

ICAPS 2006
Tutorial onFiltering Techniques in Planning
and Scheduling

Table of contents
Preface 3

Presentation 5
Roman Barták

http://icaps06.icaps-conference.org/

ICAPS 2006
Tutorial onFiltering Techniques in Planning
and Scheduling

Preface

Constraint satisfaction technology plays an important role in solving real-life scheduling
problems. As time and resources become more important in nowadays planning, the
role of constraint satisfaction is increasing there too. One of the key aspects of constraint
satisfaction is using constraints actively to remove infeasible values from domains of
variables and consequently to prune the search space. This approach is called domain
filtering. The goal of the tutorial is to explain in detail domain filtering techniques used
in the context of constraint-based planning and scheduling.

The tutorial is targeted to researchers and practitioners that would like to use con-
straint satisfaction technology efficiently in solving planning and scheduling problems.
Basics of constraint satisfaction and in particular constraint propagation will be ex-
plained so no prior knowledge of constraint satisfaction is required. The focus of the
tutorial is on existing filtering algorithms for constraints used in modeling time and
resource restrictions. The filtering techniques for temporal and resource constraints,
namely point and interval algebras, temporal networks, edge-finding, not-first/not-last,
and energetic reasoning, will be explained. The details on filtering combing qualitative
and quantitative approaches as well as using the objective function will be given. Finally,
the implementation of new filtering algorithms will also be explained. The audience will
take away a basic understanding of how constraint propagation works with more details
on filtering techniques for planning and scheduling constraints.

Instructor

• Roman Barták
Charles University in Prague, Czech Republic

Roman Barták
Charles University, Prague (CZ)

roman.bartak@mff.cuni.cz

Filtering TechniquesFiltering Techniques
inin Planning Planning andand SchedulingScheduling

Filtering Techniques in Planning and Scheduling 2

TTutorialutorial outlineoutline
Introduction

What is domain filtering?
What is the context in which domain filtering operates?

Domain filtering for P&S
Temporal (only) reasoning

qualitative approach
quantitative approach

Resource reasoning
absolute positioning in time
relative positioning in time
combining absolute and relative positioning

Reasoning on objective functions
late activities, setup times

Conclusions
design of own filtering algorithms

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
5

Domain filtering
within constraint satisfaction

Filtering Techniques in Planning and Scheduling 4

Logic-based puzzle, whose
goal is to enter digits 1-9 in
cells of 9×9 table in such a way,
that no digit appears twice
or more in every row, column,
and 3×3 sub-grid.

A bit of history
1979: first published in New York

under the name „Number Place“
1986: became popular in Japan

Sudoku – from Japanes "Sudji wa dokushin ni kagiru"
"the numbers must be single" or "the numbers must occur once"

2005: became popular in the western world

SudokuSudoku??

ICAPS 2006

6
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 5

How to find out which digit to fill in?
Use information that each
digit appears exactly once
in each row and column.

What if it is not enough?
If rows and columns do not
provide enough information
then annotate each cell with
possible digits that can be
filled there.

Solving Solving SudokuSudoku

Filtering Techniques in Planning and Scheduling 6

SudokuSudoku in generalin general
We can see every
cell as a variable
with possible values
from domain {1,…,9}.

There is a binary inequality constraint
between all pairs of variables in every row,
column, and sub-grid.

Values that do not satisfy any constraint
are pruned from the domain.

Such formulation of the problem is called
a constraint satisfaction problem.
Pruning of values – domain filtering – is repeated
until there is no value to be pruned.

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
7

Filtering Techniques in Planning and Scheduling 7

Constraint technologyConstraint technology

based on declarative problem description via:
variables with domains (sets of possible values)
e.g. start of activity with time windows
constraints restricting combinations of variables
e.g. end(A) < start(B)

A feasible solution to a constraint satisfaction
problem is a complete assignment of variables
satisfying all the constraints.

An optimal solution to a CSP is a feasible solution
minimizing/maximizing a given objective function.

Filtering Techniques in Planning and Scheduling 8

Domain filteringDomain filtering

Example:
Da={1,2}, Db={1,2,3}
a<b
Value 1 can be safely removed from Db.

Constraints are used actively to remove
inconsistencies from the problem.

inconsistency = value that cannot be in any
solution

This is realized via a procedure FILTER that
is attached to each constraint.

ICAPS 2006

8
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 9

ArcArc--consistencyconsistency

We say that a constraint is arc consistent (AC) if
for any value of the variable in the constraint there
exists a value for the other variable(s) in such a
way that the constraint is satisfied (we say that the
value is supported).
Unsupported values are filtered out of the domain.

A CSP is arc consistent if all the constraints are
arc consistent.

Filtering Techniques in Planning and Scheduling 10

Making problems ACMaking problems AC

How to establish arc consistency in CSP?
Every constraint must be filtered!

Example: X in [1,..,6], Y in [1,..,6], Z in [1,..,6], X<Y, Z<X-2

Filtering every constraint just once is not enough!

Filtering must be repeated until any domain is
changed (AC-1).

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,6]
Y in [1,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6]
Z in [1,..,6]

X<Y
X in [4,5]
Y in [2,..,6]
Z in [1,2]

X in [4,5]
Y in [2,..,6]
Z in [1,2]

Z<X-2
X in [4,5]
Y in [5,6]
Z in [1,2]

X in [4,5]
Y in [5,6]
Z in [1,2]

X<Y

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
9

Filtering Techniques in Planning and Scheduling 11

Algorithm ACAlgorithm AC--33

Uses a queue of constraints that should be filtered.
When a domain of variable is changed, only the constraints
over this variable are added back to the queue for filtering.

procedure AC-3(V,D,C)
Q ← C
while non-empty Q do

select c from Q
D’ ← c.FILTER(D)
if any domain in D’ is empty then return (fail,D’)
Q ← Q ∪ {c’∈C | ∃x∈var(c’) D’x≠Dx} – {c}
D ← D’

end while
return (true,D)

end AC-3

Mackworth (1977)

Filtering Techniques in Planning and Scheduling 12

AC in practiceAC in practice
Uses a queue of variables with changed domains.

Users may specify for each constraint when the filtering should be
done depending on the domain change.

The algorithm is sometimes called AC-8.

procedure AC-8(V,D,C)
Q ← V
while non-empty Q do

select v from Q
for c∈C such that v is constrained by c do

D’ ← c.FILTER(D)
if any domain in D’ is empty then return (fail,D’)
Q ← Q ∪ {u∈V | D’u≠Du}
D ← D’

end for
end while
return (true,D)

end AC-8

ICAPS 2006

10
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 13

ArcArc--BB--consistencyconsistency

Sometimes, making the problem arc-consistent is costly
(for example, when domains of variables are large).
In such a case, a weaker form of arc-consistency might be
useful.

