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Preface

Constraint satisfaction technology plays an important role in solving real-life scheduling
problems. As time and resources become more important in nowadays planning, the
role of constraint satisfaction is increasing there too. One of the key aspects of constraint
satisfaction is using constraints actively to remove infeasible values from domains of
variables and consequently to prune the search space. This approach is called domain
filtering. The goal of the tutorial is to explain in detail domain filtering techniques used
in the context of constraint-based planning and scheduling.

The tutorial is targeted to researchers and practitioners that would like to use con-
straint satisfaction technology efficiently in solving planning and scheduling problems.
Basics of constraint satisfaction and in particular constraint propagation will be ex-
plained so no prior knowledge of constraint satisfaction is required. The focus of the
tutorial is on existing filtering algorithms for constraints used in modeling time and
resource restrictions. The filtering techniques for temporal and resource constraints,
namely point and interval algebras, temporal networks, edge-finding, not-first/not-last,
and energetic reasoning, will be explained. The details on filtering combing qualitative
and quantitative approaches as well as using the objective function will be given. Finally,
the implementation of new filtering algorithms will also be explained. The audience will
take away a basic understanding of how constraint propagation works with more details
on filtering techniques for planning and scheduling constraints.

Instructor

• Roman Barták
Charles University in Prague, Czech Republic





Roman Barták
Charles University, Prague (CZ)

roman.bartak@mff.cuni.cz
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TTutorialutorial outlineoutline
Introduction

What is domain filtering?
What is the context in which domain filtering operates?

Domain filtering for P&S
Temporal (only) reasoning

qualitative approach
quantitative approach

Resource reasoning
absolute positioning in time
relative positioning in time
combining absolute and relative positioning

Reasoning on objective functions
late activities, setup times

Conclusions
design of own filtering algorithms
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Domain filtering
within constraint satisfaction
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Logic-based puzzle, whose
goal is to enter digits 1-9 in
cells of 9×9 table in such a way,
that no digit appears twice
or more in every row, column,
and 3×3 sub-grid.

A bit of history
1979: first published in New York

under the name „Number Place“
1986: became popular in Japan

Sudoku – from Japanes "Sudji wa dokushin ni kagiru"
"the numbers must be single" or "the numbers must occur once"

2005: became popular in the western world

SudokuSudoku??

ICAPS 2006

6
Tutorial on Filtering Techniques in Planning and Scheduling



Filtering Techniques in Planning and Scheduling 5

How to find out which digit to fill in?
Use information that each 
digit appears exactly once
in each row and column. 

What if it is not enough?
If rows and columns do not
provide enough information
then annotate each cell with
possible digits that can be
filled there.

Solving Solving SudokuSudoku

Filtering Techniques in Planning and Scheduling 6

SudokuSudoku in generalin general
We can see every
cell as a variable
with possible values
from domain {1,…,9}.

There is a binary inequality constraint
between all pairs of variables in every row, 
column, and sub-grid.

Values that do not satisfy any constraint 
are pruned from the domain.

Such formulation of the problem is called
a constraint satisfaction problem.
Pruning of values – domain filtering – is repeated 
until there is no value to be pruned.
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Constraint technologyConstraint technology

based on declarative problem description via:
variables with domains (sets of possible values)
e.g. start of activity with time windows
constraints restricting combinations of variables
e.g. end(A) < start(B)

A feasible solution to a constraint satisfaction 
problem is a complete assignment of variables 
satisfying all the constraints.

An optimal solution to a CSP is a feasible solution 
minimizing/maximizing a given objective function.

Filtering Techniques in Planning and Scheduling 8

Domain filteringDomain filtering

Example:
Da={1,2}, Db={1,2,3} 
a<b
Value 1 can be safely removed from Db.

Constraints are used actively to remove 
inconsistencies from the problem.

inconsistency = value that cannot be in any 
solution

This is realized via a procedure FILTER that 
is attached to each constraint.

ICAPS 2006
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ArcArc--consistencyconsistency

We say that a constraint is arc consistent (AC) if 
for any value of the variable in the constraint there 
exists a value for the other variable(s) in such a 
way that the constraint is satisfied (we say that the 
value is supported).
Unsupported values are filtered out of the domain.

A CSP is arc consistent if all the constraints are 
arc consistent. 
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Making problems ACMaking problems AC

How to establish arc consistency in CSP?
Every constraint must be filtered!

Example: X in [1,..,6], Y in [1,..,6], Z in [1,..,6], X<Y, Z<X-2

Filtering every constraint just once is not enough!

Filtering must be repeated until any domain is 
changed (AC-1).

X in [1,..,6]
Y in [1,..,6] 
Z in [1,..,6]

X in [1,..,6]
Y in [1,..,6] 
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6] 
Z in [1,..,6]

X in [1,..,5]
Y in [2,..,6] 
Z in [1,..,6]

X<Y
X in [4,5]
Y in [2,..,6] 
Z in [1,2]

X in [4,5]
Y in [2,..,6] 
Z in [1,2]

Z<X-2
X in [4,5]
Y in [5,6] 
Z in [1,2]

X in [4,5]
Y in [5,6] 
Z in [1,2]

X<Y

ICAPS 2006
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Algorithm ACAlgorithm AC--33

Uses a queue of constraints that should be filtered.
When a domain of variable is changed, only the constraints 
over this variable are added back to the queue for filtering.

procedure AC-3(V,D,C)
Q ← C
while non-empty Q do

select c from Q
D’ ← c.FILTER(D)
if any domain in D’ is empty then return (fail,D’)
Q ← Q ∪ {c’∈C | ∃x∈var(c’) D’x≠Dx} – {c}
D ← D’

end while
return (true,D)

end AC-3

Mackworth (1977) 
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AC in practiceAC in practice
Uses a queue of variables with changed domains.

Users may specify for each constraint when the filtering should be 
done depending on the domain change.

