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Preface

Planning is a hard problem. But just how hard, exactly? This tutorial addresses this
question in a formal and rigorous manner using the tools of theoretical computer sci-
ence. Why theoretical studies? Maybe the most important piece of information that
complexity theory can provide the practitioner is advice on how not to solve a prob-
lem. For example, if it is known that a certain problem cannot be solved by Turing
Machines with polynomial space requirements, then there is no point in trying to de-
sign an algorithm with that property. The tutorial introduces a number of such lower
bounds on complexity for variants of the planning problem, not limited to the classical
case of STRIPS-style planning, but discussing a wide spectrum of planning problems of
progressing difficulty.

The tutorial is largely self-contained, and does not assume in-depth knowledge of
complexity theory, although a certain familiarity with basic concepts like Turing Ma-
chines, reducibility and basic complexity classes like P and NP is definitely of help.
It is targeted at an audience with a solid background on AI Planning, but little or no prior
exposure to the theoretical work in the field.

The tutorial is structured into four parts.
Part 1, ”Foundations”, develops the necessary formal background in computational

complexity that is required for the theoretical analyses that follow.
Part 2, ”Classical Planning”, applies these methods to the ubiquitous ”PDDL-style”

planning problem, i.e., planning with full observability and complete determinism, both in
the case where planning tasks are defined in terms of propositional variables and in the
first-order case where planning tasks are defined in terms of predicates and schematic
operators.

Part 3, ”Conditional Planning”, moves beyond the restrictions of the classical sce-
nario by considering three generalizations thereof: planning with nondeterministic oper-
ators and full observability, planning with deterministic operators (but a nondeterministic
initial state) and partial or no observability, and finally the most general case of planning
with nondeterministic operators and partial observability, whose complexity has only
been determined recently by Rintanen.

Part 4, ”Numeric Planning”, returns to the deterministic setting, but moves away
from finite state spaces, by introducing numerical state variables. This variant of the
planning problem is easily proved undecidable, so a number of restrictions are consid-
ered, providing a precise picture of what is and is not possible once exhaustive search
is no longer an option.
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Why Complexity?

understand the problem

know what it is not possible

find interesting subproblems

distinguish essential features from syntactic sugar

Prerequisites

basic knowledge of theoretical computer science

Turing Machines
basic complexity classes: P, NP, etc.
decidability

basic knowledge of AI planning

STRIPS-style planning formalisms
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Goals of the Tutorial

present central complexity results

show tradeoff expressivity vs. complexity

demonstrate methodology for theoretical analyses

Overview of Topics

1 Foundations

Turing Machines
complexity classes

2 Classical Planning

propositional case
first-order case

3 Conditional Planning

nondeterministic operators, full observability
deterministic operators, no observability
nondeterministic operators, partial observability

4 Numeric Planning

undecidable cases
decidable cases
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Some Relevant Non-Topics

propositional planning with syntactic restrictions

propositional planning with structural restrictions

compilability between planning formalism

domain-dependent planning complexity

approximation results

Literature: Foundations

Christos H. Papadimitriou.
Computational Complexity.
Addison-Wesley, 1994.

Michael R. Garey and David S. Johnson.
Computers and Intractability —

A Guide to the Theory of NP-Completeness.
Freeman, 1979.

Giorgio Ausiello, Pierluigi Crescenzi, Giorgo Gambosi, Viggo
Kann, Alberto Marchetti-Spaccamela, and Marco Protasi.
Complexity and Approximation.
Springer-Verlag, 1999.
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Literature: Classical Planning

Tom Bylander.
The computational complexity of
propositional STRIPS planning.
Artificial Intelligence, 69(1–2):165–204, 1994.

Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian.
Complexity, decidability and undecidability results
for domain-independent planning.
Artificial Intelligence, 76(1–2):65–88, 1995.

Literature: Conditional Planning

Patrik Haslum and Peter Jonsson.
Some results on the complexity of planning
with incomplete information.
In Proc. ECP-99, pages 308–318, 1999.

Jussi Rintanen.
Complexity of planning with partial observability.
In Proc. ICAPS 2004, pages 345–354, 2004.