We say that a constraint is arc-b-consistent (bound
consistent) if for any bound values of the variable in the
constraint there exists a value for the other variable(s) in
such a way that the constraint is satisfied.

a bound value is either a minimum or a maximum value in domain
domain of the variable can be represented as an interval
for some constraints (like A<B) it is equivalent to AC

Lhomme (1993)

Filtering Techniques in Planning and Scheduling 14

Pitfalls of ACPitfalls of AC

Disjunctive constraints
A,B in 1..10, A=1 ∨ A=2
no filtering (whenever A≠1 then deduce A=2 and vice
versa)

Detection of inconsistency
A,B,C in 1..10000000, A<B, B<C, C<A
long filtering (4 seconds)

Weak filtering
A,B in 1..2, C in 1..3, A\=B, A\=C, B\=C
weak filtering (it is arc-consistent)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
11

Filtering Techniques in Planning and Scheduling 15

a set of binary inequality constraints among all variables
X1 ≠ X2, X1 ≠ X3, …, Xk-1 ≠ Xk

all_different({X1,…,Xk}) = {(d1,…,dk) | ∀i di∈Di & ∀i≠j di≠dj}

better pruning based on matching theory over bipartite graphs

Initialization:
1. compute maximum matching
2. remove all edges that do not belong to

any maximum matching

Propagation of deletions (X1≠a):
1. remove discharged edges
2. compute new maximum matching
3. remove all edges that do not belong to

any maximum matching

Inside allInside all--differentdifferent

a

b

c

X1

X2

X3

××

X1

X2

X3

a

b

c

×

×

Régin (1994)

Filtering Techniques in Planning and Scheduling 16

Meta consistencyMeta consistency

Can we strengthen any filtering technique?

YES! Let us assign a value and make the rest of
the problem consistent.

singleton consistency
try each value in the domain

shaving
try only the bound values

constructive disjunction
propagate each constraint in disjunction separately
make a union of obtained restricted domains

Prosser et al. (2000)

ICAPS 2006

12
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 17

Path consistencyPath consistency
Arc consistency does not detect all inconsistencies!

Let us look at several constraints together!

The path (V0,V1,…, Vm) is path consistent iff for every
pair of values x∈D0 a y∈Dm satisfying all the binary
constraints on V0,Vm there exists an assignment of variables
V1,…,Vm-1 such that all the binary constraints between the
neighboring variables Vi,Vi+1 are satisfied.
CSP is path consistent iff every path is consistent.

Some notes:
only the constraints between the neighboring
variables must be satisfied
it is enough to explore paths of length 2 (Montanary,
1974)

X

Y
Z

X≠ZX≠Y

Y≠Z

{1,2}

{1,2} {1,2}

Mackworth (1977)

Filtering Techniques in Planning and Scheduling 18

Path revisionPath revision
Constraints represented extensionally via matrixes.
Path consistency is realized via matrix operations

Example:
A,B,C in {1,2,3}, B>1
A<C, A=B, B>C-2 A<C

B>C-2
A=B

B>1

C

A

& * *
011
001
000

100
010
001

000
010
001

110
111
111

=
000
001
000

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
13

Filtering Techniques in Planning and Scheduling 19

Search / LabelingSearch / Labeling
Filtering techniques are (usually) incomplete.

We need a search algorithm to resolve the rest!

LabelingLabeling
depth-first search

assign a value to the variable
propagate = make the problem
locally consistent
backtrack upon failure

X in 1..5 ≈ X=1 ∨ X=2 ∨ X=3 ∨ X=4 ∨ X=5 (enumeration)

In general, search algorithm resolves remaining disjunctions!
X=1 ∨ X≠1 (step labeling)
X<3 ∨ X≥3 (domain splitting)
X<Y ∨ X≥Y (variable ordering)

Filtering Techniques in Planning and Scheduling 20

Labeling skeletonLabeling skeleton

Search is combined with filtering
techniques that prune the search space.
Look-ahead technique (MAC)
procedure labeling(V,D,C)

if all variables from V are assigned then return V
select not-yet assigned variable x from V
for each value v from Dx do

(TestOK,D’) ← consistent(V,D,C∪{x=v})
if TestOK=true then R ← labeling(V,D’,C)
if R ≠ fail then return R

end for
return fail

end labeling

procedure labeling(V,D,C)
if all variables from V are assigned then return V
select not-yet assigned variable x from V
for each value v from Dx do

(TestOK,D’) ← consistent(V,D,C∪{x=v})
if TestOK=true then R ← labeling(V,D’,C)
if R ≠ fail then return R

end for
return fail

end labeling

ICAPS 2006

14
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 21

Branching schemesBranching schemes

Which variable should be assigned first?
fail-first principle

prefer the variable whose instantiation will lead to a failure
with the highest probability
variables with the smallest domain first
the most constrained variables first

defines the shape of the search tree

Which value should be tried first?
succeed-first principle

prefer the values that might belong to the solution with the
highest probability
values with more supports in other variables
usually problem dependent

defines the order of branches to be explored

Filtering Techniques in Planning and Scheduling 22

CP is not (only) search!CP is not (only) search!

Backtracking is not very good
19 attempts

MAC combining search and arc
consistency

2 attempts

4 queens problem

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
15

Filtering Techniques in Planning and Scheduling 23

Constraint optimizationConstraint optimization

Constraint optimization problem (COP)
= CSP + objective function
Objective function is encoded in a constraint
v=obj(Xs) and the value of v is optimized

Branch and bound technique
find a complete assignment (defines a new

bound)
store the assignment
update bound (post the constraint that restricts

the objective function to be better than a
given bound which causes failure)

continue in search (until total failure)
restore the best assignment

Filtering Techniques in Planning and Scheduling 24

Final notesFinal notes

Combination of depth-first search with arc
consistency is the mainstream constraint
satisfaction technology used by current
constraint solvers.
However, there exist other constraint satisfaction
techniques!

stronger consistency notions
path consistency, k-consistency, …

local search techniques
min-conflicts, tabu search, …

constraint inference techniques
constraints are combined until a solution is obtained

ICAPS 2006

16
Tutorial on Filtering Techniques in Planning and Scheduling

Temporal reasoning

Filtering Techniques in Planning and Scheduling 26

FoundationsFoundations

What is time?
The mathematical structure of time is generally a set with
transitive and asymmetric ordering operation.
The set can be continuous (reals) or discrete (integers).

The planning/scheduling systems need to maintain
consistent information about time relations.

We can see time relations:
qualitatively

relative ordering (A finished before B)
typical for modeling causal relations in planning

quantitatively
absolute position in time (A started at time 0)
typical for modeling exact timing in scheduling

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
17

Filtering Techniques in Planning and Scheduling 27

Qualitative approachQualitative approach
exampleexample

Robot starts entering a loading zone at time t1 and stops there at time t2.
Crane starts picking up a container at t3 and finishes putting it down at t4.
At t5 the container is loaded onto the robot and stays there until time t6.

Networks of temporal constraints:

enteringt1 t2

i1

picking up and loadingt3 t4

i2

loadedt5 t6

i3

i1

i2

i3
before

starts before meets

t1 t2

t3 t4

t5 t6

≤

<

<

<
<

=

Ghallab et al. (2004)

Filtering Techniques in Planning and Scheduling 28

Qualitative approachQualitative approach
formallyformally

When modeling time we are interested in:
temporal references
(when something happened or hold)

time points (instants) when a state is changed
instant is a variable over the real numbers

time periods (intervals) when some proposition is true
interval is a pair of variables (x,y) over the real
numbers, such that x<y

temporal relations between temporal references
ordering of temporal references

ICAPS 2006

18
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 29

Point algebraPoint algebra
principlesprinciples

symbolic calculus modeling relations between instants
without necessarily ordering them or allocating to exact times

There are three possible relations between instants t1 and t2:
[t1 < t2]
[t1 > t2]
[t1 = t2]
The relations P = {<,=,>} are called primitives.

