

when a terminal state is reached.1

Policies are stochastic, mapping observation vectorso to
a probability over actions. For FPG, an actiona is an inte-
ger in [1, N], whereN is the number of available grounded
actions. The probability of actiona is P[a|o,θ], where con-
ditioning onθ reflects the fact that the policy is controlled
by a set of real valued parametersθ ∈ Rp. The maximum
makespan of a plan is limited, ensuring that all stochastic
policies reach reset states in finite time when executed from
s0.

The GPOMDP algorithm maximises the long-term aver-
age reward

R(θ) := lim
T→∞

1
T

Eθ

[
T∑

t=1

r(st)

]
, (1)

where the expectationEθ is over the distribution of state tra-
jectories{s0, s1, . . . } induced byP (θ). In the context of
planning, the instantaneous reward provides the action poli-
cies with a measure of progress toward the goal. Our simple
reward scheme is to setr(s) = 1000 for all statess that rep-
resent the goal state, and 0 for all other states. To maximise
R(θ), goalstates must be reached as frequently as possible.
This has the desired property of simultaneously minimising
plan duration and maximising the probability of reaching the
goal (failure states achieve no reward).

Planning State Space
As already mentionned, this implementation of FPG is us-
ing mdpsim ’s data structures and functions (Youneset al.
2005). Thus, a state includes all true predicates as well as
the value of each function. The observation vector used by
FPG needs to have one entry for each predicate that could be
true at some point. Thus, a first step (once the problem has

1This concatenation trick is simply used to formulate the SSP
planning in the framework used in Baxter, Bartlett, & Weaver
(2001). In practice we can take advantage of the episodic nature
of the problem.

been loaded) is to generate these predicates, which is done
simultaneously whenmdpsim grounds actions.

To estimate gradients we need a plan execution simula-
tor to generate a trajectory through the planning state space.
Here again, FPG’s simple solution is to usemdpsim ’s
next() function, which samples a next states′ given current
states and chosen actiona.

Policy-Gradient Reinforcement Learning
Each actiona determines a stochastic matrixP (a) =
[P[s′|s, a]] of transition probabilities from states to states′

given actiona. The gradient estimator discussed in this pa-
per does not assume explicit knowledge ofP (a) or of the
observation process.

All policies are stochastic, with a probability of choos-
ing action a given states, and parametersθ ∈ Rn of
P[a|o,θ]. During the course of optimisation the policy be-
comes more deterministic. The evolution of the states is
Markovian, governed by an|S| × |S| transition probability
matrixP (θ) = [P[s′|θ, s]] with entries given by

P[s′|θ, s] =
∑
a∈A

P[a|o,θ] P[s′|s, a] . (2)

GPOMDP is an infinite-horizon policy-gradient method to
compute the gradient of thelong-term average reward(1)
with respect the policy parametersθ. In this abstract we give
only the gradient estimator customised for planning. For the
derivation of the gradient estimator, and proofs of conver-
gence, please refer to Baxter, Bartlett, & Weaver (2001).

Policy-Gradient for Planning
The desirability of some eligible actioni in the set of ac-
tions with satisfied preconditionsEt is a real valued(i) com-
puted by a multi-layer perceptron. This preceptron usually
has at most one hidden layer, and its weight vectorθi is
part of the complete vector of parametersθ learned by re-
inforcement. With input vectoro, the perceptron computes
d(i) = fi(ot;θi).

Action at is sampled from a probability distribution ob-
tained by computing a Gibbs2 distribution overd(i)’s of eli-
gible actions as follows:

P[at = i|ot,θ] =
exp(fi(ot;θi))∑

j∈Et
exp(fj(ot;θj))

. (3)

Initially, the parameters are set to small random values
giving a near uniform random policy; encouraging explo-
ration of the action space. Each gradient step typically
moves the parameters closer to a deterministic policy. After
some experimentation we chose an observation vector that
is a binary description of predicates current truth values plus
a constant 1 bit to provide bias to the preceptron.

The observations are simply the truth value of the predi-
cates for the current state.

2Essentially the same as a Boltzmann or soft-max distribution.

ICAPS 2006

70 International Planning Competition

Not Eligible
Choice disabled

Current State

Next State

Eligible tasks

Resources
Event queue

Time
Predicates

Action status

Predicates

Resources
Event queue

Time

Eligible actions
Action status

Action N

Action 2

Action 1

ot

at

∆

ot

next(st, at)

P[at = 1|ot, θ1] = 0.9

P[at = N|ot, θN] = 0.1

Fig. 1: Individual action-policies make independent deci-
sions.

The FPG Gradient Estimator
Alg. 1 completes our description of FPG by showing how
to implement OLPOMDP for planning with factored action
policies. The algorithm works by sampling a single long tra-
jectory through the state space: 1) the first state represents
time 0 in the plan; 2) the perceptrons attached to eligible
actions all receive the vector observationot of the current
statest; 3) each network computes the desirability of its
action; 4) a planning action is sampled; 5) the state tran-
sition is sampled; 6) the planner receives the global reward
for the new state action and produces an instantaneous gra-
dientgt = rtet; 7) all parameters are immediately updated
in the direction ofgt.

Algorithm 1 OLPOMDP FPG Gradient Estimator
1: Sets0 to initial state,t = 0, et = [0], init θ0 randomly
2: while R not convergeddo
3: et = βet−1

4: Extract predicate values as observationot of st

5: for Each eligible actioni do
6: Evaluate desirabilityd(i) = fi(ot; θti)
7: Sample actioni with probabilityP[at = i|ot; θt]
8: et = et−1 +∇ log P[at|ot; θt]
9: st+1 = next(st,at)

10: θt+1 = θt + αrtet+1

11: if st+1.isTerminalStatethen st+1 = s0

12: t← t + 1

Because planning is inherently episodic we could alter-
natively setβ = 1 and resetet every time a terminal state
is encountered. However, empirically, settingβ = 0.9 per-
formed better than resettinget.3 The gradient for parame-

3Perhaps becauseβ < 1 can reduce the variance of gradient
estimates, even in the episodic case.

ters not relating to eligible actions is 0. We do not compute
fi(ot;θi) or gradients for actions with unsatisfied precondi-
tions. Line 11 resets to the initial planning state upon en-
countering a terminal state.