The algorithm is sometimes called AC-8.

procedure AC-8(V,D,C)
Q ← V
while non-empty Q do

select v from Q
for c∈C such that v is constrained by c do

D’ ← c.FILTER(D)
if any domain in D’ is empty then return (fail,D’)
Q ← Q ∪ {u∈V | D’u≠Du}
D ← D’

end for
end while
return (true,D)

end AC-8

ICAPS 2006
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ArcArc--BB--consistencyconsistency

Sometimes, making the problem arc-consistent is costly 
(for example, when domains of variables are large).
In such a case, a weaker form of arc-consistency might be 
useful.

We say that a constraint is arc-b-consistent (bound 
consistent) if for any bound values of the variable in the 
constraint there exists a value for the other variable(s) in 
such a way that the constraint is satisfied.

a bound value is either a minimum or a maximum value in domain
domain of the variable can be represented as an interval
for some constraints (like A<B) it is equivalent to AC

Lhomme (1993)
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Pitfalls of ACPitfalls of AC

Disjunctive constraints
A,B in 1..10, A=1 ∨ A=2
no filtering (whenever A≠1 then deduce A=2 and vice 
versa)

Detection of inconsistency
A,B,C in 1..10000000, A<B, B<C, C<A
long filtering (4 seconds)

Weak filtering
A,B in 1..2, C in 1..3, A\=B, A\=C, B\=C
weak filtering (it is arc-consistent)

ICAPS 2006
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a set of binary inequality constraints among all variables
X1 ≠ X2, X1 ≠ X3, …, Xk-1 ≠ Xk

all_different({X1,…,Xk}) = {( d1,…,dk) | ∀i  di∈Di & ∀i≠j di≠dj}

better pruning based on matching theory over bipartite graphs

Initialization:
1. compute maximum matching
2. remove all edges that do not belong to 

any maximum matching

Propagation of deletions (X1≠a):
1. remove discharged edges
2. compute new maximum matching
3. remove all edges that do not belong to 

any maximum matching

Inside allInside all--differentdifferent

a

b

c

X1

X2

X3

××

X1

X2

X3

a

b

c

×

×

Régin (1994)
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Meta consistencyMeta consistency

Can we strengthen any filtering technique?

YES! Let us assign a value and make the rest of 
the problem consistent.

singleton consistency
try each value in the domain

shaving
try only the bound values

constructive disjunction
propagate each constraint in disjunction separately
make a union of obtained restricted domains

Prosser et al. (2000) 

ICAPS 2006
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Path consistencyPath consistency
Arc consistency does not detect all inconsistencies!

Let us look at several constraints together!

The path (V0,V1,…, Vm) is path consistent iff for every 
pair of values x∈D0 a y∈Dm satisfying all the binary 
constraints on V0,Vm there exists an assignment of variables 
V1,…,Vm-1 such that all the binary constraints between the 
neighboring variables  Vi,Vi+1 are satisfied.
CSP is path consistent iff every path is consistent.

Some notes:
only the constraints between the neighboring 
variables must be satisfied
it is enough to explore paths of length 2 (Montanary, 
1974)

X

Y
Z

X≠ZX≠Y

Y≠Z

{1,2}

{1,2} {1,2}

Mackworth (1977)
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Path revisionPath revision
Constraints represented extensionally via matrixes.
Path consistency is realized via matrix operations

Example:
A,B,C in {1,2,3}, B>1
A<C, A=B, B>C-2 A<C

B>C-2
A=B

B>1

C

A

& * *
011
001
000

100
010
001

000
010
001

110
111
111

=
000
001
000
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Search / LabelingSearch / Labeling
Filtering techniques are (usually) incomplete.

We need a search algorithm to resolve the rest!

LabelingLabeling
depth-first search

assign a value to the variable
propagate = make the problem
locally consistent
backtrack upon failure

X in 1..5 ≈ X=1 ∨ X=2 ∨ X=3 ∨ X=4 ∨ X=5 (enumeration)

In general, search algorithm resolves remaining disjunctions!
X=1 ∨ X≠1 (step labeling)
X<3 ∨ X≥3 (domain splitting)
X<Y ∨ X≥Y (variable ordering)

Filtering Techniques in Planning and Scheduling 20

Labeling skeletonLabeling skeleton

Search is combined with filtering 
techniques that prune the search space.
Look-ahead technique (MAC)
procedure labeling(V,D,C)

if all variables from V are assigned then return V
select not-yet assigned variable x from V
for each value v from Dx do

(TestOK,D’) ← consistent(V,D,C∪{x=v})
if TestOK=true then R ← labeling(V,D’,C)
if R ≠ fail then return R

end for
return fail

end labeling

procedure labeling(V,D,C)
if all variables from V are assigned then return V
select not-yet assigned variable x from V
for each value v from Dx do

(TestOK,D’) ← consistent(V,D,C∪{x=v})
if TestOK=true then R ← labeling(V,D’,C)
if R ≠ fail then return R

end for
return fail

end labeling

ICAPS 2006
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Branching schemesBranching schemes

Which variable should be assigned first?
fail-first principle

prefer the variable whose instantiation will lead to a failure 
with the highest probability
variables with the smallest domain first
the most constrained variables first

defines the shape of the search tree

Which value should be tried first?
succeed-first principle

prefer the values that might belong to the solution with the 
highest probability
values with more supports in other variables
usually problem dependent

defines the order of branches to be explored 

Filtering Techniques in Planning and Scheduling 22

CP is not (only) search!CP is not (only) search!

Backtracking is not very good
19 attempts

MAC combining search and arc 
consistency

2 attempts

4 queens problem

ICAPS 2006

Tutorial on Filtering Techniques in Planning and Scheduling
15



Filtering Techniques in Planning and Scheduling 23

Constraint optimizationConstraint optimization

Constraint optimization problem (COP)
= CSP + objective function
Objective function is encoded in a constraint 
v=obj(Xs) and the value of v is optimized

Branch and bound technique
find a complete assignment (defines a new 

bound)
store the assignment
update bound (post the constraint that restricts 

the objective function to be better than a 
given bound which causes failure)

continue in search (until total failure)
restore the best assignment

Filtering Techniques in Planning and Scheduling 24

Final notesFinal notes

Combination of depth-first search with arc 
consistency is the mainstream constraint 
satisfaction technology used by current 
constraint solvers.
However, there exist other constraint satisfaction 
techniques!

stronger consistency notions
path consistency, k-consistency, …

local search techniques
min-conflicts, tabu search, …

constraint inference techniques
constraints are combined until a solution is obtained

ICAPS 2006
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Temporal reasoning

Filtering Techniques in Planning and Scheduling 26

FoundationsFoundations

What is time?
The mathematical structure of time is generally a set with 
transitive and asymmetric ordering operation. 
The set can be continuous (reals) or discrete (integers).