A set of primitives, meaning a disjunction of primitives, can
describe any (even incomplete) relation between instants:

{}, {<}, {=}, {>}, {<,=}, {>,=}, {<,>}, {<,=,>}
{} means failure
{<,=,>} means that no ordering information is available

[t r t‘] denotes the relation r between instants t and t‘

Vilain & Kautz (1986)

Filtering Techniques in Planning and Scheduling 30

Point algebraPoint algebra
operationsoperations

Let R be the set of all possible relations between instants
{{}, {<}, {=}, {>}, {<,=}, {>,=}, {<,>}, {<,=,>}}

Useful operations on R:
set operations ∩, ∪

describe conjunction (∩) or disjunction (∪) of relations

composition operation •
deduce a new relation based on existing relations
(an implied relation)
[t1 r t2] and [t2 q t3] gives [t1 r•q t3] using the table

The most useful operations are ∩ and • that allow a
combination of the existing relation with the implied
relation (a filtering rule):

[t1 r t2] and [t1 q t3] and [t3 s t2] gives [t1 r∩(q•s) t2]

>>P>

>=<=

P<<<

>=<•

Vilain & Kautz (1986)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
19

Filtering Techniques in Planning and Scheduling 31

Point algebraPoint algebra
consistencyconsistency

A PA (Point Algebra) network is a directed graph (X,C) where
X is a set of instants and each arc (i,j) is labeled by a constraint ri,j∈R.

If some relation (i,j) is not explicitly mentioned in C then we assume the
universal relation P there.

The PA network (X,C) is consistent when it is possible to assign a real
number to each instant in such a way that all the relations between
instants are satisfied.

Proposition:
A PA network (X,C) is consistent iff there is a set of primitives pi,j∈ri,j,
such that every triple of primitives verifies pi,j ∈ pi,k • pk,j.

Notes:
To make the PA network consistent it is enough to make its transitive
closure, for example using techniques of path consistency.

The network is inconsistent iff we get the relation {}.
Path consistency does not produce a minimal network (there could remain
some primitives that are not satisfied in any solution).

Vilain & Kautz (1986)

Filtering Techniques in Planning and Scheduling 32

symmetrical relationsb’, m’, o’, s’, d’, f’

x-=y- & x+=y+x equals y

y-<x- & x+=y+x finishes y

y-<x- & x+<y+x during y

x-=y- & x+<y+x starts y

x-<y-<x+ & x+<y+x overlaps y

x+=y-x meets y

x+<y-x before y

Interval algebraInterval algebra
principlesprinciples

symbolic calculus modeling relations between intervals
(interval is defined by a pair of instants i- and i+, [i-<i+])

There are thirteen primitives:

x y

x y

x y

x

y

x

y

x

y

x

y

Allen (1983)

ICAPS 2006

20
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 33

Interval algebraInterval algebra
operations and consistencyoperations and consistency

Primitives can again be combined into sets/disjunctions (213 sets).
sometimes, only some sets are used in a particular application

Example: {b,m,b’,m’} can model non-overlapping intervals (unary resource)
set operations ∩, ∪ and composition operation •

An IA (Interval Algebra) network (X,C) is consistent when it is
possible to assign real numbers to xi

-,xi
+ of each interval xi in such a

way that all the relations between intervals are satisfied.

Proposition:
An IA network (X,C) is consistent iff there is a set of primitives pi,j∈ri,j,
such that every triple of primitives verifies pi,j ∈ pi,k • pk,j.

Notes:
Consistency-checking problem for IA networks is an NP-complete problem.
Path consistency is not a complete technique for IA networks but it can
detect some inconsistencies.
Intervals can be converted to instants but with possibly non-binary
constraints between instants.

Allen (1983)

Filtering Techniques in Planning and Scheduling 34

Qualitative approachQualitative approach
exampleexample

Two ships, Uranus and Rigel, are directing towards a dock.
The Uranus arrival is expected within one or two days.
Uranus will leave either with a light cargo (then it must stay in the
dock for three to four days) or with a full load (then it must stay in
the dock at least six days).
Rigel can be serviced either on an express dock (then it will stay
there for two to three days) or on a normal dock (then it must stay
in the dock for four to five days).
Uranus has to depart one to two days after the arrival of Rigel.
Rigel has to depart six to seven days from now.

now

ArriveUranus DepartUranus

ArriveRigel

DepartRigel

[1,2]

[6,7]

[1,2]

[3,4] or [6,∞]

[2,3] or [4,5]

Ghallab et al. (2004)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
21

Filtering Techniques in Planning and Scheduling 35

Qualitative approachQualitative approach
formallyformally

The basic temporal primitives are again time
points, but now the relations are numerical.
Simple temporal constraints for instants ti and tj:

unary: ai ≤ ti ≤ bi

binary: aij ≤ ti–tj ≤ bij,
where ai, bi, aij, bij are (real) constants

Notes:
Unary relation can be converted to a binary one, if we
use some fix origin reference point t0.
[aij,bij] denotes a constraint between instants ti a tj.
It is possible to use disjunction of simple temporal
constraints.

Filtering Techniques in Planning and Scheduling 36

STNSTN
Simple Temporal Network (STN)

only simple temporal constraints rij= [aij,bij] are used
operations:

composition: rij • rjk = [aij+ajk, bij+bjk]
intersection: rij ∩ r’ij = [max{aij,a’ij}, min{bij,b’ij}]

STN is consistent if there is an assignment of values
to instants satisfying all the temporal constraints.
Path consistency is a complete technique making
STN consistent (all inconsistent values are filtered
out, one iteration is enough). Another option is using
all-pairs minimal distance Floyd-Warshall
algorithm.

Dechter et al. (1991)

ICAPS 2006

22
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 37

AlgorithmsAlgorithms
Path consistency

finds a transitive closure of
binary relations r
one iteration is enough for
STN (in general, it is iterated
until any domain changes)
works incrementally

Floyd-Warshall algorithm
finds minimal distances
between all pairs of nodes
First, the temporal network is
converted into a directed graph

there is an arc from i to j with
distance bij

there is an arc from j to i with
distance -aij.

STN is consistent iff there are
no negative cycles in the
graph, that is, d(i,i)≥0

one iteration for STN

general

Filtering Techniques in Planning and Scheduling 38

TCSPTCSP
Temporal Constraint Network (TCSP)

It is possible to use disjunctions of simple temporal
constraints.
Operations • and ∩ are being done over the sets of
intervals.

TCSP is consistent if there is an assignment of values
to instants satisfying all the temporal constraints.
Path consistency does not guarantee in general the
consistency of the TCSP network!