Jussi Rintanen.
Planning: Algorithms and Complexity.
Habilitation thesis, Albert-Ludwigs-Universität Freiburg, 2005.
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Literature: Numeric Planning

Malte Helmert.
Decidability and undecidability results for planning with
numerical state variables.
In Proc. AIPS 2002, pages 303–312, 2002.

Literature: Propositional Planning with

Literature: Syntactic Restrictions

Tom Bylander.
The computational complexity of
propositional STRIPS planning.
Artificial Intelligence, 69(1–2):165–204, 1994.
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Literature: Propositional Planning with

Literature: Structural Restrictions

Christer Bäckström and Bernhard Nebel.
Complexity results for SAS+ planning.
Computational Intelligence, 11(4):625–655, 1995.

Peter Jonsson and Christer Bäckström.
State-variable planning under structural restrictions:
Algorithms and complexity.
Artificial Intelligence, 100(1–2):125–176, 1998.

Peter Jonsson and Christer Bäckström.
Tractable plan existence does not imply
tractable plan generation.
Annals of Math. and AI, 22(3):281–296, 1998.

Literature: Propositional Planning with

Literature: Structural Restrictions (continued)

Carmel Domshlak and Yefim Dinitz.
Multi-agent off-line coordination:
Structure and complexity.
In Proc. ECP 2001, pages 277–288, 2001.

Carmel Domshlak and Ronen I. Brafman.
Structure and complexity in planning
with unary operators.
In Proc. AIPS 2002, pages 34–43, 2002.
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Literature: Compilability Between

Literature: Planning Formalisms

Bernhard Nebel.
What is the expressive power of
disjunctive preconditions?
In Proc. ECP-99, pages 294–307, 1999.

Literature: Domain-Dependent

Literature: Planning Complexity

Naresh Gupta and Dana S. Nau.
On the complexity of blocks-world planning.
Artificial Intelligence, 56(2–3):223–254, 1992.

Bart Selman.
Near-optimal plans, tractability, and reactivity.
In Proc. KR-94, pages 521–529, 1994.

John Slaney and Sylvie Thiébaux.
Blocks World revisited.
Artificial Intelligence, 125:119–153, 2001.
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Literature: Domain-Dependent

Literature: Planning Complexity (continued)

Malte Helmert.
Complexity results for standard benchmark domains
in planning.
Artificial Intelligence, 143(2):219–262, 2003.

Malte Helmert.
New complexity results for classical planning benchmarks.
In Proc. ICAPS 2006.

Literature: Approximation Results

Bart Selman.
Near-optimal plans, tractability, and reactivity.
In Proc. KR-94, pages 521–529, 1994.

Malte Helmert, Robert Mattmüller, and Gabi Röger.
Approximation properties of planning benchmarks.
In Proc. ECAI 2006.
To appear.
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Part 1: Foundations

Malte Helmert

June 7th, 2006
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2 Complexity Classes
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Alternating Turing Machines

Definition: Alternating Turing Machine

Alternating Turing Machine (ATM) 〈Σ,�, Q, q0, l, δ〉:
1 input alphabet Σ and blank symbol � /∈ Σ

alphabets always non-empty and finite
tape alphabet Σ� = Σ

.

∪ {�}

2 finite set Q of internal states with initial state q0 ∈ Q
3 state labeling l : Q → {Y,N,∃,∀}

accepting, rejecting, existential, universal states
QY, QN, Q∃, Q∀

terminal states Q? = QY ∪ QN

nonterminal states Q′ = Q∃ ∪ Q∀

4 transition relation δ ⊆ (Q′ × Σ�) × (Q × Σ� × {−1,+1})

(Non-) Deterministic Turing Machines

Definition: Non-deterministic Turing Machine

A non-deterministic Turing Machine (NTM) is an ATM where all
nonterminal states are existential.

no universal states

Definition: Deterministic Turing Machine

A deterministic Turing Machine (DTM) is an NTM
where the transition relation is functional.

for all (q, a) ∈ Q′ × Σ�, there is exactly one triple (q′, a′,∆)
with ((q, a), (q′, a′,∆)) ∈ δ

notation: δ(q, a) = (q′, a′,∆)

ICAPS 2006
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Turing Machine Configurations

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Configuration

A configuration of M is a triple (w, q, x) ∈ Σ∗
�
× Q × Σ∗

�
.

w: tape contents before tape head

q: current state

x: tape contents after and including tape head

Turing Machine Transitions

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Yields relation

A configuration c of M yields a configuration c′ of M ,
in symbols c ` c′, as defined by the following rules,
where a, a′, b ∈ Σ�, w, x ∈ Σ∗

�
, q, q′ ∈ Q and

((q, a), (q′, a′,∆) ∈ δ.