The planning/scheduling systems need to maintain 
consistent information about time relations.

We can see time relations:
qualitatively

relative ordering (A finished before B)
typical for modeling causal relations in planning

quantitatively
absolute position in time (A started at time 0)
typical for modeling exact timing in scheduling

ICAPS 2006
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Qualitative approachQualitative approach
exampleexample

Robot starts entering a loading zone at time t1 and stops there at time t2.
Crane starts picking up a container at t3 and finishes putting it down at t4.
At t5 the container is loaded onto the robot and stays there until time t6.

Networks of temporal constraints:

enteringt1 t2

i1

picking up and loadingt3 t4

i2

loadedt5 t6

i3

i1

i2

i3
before

starts   before meets

t1 t2

t3 t4

t5 t6

≤

<

<

<
<

=

Ghallab et al. (2004) 
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Qualitative approachQualitative approach
formallyformally

When modeling time we are interested in:
temporal references
(when something happened or hold)

time points (instants) when a state is changed
instant is a variable over the real numbers

time periods (intervals) when some proposition is true
interval is a pair of variables (x,y) over the real 
numbers, such that x<y

temporal relations between temporal references
ordering of temporal references

ICAPS 2006
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Point algebraPoint algebra
principlesprinciples

symbolic calculus modeling relations between instants
without necessarily ordering them or allocating to exact times

There are three possible relations between instants t1 and t2:
[t1 < t2]
[t1 > t2]
[t1 = t2]
The relations P = {<,=,>} are called primitives.

A set of primitives, meaning a disjunction of primitives, can 
describe any (even incomplete) relation between instants:

{}, {<}, {=}, {>}, {<,=}, {>,=}, {<,>}, {<,=,>}
{} means failure
{<,=,>} means that no ordering information is available

[t r t‘] denotes the relation r between instants t and t‘

Vilain & Kautz (1986) 
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Point algebraPoint algebra
operationsoperations

Let R be the set of all possible relations between instants
{{}, {<}, {=}, {>}, {<,=}, {>,=}, {<,>}, {<,=,>}}

Useful operations on R:
set operations ∩, ∪

describe conjunction (∩) or disjunction (∪) of relations

composition operation •
deduce a new relation based on existing relations
(an implied relation)
[t1 r t2] and [t2 q t3] gives [t1 r•q t3] using the table

The most useful operations are ∩ and • that allow a 
combination of the existing relation with the implied 
relation (a filtering rule):

[t1 r t2] and [t1 q t3] and [t3 s t2] gives [t1 r∩(q•s) t2]

>>P>

>=<=

P<<<

>=<•

Vilain & Kautz (1986) 
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Point algebraPoint algebra
consistencyconsistency

A PA (Point Algebra) network is a directed graph (X,C) where
X is a set of instants and each arc (i,j) is labeled by a constraint ri,j∈R.

If some relation (i,j) is not explicitly mentioned in C then we assume the 
universal relation P there.

The PA network (X,C) is consistent when it is possible to assign a real 
number to each instant in such a way that all the relations between 
instants are satisfied.

Proposition:
A PA network (X,C) is consistent iff there is a set of primitives pi,j∈ri,j, 
such that every triple of primitives verifies pi,j ∈ pi,k • pk,j.

Notes:
To make the PA network consistent it is enough to make its transitive 
closure, for example using techniques of path consistency.

The network is inconsistent iff we get the relation {}.
Path consistency does not produce a minimal network (there could remain 
some primitives that are not satisfied in any solution).

Vilain & Kautz (1986) 
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symmetrical relationsb’, m’, o’, s’, d’, f’

x-=y- & x+=y+x equals y

y-<x- & x+=y+x finishes y

y-<x- & x+<y+x during y

x-=y- & x+<y+x starts y

x-<y-<x+ & x+<y+x overlaps y

x+=y-x meets y

x+<y-x before y

Interval algebraInterval algebra
principlesprinciples

symbolic calculus modeling relations between intervals
(interval is defined by a pair of instants i- and i+, [i-<i+])

There are thirteen primitives:

x y

x y

x y

x

y

x

y

x

y

x

y

Allen (1983) 
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Interval algebraInterval algebra
operations and consistencyoperations and consistency

Primitives can again be combined into sets/disjunctions (213 sets).
sometimes, only some sets are used in a particular application

Example: {b,m,b’,m’} can model non-overlapping intervals (unary resource)
set operations ∩, ∪ and composition operation •

An IA (Interval Algebra) network (X,C) is consistent when it is 
possible to assign real numbers to xi

-,xi
+ of each interval xi in such a 

way that all the relations between intervals are satisfied.

Proposition:
An IA network (X,C) is consistent iff there is a set of primitives pi,j∈ri,j, 
such that every triple of primitives verifies pi,j ∈ pi,k • pk,j.

Notes:
Consistency-checking problem for IA networks is an NP-complete problem.
Path consistency is not a complete technique for IA networks but it can 
detect some inconsistencies.
Intervals can be converted to instants but with possibly non-binary 
constraints between instants.