A straightforward approach (constructive disjunction):
decompose the temporal network into several STNs by choosing
one disjunct for each constraint
solve obtained STN separately (find the minimal network)
combine the result with the union of the minimal intervals

Dechter et al. (1991)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
23

Resource reasoning

Filtering Techniques in Planning and Scheduling 40

FoundationsFoundations

Resources are used in slightly different
meanings in planning and scheduling!
scheduling

resource
= a machine (space) for processing the activity

planning
resource
= consumed/produced material by the activity
resource in the scheduling sense is often
handled via logical precondition (e.g. hand is
free)

ICAPS 2006

24
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 41

TerminologyTerminology
Activity is an entity occupying some space (resource) and time

while event is an instantaneous entity changing the level of resource.
a typical activity can be seen as a start event and an end event

For activity A we define
start(A): start time of the activity (activity cannot start before its release date)

est(A) = min(start(A)), earliest start time
end(A): completion time of the activity (activity must finish before the deadline)

lct(A) = max(end(A)), latest completion time
p(A): processing time (duration) of the activity
cap(A): requested capacity of the resource

Classification of activities:
non-preemptible activity A requires cap(A)
of the resource for all duration

start(A) + p(A) = end(A)
preemptible activity A can be interrupted but
it must run for p(A) time units when it requires
cap(A) of the resource

start(A) + p(A) ≤ end(A)
elastic activity can use different level of the
resource at different times, but a total “energy”
must be consumed

e(A) = p(A).cap(A)

time

time

time

start(A) end(A)

Filtering Techniques in Planning and Scheduling 42

Resource typesResource types

unary (disjunctive) resource
a single activity can be processed at given time

cumulative (discrete) resource
several activities can be processed in parallel
if capacity is not exceeded.

producible/consumable resource
activity consumes/produces some quantity of
the resource
minimal capacity is requested (consumption)
and maximal capacity cannot be exceeded
(production)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
25

Filtering Techniques in Planning and Scheduling 43

Cumulative resourcesCumulative resources
Each activity uses some capacity of
the resource – cap(A).
Activities can be processed in parallel if
a resource capacity is not exceeded.
Resource capacity may vary in time

modeled via fix capacity over time and fixed activities
consuming the resource until the requested capacity
level is reached

fix capacity

timeus
ed

 c
ap

ac
ity

fixed activities for making the
capacity profile

Filtering Techniques in Planning and Scheduling 44

ReservoirsReservoirs

Producible/consumable resource
Each event describes how much it increases or
decreases the level of the resource.

Cumulative resource can be seen as a special case
of reservoir.

Each activity consists of consumption event at the start
and production event at the end.

A
-1 B

-1 D
+1

ICAPS 2006

26
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 45

Alternative resourcesAlternative resources

How to model alternative resources for a
given activity?
Use a duplicate activity for each resource.

duplicate activity participates in a respective resource
constraint but does not restrict other activities there

„failure“ means removing the resource from the domain of
variable res(A)
deleting the resource from the domain of variable res(A)
means „deleting“ the respective duplicate activity

original activity participates in precedence constraints
(e.g. within a job)
restricted times of duplicate activities are propagated
to the original activity and vice versa.

Filtering Techniques in Planning and Scheduling 46

Alternative resourcesAlternative resources
filtering detailsfiltering details

Let Au be the duplicate activity of A
allocated to resource u∈res(A).

u∈res(A) ⇒ start(A) ≤ start(Au)
u∈res(A) ⇒ end(Au) ≤ end(A)
start(A) ≥ min{start(Au) : u∈res(A)}
end(A) ≤ max{end(Au) : u∈ res(A)}
failure related to Au ⇒ res(A)\{u}

Actually, it is maintaining constructive
disjunction between the alternative activities.

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
27

Resource reasoning
on absolute position in time

Filtering Techniques in Planning and Scheduling 48

Disjunctive constraintDisjunctive constraint

How to describe a relation between two non-
preemptive activities allocated to the same
unary resource?

Such activities A and B cannot run in parallel, so
either A runs completely before B or vice versa
A«B ∨ B«A

end(A) ≤ start(B) ∨ end(B) ≤ start(A)

Propagation:
whenever lst(B)<ect(A) then A cannot finish before B
starts and hence A must be after B (and vice versa)

Baptiste et al. (2001)

ICAPS 2006

28
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 49

Disjunctive constraintDisjunctive constraint
preemptive versionpreemptive version

What if the activities can be preempted?
Then the activities A and B can interleave during
execution (for example, we can start and finish
with A while B is processed in the middle), but
they still cannot cover more time than available.

Four possibilities:
start(A) + p(A) + p(B) ≤ end(A) ∨
start(A) + p(A) + p(B) ≤ end(B) ∨
start(B) + p(A) + p(B) ≤ end(A) ∨
start(B) + p(A) + p(B) ≤ end(B) ∨

Note:
if A cannot be interrupted then the first disjunct can be
removed

Baptiste et al. (2001)

A B A

B A

A B

B A B

Filtering Techniques in Planning and Scheduling 50

Disjunctive constraintDisjunctive constraint
cumulative versioncumulative version

On a cumulative resource, two activities
can overlap provided that they do not
consume more than available capacity.
Extend the previous disjunctions by
cap(A) + cap(B) ≤ cap

For example (cumulative non-preemptive case):
cap(A) + cap(B) ≤ cap ∨
end(A) ≤ start(B) ∨
end(B) ≤ start(A)

Baptiste et al. (2001)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
29

Filtering Techniques in Planning and Scheduling 51

Where is enough capacity for processing the activity?

How the aggregated demand is constructed?

timeus
ed

 c
ap

ac
ity resource capacity

aggregated demand

Aggregated demandsAggregated demandsBaptiste et al. (2001)

timeus
ed

 c
ap

ac
ity resource capacity

aggregated demand

activity must be
processed here
activity must be
processed here

Filtering Techniques in Planning and Scheduling 52

Timetable constraintTimetable constraint

How to ensure that capacity is not exceed
at any time point?*

Timetable for the activity A is a set of
Boolean variables X(A,t) indicating
whether A is processed in time t.

capAcapt
ii AendtAstart

i ≤∀ ∑
<≤)()(

)(

),()()(,

)(),(

tAXAendtAstartit

capAcaptAXt

iii

A
ii

i

⇔<≤∀

≤⋅∀ ∑

* discrete time is expected

Baptiste et al. (2001)

cap=1
in unary resource

cap=1
in unary resource

ICAPS 2006

30
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 53

Timetable constraintTimetable constraint
filtering examplefiltering example

initial situation

some positions forbidden due to capacity

new situation

{0,1} 00 X(A,t)
est(A)

lst(A)

ect(A)

lct(A)

{0,1} 00 X(A,t)
est(A)

lst(A)

ect(A)

lct(A)

0

{0,1} 0 X(A,t)
est(A)

lst(A)

ect(A)

lct(A)

0 1 {0,1}

{0,1}

Filtering Techniques in Planning and Scheduling 54

Timetable constraintTimetable constraint
filtering rulesfiltering rules

How to realize filtering through the constraint
?

Problem:
t serves as an index and as a variable

start(A) ≥ min{t : ub(X(A,t))=1}
end(A) ≤ 1+max{t : ub(X(A,t))=1}
X(A,t)=0 ∧ t<ect(A) ⇒ start(A)>t
X(A,t)=0 ∧ lst(A)≤t ⇒ end(A)≤t
(lst(A)≤t ∧ t<ect(A) ⇒ X(A,t)=1)

),()()(, tAXAendtAstartit iii ⇔<≤∀

Baptiste et al. (2001)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
31

Filtering Techniques in Planning and Scheduling 55

Timetable constraintTimetable constraint
preemptive versionpreemptive version

Capacity restriction is the same as before:

However, time bounds must be adjusted more
carefully:

start(A) ≥ min{t : ub(X(A,t))=1}
end(A) ≤ 1+max{t : ub(X(A,t))=1}
end(A) ≥ 1+min{T : |{t : ub(X(A,t))=1 ∧ t ≤ T}| ≥ p(A)}
start(A) ≤ max{T : |{t : ub(X(A,t))=1 ∧ t ≥ T}| ≥ p(A)}

Note:
This propagation is weaker and more time consuming
than in the non-preemptive case.