(w, q, ax) ` (wa′, q′, x) if ∆ = +1, |x| ≥ 1

(w, q, a) ` (wa′, q′,�) if ∆ = +1

(wb, q, ax) ` (w, q′, ba′x) if ∆ = −1

(ε, q, ax) ` (ε, q′,�a′x) if ∆ = −1

ICAPS 2006
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Acceptance (Time)

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Acceptance (time)

Let (w, q, x) be a configuration of M .

M accepts (w, q, x) with q ∈ QY in time n
for all n ∈ N0.

M accepts (w, q, x) with q ∈ Q∃ in time n
iff M accepts some c′ with c ` c′ in time n − 1.

M accepts (w, q, x) with q ∈ Q∀ in time n
iff M accepts all c′ with c ` c′ in time n − 1.

Acceptance (Space)

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Acceptance (space)

Let (w, q, x) be a configuration of M .

M accepts (w, q, x) with q ∈ QY in space n
iff |w| + |x| ≤ n.

M accepts (w, q, x) with q ∈ Q∃ in space n
iff M accepts some c′ with c ` c′ in space n.

M accepts (w, q, x) with q ∈ Q∀ in space n
iff M accepts all c′ with c ` c′ in space n.
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Accepting Words and Languages

Let M = 〈Σ,�, Q, q0, l, δ〉 be an ATM.

Definition: Accepting words

M accepts the word w ∈ Σ∗ in time (space) n ∈ N0

iff M accepts (ε, q0, w) in time (space) n.

Definition: Accepting languages

Let f : N0 → N0.
M accepts the language L ⊆ Σ∗ in time (space) f
iff M accepts each word w ∈ L in time (space) f(|w|),
and M does not accept any word w /∈ L.

Outline

1 Turing Machines

2 Complexity Classes
Complexity Measures
Complexity Classes
Relationships
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Time Complexity

Definition: DTIME, NTIME, ATIME

Let f : N0 → N0.

Complexity class DTIME(f) contains all languages accepted in
time f by some DTM.

Complexity class NTIME(f) contains all languages accepted in
time f by some NTM.

Complexity class ATIME(f) contains all languages accepted in
time f by some ATM.

Space Complexity

Definition: DSPACE, NSPACE, ASPACE

Let f : N0 → N0.

Complexity class DSPACE(f) contains all languages accepted in
space f by some DTM.

Complexity class NSPACE(f) contains all languages accepted in
space f by some NTM.

Complexity class ASPACE(f) contains all languages accepted in
space f by some ATM.

ICAPS 2006
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Polynomial Complexity Classes

Let P be the set of polynomials p : N0 → N0.

Definition: P, NP, . . .

P =
⋃

p∈P
DTIME(p)

NP =
⋃

p∈P
NTIME(p)

AP =
⋃

p∈P
ATIME(p)

PSPACE =
⋃

p∈P
DSPACE(p)

NPSPACE =
⋃

p∈P
NSPACE(p)

APSPACE =
⋃

p∈P
ASPACE(p)

Exponential Complexity Classes

Let P be the set of polynomials p : N0 → N0.

Definition: EXP, NEXP, . . .

EXP =
⋃

p∈P
DTIME(2p)

NEXP =
⋃

p∈P
NTIME(2p)

AEXP =
⋃

p∈P
ATIME(2p)

EXPSPACE =
⋃

p∈P
DSPACE(2p)

NEXPSPACE =
⋃

p∈P
NSPACE(2p)

AEXPSPACE =
⋃

p∈P
ASPACE(2p)
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Doubly Exponential Complexity Classes

Let P be the set of polynomials p : N0 → N0.

Definition: 2-EXP, . . .

2-EXP =
⋃

p∈P
DSPACE(22p

)

. . .