Conclusion
FPG diverges from traditional planning approaches in two
key ways: we search for plans directly, using a local op-
timisation procedure (an on-line gradient ascent); and we
simplify the plan representation by factoring the plan into
a function approximator for each action, each of which ob-
serves only a stripped down version of the current state.

The drawback of our approach is that local optimisation,
simplified parameterisations, and reduced observability can
all lead to sub-optimal plans; but this sacrifice is deliberate
in order to achieve scalability through memory use andper
stepcomputation times that grow linearly with the domain.
However, the total number of gradient steps is a function of
themixing timeof the underlying POMDP, which can grow
exponentially with the state variables. How to compute the
mixing time of an arbitrary MDP is an open problem. This
hints at the hardness of assessing in advance the difficulty of
general planning problems.

FPG is a planner with great potential to producegood
policies in large domains, especially considering the version
handling concurrency. Further work will refine our param-
eterised action policies, apply more sophisticated stochastic
gradient ascent methods, and attempt to characterise possi-
ble local minima.

Acknowledgments
National ICT Australia is funded by the Australian Govern-
ment’s Backing Australia’s Ability program and the Centre
of Excellence program. This project was also funded by the
Australian Defence Science and Technology Organisation.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to act using
real-time dynamic programming.Artificial Intelligence72.

Baxter, J.; Bartlett, P.; and Weaver, L. 2001. Experiments with
infinite-horizon, policy-gradient estimation.JAIR15:351–381.

Little, I.; Aberdeen, D.; and Thiébaux, S. 2005. Prottle: A prob-
abilistic temporal planner. InProc. AAAI’05.

Mausam, and Weld, D. S. 2005. Concurrent probabilistic tem-
poral planning. InProc. International Conference on Automated
Planning and Scheduling. Moneteray, CA: AAAI.

Singh, S.; Jaakkola, T.; and Jordan, M. 1994. Learning without
state-estimation in partially observable Markovian decision pro-
cesses. InProceedings of ICML 1994, number 11.

Younes, H. L. S., and Littman, M. L. 2004. PPDDL1.0: An exten-
sion to PDDL for expressing planning domains with probabilis-
tic effects. Technical Report CMU-CS-04-167, Carnegie Mellon
University.

Younes, H. L. S.; Littman, M. L.; Weissman, D.; and Asmuth, J.
2005. The first probabilistic track of the international planning
competition.Journal of Artificial Intelligence Research24:851–
887.

ICAPS 2006

International Planning Competition 71

Paragraph: A Graphplan-based Probabilistic Planner

Iain little
National ICT Australia & Computer Sciences Laboratory

The Australian National University
Canberra, ACT 0200, Australia

Introduction
Paragraph is a probabilistic planner that finds contin-
gency plans that maximise the probability of reaching the
goal within a given time horizon. It is capable of finding ei-
ther a cyclic or acyclic solution to a given problem, depend-
ing on how it is configured. These solutions are optimal in
the non-concurrent case, and optimal for a restricted model
of concurrency. The concurrent case is not relevant to this
discussion, and is not further discussed. A detailed descrip-
tion of Paragraph is given in (Little & Thiébaux 2006).

The Graphplan framework (Blum & Furst 1997) is an
approach that has proven to be highly successful for solv-
ing classical planning problems. Extensions of this frame-
work for probabilistic planning have been developed (Blum
& Langford 1999), but either dispense with the techniques
that enable concurrency to be efficiently managed, or are
unable to produce optimal contingency plans. Specifically,
PGraphplan finds optimal (non-concurrent) contingency
plans via dynamic programming, using information prop-
agated backwards through the planning graph to identify
states from which the goal is provably unreachable. This
approach takes advantage of neither the state space compres-
sion inherent in Graphplan’s goal regression search, nor
the pruning power of Graphplan’s mutex reasoning and
nogood learning. TGraphplan is a minor extension of the
original Graphplan algorithm that computes a single path
to the goal with a maximal probability of success; replan-
ning could be applied when a plan’s execution deviates from
this path, but this strategy is not optimal.
Paragraph is an extension of the Graphplan algo-

rithm to probabilistic planning. It enables much of the ex-
isting research into the Graphplan framework to be trans-
fered to the probabilistic setting. Paragraph is a planner
that implements some of this potential, including: a proba-
bilistic planning graph, powerful mutex reasoning, nogood
learning, and a goal regression search. The key to this frame-
work is an efficient method of finding optimal contingency
plans using goal regression. This method is fully compatible
with the Graphplan framework, but is also more generally
applicable.

Algorithm
To extend the Graphplan framework to the probabilistic
setting, it is necessary to extend the planning graph data
structure to account for uncertainty. We do this by introduc-
ing a node for each of an action’s possible outcomes, so that

a2a1

o3 o4

p1 p2

pg p2

o2 o1

p1

o3 o1

a2 a1

p1

a1 a2

p2

o1 o3
o2 o4

t: 0 p1

p2

pg

t: 1 pg

t: 2

Figure 1: An action-outcome-proposition dependency graph
and search space for an example problem.

there are three different types of nodes in the graph: propo-
sition, action, and outcome. Action nodes are then linked
to their respective outcome nodes, and edges representing
effects link outcome nodes to proposition nodes. Each per-
sistence action has a single outcome with a single add effect.
We refer to a persistence action’s outcome as a persistence
outcome. This extension is functionally equivalent to that
described in (Blum & Langford 1999), except that we also
adapt the planning graph’s mutex propagation rules from the
deterministic setting.

The solution extraction step of the Graphplan algo-
rithm relies on a backward search through the structure of
the planning graph. In classical planning, the goal is to find a
subset of action nodes for each level such that the respective
sequence of action sets constitutes a valid trajectory. The
search starts from the final level of the graph, and attempts
to extend partial trajectories one level at a time until a solu-
tion is found.
Paragraph uses this type of goal-regression search with

an explicit representation of the expanded search space. This
search is applied exhaustively, to find all trajectories that the
Graphplan algorithm can find. An optimal contingency
plan is formed by linking these trajectories together. This
requires some additional computation, and involves using
forward simulation through the search space to compute the
possible world states at reachable search nodes.