Baptiste et al. (2001)

capAcaptAXt
iA

ii ≤⋅∀ ∑)(),(

Filtering Techniques in Planning and Scheduling 56

What happens if activity A is not processed first?What happens if activity A is not processed first?

Not enough time for A, B, and C and thus A must be first!Not enough time for A, B, and C and thus A must be first!

4 16

7 15

6 16

Edge findingEdge finding

A (2)

C (5)

Baptiste & Le Pape (1996)

B (4)

A (2)
4 7

7 15

6 16
B (4)

C (5)

ICAPS 2006

32
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 57

Edge findingEdge finding
rulesrules

The rules:
p(Ω ∪ {A}) > lct(Ω ∪ {A}) - est(Ω) ⇒ A«Ω
p(Ω ∪ {A}) > lct(Ω) - est(Ω ∪ {A}) ⇒ Ω«A
A«Ω ⇒ end(A) ≤ min{ lct(Ω') - p(Ω') | Ω'⊆Ω }
Ω«A ⇒ start(A) ≥ max{ est(Ω') + p(Ω') | Ω'⊆Ω }

In practice:
there are n.2n pairs (A,Ω) to consider (too many!)
instead of Ω use so called task intervals [X,Y]
{C | est(X) ≤ est(C) ∧ lct(C) ≤ lct(Y)}

time complexity O(n3), frequently used incremental algorithm

there are also O(n2) and O(n.log n) algorithms

Baptiste & Le Pape (1996)

Filtering Techniques in Planning and Scheduling 58

Edge findingEdge finding
preemptive versionpreemptive version

p(Ω ∪ {A}) > lct(Ω ∪ {A}) - est(Ω) means that the
activities in Ω ∪ {A} cannot start with an activity different
from A and hence we must start with A

if A is non-preemptive then it must finish before any activity in Ω
if A is preemptive then its execution can be interrupted and hence A
does not necessarily finish before all activities in Ω
still A must start before all activities in Ω, denote as A<Ω

p(Ω ∪ {A}) > lct(Ω ∪ {A}) - est(Ω) ⇒ A<Ω
A<Ω ⇒
start(A) ≤ min{ lct(Ω' ∪ {A}) - p(Ω' ∪ {A}) | Ω'⊆Ω }

Symmetrically:
p(Ω ∪ {A}) > lct(Ω) - est(Ω ∪ {A}) ⇒ Ω<A
Ω<A ⇒ end(A) ≥ max{ est(Ω' ∪ {A}) + p(Ω' ∪ {A}) | Ω'⊆Ω }
Ω<A means that A finishes after all activities in Ω

Baptiste & Le Pape (1996)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
33

Filtering Techniques in Planning and Scheduling 59

Edge findingEdge finding
cumulative versioncumulative version

If activities can overlap, we can use energy of
activities to describe the occupied space

e(A) = cap(A).p(A)

The rules
e(Ω∪{A}) > (lct(Ω∪{A}) - est(Ω)) . cap ⇒ A<Ω
e(Ω∪{A}) > (lct(Ω) - est(Ω∪{A})) . cap ⇒ Ω<A

Nuijten (1994)

cap

est(Ω∪{A}) lct(Ω)

A must finish after
all activities in Ω

Filtering Techniques in Planning and Scheduling 60

Edge findingEdge finding
cumulative version filteringcumulative version filtering

How to reduce time window for A if Ω<A?

let rest(Ω,A) = e(Ω) – (cap-cap(A)).(lct(Ω)-est(Ω))
if rest(Ω,A)>0 then

Ω<A ⇒ start(A) ≥ est(Ω) + ⎡rest(Ω,A)/cap(A)⎤
A<Ω ⇒ end(A) ≥ lct(Ω) - ⎡rest(Ω,A)/cap(A)⎤

Nuijten (1994)

cap

est(Ω) lct(Ω)

cap(A)

This area does not influence
position of activity A, because
there is enough capacity to run
A at any time.

This area does not influence
position of activity A, because
there is enough capacity to run
A at any time.e(Ω)

This area restricts the
position of A - rest(Ω,A).
This area restricts the
position of A - rest(Ω,A).

ICAPS 2006

34
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 61

NotNot--first/notfirst/not--lastlast
What happens if activity A is processed first?

Not enough time for B and C and thus A cannot be first!

4 16

7 15

6 16
A (2)

C (4)

B (5)

Torres & Lopez (2000)

4 16

7 15

8 16
A (2)

C (4)

B (5)

Filtering Techniques in Planning and Scheduling 62

NotNot--first/notfirst/not--last ruleslast rules

Not-first rules:
p(Ω∪{A}) > lct(Ω) - est(A) ⇒ ¬ A«Ω
¬ A«Ω ⇒ start(A) ≥ min{ ect(B) | B∈Ω }

Not-last (symmetrical) rules:
p(Ω∪{A}) > lct(A) - est(Ω) ⇒ ¬ Ω«A
¬ Ω«A ⇒ end(A) ≤ max{ lst(B) | B∈Ω }

In practice:
can be implemented with time complexity
O(n2) and space complexity O(n)

Torres & Lopez (2000)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
35

Filtering Techniques in Planning and Scheduling 63

NotNot--firstfirst
cumulative versioncumulative version

assume that est(Ω) ≤ est(A)< min{ ect(B) | B∈Ω }
if A starts in est(A) then no activity in Ω can finish before A
starts and hence the area “before” A is wasted

e(Ω) + cap(A).(min{ect(A),ect(Ω)}-est(Ω)) > cap.(lct(Ω)-est(Ω))
⇒ start(A) ≥ min{ ect(B) | B∈Ω }

cap

est(Ω) lct(Ω)

est(A)

min{ect(B)|B∈Ω}

This area cannot be
occupied by any activity.
This area cannot be
occupied by any activity.

cap(A)

e(Ω)

ect(A)

Nuijten (1994)

Filtering Techniques in Planning and Scheduling 64

Energetic reasoningEnergetic reasoning

How much time does A spent in interval (t1,t2)?

(t2-t1)

max(0,p(A)-max(0,t1-est(A))) = p+(A,t1)

max(0,p(A)-max(0,lct(A)-t2)) = p-(A,t2)

How much energy does A consume in interval (t1,t2)?
W(A,t1,t2) = cap(A) . min{t2-t1, p+(A,t1), p-(A,t2)}

How much energy do all activities consume in
interval (t1,t2)?

W(t1,t2) = ΣA W(A,t1,t2)

t1 t2

A

A

A

Baptiste et al. (2001)

ICAPS 2006

36
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 65

Energetic reasoningEnergetic reasoning
overload checkingoverload checking

If there exists a feasible schedule then
W(t1,t2) ≤ cap.(t2-t1) for any time interval (t1, t2).

It means that there must be enough energy to run all
activities in any time interval.

W(t1,t2) > cap.(t2-t1) ⇒ failure

Which intervals should be explored?
Explore all non-empty time intervals (est(A), lct(B)).

This can be done in time O(n2).