Standard Complexity Classes Relationships

Theorem

P⊆ NP ⊆AP
PSPACE⊆ NPSPACE ⊆APSPACE

EXP⊆ NEXP ⊆AEXP
EXPSPACE⊆NEXPSPACE⊆AEXPSPACE

2-EXP⊆ . . .
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The Power of Nondeterministic Space

Theorem (Savitch 1970)

NSPACE(f) ⊆ DSPACE(f 2), and thus:

PSPACE = NPSPACE
EXPSPACE = NEXPSPACE

The Power of Alternation

Theorem (Chandra et al. 1981)

AP = PSPACE
APSPACE = EXP

AEXP = EXPSPACE
AEXPSPACE = 2-EXP

ICAPS 2006
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Planning and Complexity

Part 2: Classical Planning

Malte Helmert

June 7th, 2006
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2 Complexity Results

3 First-Order Tasks
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What We Consider

We begin with a simple planning formalism,
variable-free PDDL2.1 level 1:

deterministic

fully observable

grounded

no numbers (level 2)

no discretized durative actions (level 3)

no continuous durative actions (level 4)

no axioms or timed initial literals (PDDL2.2)

no trajectory constraints or preferences (PDDL3)

Operators

Let V be a set of propositional variables.

Definition: Operator

An operator for V is a pair 〈χ, e〉
of precondition χ and effect e, where

χ is a propositional formula over V

e is an effect, which is either

a simple add effect v, where v ∈ V ,
a simple delete effect ¬v, where v ∈ V ,
a conditional effect ϕB e′, where ϕ is a propositional formula
over V and e′ is an effect, or
a conjunctive effect e′ ∧ e′′, where e′ and e′′ are effects

ICAPS 2006
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Planning Tasks

Definition: Planning task

A planning task is a 4-tuple 〈V, s0, O, χ?〉, where

V is a finite set of propositional state variables,

truth assignments to V are called states

s0 is the initial state,

O is a finite set of operators for V ,

χ? is the goal, a propositional formula over V

Add Sets and Delete Sets

Definition: Add set, delete set

Let e be an effect and s be a state.
Define the add set e+(s) and delete set e−(s):

simple add effect e = v:

e+(s) = {v}
e−(s) = ∅

simple delete effect e = ¬v:

e+(s) = ∅
e−(s) = {v}

ICAPS 2006

Tutorial on Planning and Complexity 25



Add Sets and Delete Sets (continued)

Definition: Add set, delete set (ctd.)

Let e be an effect and s be a state.
Define the add set e+(s) and delete set e−(s):

conditional effect e = (ϕB e′):

e+(s) =

{
e′+(s) if s |= ϕ

∅ if s 6|= ϕ

e−(s) =

{
e′−(s) if s |= ϕ

∅ if s 6|= ϕ

conjunctive effect e = (e′ ∧ e′′):

e+(s) = e′+(s) ∪ e′′+(s)
e−(s) = e′−(s) ∪ e′′−(s)

Operator Semantics

Definition: Applying operators

Operator o = 〈χ, e〉 is applicable in state s iff s |= χ.
The result of applying operator o (or effect e) in s,
written as o(s) (or e(s)), is the state s′ with:

s′(v) =











T if v ∈ e+(s)

F if v ∈ e−(s) and v /∈ e+(s)

s(v) otherwise

ICAPS 2006

26 Tutorial on Planning and Complexity



Plans

Let Π = 〈V, s0, O, χ?〉 be a planning task.

Definition: Plan

A plan for Π is a sequence of operators
π = o1 . . . on ∈ O∗ such that:

For all i ∈ {1, . . . , n}, oi is applicable in si−1,
where si = oi(si−1)

sn |= χ?

The Planning Problem

PlanEx (Plan Existence)

Given: Planning task Π
Question: Is there a plan for Π?

PlanLen (Bounded Plan Existence)

Given: Planning task Π, bound K ∈ N0

Question: Is there a plan for Π of length at most K?