As observed by Blum and Langford (1999), the difficulty
with combining probabilistic planning with Graphplan-
style regression is in correctly and efficiently combining the
trajectories. Sometimes the trajectories will ‘naturally’ join
together during the regression, which happens when search
nodes share a predecessor through different ‘joint outcomes’
(sets of outcomes) of the same action set.

ICAPS 2006

72 International Planning Competition

Unfortunately, the natural joins are not sufficient to find
all contingencies. Consider the problem shown in Fig-
ure 1, which we define as:1 the propositions p1, p2 and pg;
s0 = {p1, p2}; G = {pg}; the actions a1 and a2; and the
outcomes o1 to o4. a1 has precondition p1 and outcomes
{o1, o2}; a2 has precondition p2 and outcomes {o3, o4}.
Both actions always delete their precondition; o1 and o3
both add pg. The optimal plan for this example is to exe-
cute one of the actions; if the first action does not achieve
the goal, then the other action is executed.

The backward search will correctly recognise that exe-
cuting a1–o1 or a2–o3 will achieve the goal, but it fails to
realise that a1–o2, a2–o3 and a2–o4, a1–o1 are also valid
trajectories. The longer trajectories are not discovered be-
cause they contain a ‘redundant’ first step; there is no way
of relating the effect of o2 and the precondition of a2, or the
effect of o4 with the precondition of a1. While these undis-
covered trajectories are not the most desirable execution se-
quences, they are necessary for an optimal contingency plan.
In classical planning, it is actually a good thing that trajec-
tories with this type of redundancy cannot be discovered, as
redundant steps only hinder the search for a single shortest
trajectory. Identifying the missing trajectories requires some
additional computation beyond the goal regression search.
We refer to trajectories that can be found using unadorned
goal regression as natural trajectories.

The solution we have developed is based on constructing
all ‘non-redundant’ contingency plans by linking together
the trajectories that goal regression is able to find. This is
sufficient to find an optimal solution, as there always exists
at least one non-redundant optimal plan. Paragraph com-
bines pairs of trajectories by linking a node in one trajectory
to a node in the other. This can be done when a possible
world state of the earlier node has a resulting world state
that subsumes the goal set of the later node.

A detailed description of Paragraph’s acyclic search
algorithm follows.The first step is to generate a planning
graph from the problem specification. This graph is ex-
panded until all goal propositions are present and not mutex
with each other, or until the graph levels off to prove that
no solution exists. Assuming the former case, a depth-first
goal regression search is performed from a goal node for the
graph’s final level. This search exhaustively finds all natu-
ral trajectories from the initial conditions to the goal. Once
this search has completed, the possible world states for each
trajectory node are computed by forward-propagation from
time 0, and the node/state costs are updated by backward-
propagation from the goal node. Potential trajectory joins
are detected each time a new node is encountered during
the backward search, and each time a new world state is
computed during the forward state propagation. Unless a
termination condition has been met, the planning graph is
then expanded by a single level, and the backward search is
performed from a new goal node that is added to the exist-
ing search space. This alternation between backward search,
state simulation, cost propagation, and graph expansion con-

1This problem was used by Blum and Langford (1999) to il-
lustrate the difficulty of using goal-regression for probabilistic
planning, and to explain their preference of a forward search in
PGraphplan.

tinues until a termination condition is met. An optimal con-
tingency plan is then extracted from the search space by
traversing the space in the forward direction using a greedy
selection policy.

Classical planning problems have the property that the
shortest solution to a problem will not visit any given world
state more than once. This is no longer true for probabilis-
tic planning, as previously visited states can unintentionally
be returned to by chance. Because of this, it is common
for probabilistic planners to allow for cyclic solutions. An
overview of the algorithm for producing such solutions fol-
lows. This method departs further from the Graphplan
algorithm than the acyclic search does: fundamental to the
Graphplan algorithm is a notion of time, which we dis-
pense with for Paragraph’s cyclic search.

The cyclic search does not preserve Graphplan’s alter-
nation between graph expansion and backward search: the
planning graph is expanded until it levels off, and only then
is the backward search performed. As there is no notion
of time, the backward search is constrained only by the in-
formation represented in the final level of the levelled-off
planning graph.

This cyclic search uses either a depth-first or iterative
deepening algorithm. In both cases, the search uses the out-
comes supporting the planning graph’s final level of propo-
sitions when determining a search node’s predecessors. The
same principal is applied to nogood pruning: only the mu-
texes in the final level of the planning graph—those that
are independent of time—can be safely used. An important
consequence of only using universally applicable nogoods is
that any new nogoods learnt from failure nodes are also
universal. Neither search strategy is clearly superior. The
depth-first search is usually preferable when searching the
entire search space, as it is more likely to learn useful no-
goods. A consequence of this is that there is no predictable
order in which the trajectories are discovered. In contrast,
the iterative deepening search will find the shortest trajecto-
ries first, which can be advantageous when only a subset of
the search space might be explored.

References
Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis. Artificial Intelligence 90:281–300.
Blum, A., and Langford, J. 1999. Probabilistic planning in the
Graphplan framework. In Proc. ECP.
Little, I., and Thiébaux, S. 2006. Concurrent probabilistic plan-
ning in the graphplan framework. In Proc. ICAPS.

ICAPS 2006

International Planning Competition 73

Probabilistic Planning via Linear Value-approximation of First-order MDPs

Scott Sanner
University of Toronto

Department of Computer Science
Toronto, ON, M5S 3H5, CANADA

ssanner@cs.toronto.edu

Craig Boutilier
University of Toronto

Department of Computer Science
Toronto, ON, M5S 3H5, CANADA

cebly@cs.toronto.edu

Abstract

We describe a probabilistic planning approach that trans-
lates a PPDDL planning problem description to a first-order
MDP (FOMDP) and uses approximate solution techniques
for FOMDPs to derive a value function and corresponding
policy. Our FOMDP solution techniques represent the value
function linearly w.r.t. a set of first-order basis functions and
compute suitable weights using lifted, first-order extensions
of approximate linear programming (FOALP) and approxi-
mate policy iteration (FOAPI) for MDPs. We additionally de-
scribe techniques for automatic basis function generation and
decomposition of universal rewards that are crucial to achieve
autonomous and tractable FOMDP solutions for many plan-
ning domains.