Allen (1983) 
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Qualitative approachQualitative approach
exampleexample

Two ships, Uranus and Rigel, are directing towards a dock.
The Uranus arrival is expected within one or two days.
Uranus will leave either with a light cargo (then it must stay in the 
dock for three to four days) or with a full load (then it must stay in 
the dock at least six days).
Rigel can be serviced either on an express dock (then it will stay 
there for two to three days) or on a normal dock (then it must stay 
in the dock for four to five days).
Uranus has to depart one to two days after the arrival of Rigel.
Rigel has to depart six to seven days from now.

now

ArriveUranus DepartUranus

ArriveRigel

DepartRigel

[1,2]

[6,7]

[1,2]

[3,4] or [6,∞]

[2,3] or [4,5]

Ghallab et al. (2004) 
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Qualitative approachQualitative approach
formallyformally

The basic temporal primitives are again time 
points, but now the relations are numerical.
Simple temporal constraints for instants ti and tj:

unary: ai ≤ ti ≤ bi

binary: aij ≤ ti–tj ≤ bij,
where ai, bi, aij, bij are (real) constants

Notes:
Unary relation can be converted to a binary one, if we 
use some fix origin reference point t0.
[aij,bij] denotes a constraint between instants ti a tj.
It is possible to use disjunction of simple temporal 
constraints.

Filtering Techniques in Planning and Scheduling 36

STNSTN
Simple Temporal Network (STN)

only simple temporal constraints rij= [aij,bij] are used
operations:

composition: rij • rjk = [aij+ajk, bij+bjk]
intersection: rij ∩ r’ij = [max{aij,a’ij}, min{bij,b’ij}]

STN is consistent if there is an assignment of values 
to instants satisfying all the temporal constraints.
Path consistency is a complete technique making 
STN consistent (all inconsistent values are filtered 
out, one iteration is enough). Another option is using 
all-pairs minimal distance Floyd-Warshall
algorithm.

Dechter et al. (1991) 
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AlgorithmsAlgorithms
Path consistency

finds a transitive closure of 
binary relations r
one iteration is enough for 
STN (in general, it is iterated 
until any domain changes)
works incrementally

Floyd-Warshall algorithm
finds minimal distances 
between all pairs of nodes
First, the temporal network is 
converted into a directed graph

there is an arc from i to j with 
distance bij

there is an arc from j to i with 
distance -aij.

STN is consistent iff there are 
no negative cycles in the 
graph, that is, d(i,i)≥0

one iteration for STN

general

Filtering Techniques in Planning and Scheduling 38

TCSPTCSP
Temporal Constraint Network (TCSP)

It is possible to use disjunctions of simple temporal 
constraints.
Operations • and ∩ are being done over the sets of 
intervals.

TCSP is consistent if there is an assignment of values 
to instants satisfying all the temporal constraints.
Path consistency does not guarantee in general the 
consistency of the TCSP network!

A straightforward approach (constructive disjunction):
decompose the temporal network into several STNs by choosing 
one disjunct for each constraint
solve obtained STN separately (find the minimal network)
combine the result with the union of the minimal intervals

Dechter et al. (1991) 
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FoundationsFoundations

Resources are used in slightly different 
meanings in planning and scheduling!
scheduling

resource
= a machine (space) for processing the activity

planning
resource
= consumed/produced material by the activity
resource in the scheduling sense is often 
handled via logical precondition (e.g. hand is 
free)

ICAPS 2006
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TerminologyTerminology
Activity is an entity occupying some space (resource) and time

while event is an instantaneous entity changing the level of resource.
a typical activity can be seen as a start event and an end event

For activity A we define
start(A): start time of the activity (activity cannot start before its release date)

est(A) = min(start(A)), earliest start time 
end(A): completion time of the activity (activity must finish before the deadline)

lct(A) = max(end(A)), latest completion time
p(A): processing time (duration) of the activity
cap(A): requested capacity of the resource

Classification of activities:
non-preemptible activity A requires cap(A)
of the resource for all duration

start(A) + p(A) = end(A)
preemptible activity A can be interrupted but
it must run for p(A) time units when it requires
cap(A) of the resource

start(A) + p(A) ≤ end(A)
elastic activity can use different level of the
resource at different times, but a total “energy”
must be consumed

e(A) = p(A).cap(A)

time

time

time

start(A) end(A)
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Resource typesResource types

unary (disjunctive) resource
a single activity can be processed at given time

cumulative (discrete) resource
several activities can be processed in parallel
if capacity is not exceeded.

producible/consumable resource
activity consumes/produces some quantity of 
the resource
minimal capacity is requested (consumption) 
and maximal capacity cannot be exceeded 
(production)

ICAPS 2006
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Cumulative resourcesCumulative resources
Each activity uses some capacity of 
the resource – cap(A).
Activities can be processed in parallel if 
a resource capacity is not exceeded.
Resource capacity may vary in time

modeled via fix capacity over time and fixed activities 
consuming the resource until the requested capacity 
level is reached

fix capacity

timeus
ed

 c
ap

ac
ity

fixed activities for making the 
capacity profile
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ReservoirsReservoirs

Producible/consumable resource
Each event describes how much it increases or 
decreases the level of the resource.

Cumulative resource can be seen as a special case 
of reservoir.

Each activity consists of consumption event at the start 
and production event at the end.

A
-1 B

-1 D
+1
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Alternative resourcesAlternative resources

How to model alternative resources for a 
given activity?
Use a duplicate activity for each resource.

duplicate activity participates in a respective resource 
constraint but does not restrict other activities there

„failure“ means removing the resource from the domain of 
variable res(A)
deleting the resource from the domain of variable res(A) 
means „deleting“ the respective duplicate activity

original activity participates in precedence constraints 
(e.g. within a job)
restricted times of duplicate activities are propagated 
to the original activity and vice versa.
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Alternative resourcesAlternative resources
filtering detailsfiltering details

Let Au be the duplicate activity of A 
allocated to resource u∈res(A).

u∈res(A) ⇒ start(A) ≤ start(Au)
u∈res(A) ⇒ end(Au) ≤ end(A)
start(A) ≥ min{start(Au) : u∈res(A)}
end(A) ≤ max{end(Au) : u∈ res(A)}
failure related to Au ⇒ res(A)\{u}

Actually, it is maintaining constructive 
disjunction between the alternative activities.