ICAPS 2006
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Outline

1 Classical Planning

2 Complexity Results
PlanEx vs. PlanLen

Membership in PSPACE
Hardness for PSPACE

3 First-Order Tasks

Plan Existence vs. Bounded Plan Existence

PlanEx ≤p PlanLen

A planning task with n state variables has a plan
iff it has a plan of length at most 2n − 1.
 polynomial reduction
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Membership in PSPACE

PlanLen ∈ PSPACE

Show PlanLen ∈ NPSPACE and use Savitch’s theorem.
Nondeterministic algorithm:

def plan(〈V, s0, O, χ?〉, K):
s := s0

k := K
repeat until s |= χ?:

guess o ∈ O
reject if o not applicable in s
set s := o(s)
reject if k = 0
set k := k − 1

accept

Hardness for PSPACE

Idea: generic reduction

For a fixed polynomial p, given DTM M and input w,
generate planning task which is solvable
iff M accepts w in space p(|w|)

For simplicity, restrict to TMs which
never move to the left of the initial head position
(no loss of generality)
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Reduction: State Variables

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions I = {1, . . . , p(n)}.

State variables

stateq for all q ∈ Q

headi for all i ∈ I ∪ {0, p(n) + 1}

contenti,a for all i ∈ I, a ∈ Σ�

Reduction: Initial State

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions I = {1, . . . , p(n)}.

Initial state

Initially true:

stateq0

head1

contenti,wi
for all i ∈ {1, . . . , n}

contenti,� for all i ∈ I \ {1, . . . , n}

Initially false:

all others
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Reduction: Operators

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions I = {1, . . . , p(n)}.

Operators

One operator for each transition rule δ(q, a) = (q ′, a′,∆) and each
cell position i ∈ I:

precondition: stateq ∧ headi ∧ contenti,a

effect: ¬stateq ∧ ¬headi ∧ ¬contenti,a
effect: ∧ stateq′ ∧ headi+∆ ∧ contenti,a′

Reduction: Goal

Let p be the space bound polynomial.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions I = {1, . . . , p(n)}.

Goal
∨

q∈QY
stateq
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Outline

1 Classical Planning

2 Complexity Results

3 First-Order Tasks
First-Order Tasks
Membership in EXPSPACE
Hardness for EXPSPACE
Bounded Plan Existence?

First-Order Tasks

we considered
propositional state variables (0-ary predicates) and
grounded operators (0-ary schematic operators)

reasonable: most planning algorithms
work on grounded representations

predicate arity is typically small (a constant?)

How do the complexity results change if we introduce first-order
predicates and schematic operators?

 formalization omitted
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Membership in EXPSPACE

PlanEx,PlanLen ∈ EXPSPACE

input size n

 at most 2n grounded state variables

 at most 2n grounded operators

can ground the task in exponential time, then use the earlier
PSPACE algorithms

Hardness for EXPSPACE

Idea: Adapt the earlier reduction from PlanEx to encode Turing
Machine contents more succinctly.
Assume relevant tape positions are now I = {1, . . . , 2n}.
We need to encode the computation as a planning task in
polynomial time!

Objects

0, 1

Predicates

stateq() for all q ∈ Q

head(?b1, . . . , ?bn)

contenta(?b1, . . . , ?bn)
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Reduction: Example Operator

Operator example

Schematic operator for transition rule δ(q, a) = (q ′, a′,+1)

parameters: ?b1, . . . , ?bn

precondition:
stateq

∧ head(?b1, . . . , ?bn)
∧ contenta(?b1, . . . , ?bn)

effect:
¬stateq

∧¬head(?b1, . . . , ?bn)
∧¬contenta(?b1, . . . , ?bn)
∧ stateq′

∧ advance-head
∧ content′

a
(?b1, . . . , ?bn)

Reduction: Example Operator (continued)

Operator example (ctd.)

advance-head = ((?bn = 0)

B head(?b1, . . . , ?bn−1, 1))

∧ ((?bn−1 = 0∧?bn = 1)

B head(?b1, . . . , ?bn−2, 1, 0))

∧ ((?bn−2 = 0∧?bn−1 = 1∧?bn = 1)

B head(?b1, . . . , ?bn−3, 1, 0, 0))

∧ . . .