From PPDDL to First-order MDPs
It is straightforward to translate a PPDDL [12] planning do-
main into the situation calculus representation used for first-
order MDPs (FOMDPs); the primary part of this translation
requires the conversion of PPDDL action schemata to ef-
fect axioms in the situation calculus, which are then com-
piled into successor-state axioms [8] used in the FOMDP
description. In the following algorithm description, we will
assume that we are given a FOMDP specification and we
will describe techniques for approximating its value func-
tion linearly w.r.t. a set of first-order basis functions. From
this value function it is straightforward to derive a first-order
policy representation that can be used for action selection in
the original PPDDL planning domain.

Linear Value Approximation for FOMDPs
The following explanation assumes the reader is famil-
iar with the FOMDP formalism and operators used in
Boutilier, Reiter and Price [2] and extended by Sanner and
Boutilier [9]. In the following text, we will refer to function
symbols Ai(~x) that correspond to parameterized actions in
the FOMDP; for every action and fluent, we expect that a
successor state axiom has been defined. The reader should
be familiar with the notation and use of the rCase, vCase,
and pCase case statements for representing the respective
FOMDP reward, value, and transition functions. The reader
should also be familiar with the case operators ⊕, 	, ∪, and
Regr(·) [2] as well as FODTR(·), BA(~x)(·), and BA(·) [9].

Value Function Representation
Following [9], we represent a value function as a weighted
sum of k first-order basis functions in case statement for-
mat, denoted bCasej(s), each containing a small number of
formulae that provide a first-order abstraction of state space:

vCase(s) = ⊕k

i=1 wi · bCasei(s) (1)

Using this format, we can often achieve a reasonable ap-
proximation of the exact value function by exploiting the ad-
ditive structure inherent in many real-world problems (e.g.,
additive reward functions or problems with independent sub-
goals). Unlike exact solution methods where value functions
can grow exponentially in size during the solution process
and must be logically simplified [2], here we maintain the
value function in a compact form that requires no simplifi-
cation, just discovery of good weights.

We can easily apply the FOMDP backup operator
BA(~x) [9] to this representation and obtain some simplifica-
tion as a result of the structure in Eq. 1. Exploiting the prop-
erties of the Regr and ⊕ operators, we find that the backup
BA(~x) of a linear combination of basis functions is simply
the linear combination of the first-order decision-theoretic
regression (FODTR) of each basis function [9]:

B
A(~x)(⊕i wibCasei(s)) = (2)

rCase(s, a) ⊕ (⊕i wiFODTR(bCasei(s), A(~x)))

A corresponding definition of BA follows directly [9]. It
is important to note that during the application of these oper-
ators, we never explicitly ground states or actions, in effect
achieving both state and action space abstraction.

First-order Approximate Linear Programming
First-order approximate linear programming (FOALP) was
introduced by Sanner and Boutilier [9]. Here we present a
linear program (LP) with first-order constraints that general-
izes the solution from MDPs to FOMDPs:

Variables: wi ; ∀i ≤ k

Minimize:
k

∑

i=1

wi

∑

〈φj ,tj〉∈bCasei

tj

|bCasei|

Subject to: 0 ≥ B
A
max(⊕

k
i=1 wi · bCasei(s))

	 (⊕k
i=1 wi · bCasei(s)) ; ∀ A, s (3)

ICAPS 2006

74 International Planning Competition

The objective of this LP requires some explanation. If
we were to directly generalize the objective for MDPs to
that of FOMDPs, the objective would be ill-defined (it would
sum over infinitely many situations s). To remedy this, we
suppose that each basis function partition is chosen because
it represents a potentially useful partitioning of state space,
and thus sum over each case partition.

This LP also contains a first-order specification of con-
straints, which somewhat complicates the solution. Before
tackling this, we introduce a general first-order LP format
that we can reuse for approximate policy iteration:

Variables: v1, . . . , vk ;

Minimize: f(v1, . . . , vk)

Subject to: 0 ≥ case1,1(s) ⊕ . . . ⊕ case1,n(s) ; ∀ s (4)

:

0 ≥ casem,1(s) ⊕ . . . ⊕ casem,n(s) ; ∀ s

The variables and objective are as defined in a typical LP,
the main difference being the form of the constraints. While
there are an infinite number of constraints (i.e., one for ev-
ery situation s), we can work around this since case state-
ments are finite. Since the value ti for each case partition
〈φi(s), ti〉 is piecewise constant over all situations satisfying
φi(s), we can explicitly sum over the casei(s) statements in
each constraint to yield a single case statement. For this
“flattened” case statement, we can easily verify that the con-
straint holds in the finite number of piecewise constant parti-
tions of the state space. However, generating the constraints
for each “cross-sum” can yield an exponential number of
constraints. Fortunately, we can generalize constraint gener-
ation techniques [10] to avoid generating all constraints. We
refer to [9] for further details. Taken together, these tech-
niques yield a practical FOALP solution to FOMDPs.

First-order Approximate Policy Iteration
We now turn to a first-order generalization of approximate
policy iteration (FOAPI). Policy iteration requires that a suit-
able first-order policy representation be derivable from the
value function vCase(s). Assuming we have m parame-
terized actions {A1(~x), . . . , Am(~x)}, we can represent the
policy πCase(s) as:

πCase(s) = max(
⋃

i=1...m

B
Ai(vCase(s))) (5)

Here, BAi(vCase(s)) represents the values that can be
achieved by any instantiation of the action Ai(~x) and the
max case operator ensures that the highest possible value is
assigned to every situation s. For bookkeeping purposes, we
require that each partition 〈φ, t〉 in BAi(vCase(s)) maintain
a mapping to the action Ai that generated it, which we de-
note as 〈φ, t〉 → Ai. Then, given a particular world state s
at run-time, we can evaluate πCase(s) to determine which
policy partition 〈φ, t〉 → Ai is satisfied in s and thus, which
action Ai should be applied. If we retrieve the bindings of
the existentially quantified action variables in φ (recall that
BAi existentially quantifies these), we can easily determine
the instantiation of action Ai prescribed by the policy.