ICAPS 2006
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Resource reasoning
on absolute position in time

Filtering Techniques in Planning and Scheduling 48

Disjunctive constraintDisjunctive constraint

How to describe a relation between two non-
preemptive activities allocated to the same 
unary resource?

Such activities A and B cannot run in parallel, so 
either A runs completely before B or vice versa
A«B ∨ B«A

end(A) ≤ start(B) ∨ end(B) ≤ start(A)

Propagation:
whenever lst(B)<ect(A) then A cannot finish before B 
starts and hence A must be after B (and vice versa)

Baptiste et al. (2001) 
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Disjunctive constraintDisjunctive constraint
preemptive versionpreemptive version

What if the activities can be preempted?
Then the activities A and B can interleave during 
execution (for example, we can start and finish 
with A while B is processed in the middle), but 
they still cannot cover more time than available.

Four possibilities:
start(A) + p(A) + p(B) ≤ end(A) ∨
start(A) + p(A) + p(B) ≤ end(B) ∨
start(B) + p(A) + p(B) ≤ end(A) ∨
start(B) + p(A) + p(B) ≤ end(B) ∨

Note:
if A cannot be interrupted then the first disjunct can be 
removed

Baptiste et al. (2001)

A B A

B A

A B

B A B
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Disjunctive constraintDisjunctive constraint
cumulative versioncumulative version

On a cumulative resource, two activities 
can overlap provided that they do not 
consume more than available capacity.
Extend the previous disjunctions by
cap(A) + cap(B) ≤ cap

For example (cumulative non-preemptive case):
cap(A) + cap(B) ≤ cap ∨
end(A) ≤ start(B) ∨
end(B) ≤ start(A)

Baptiste et al. (2001)
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Where is enough capacity for processing the activity?

How the aggregated demand is constructed?

timeus
ed

 c
ap

ac
ity resource capacity

aggregated demand

Aggregated demandsAggregated demandsBaptiste et al. (2001)

timeus
ed

 c
ap

ac
ity resource capacity

aggregated demand

activity must be 
processed here
activity must be 
processed here
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Timetable constraintTimetable constraint

How to ensure that capacity is not exceed 
at any time point?*

Timetable for the activity A is a set of 
Boolean variables X(A,t) indicating 
whether A is processed in time t.

capAcapt
ii AendtAstart

i ≤∀ ∑
<≤ )()(

)(

),()()(  ,

)(),(  

tAXAendtAstartit

capAcaptAXt

iii

A
ii

i

⇔<≤∀

≤⋅∀ ∑

* discrete time is expected

Baptiste et al. (2001)

cap=1
in unary resource

cap=1
in unary resource
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Timetable constraintTimetable constraint
filtering examplefiltering example

initial situation

some positions forbidden due to capacity

new situation

{0,1} 00 X(A,t)
est(A)

lst(A)

ect(A)

lct(A)

{0,1} 00 X(A,t)
est(A)

lst(A)

ect(A)

lct(A)

0

{0,1} 0 X(A,t)
est(A)

lst(A)

ect(A)

lct(A)

0 1 {0,1}

{0,1}
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Timetable constraintTimetable constraint
filtering rulesfiltering rules

How to realize filtering through the constraint
?

Problem:
t serves as an index and as a variable

start(A) ≥ min{t : ub(X(A,t))=1}
end(A) ≤ 1+max{t : ub(X(A,t))=1}
X(A,t)=0 ∧ t<ect(A) ⇒ start(A)>t
X(A,t)=0 ∧ lst(A)≤t ⇒ end(A)≤t
(lst(A)≤t ∧ t<ect(A) ⇒ X(A,t)=1)

),()()(  , tAXAendtAstartit iii ⇔<≤∀

Baptiste et al. (2001)
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Timetable constraintTimetable constraint
preemptive versionpreemptive version

Capacity restriction is the same as before:

However, time bounds must be adjusted more 
carefully:

start(A) ≥ min{t : ub(X(A,t))=1}
end(A) ≤ 1+max{t : ub(X(A,t))=1}
end(A) ≥ 1+min{T : |{t : ub(X(A,t))=1 ∧ t ≤ T}| ≥ p(A)}
start(A) ≤ max{T : |{t : ub(X(A,t))=1 ∧ t ≥ T}| ≥ p(A)}

Note:
This propagation is weaker and more time consuming 
than in the non-preemptive case.

Baptiste et al. (2001) 

capAcaptAXt
iA

ii ≤⋅∀ ∑ )(),(  
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What happens if activity A is not processed first?What happens if activity A is not processed first?

Not enough time for A, B, and C and thus A must be first!Not enough time for A, B, and C and thus A must be first!

4 16

7 15

6 16

Edge findingEdge finding

A (2)

C (5)

Baptiste & Le Pape (1996)

B (4)

A (2)
4 7

7 15

6 16
B (4)

C (5)
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Edge findingEdge finding
rulesrules

The rules:
p(Ω ∪ {A}) > lct(Ω ∪ {A}) - est(Ω) ⇒ A«Ω
p(Ω ∪ {A}) > lct(Ω) - est(Ω ∪ {A}) ⇒ Ω«A
A«Ω ⇒ end(A) ≤ min{ lct(Ω') - p(Ω') |  Ω'⊆Ω }
Ω«A ⇒ start(A) ≥ max{ est(Ω') + p(Ω') |  Ω'⊆Ω }

In practice:
there are n.2n pairs (A,Ω) to consider (too many!)
instead of Ω use so called task intervals [X,Y]
{C | est(X) ≤ est(C) ∧ lct(C) ≤ lct(Y)}

time complexity O(n3), frequently used incremental algorithm

there are also O(n2) and O(n.log n) algorithms

Baptiste & Le Pape (1996)
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Edge findingEdge finding
preemptive versionpreemptive version

p(Ω ∪ {A}) > lct(Ω ∪ {A}) - est(Ω) means that the 
activities in Ω ∪ {A} cannot start with an activity different 
from A and hence we must start with A

if A is non-preemptive then it must finish before any activity in Ω
if A is preemptive then its execution can be interrupted and hence A 
does not necessarily finish before all activities in Ω
still A must start before all activities in Ω, denote as A<Ω

p(Ω ∪ {A}) > lct(Ω ∪ {A}) - est(Ω) ⇒ A<Ω
A<Ω ⇒
start(A) ≤ min{ lct(Ω' ∪ {A}) - p(Ω' ∪ {A}) |  Ω'⊆Ω }