∧ ((?b1 = 0∧?b2 = 1 ∧ · · · ∧?bn = 1)

B head(1, 0, . . . , 0))
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Plan Existence vs. Bounded Plan Existence

Our earlier reduction from PlanEx to PlanLen no longer
works: the shortest plan can have length doubly exponentially
in the input size, so that the bound cannot be written down in
polynomial time

Indeed, PlanLen is actually easier than PlanEx

for this planning formalism (NEXP-complete).
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Planning and Complexity

Part 3: Conditional Planning

Malte Helmert

June 7th, 2006

Outline

1 Conditional Planning
Overview
Planning Tasks
Plans
The Planning Problem
Special Cases

2 Full Observability

3 Deterministic Operators

4 General Case
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Overview

Extend planning model by

nondeterminism and

restricted observability

First consider each in isolation, then combination

Nondeterministic Operators

Let V be a set of propositional variables.

Definition: Nondeterministic operator

An operator for V is a pair 〈χ, e〉
of precondition χ and effect e, where

χ is a propositional formula over V

e is an effect, which is either

a simple add effect v, where v ∈ V ,
a simple delete effect ¬v, where v ∈ V ,
a conditional effect ϕB e′, where ϕ is a propositional formula
over V and e′ is an effect,
a conjunctive effect e′ ∧ e′′, where e′ and e′′ are effects, or
a choice effect e′|e′′, where e′ and e′′ are effects
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Planning Tasks

Definition: Planning task

A planning task is a 5-tuple 〈V, Vo, χ0, O, χ?〉, where

V is a finite set of propositional state variables

truth assignments to V are called states
sets of states are called belief states

Vo ⊆ V is the set of observable state variables

χ0 is the initial states formula

O is a finite set of nondeterministic operators for V

χ? is the goal, a propositional formula over V

Possibilities

Definition: Possibilities

Let e be a nondeterministic effect.
Define the set of possibilities poss(e):

simple add or delete effect e:
poss(e) = {e}

conditional effect e = (ϕB e′):
poss(e) = { ϕB e′p | e′p ∈ poss(e′) }

conjunctive effect e = (e′ ∧ e′′):
poss(e) = { e′p ∧ e′′p | e′p ∈ poss(e′), e′′p ∈ poss(e′′) }

choice effect e = e′|e′′:
poss(e) = poss(e′) ∪ poss(e′′)
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Operator Semantics

Definition: Applying operators

Operator o = 〈χ, e〉 is applicable in belief state B
iff s |= χ for all s ∈ B.
The result of applying o in B, written as o(B),
is defined as:
o(B) = { ep(s) | s ∈ B, ep ∈ poss(e) }

Observations

Let Π = 〈V, Vo, χ0, O, χ?〉 be a planning task.

Definition: Observations

An observation ϕ for Π is a propositional formula over the
observable state variables Vo.
The positive result of applying ϕ to a belief state B
is the belief state ϕ+(B) = { s ∈ B | s |= ϕ }.
The negative result of applying ϕ to a belief state B
is the belief state ϕ−(B) = { s ∈ B | s 6|= ϕ }.
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Conditional Plans

Nondeterminism:

must extend notion of plans beyond action sequences

need strategies or policies, or even programs

Different kinds of reachability:
weak, strong cyclic, strong plans

weak plans are fairly uninteresting

we consider strong (acyclic) plans

results extend to cyclic plans

Plans

Let Π = 〈V, Vo, χ0, O, χ?〉 be a planning task.

Definition: Plan

A plan for Π is a finite tree of

operator nodes for some operator o

observation nodes for some observation ϕ

goal nodes

All nodes have an associated belief state B.
Operator and observation nodes are internal nodes,
goal nodes are leaves.
. . .
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Plans (continued)

Let Π = 〈V, Vo, χ0, O, χ?〉 be a planning task.

Definition: Plan (ctd.)

The plan must satisfy the following properties:

root node:
belief state contains a state s iff s |= χ0

operator nodes:
operator o is applicable in B,
exactly one child, with belief state o(B)

observation nodes:
exactly two children, with belief states ϕ+(B), ϕ−(B)

goal nodes:
belief state contains state s only if s |= χ?