For our algorithms, it is useful to define a set of case
statements for each action Ai that is satisfied only in the

world states where Ai should be applied according to
πCase(s). Consequently, we define an action restricted pol-
icy πCaseAi

(s) as follows:

πCaseAi
(s) = {〈φ, t〉|〈φ, t〉 ∈ πCase(s) and 〈φ, t〉 → Ai}

Following the approach to approximate policy iteration
for factored MDPs provided by Guestrin et al [4], we can
generalize approximate policy iteration to the first-order
case by calculating successive iterations of weights w

(i)
j

that
represent the best approximation of the fixed point value
function for policy πCase

(i)(s) at iteration i. We do this by
performing the following two steps at every iteration i: (1)
Obtaining the policy πCase(s) from the current value func-
tion and weights (

∑

k

j=1 w
(i)
j

bCasej(s)) using Eq. 5, and (2)
solving the following LP in the format of Eq. 4 that deter-
mines the weights of the Bellman error minimizing approx-
imate value function for policy πCase(s):

Variables: w
(i+1)
1 , . . . , w

(i+1)
k

Minimize: φ
(i+1) (6)

Subject to: φ
(i+1) ≥

∣

∣

∣
πCaseA(s) ⊕⊕k

j=1[w
(i+1)
j bCasej(s)]

	⊕k
j=1w

(i+1)
j (BA

maxbCasej)(s)
∣

∣

∣
; ∀A, s

We’ve reached convergence if π(i+1) = π(i). If policy
iteration converges, the loss bounds from [4] generalize di-
rectly to the first-order case.

Greedy Basis Function Generation
The use of linear approximations requires a good set of basis
functions that span a space that includes a good approxima-
tion to the value function. While some work has addressed
the issue of basis function generation [7; 5], none has been
applied to RMDPs or FOMDPs. We consider a basis func-
tion generation method that draws on the work of Gretton
and Thiebaux [3], who use inductive logic programming
(ILP) techniques to construct a value function from sampled
experience. Specifically, they use regressions of the reward
as candidate building blocks for ILP-based construction of
the value function. This technique has allowed them to gen-
erate fully or k-stage-to-go optimal policies for a range of
Blocks World problems.

We leverage a similar approach for generating candi-
date basis functions for use in the FOALP or FOAPI so-
lution techniques. If some portion of state space φ has
value v > τ in an existing approximate value function
for some nontrivial threshold τ , then this suggests that
states that can reach this region (i.e., found by Regr(φ)
through some action) should also have reasonable value.
However, since we have already assigned value to φ, we
want the new basis function to focus on the area of state
space not covered by φ. Consequently, we negate φ and
conjoin it with Regr(φ) yielding the new basis function
[¬φ ∧ Regr(φ) : 1; φ ∨ ¬Regr(φ) : 0]. The “orthogonal-
ity” of newly generated basis functions also allows for com-
putational optimizations since many combinations of basis
function partitions are mutually exclusive and thus need not
be examined.

ICAPS 2006

International Planning Competition 75

Handling Universal Rewards
In first-order domains, we are often faced with univer-
sal reward expressions that assign some positive value to
the world states satisfying a formula of the general form
∀y φ(y, s), and 0 otherwise. For instance, in a logistics
problem, we can use a predicate Dst(t, c) to indicate that
truck t is at city c and a fluent TAt(t, c, s) to indicate that
truck t is at city c in situation s. Then a reward may be
given for having all trucks at their assigned destination:
∀t, cDst(t, c) → TAt(t, c, s). One difficulty with such re-
wards is that our basis function approach provides a piece-
wise constant approximation to the value function (i.e., each
basis function aggregates state space into regions of equal
value, with the linear combination simply providing con-
stant values over somewhat smaller regions). However, the
value function for problems with universal rewards typically
depends (often in a linear or exponential way) on the num-
ber of domain objects of interest. For instance, in our exam-
ple, value at a state depends on the number of trucks not at
their proper destination (since that impacts the time it will
take to obtain the reward). Unfortunately, this cannot be
represented concisely using the piecewise constant decom-
position offered by first-order basis functions. As noted by
Gretton and Thiebaux [3], effectively handling universally
quantified rewards is one of the most pressing issues in the
practical solution of FOMDPs.

To address this problem we adopt a decompositional ap-
proach, motivated in part by techniques for additive rewards
in MDPs [1; 11; 6; 7]. Intuitively, given a goal-oriented re-
ward that assigns positive reward if ∀yG(y, s) is satisfied,
and zero otherwise, we can decompose it into a set of ground
goals {G(~y1), . . . , G(~yn)} for all possible ~yj in a ground do-
main of interest. If we reach a world state where all ground
goals are true, then we have satisfied ∀yG(y, s).

Of course, our methods solve FOMDPs without knowl-
edge of the specific domain, so the set of ground goals that
will be faced at run-time is unknown. So in the offline solu-
tion of the MDP we assume a a generic ground goal G(~y∗)
for a “generic” object vector ~y∗. It is easy to construct
an instance of the reward function rCase(s) for this single
goal, and solve for this simplified generic goal using FOALP
or FOAPI. This produces a value function and policy that
assumes that ~y∗ is the only object vector of interest (i.e.,
satisfying relevant type and preconditions) in the domain.
From this, we can also derive the optimal Q-function for the
simplified “generic” domain (and action template Ai(~x)):
QG(~y∗)(Ai(~x), s) = BAi(vCase(s)).1 Intuitively, given a
ground state s, the optimal action for this generic goal can
be determined by finding the ground Ai(~x

∗) for this s with
max Q-value.