Baptiste et al. (2001)

Filtering Techniques in Planning and Scheduling 66

Energetic reasoningEnergetic reasoning
adjusting time boundsadjusting time bounds

assume that activity A finishes before t2
A consumes cap(A) . p+(A,t1)
all activities in interval (t1,t2) consume
W(t1,t2) - W(A,t1,t2) + cap(A) . p+(A,t1) = LW(A,t1,t2)

LW(A,t1,t2) > cap.(t2-t1) ⇒
activity A cannot finish before t2
overflow energy must be used after t2
end(A) ≥ t2 + (LW(A,t1,t2) - cap.(t2-t1))/cap(A)

Baptiste et al. (2001)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
37

Filtering Techniques in Planning and Scheduling 67

Energetic reasoningEnergetic reasoning
unary versionunary version

assume that A is ordered before B
interval (est(A), lct(B)) consumes energy
p(A)+p(B)+ ΣC∉{A,B}W(C, est(A), lct(B)))

lct(B) – est(A) < p(A)+p(B)+ΣC∉{A,B}W(C, est(A), lct(B))
⇒ ¬ A«B

non-preemptive version
¬ A«B means B«A

end(B) ≤ lct(A) – p(A)

est(B)+p(B) ≤ start(A)

preemptive model
¬ A«B means B<A

start(B) ≤ lct(A) – p(A) – p(B)
est(B) + p(A) + p(B) ≤ end(A)

Laborie (2003)

ICAPS 2006

38
Tutorial on Filtering Techniques in Planning and Scheduling

Resource reasoning
on relative position in time

Filtering Techniques in Planning and Scheduling 69

Relative orderingRelative ordering

When time is relative (ordering of activities)
then edge-finding and aggregated demand deduce nothing

We can still use information about ordering of events
and resource production/consumption!

Example:
Reservoir: events consume and supply items

A
-1 B

-1 C
-1

D
+1

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
39

Filtering Techniques in Planning and Scheduling 70

Resource profilesResource profiles

Event A „produces“ prod(A) quantity:
positive number means production
negative number means consumption

optimistic resource profile (orp)
maximal possible level of the resource when A happens
events known to be before A are assumed together with the
production events that can be before A

orp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)>0 prod(B)

pessimistic resource profile (prp)
minimal possible level of the resource when A happens
events known to be before A are assumed together with the
consumption events that can be before A

prp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)<0 prod(B)

*B?A means that order of A and B is unknown yet

Cesta & Stella (1997)

Filtering Techniques in Planning and Scheduling 71

orporp filteringfiltering

orp(A) < MinLevel ⇒ fail
“despite the fact that all production is planned
before A, the minimal required level in the
resource is not reached”

orp(A) – prod(B) – ∑B«C ∧ C?A ∧ prod(C)>0 prod(C) < MinLevel
⇒ B«A

for any B such that B?A and prod(B)>0
“if production in B is planned after A and the
minimal required level in the resource is not
reached then B must be before A”

Cesta & Stella (1997)

ICAPS 2006

40
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 72

prpprp filteringfiltering

prp(A) > MaxLevel ⇒ fail
“despite the fact that all consumption is planned
before A, the maximal required level (resource
capacity) in the resource is exceeded”

prp(A) – prod(B) – ∑B«C ∧ C?A ∧ prod(C)<0 prod(C) > MaxLevel
⇒ B«A
for any B such that B?A and prod(B)<0

“if consumption in B is planned after A and the
maximal required level in the resource is
exceeded then B must be before A”

Cesta & Stella (1997)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
41

Combined reasoning
on relative and absolute positions

Filtering Techniques in Planning and Scheduling 74

Detectable precedenceDetectable precedence
from time windows to orderingfrom time windows to ordering

What happens if activity A is processed before B?What happens if activity A is processed before B?

Restricted time windows can be used to deduce new
precedence relations.
est(A)+p(A)+p(B)>lct(B) ⇒ B«A

7

156

16

B (4)

A (5)

Vilím (2002)

ICAPS 2006

42
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 75

Energy precedenceEnergy precedence
from ordering to time windowsfrom ordering to time windows

use energy of activities processed before A to deduce
new est(A)

start(A) ≥ max{ est(Ω’) + ⎡e(Ω’)/cap⎤ | Ω'⊆{C : C«A} }

for unary resources
start(A) ≥ max{ est(Ω’) + p(Ω’) | Ω'⊆{C : C«A} }

it is enough to explore Ω(X,A) = {Y | Y « A ∧ est(X) ≤ est(Y)}

start(A) ≥ max{ est(Ω(X,A)) + p(Ω(X,A)) | X « A }

dur ← 0
end ← est(A)
for each Y∈{ X | X « A } in the non-increasing order of est(Y) do

dur ← dur + p(Y)
end ← max(end, est(Y) + dur)

end for
est(A) ← end

Laborie (2003)

Filtering Techniques in Planning and Scheduling 76

Balance constraintBalance constraint

generalization and refinement of orp/prp filtering
recall:

orp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)>0 prod(B)

maximal possible level of the resource when A happens

new filtering of time windows
If InitLevel + ∑B«A prod(B) < MinLevel then at least one of the
events in {B : B?A ∧ prod(B)>0} must happen strictly before A.

let ∆orp(A) = MinLevel – InitLevel + ∑B«A prod(B)
order events B?A ∧ prod(B)>0 in non-decreasing tmin(B): B1,…,Bn

let k be the index such that
∑i=1,…,k-1 prod(Bi) < ∆orp(A) ≤ ∑ i=k,…,n prod(Bi)
tmin(Bk) < time(A)
(if time(A) ≤ tmin(Bk) then MinLevel will not be reached right before A)

Laborie (2003)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
43

Reasoning
on objective functions

Filtering Techniques in Planning and Scheduling 78

Objectives in CSPObjectives in CSP

Recall that the objective (criteria) function is
encoded as an equality constraint:

v = obj(Xs)
Example: makespan = max{end(Ai)}

it is possible to deduce better bounds of v using
current domains of Xs

makespanmin = max{ect(Ai)}

it is possible to restrict domains of Xs by using the
current bounds of v

end(Ai) ≤ makespanmax

propagation of more complex objectives is typically
based on solving a relaxed problem

ICAPS 2006

44
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 79

Minimizing late activitiesMinimizing late activities
objective lower boundobjective lower bound

assume minimizing the number of late activities on a single machine
each activity A has a due date δ(A), if A finishes after δ(A) then A is late

preemptive relaxation + continuous relaxation
feasible preemptive schedule if and only if
∀t1,t2>t1 Σ{p(A) : t1 ≤ est(A) ∧ lct(A) ≤ t2} ≤ t2-t1
use est(X) for t1 and lct(X) or δ(X) for t2

introduce a decision variable x(A) (1 when the activity is on time
and 0 otherwise)

solve the following LP problem to obtain the lower bound of the
number of late activities

min ΣA(1-x(A)) under the constraints

ΣA∈S(t1,t2) p(A) +ΣA∈P(t1,t2) x(A).p(A) ≤ t2-t1

est(A)+p(A)>δ(A) ⇒ x(A)=0
x(A)∈[0,1]

S(t1,t2) = {A : t1≤est(A) ∧ lct(A)≤ t2}

P(t1,t2) = {A : t1≤est(A) ∧ t2<lct(A) ∧ δ(A)≤t2}

t1 ∈ {est(A)}

t2 ∈ {lct(A)} ∪ {δ(A)} (t2 > t1)

S(t1,t2) = {A : t1≤est(A) ∧ lct(A)≤ t2}

P(t1,t2) = {A : t1≤est(A) ∧ t2<lct(A) ∧ δ(A)≤t2}

t1 ∈ {est(A)}

t2 ∈ {lct(A)} ∪ {δ(A)} (t2 > t1)