Symmetrically:
p(Ω ∪ {A}) > lct(Ω) - est(Ω ∪ {A}) ⇒ Ω<A
Ω<A ⇒ end(A) ≥ max{ est(Ω' ∪ {A}) + p(Ω' ∪ {A}) |  Ω'⊆Ω }
Ω<A means that A finishes after all activities in Ω

Baptiste & Le Pape (1996)
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Edge findingEdge finding
cumulative versioncumulative version

If activities can overlap, we can use energy of 
activities to describe the occupied space

e(A) = cap(A).p(A)

The rules
e(Ω∪{A}) > (lct(Ω∪{A}) - est(Ω)) . cap ⇒ A<Ω
e(Ω∪{A}) > (lct(Ω) - est(Ω∪{A})) . cap ⇒ Ω<A

Nuijten (1994)

cap

est(Ω∪{A}) lct(Ω)

A must finish after 
all activities in Ω
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Edge findingEdge finding
cumulative version filteringcumulative version filtering

How to reduce time window for A if Ω<A?

let rest(Ω,A) = e(Ω) – (cap-cap(A)).(lct(Ω)-est(Ω))
if rest(Ω,A)>0 then

Ω<A ⇒ start(A) ≥ est(Ω) + ⎡rest(Ω,A)/cap(A)⎤
A<Ω ⇒ end(A) ≥ lct(Ω) - ⎡rest(Ω,A)/cap(A)⎤

Nuijten (1994)

cap

est(Ω) lct(Ω)

cap(A)

This area does not influence 
position of activity A, because 
there is enough capacity to run 
A at any time.

This area does not influence 
position of activity A, because 
there is enough capacity to run 
A at any time.e(Ω)

This area restricts the 
position of A - rest(Ω,A).
This area restricts the 
position of A - rest(Ω,A).
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NotNot--first/notfirst/not--lastlast
What happens if activity A is processed first?

Not enough time for B and C and thus A cannot be first!

4 16

7 15

6 16
A (2)

C (4)

B (5)

Torres & Lopez (2000)

4 16

7 15

8 16
A (2)

C (4)

B (5)
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NotNot--first/notfirst/not--last ruleslast rules

Not-first rules:
p(Ω∪{A}) > lct(Ω) - est(A) ⇒ ¬ A«Ω
¬ A«Ω ⇒ start(A) ≥ min{ ect(B) |  B∈Ω }

Not-last (symmetrical) rules:
p(Ω∪{A}) > lct(A) - est(Ω) ⇒ ¬ Ω«A
¬ Ω«A ⇒ end(A) ≤ max{ lst(B) |  B∈Ω }

In practice:
can be implemented with time complexity 
O(n2) and space complexity O(n)

Torres & Lopez (2000)
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NotNot--firstfirst
cumulative versioncumulative version

assume that est(Ω) ≤ est(A)< min{ ect(B) |  B∈Ω }
if A starts in est(A) then no activity in Ω can finish before A 
starts and hence the area “before” A is wasted

e(Ω) + cap(A).(min{ect(A),ect(Ω)}-est(Ω)) > cap.(lct(Ω)-est(Ω))
⇒ start(A) ≥ min{ ect(B) |  B∈Ω }

cap

est(Ω) lct(Ω)

est(A)

min{ect(B)|B∈Ω}

This area cannot be 
occupied by any activity.
This area cannot be 
occupied by any activity.

cap(A)

e(Ω)

ect(A)

Nuijten (1994)
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Energetic reasoningEnergetic reasoning

How much time does A spent in interval (t1,t2)?

(t2-t1)

max(0,p(A)-max(0,t1-est(A))) = p+(A,t1)

max(0,p(A)-max(0,lct(A)-t2)) = p-(A,t2)

How much energy does A consume in interval (t1,t2)?
W(A,t1,t2) = cap(A) . min{t2-t1, p+(A,t1), p-(A,t2)}

How much energy do all activities consume in 
interval (t1,t2)?

W(t1,t2) = ΣA W(A,t1,t2) 

t1 t2

A

A

A

Baptiste et al. (2001)
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Energetic reasoningEnergetic reasoning
overload checkingoverload checking

If there exists a feasible schedule then
W(t1,t2) ≤ cap.(t2-t1) for any time interval (t1, t2).

It means that there must be enough energy to run all 
activities in any time interval.

W(t1,t2) > cap.(t2-t1) ⇒ failure

Which intervals should be explored?
Explore all non-empty time intervals (est(A), lct(B)).

This can be done in time O(n2).

Baptiste et al. (2001)
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Energetic reasoningEnergetic reasoning
adjusting time boundsadjusting time bounds

assume that activity A finishes before t2
A consumes cap(A) . p+(A,t1)
all activities in interval (t1,t2) consume
W(t1,t2) - W(A,t1,t2) + cap(A) . p+(A,t1) = LW(A,t1,t2)

LW(A,t1,t2) > cap.(t2-t1) ⇒
activity A cannot finish before t2
overflow energy must be used after t2
end(A) ≥ t2 + (LW(A,t1,t2) - cap.(t2-t1))/cap(A)

Baptiste et al. (2001)
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Energetic reasoningEnergetic reasoning
unary versionunary version

assume that A is ordered before B
interval (est(A), lct(B)) consumes energy
p(A)+p(B)+ ΣC∉{A,B}W(C, est(A), lct(B)) )

lct(B) – est(A) < p(A)+p(B)+ΣC∉{A,B}W(C, est(A), lct(B))
⇒ ¬ A«B

non-preemptive version
¬ A«B means B«A

end(B) ≤ lct(A) – p(A)

est(B)+p(B) ≤ start(A)

preemptive model
¬ A«B means B<A

start(B) ≤ lct(A) – p(A) – p(B)
est(B) + p(A) + p(B) ≤ end(A)

Laborie (2003)
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Relative orderingRelative ordering

When time is relative (ordering of activities)
then edge-finding and aggregated demand deduce nothing

We can still use information about ordering of events
and resource production/consumption!