With the solution (i.e., optimal Q-function) of a generic
goal FOMDP, we now address the online problem of action
selection for a specific domain instantiation. Assume a set of
ground goals {G(~y1), . . . , G(~yn)} corresponding to a spe-
cific domain given at run-time. If we assume that (typed)

1Since the BA operator can often retain much of the additive
structure in the linear approximation of vCase(s) [9], representa-
tion and computation with this Q-function is very efficient.

domain objects are treated uniformly in the uninstantiated
FOMDP, as is the case in many logistics and planning prob-
lems, then we obtain the Q-function for any goal G(~yj) by
replacing all ground terms ~y∗ with the respective terms ~yj in
QG(~y∗)(Ai(~x), s) to obtain QG(~yj)(Ai(~x), s).

Action selection requires finding an action that maximizes
value w.r.t. the original universal reward. Following [1;
6], we do this by treating the sum of the Q-values of any
action in the subgoal MDPs as a measure of its Q-value
in the joint (original) MDP. Specifically, we assume that
each goal contributes uniformly and additively to the re-
ward, so the Q-function for a entire set of ground goals
{G(~y1), . . . , G(~yn)} determined by our domain instantia-
tion is just

∑

n

j=1
1
n
QG(~yj)(Ai(~x), s). The action selection

(at run-time) in any ground state is realized by choosing that
action with maximum joint Q-value. Naturally, we do not
want to explicitly create the joint Q-function, but an effi-
cient scoring technique that evaluates potentially useful ac-
tions by iterating through the individual Q-functions is very
straightforward.

While this additive and uniform decomposition may not
be appropriate for all domains with goal-oriented universal
rewards, we have found it to be highly effective for the Box-
World logistics domain from the ICAPS 2004 probabilistic
planning competition. And while this approach can only
currently handle rewards with universal quantifiers, this re-
flects the form of many practical planning problems.

References
[1] C. Boutilier, R. I. Brafman, and C. Geib. Prioritized goal

decomposition of Markov decision processes: Toward a syn-
thesis of classical and decision theoretic planning. IJCAI-97,
pp.1156–1162, Nagoya, 1997.

[2] C. Boutilier, R. Reiter, and B. Price. Symbolic dynamic pro-
gramming for first-order MDPs. IJCAI-01, 2001.

[3] C. Gretton and S. Thiebaux. Exploiting first-order regression
in inductive policy selection. UAI-04, 2004.

[4] C. Guestrin, D. Koller, R. Parr, and S. Venktaraman. Efficient
solution methods for factored MDPs. JAIR, 2002.

[5] S. Mahadevan. Samuel meets amarel: Automating value
function approximation using global state space analysis.
AAAI-05, pp.1000–1005, Pittsburgh, 2005.

[6] N. Meuleau, M. Hauskrecht, K. Kim, L. Peshkin, L. P. Kael-
bling, T. Dean, and C. Boutilier. Solving very large weakly
coupled Markov decision processes. AAAI-98, 1998.

[7] P. Poupart, C. Boutilier, R. Patrascu, and D. Schuurmans.
Piecewise linear value function approximation for factored
MDPs. AAAI 02, pp.292–299, Edmonton, 2002.

[8] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press,
2001.

[9] S. Sanner and C. Boutilier. Approximate linear programming
for first-order MDPs. UAI 2005), Edinburgh, 2005.

[10] D. Schuurmans and R. Patrascu. Direct value approximation
for factored MDPs. NIPS-2001, Vancouver, 2001.

[11] S. P. Singh and D. Cohn. How to dynamically merge Markov
decision processes. NIPS-98, 1998.

[12] H. Younes and M. Littman. PPDDL: The probabilistic plan-
ning domain definition language, 2004.

ICAPS 2006

76 International Planning Competition

Symbolic Stochastic Focused Dynamic Programming with Decision Diagrams

Florent Teichteil-K önigsbuch and Patrick Fabiani
ONERA-DCSD

2 AvenueÉdouard-Belin
31055 Toulouse, France

(florent.teichteil,patrick.fabiani)@cert.fr

Abstract

We present a stochastic planner based on Markov De-
cision Processes (MDPs) that participates to the prob-
abilistic planning track of the 2006 International Plan-
ning Competition. The planner transforms the PPDDL
problems into factored MDPs that are then solved with
a structured modified value iteration algorithm based on
the safest stochastic path computation from the initial
states to the goal states. First, a state subspace is com-
puted by making all the transitions deterministic. Then,
a step of modified value iteration on the current reach-
able state subspace alternates with a step of reachable
state expansion by following the current policy.

Introduction
Co-located with the 16th International Conference on Auto-
mated Planning and Scheduling, the probabilistic planning
track of the 5th International Planning Competition aims at
evaluating and at motivating research in the field of non-
determinism in planning (Bonet & Givan 2005). In this ar-
ticle, we present a planner based on Markov Decision Pro-
cesses (MDPs) (Puterman 1994) that have become a pop-
ular stochastic framework for planning under uncertainty:
the uncertain effects of actions are modeled in a decision-
theoretic framework.

A MDP (Puterman 1994) is a Markov chain controlled
by an agent. A control strategy associates to each state the
choice of an action, whose result is a stochastic state. The
Markov property means that the probability of arriving in a
particular state after an action only depends on the previous
state of the chain and not on the entire states history. For-
mally it is a tuple〈S,A, T,R〉 whereS is the set of states,
A is the set of actions,T andR are respectively the transi-
tion probabilities and rewards that are functions of the start-
ing state, the ending state and the chosen action. The most
used optimization criterion consists in maximizing the infi-
nite horizon sumE (

∑∞
t=0 β rt) of expected rewardsrt dis-

counted by a factor0 < β < 1 that insures the convergence
of algorithms, but can also be interpreted as a probability of
a system failure (mission end) between two time points.