Baptiste et al. (2001)

Filtering Techniques in Planning and Scheduling 80

Minimizing late activitiesMinimizing late activities
late/onlate/on--time activity detectiontime activity detection

for each possibly late activity B solve the following LP problem
to obtain the lower bound of the number of late activities

min ΣA(1-x(A)) under the constraints

ΣA∈S(t1,t2)p(A) +ΣA∈P(t1,t2) x(A).p(A) ≤ t2-t1
est(A)+p(A)>δ(A) ⇒ x(A)=0
x(B) = 0
x(A)∈[0,1]

if the obtained lower bound LB0 is greater than the existing upper
bound for the objective function then the activity must be on time

LB0 > up(obj) ⇒ end(A) ≤ δ(A)

similarly for testing whether the activity must be late (try x(B) = 1)
Note:

min(LB0, LB1) can be used to obtain even better lower bound for the
objective function
similar to singleton consistency (constructive disjunction x(B)=0 ∨ x(B)=1)

Baptiste et al. (2001)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
45

Filtering Techniques in Planning and Scheduling 81

Minimizing setupsMinimizing setups
assume minimizing the setup times/costs between
activities with alternative unary resources.
path model

vertices describe activities (there are 2.m additional vertices Si
and Ei describing the first/last time point in each resource i)
arc connect vertices A and B if it is possible to allocate A right
before B on some common resource

arc cost is the minimal setup time/cost between the activities if they
are allocated to the same resource

the path from Si to Ei corresponds to a schedule of resource i
find m disjoint paths between Si to Ei visiting all vertices and
minimizing the overall cost of included arcs

Focacci et al. (2000)

A1

A2

A7A6

A5
A3

A4

S1

S2

E1

E2

Filtering Techniques in Planning and Scheduling 82

Minimizing setupsMinimizing setups
filtering rulesfiltering rules

relaxation of the path model using an assignment problem
find a set of disjoint sub-tours such that all vertices are visited and
the overall cost of included arcs is minimized

the optimal solution of the assignment problem defines a lower
bound LB for the overall setup cost/time
it is possible to use the reduced cost matrix for further pruning

c(A,B) estimates the additional cost added to LB if arc (A,B) is used
LB + c(A,B) > up(obj) ⇒ remove arc (A,B) from the path model

Focacci et al. (2000)

A1

A2

A7A6

A5
A3

A4

S1

S2

E1

E2

ICAPS 2006

46
Tutorial on Filtering Techniques in Planning and Scheduling

Conclusions

Filtering Techniques in Planning and Scheduling 84

Constraint solversConstraint solvers

It is not necessary to program all the presented
techniques from scratch!
Use existing constraint solvers (packages)!

provide implementation of data structures for
modelling variables‘ domains and constraints
provide a basic consistency framework (AC-8)
provide filtering algorithms for many constraints
(including global constraints)
provide basic search strategies
usually extendible (new filtering algorithms, new
search strategies)

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
47

Filtering Techniques in Planning and Scheduling 85

Design of filtersDesign of filters
Users can often define code of the FILTER procedures for new constraints.
How to define new filters and integrate them into solvers?

1) decide about the event to evoke the filtering algorithm
when the domain of involved variable is changed

whenever the domain changes (arc-consistency)
when minimum/maximum bound is changed (arc-B-consistency)
when the variable becomes singleton (constraint checking)

different events (suspensions) for different variables
Example:

filtering for A<B is evoked after change of min(A) or max(B)

2) design the filtering algorithm for the constraint
the result of filtering is the change of variables’ domains
more filtering procedures for a single constraint are allowed

Example: A<B
min(A): B in min(A)+1..sup max(B): A in inf..max(B)-1

Schulte (2002)

Filtering Techniques in Planning and Scheduling 86

Design of filtersDesign of filters
integration into solverintegration into solver

It is necessary to specify when the filtering algorithm is evoked and what
global information is available to it.

Some algorithms are incremental – describe how to react to a change in
domain of a particular variable.

evoke the algorithm after the particular change happens

Many algorithms for global constraints are proposed as non-incremental
– filtering is run from scratch independently of the change.

evoke the algorithm after any change of constrained variables

Example (installation of filtering rule(s) for A<B)
arc-B-consistency is identical to full arc-consistency!
filtering can be realised incrementally

less_then(A,B):-
fd_global(a2b(A,B),no_state,[min(A)]),
fd_global(b2a(A,B),no_state,[max(B)]).

name of the filter
with arguments

name of the filter
with arguments

initial state (local
data) of the filter
initial state (local
data) of the filter

events when the
filter is called

events when the
filter is called

ICAPS 2006

48
Tutorial on Filtering Techniques in Planning and Scheduling

Filtering Techniques in Planning and Scheduling 87

Design of filtersDesign of filters
filtering algorithmfiltering algorithm

The filtering algorithm has access to current domains and it proposes
how to restrict the domains (list of changes to domains).

some solvers provide information about the change that invoked the filter

Example (definition of filtering rule(s) for A<B)

dispatch_global(a2b(A,B),S,S,Actions):-
fd_min(A,MinA), fd_max(A,MaxA),
fd_min(B,MinB),
(MaxA<MinB ->

Actions = [exit]
; LowerBoundB is MinA+1,

Actions = [B in LowerBoundB..sup]).

dispatch_global(b2a(A,B),S,S,Actions):-
fd_max(A,MaxA),
fd_min(B,MinB), fd_max(B,MaxB),
(MaxA<MinB ->

Actions = [exit]
; UpperBoundA is MaxB-1,

Actions = [A in inf..UpperBoundA]).

identification
of the filter

identification
of the filter

states before/after
running the filtering
states before/after
running the filtering

list of proposed
changes to domains

list of proposed
changes to domains

filtering finished, don’t
call the filter anymore

filtering finished, don’t
call the filter anymore

access to current
domains of variables

access to current
domains of variables

Filtering Techniques in Planning and Scheduling 88

SummarySummary

Mainstream constraint satisfaction framework:

local consistency connecting filtering algorithms
for individual constraints

filters encapsulate dedicated reasoning techniques
filters are not “run once” codes, but they are called
repeatedly
filters communicate via domains of variables

search resolving remaining disjunctions
filters are used to prune the search space
filters may provide guideline to search

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
49

ICAPS 2006

50
Tutorial on Filtering Techniques in Planning and Scheduling

COMMENTED BIBLIOGRAPHY

Allen, J.F. (1983). Maintaining knowledge about temporal intervals. Communications of the
ACM, 21(11): 832-843.
Introduction of interval algebra and description of path-consistency filtering algorithm for handling it.

Baptiste, P. and Le Pape, C. (1996). Edge-finding constraint propagation algorithms for
disjunctive and cumulative scheduling. Proceedings of the Fifteenth Workshop of the U.K.
Planning Special Interest Group (PLANSIG).
Description of edge-finding rules for non-preemptive disjunctive scheduling, preemptive and mixed
disjunctive scheduling, and non-preemptive cumulative scheduling, and a quadratic algorithm for not-
first/not-last rules.

Baptiste, P.; Le Pape, C.; Nuijten, W. (2001). Constraint-based Scheduling: Applying Constraints
to Scheduling Problems. Kluwer Academic Publishers, Dordrecht.
A comprehensive text on using constraint satisfaction techniques in scheduling with detailed description of
many filtering algorithms for resource constraints.