Example:
Reservoir: events consume and supply items

A
-1 B

-1 C
-1

D
+1

ICAPS 2006
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Resource profilesResource profiles

Event A „produces“ prod(A) quantity:
positive number means production
negative number means consumption

optimistic resource profile (orp)
maximal possible level of the resource when A happens
events known to be before A are assumed together with the 
production events that can be before A

orp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)>0 prod(B)

pessimistic resource profile (prp)
minimal possible level of the resource when A happens
events known to be before A are assumed together with the 
consumption events that can be before A

prp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)<0 prod(B)

*B?A means that order of A and B is unknown yet

Cesta & Stella (1997) 
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orporp filteringfiltering

orp(A) < MinLevel ⇒ fail
“despite the fact that all production is planned 
before A, the minimal required level in the 
resource is not reached”

orp(A) – prod(B) – ∑B«C ∧ C?A ∧ prod(C)>0 prod(C)  < MinLevel
⇒ B«A

for any B such that B?A and prod(B)>0
“if production in B is planned after A and the 
minimal required level in the resource is not 
reached then B must be before A”

Cesta & Stella (1997)
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prpprp filteringfiltering

prp(A) > MaxLevel ⇒ fail
“despite the fact that all consumption is planned 
before A, the maximal required level (resource 
capacity) in the resource is exceeded”

prp(A) – prod(B) – ∑B«C ∧ C?A ∧ prod(C)<0 prod(C)  > MaxLevel
⇒ B«A
for any B such that B?A and prod(B)<0

“if consumption in B is planned after A and the 
maximal required level in the resource is 
exceeded then B must be before A”

Cesta & Stella (1997)
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Detectable precedenceDetectable precedence
from time windows to orderingfrom time windows to ordering

What happens if activity A is processed before B?What happens if activity A is processed before B?

Restricted time windows can be used to deduce new 
precedence relations.
est(A)+p(A)+p(B)>lct(B) ⇒ B«A 

7

156

16

B (4)

A (5)

Vilím (2002) 
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Energy precedenceEnergy precedence
from ordering to time windowsfrom ordering to time windows

use energy of activities processed before A to deduce 
new est(A)

start(A) ≥ max{ est(Ω’) + ⎡e(Ω’)/cap⎤ | Ω'⊆{C : C«A} }

for unary resources
start(A) ≥ max{ est(Ω’) + p(Ω’) | Ω'⊆{C : C«A} }

it is enough to explore Ω(X,A) = {Y | Y « A ∧ est(X) ≤ est(Y)}

start(A) ≥ max{ est(Ω(X,A)) + p(Ω(X,A)) | X « A }

dur ← 0
end ← est(A)
for each Y∈{ X | X « A } in the non-increasing order of est(Y) do

dur ← dur + p(Y)
end ← max(end, est(Y) + dur)

end for
est(A) ← end

Laborie (2003)
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Balance constraintBalance constraint

generalization and refinement of orp/prp filtering
recall:

orp(A) = InitLevel + prod(A) + ∑B«A prod(B) + ∑B?A ∧ prod(B)>0 prod(B)

maximal possible level of the resource when A happens

new filtering of time windows
If InitLevel + ∑B«A prod(B) < MinLevel then at least one of the 
events in {B : B?A ∧ prod(B)>0} must happen strictly before A.

let ∆orp(A) = MinLevel – InitLevel + ∑B«A prod(B)
order events B?A ∧ prod(B)>0 in non-decreasing tmin(B): B1,…,Bn

let k be the index such that
∑i=1,…,k-1 prod(Bi) < ∆orp(A) ≤ ∑ i=k,…,n prod(Bi)
tmin(Bk) < time(A)
(if time(A) ≤ tmin(Bk) then MinLevel will not be reached right before A)

Laborie (2003) 
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Objectives in CSPObjectives in CSP

Recall that the objective (criteria) function is 
encoded as an equality constraint:

v = obj(Xs)
Example: makespan = max{end(Ai)}

it is possible to deduce better bounds of v using 
current domains of Xs

makespanmin = max{ect(Ai)}

it is possible to restrict domains of Xs by using the 
current bounds of v

end(Ai) ≤ makespanmax

propagation of more complex objectives is typically 
based on solving a relaxed problem
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Minimizing late activitiesMinimizing late activities
objective lower boundobjective lower bound

assume minimizing the number of late activities on a single machine
each activity A has a due date δ(A), if A finishes after δ(A) then A is late

preemptive relaxation + continuous relaxation
feasible preemptive schedule if and only if
∀t1,t2>t1 Σ{p(A) : t1 ≤ est(A) ∧ lct(A) ≤ t2} ≤ t2-t1
use est(X) for t1 and lct(X) or δ(X) for t2

introduce a decision variable x(A) (1 when the activity is on time
and 0 otherwise)

solve the following LP problem to obtain the lower bound of the 
number of late activities

min ΣA(1-x(A)) under the constraints

ΣA∈S(t1,t2) p(A) +ΣA∈P(t1,t2) x(A).p(A) ≤ t2-t1

est(A)+p(A)>δ(A) ⇒ x(A)=0
x(A)∈[0,1]

S(t1,t2) = {A : t1≤est(A) ∧ lct(A)≤ t2}

P(t1,t2) = {A : t1≤est(A) ∧ t2<lct(A) ∧ δ(A)≤t2}

t1 ∈ {est(A)}

t2 ∈ {lct(A)} ∪ {δ(A)} (t2 > t1)