The optimization of MDPs produces apolicy, i.e. a map
associating an optimal action to each possible state. It is

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

based on dynamic programming and includes two classes of
algorithms : value iteration and policy iteration. The first is
an iteration on the value function associated with each state,
that is to say the expected accumulated reward if we start
from this state. When the iterated value function stabilizes,
the optimal value function is reached and the optimal policy
follows. In the policy iteration scheme, the current policy is
assessed on the infinite horizon and improved locally at each
iteration. The value of a policyπ is solution of the Bellman
equation (Bellman 1957) :

V π(s) =
∑
s′∈S

T (s, π(s), s′) · (R(s, π(s), s′) + β V π(s′))

In the probabilistic track of IPC’06 (Bonet & Givan
2005), no rewards are explicitly associated to transitions be-
tween states. Alternatively, some goal states are defined,
meaning that the planner must produce a policy that aims at
reaching at least one goal state from some possible initial
states. In an MDP framework, this approach is equivalent
to define positive rewards to the transitions that lead to goal
states. As all goal states have the same significance, all re-
wards have the same value.

In this particular case, the policy that maximizes the ac-
cumulated expected rewards is equal to the policy that max-
imizes the probability of reaching the goal state subspaceG.
For a given policyπ, the probabilityPπ to reach at least
one goal state from any state convergences and it satisfies
the following probabilistic dynamic programming equation
(Teichteil-Königsbuch 2005):

Pπ(s) = 1G(s) + 1S\G(s) ·
∑
s′∈S

T (s, π(s), s′) · Pπ(s′)

where1E is the indicator function of a subspaceE ⊂ S.

State space factorization
Our planner uses a compact factored representation of
MDPs based on Algebraic Decision Diagrams (ADDs) (R.I.
Baharet al. 1993) that generalize Binary Decision Diagrams
(BDDs). Our model is based on work by (Hoeyet al. 2000)
to model and optimize MDPs with decision diagrams. Since
the problems of the stochastic planning track of the compe-
tition are given in an extension of the PPDDL 1.0 language

ICAPS 2006

International Planning Competition 77

(Younes & Littman 2003), we must translate the PPDDL do-
main and problem definitions into ADDs-based MDP repre-
sentation. We used the CUDD package (Somenzi 1998) to
deal with ADDs and BDDs in the competition.

The factorization of the state space consists in a cross
product involving binary state variables:S = ⊗n

i=1Vi.
These variables are the instantiations of the PPDDL
parametrized predicates for each constant and each object.
It is a compact representation because the states are not enu-
merated in a list, but rather structured by the set of ran-
dom state variables. Such variables enable to process sets
of states, instead of individual states, whenever useful.

The actions are obtained by instantiating all PPDDL
parametrized actions for all constants and objects. For each
action, the transition probability function can be represented
by a Dynamic Bayesian Network (DBN) (Dean & Kanazawa
1989). It encodes the probabilistic effects and rewards ob-
tained on the different values of the variables after the action
has been performed (post-action variables), conditionally to
the possible values of the variables before the action is ap-
plied (pre-action variables).

The factored conditional transition probabilities of the
DBNs can be encoded as ADDs, that internally useun-
primed(pre-action) variables andprimed(post-action) vari-
ables (Hoeyet al. 2000). The action masks, i.e. PPDDL
preconditions, can be encoded as BDDs, since they can be
defined as indicator functions.

Dealing with action similarities
In PPDDL, actions often are similar in the sense that some
parameter instantiations lead to the same preconditions or
effects for two different actions. Therefore, some sub-
diagrams of the ADDs encoding the transitions are the same
over the different actions. In order to memorize only one
time these sub-diagrams, we propose to merge all the tran-
sition ADDs (resp. mask BDDs) of each action in a single
ADD (resp. BDD) namedGlobal Action Diagram. This
requires to define action variables shared by all ADDs and
BDDs: if PPDDL parametrized actions lead tom instanti-
ated actions for all constants and objects, we must introduce
E(log2 m) action binary variables on top of primed and un-
primed state variables (E(k) is the smallest integer bigger or
equal tok). Also, our single transition ADD̃T is defined as:

T̃ =
∑
a∈A

1a · T a

Contrary to work by (Hoeyet al. 2000), our policy en-
coding is no more a list of mask BDDs for each action, but
rather a single mask BDD that represents the state subspace
(unprimed variables) where each action is optimal:

π =
⋃

a∈A
1a · π−1(a)

In the value iteration scheme, the update of the value re-
quires to compute the maximum of the previous computed
value over the actions (Puterman 1994). This can be tedious
and ineffective with action variables because the value of an
action can only be retrieved by a projection on the variables

that encode this action. The value update step would require
as many projection computations as the number of actions,
and each projection would cause the loss of similarities be-
tween actions.

Therefore, we have extended the CUDD package
by a new low-level ADD function that we called
Cudd_addMaximumAbstract , and inspired by
Cudd_addExistAbstract . This new function com-
putes the maximum of all sub-diagrams over the variables
of a given cube. In the case of MDPs, this cube is composed
of the action variables. It recursively calls the built-in
CUDD functionCudd_addMaximum on the sub-diagrams
of each action variable, until all action variables are parsed.

Optimization focused on the goal states
In the problems of the competition, the knowledge of pos-
sible initial states and of goal states enables to restrict the
policy computation to a subspace of the entire state space.
This idea was already used insLAO* , but it only used the
knowledge of initial states. Moreover,sLAO* is based on a
heuristic that is an approximation of the value of states over
the entire state space, that then helps the optimal optimiza-
tion of the value on the states that are reachable from the
initial states. As a consequence,sLAO* requires to initially
visit all the states in the heuristic computation step.

Deterministic reachability analysis
Therefore, we propose to compute a subset of reachable
statesbeforeany approximate or optimal dynamic program-
ming computation, by using the knowledge ofboth initial
and goal states. This initial step is performed by making all
transitions deterministic: in other words, we transform the
Global Action Diagram ADD into a BDD by replacing all
non-zero discriminants by 1. As a result, we can efficiently
propagate the fringe of reachable states from the initial states
until at least one goal state is reached, without memorizing
the actions that lead from the initial states to the goal states.
Moreover, it is known that BDDs are more effective than 1-0
ADDs (R.I. Baharet al. 1993). This forward reachable state
search satisfies the following recursive equation:

1F ′t+1(s′) =
⋃

a∈A

⋃
s∈S

T̃ det(s, a, s′) · 1Ft(s)

whereF is the current subset of (forward) reachable states
andT̃ det is the Global Action Diagram BDD.