Barták, R. (2005). Constraint Satisfaction for Planning and Scheduling. In Ionannis Vlahavas,
Dimitris Vrakas (eds.): Intelligent Techniques for Planning, Idea Group, 2005, pp. 320-353
An introductory and survey text about constraint satisfaction techniques for planning and scheduling.

Barták, R. and Čepek, O. (2005). Incremental Propagation Rules for a Precedence Graph with
Optional Activities and Time Windows. In Proceedings of The 2nd Multidisciplinary
International Conference on Scheduling : Theory and Applications (MISTA), Volume II,
Stern School of Business, New York, 552-560.
Description of incremental algorithms for maintaining a transitive closure of the precedence graph with
optional activities and realising the energy precedence constraint on unary resources.

Brucker, P. (2001). Scheduling Algorithms. Springer Verlag.
A comprehensive book on traditional scheduling algorithms including detailed classification of many
scheduling problems.

Carlier, J. and Pinson, E. (1994). Adjustment of heads and tails for the job-shop problem.
European Journal of Operational Research 78(2), 146-161.
Description of first O(n.log n) algorithm for edge-finding, but this algorithm requires complex data structures.

Caseau, Y. and Laburthe, F. (1995). Disjunctive scheduling with task intervals. LIENS Technical
Report 95-25, Laboratoire d'Informatique de l'Ecole Normale Superieure.
Description of incremental O(n3) algorithm for edge-finding using task intervals.

Cesta, A. and Stella, C. (1997). A Time and Resource Problem for Planning Architectures.
Recent Advances in AI Planning (ECP’97), LNAI 1348, Springer Verlag, 117-129.
Description of resource profiles and orp/prp filtering rules.

Dechter, R.; Meiri, I.; Pearl, J. (1991). Temporal Constraint Networks. Artificial Intelligence 49:
61-95.
Introduction of Temporal Constraint Networks and Simple Temporal Problems.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.
A comprehensive book on constraint satisfaction techniques, including a detailed description of temporal
constraint networks.

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
51

Focacci, F.; Laborie, P.; Nuijten, W. (2000). Solving scheduling problems with setup times and
alternative resources. In Proceedings of the Fifth International Conference on Artificial
Intelligence Planning and Scheduling (AIPS). AAAI Press, 92-101.
Description of path optimization constraint for minimizing setup times/costs in problems with alternative
resources.

Ghallab, M.; Nau, D.; Traverso, P. (2004). Automated Planning: Theory and Practice. Morgan
Kaufmann.
A comprehensive book on planning, including a description of constraint satisfaction techniques for planning.

Laborie, P. (2003). Algorithms for propagating resource constraints in AI planning and
scheduling: Existing approaches and new results. Artificial Intelligence 143, 151-188.
Introduction of filtering rules for energy precedence and balance constraints (algorithms are not described).

Lhomme, O. (1993). Consistency techniques for numeric CSPs. In Proc. 13th International Joint
Conference on Artificial Intelligence.
Description of arc-B-consistency algorithm.

Mackworth, A.K. (1977). Consistency in Networks of Relations. Artificial Intelligence 8, 99-118.
Description of the basic arc and path consistency algorithms – AC-1, AC-2, AC-3, PC-1, PC-2.

Marriott, K. and Stuckey, P.J. (1998). Programming with Constraints: An Introduction. MIT
Press.
A practically oriented book on using constraint satisfaction technology for problem solving.

Martin, P. and Shmoys, D.B. (1996). A new approach to computing optimal schedules for the
job-shop scheduling problem. Proceedings of the 5th International Conference on Integer
Programming and Combinatorial Optimization. LNCS 1084, Springer Verlag, 389-403.
Description of alternative formulation of edge-finding rules.

Montanari, U. (1974). Networks of constraints: fundamental properties and applications to
picture processing. Information Sciences 7, 95-132.
Introduction and formalization of constraint networks, defining path-consistency and algorithm for PC.

Nuijten, W.P.M. (1994). Time and Resource Constrained Scheduling: A Constraint Satisfaction
Approach. PhD thesis, Eindhoven University of Technology.
Description of several filtering algorithms for scheduling problems including the cumulative version of edge-
finding and not-first/not-last rules.

Prosser, P.; Stergiou, K.; Walsh, T. (2000). Singleton Consistencies. Proceedings Principles and
Practice of Constraint Programming (CP2000), 353-368.
Description and a theoretical study of singleton consistency techniques.

Phan-Huy, T. (2000). Constraint Propagation in Flexible Manufacturing. LNEMS 492, Springer
Verlag.
PhD thesis with the description of constraint propagation algorithms for disjunctive scheduling problems.

Régin, J.-Ch. (1994). A filtering algorithm for constraints of difference in CSPs. Proceedings of
12th National Conference on Artificial Intelligence, AAAI Press, 362-367.
Description of the filtering algorithm behind the all-different constraint – based on matching over bipartite
graphs.

Schulte, Ch. (2002). Programming Constraint Services. LNAI 2302, Springer Verlag.
A book describing insides of constraint solvers.

ICAPS 2006

52
Tutorial on Filtering Techniques in Planning and Scheduling

Torres, P. and Lopez, P. (2000). On Not-First/Not-Last conditions in disjunctive scheduling.
European Journal of Operational Research 127, 332-343.
Description of O(n2) filtering algorithms for not-first/not-last rules.

Tsang, E. (1995). Foundations of Constraint Satisfaction. Academic Press, London.
A comprehensive book on foundational constraint satisfaction techniques with description of many consistency
algorithms and their theoretical study.

Vilain, M. and Kautz, H. (1986). Constraint propagation algorithms for temporal reasoning. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), 377-382.
Introduction of point algebra and proof that consistency-checking problem of the IA problem is an NP-
complete problem, while PA is a tractable problem.

Vilím, P. and Barták, R. (2002). Filtering Algorithms for Batch Processing with Sequence
Dependent Setup Times. Proceedings of the 6th International Conference on Artificial
Intelligence Planning and Scheduling (AIPS). AAAI Press, 312-320.
Description of edge-finding and not-first/not-last algorithms for batch processing with sequence dependent
setup times.

Vilím, P. (2002). Batch processing with sequence dependent setup times: New results. In
Proceedings of the 4th Workshop on Constraint Programming for Decision and Control
(CPDC), Gliwice, 53-58.
Description of edge-finding and not-first/not-last algorithms for problems with sequence dependent setup
times, introduction of detectable precedences.

Vilím, P. (2004). O(n log n) Filtering Algorithms for Unary Resource Constraint. Proceedings of
CPAIOR 2004. LNCS 3011, Springer Verlag, 335-347.
Description of O(n.log n) algorithms for not-first/not-last rules and detectable precedences.

Vilím, P.; Barták, R.; Čepek, P. (2005). Extension of O(n log n) filtering algorithms for the unary
resource constraint to optional activities. Constraints, 10(4): 403-425.
Description of O(n.log n) versions of filtering algorithms for edge finding, not-first/not-last, and detectable
precedences and their extension to optional activities.

Wallace, M. (1994). Applying Constraints for Scheduling. In Mayoh B. and Penjaak J. (eds.),
Constraint Programming. NATO ASI Series, Springer Verlag.
A survey text on using constraint satisfaction technology in scheduling.

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
53

	Página 41
	Página 42
	Página 43
	Página 44