S(t1,t2) = {A : t1≤est(A) ∧ lct(A)≤ t2}

P(t1,t2) = {A : t1≤est(A) ∧ t2<lct(A) ∧ δ(A)≤t2}

t1 ∈ {est(A)}

t2 ∈ {lct(A)} ∪ {δ(A)} (t2 > t1)

Baptiste et al. (2001)
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Minimizing late activitiesMinimizing late activities
late/onlate/on--time activity detectiontime activity detection

for each possibly late activity B solve the following LP problem
to obtain the lower bound of the number of late activities

min ΣA(1-x(A)) under the constraints

ΣA∈S(t1,t2)p(A) +ΣA∈P(t1,t2) x(A).p(A) ≤ t2-t1
est(A)+p(A)>δ(A) ⇒ x(A)=0
x(B) = 0
x(A)∈[0,1]

if the obtained lower bound LB0 is greater than the existing upper 
bound for the objective function then the activity must be on time

LB0 > up(obj) ⇒ end(A) ≤ δ(A)

similarly for testing whether the activity must be late (try x(B) = 1)
Note:

min(LB0, LB1) can be used to obtain even better lower bound for the 
objective function
similar to singleton consistency (constructive disjunction x(B)=0 ∨ x(B)=1)

Baptiste et al. (2001)
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Minimizing setupsMinimizing setups
assume minimizing the setup times/costs between 
activities with alternative unary resources.
path model

vertices describe activities (there are 2.m additional vertices Si
and Ei describing the first/last time point in each resource i)
arc connect vertices A and B if it is possible to allocate A right 
before B on some common resource

arc cost is the minimal setup time/cost between the activities if they 
are allocated to the same resource 

the path from Si to Ei corresponds to a schedule of resource i
find m disjoint paths between Si to Ei visiting all vertices and 
minimizing the overall cost of included arcs

Focacci et al. (2000) 

A1

A2

A7A6

A5
A3

A4

S1

S2

E1

E2
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Minimizing setupsMinimizing setups
filtering rulesfiltering rules

relaxation of the path model using an assignment problem
find a set of disjoint sub-tours such that all vertices are visited and 
the overall cost of included arcs is minimized

the optimal solution of the assignment problem defines a lower 
bound LB for the overall setup cost/time
it is possible to use the reduced cost matrix for further pruning

c(A,B) estimates the additional cost added to LB if arc (A,B) is used
LB + c(A,B) > up(obj) ⇒ remove arc (A,B) from the path model

Focacci et al. (2000) 

A1

A2

A7A6

A5
A3

A4

S1

S2

E1

E2
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Constraint solversConstraint solvers

It is not necessary to program all the presented 
techniques from scratch!
Use existing constraint solvers (packages)!

provide implementation of data structures for 
modelling variables‘ domains and constraints
provide a basic consistency framework (AC-8)
provide filtering algorithms for many constraints 
(including global constraints)
provide basic search strategies
usually extendible (new filtering algorithms, new 
search strategies)

ICAPS 2006
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Design of filtersDesign of filters
Users can often define code of the FILTER procedures for new constraints.
How to define new filters and integrate them into solvers?

1) decide about the event to evoke the filtering algorithm
when the domain of involved variable is changed

whenever the domain changes (arc-consistency)
when minimum/maximum bound is changed (arc-B-consistency)
when the variable becomes singleton (constraint checking)

different events (suspensions) for different variables
Example:

filtering for A<B is evoked after change of min(A) or max(B)

2) design the filtering algorithm for the constraint
the result of filtering is the change of variables’ domains
more filtering procedures for a single constraint are allowed

Example: A<B
min(A): B in min(A)+1..sup max(B): A in inf..max(B)-1

Schulte (2002)
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Design of filtersDesign of filters
integration into solverintegration into solver

It is necessary to specify when the filtering algorithm is evoked and what
global information is available to it.

Some algorithms are incremental – describe how to react to a change in 
domain of a particular variable.

evoke the algorithm after the particular change happens

Many algorithms for global constraints are proposed as non-incremental
– filtering is run from scratch independently of the change.

evoke the algorithm after any change of constrained variables

Example (installation of filtering rule(s) for A<B)
arc-B-consistency is identical to full arc-consistency!
filtering can be realised incrementally

less_then(A,B):-
fd_global(a2b(A,B),no_state,[min(A)]),
fd_global(b2a(A,B),no_state,[max(B)]).

name of the filter 
with arguments

name of the filter 
with arguments

initial state (local 
data) of the filter
initial state (local 
data) of the filter

events when the 
filter is called

events when the 
filter is called
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Design of filtersDesign of filters
filtering algorithmfiltering algorithm

The filtering algorithm has access to current domains and it proposes 
how to restrict the domains (list of changes to domains).

some solvers provide information about the change that invoked the filter

Example (definition of filtering rule(s) for A<B)

dispatch_global(a2b(A,B),S,S,Actions):-
fd_min(A,MinA), fd_max(A,MaxA),
fd_min(B,MinB),
(MaxA<MinB ->

Actions = [exit]
; LowerBoundB is MinA+1,

Actions = [B in LowerBoundB..sup]).

dispatch_global(b2a(A,B),S,S,Actions):-
fd_max(A,MaxA),
fd_min(B,MinB), fd_max(B,MaxB),
(MaxA<MinB ->

Actions = [exit]
; UpperBoundA is MaxB-1,

Actions = [A in inf..UpperBoundA]).

identification 
of the filter

identification 
of the filter

states before/after 
running the filtering
states before/after 
running the filtering

list of proposed 
changes to domains

list of proposed 
changes to domains

filtering finished, don’t 
call the filter anymore

filtering finished, don’t 
call the filter anymore

access to current 
domains of variables

access to current 
domains of variables

Filtering Techniques in Planning and Scheduling 88

SummarySummary

Mainstream constraint satisfaction framework:

local consistency connecting filtering algorithms 
for individual constraints

filters encapsulate dedicated reasoning techniques
filters are not “run once” codes, but they are called 
repeatedly
filters communicate via domains of variables

search resolving remaining disjunctions
filters are used to prune the search space
filters may provide guideline to search
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