This reachable state subset can still be reduced by per-
forming a backtrack search of reachable states from goal
states to initial states inside the forward reachable state sub-
set:

1Bt−1(s) =
⋃

a∈A

⋃
s′∈S

T̃ det(s, a, s′)·1F (s)·1F ′(s′)·1B′t(s′)

whereB is the current subset of (backward) reachable states.

Safest stochastic path policy
After we have generated the initial reachable state subspace
W (= B at the end of the backward deterministic reacha-
bility analysis), we compute the policy that maximizes the

ICAPS 2006

78 International Planning Competition

probability of reaching the goal state subspaceG insideW.
We named this policysafest stochastic path policy, since it
maximizes the chance of reaching at least one goal state. In
the probabilistic track of IPC’06, there are no (positive or
negative) rewards so that this policy is the same as the clas-
sical optimal policy of MDPs obtained if each goal state is
rewarded by 1.

In this special case, the maximum probability of reach-
ing the goal state subspace always converges (Teichteil-
Königsbuch 2005). Therefore, contrary to the computation
of the value function in MDPs, this probability does not re-
quire to be pondered by an empirical discount factor at each
iteration (Puterman 1994). The maximum probabilityP of
reachingG insideW is given by:

P t−1(s) = 1G(s) + 1W\G(s)·

max
a∈A

∑
s′∈S

T (s, a, s′) · 1W(s) · 1W′(s′) · P t(s′)

The maximum over the actions is performed by the func-
tion Cudd_addMaximumAbstract that we added to
CUDD (Somenzi 1998) as an extension.

Policy refinement
The previously obtained policy is not guaranteed to be op-
timal over the entire state space since it is only optimized
overW ⊂ S. In order to improve the policy, we alternate
a step of deterministic reachability analysis and a step of
safest stochastic path policy optimization, in a loop that ends
when the policy convergences over the previous reachable
state subspace. The current reachable state subspace is gen-
erated with the same function as the one responsible for the
initial computation of the reachable states, but the fringe of
state expansion is propagated by following the current pol-
icy (and not by applying all possible actions).

The forward reachable state subspace expansion is:

1F ′t+1(s′) =
⋃

a∈A

⋃
s∈S

T̃ det(s, a, s′) · π(a, s) · 1Ft(s)

whereπ is a BDD depending on action variables and on un-
primed state variables. The backward expansion is given by:

1Bt−1(s) =
⋃

a∈A

⋃
s′∈S

T̃ det(s, a, s′) · π(a, s)·

1F (s) · 1F ′(s′) · 1B′t(s′)

Related work
sLAO* (Feng & Hansen 2002) already uses such alterna-
tion of a step of reachable state expansion by following the
current policy and of a step of policy optimization over the
current reachable state subspace. However, there are some
key differences betweensLAO* and our algorithm. First,
sLAO* does not use the knowledge of goal states so that
the state space expansion stops as soon as the new reach-
able states are the same as the previous reachable states in
the high-level loop. Second, for the same reason, the state
space expansion step ofsLAO* does not perform a back-
ward search of reachable states. Third,sLAO* takes into

account general (positive or negative) rewards so that the
policy is updated with the classical discounted dynamic pro-
gramming equation of MDPs. Nevertheless, the latter is not
really a drawback of our algorithm since we can replace
the safest stochastic path policy by a classical MDPs pol-
icy without changing the spirit of our framework. Moreover,
in case of general rewards, the safest stochastic path pol-
icy can be a heuristic to the policy optimized with rewards
(Teichteil-Königsbuch 2005).

Conclusion
We have presentedsfDP (Symbolic Focused Dynamic Pro-
gramming) that participates to the probabilistic track of the
2006 International Planning Competition. Based on Binary
and Algebraic Decision Diagrams, it is a symbolic dynamic
programming algorithm for planning under action uncer-
tainty that focuses the policy on goal states. A step of reach-
able state subspace expansion by following the current pol-
icy alternates with a step of policy optimization over the
current reachable state subspace, in a loop that ends if the
policy stabilizes over the previous reachable state subspace.
We think that the competition is a good forum to improve
our algorithm, to compare it with other approaches, and to
exchange interesting ideas between researchers.

References
Bellman, R. 1957.Dynamic Programming. Princeton, NJ:
Princeton University Press.
Bonet, B., and Givan, R. 2005. 5th international planning
competition: Non-deterministic track call for participation.
Dean, T., and Kanazawa, K. 1989.a model for reasoning
about persistence and causation.Computational Intelligence
5(3): 142–150.
Feng, Z., and Hansen, E. 2002. Symbolic heuristic search
for factored markov decision processes. InProceedings
18th AAAI, 455–460.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 2000.
Optimal and approximate stochastic planning using deci-
sion diagrams. Technical Report TR-2000-05, University
of British Columbia.
Puterman, M. L. 1994.Markov Decision Processes. John
Wiley & Sons, INC.
R.I. Bahar; E.A. Frohm; C.M. Gaona; G.D. Hachtel; E.
Macii; A. Pardo; and F. Somenzi. 1993. Algebraic De-
cision Diagrams and Their Applications. InIEEE /ACM
International Conference on CAD, 188–191.
Somenzi, F. 1998. Cudd: Cu decision diagram package
release.
Teichteil-Königsbuch, F. 2005.Symbolic and Heuristic Ap-
proach of Planning under Uncertainty. Ph.D. Dissertation,
SUPAERO.
Younes, H. L., and Littman, M. L. 2003. PPDDL 1.0: An
extension to PDDL for expressing planning domains with
probabilistic effects.

ICAPS 2006

International Planning Competition 79

	Página 25
	Página 26
	Página 27
	Página 28
	allpapers.pdf
	deterministic13.pdf
	Overview
	Additional pruning rules
	Impossible Supports
	Unique Supports
	Distance Boosting

	Improvement of the search algorithm
	A note about the implementation
	Acknowledgments