Cyclic Plans

Side Remark

We could adjust the definition to cyclic plans as follows:

instead of trees, allow general directed graphs

instead of root, have dedicated initial node

require that each node can reach some goal node
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The Planning Problem

PlanEx (Plan Existence)

Given: Planning task Π
Question: Is there a plan for Π?

we do not consider bounded plan existence

notions of plan size become more complicated

important issue: plan representation

Special Cases

fully observable case (Vo = V )
 can assume that all belief sets are singletons
 (always observe until this is true)

deterministic operator case (no choice effects)
 do not need observations
 can assume that plans are action sequences
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Outline

1 Conditional Planning

2 Full Observability
Membership in EXP
Hardness for EXP

3 Deterministic Operators

4 General Case

Membership in EXP

PlanEx ∈ EXP

Backward induction

def plan(〈V, χ0, O, χ?〉):
Let S be the set of states.
solved := { s ∈ S | s |= χ? }
repeat until fixpoint:

for each s ∈ S, o ∈ O:
if o applicable in {s} and o({s}) ⊆ solved:

solved := solved ∪ {s}
accept iff s ∈ solved for all states s with s |= χ0
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Hardness for EXP

Idea:

adapt hardness proof for classical case to
alternating Turing Machines

existential states
 separate operators

universal states
 operators with nondeterministic effects

Reduction: State Variables

Let p be the space bound polynomial.

Given ATM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions I = {1, . . . , p(n)}.

State variables

stateq for all q ∈ Q

headi for all i ∈ I ∪ {0, p(n) + 1}

contenti,a for all i ∈ I, a ∈ Σ�
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Reduction: Initial State

Initial state

Initially true:

stateq0

head1

contenti,wi
for all i ∈ {1, . . . , n}

contenti,� for all i ∈ I \ {1, . . . , n}

Initially false:

all others

Reduction: Operators

Operators

For q, q′ ∈ Q, a, a′ ∈ Σ�, ∆ ∈ {−1,+1}, i ∈ I, define

pre
q,a,i

= stateq ∧ headi ∧ contenti,a

effq,a,q′,a′,∆,i = ¬stateq ∧ ¬headi ∧ ¬contenti,a
effq,a,q′,a′,i = ∧ stateq′ ∧ headi+∆ ∧ contenti,a′
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Reduction: Operators (continued)

Operators (ctd.)

For existential states q ∈ Q∃, a ∈ Σ�, i ∈ I:
Let (q′

j
, a′

j
,∆j) (j ∈ {1, . . . , k}) be those triples with

((q, a), (q′
j
, a′

j
,∆j)) ∈ δ.

For each j ∈ {1, . . . , k}, one operator:

precondition: preq,a,i

effect: effq,a,q
′

j
,a

′

j
,∆j ,i

Reduction: Operators (continued)

Operators (ctd.)

For universal states q ∈ Q∀, a ∈ Σ�, i ∈ I:
Let (q′

j
, a′

j
,∆j) (j ∈ {1, . . . , k}) be those triples with

((q, a), (q′
j
, a′

j
,∆j)) ∈ δ.

One operator:

precondition: pre
q,a,i

effect: effq,a,q
′

1
,a

′

1
,∆1,i| . . . |effq,a,q

′

k
,a

′

k
,∆k,i
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Reduction: Goal

Goal
∨

q∈QY
stateq

Outline

1 Conditional Planning

2 Full Observability

3 Deterministic Operators
Membership in EXPSPACE
Hardness for EXPSPACE

4 General Case
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Membership in EXPSPACE

PlanEx ∈ EXPSPACE

Generate a classical propositional planning task which has one
state variable for each state of the input task.

states of the generated planning task correspond to
belief states of the input task

operators, initial states, goal easy to convert

 exponential-time reduction to a problem in PSPACE
 EXPSPACE algorithm

Hardness for EXPSPACE

Idea:

generic reduction for DTMs with exponential space

TM states and tape head position easily representable
with polynomially many state variables

Problem:

must encode exponentially many tape cell contents
in polynomially many state variables
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Hardness for EXPSPACE (continued)

The trick:

only keep track of the contents one tape cell
 watched tape cell

which tape cell is watched is unobservable

 plan must work correctly for all possible choices

 plan must remain faithful to the TM computation

Reduction: State Variables

Let p be a polynomial such that 2p is a space bound.

Given DTM 〈Σ,�, Q, q0, l, δ〉 and input w1 . . . wn,
define relevant tape positions I = {1, . . . , 2p(n)}.

State variables

Convention:
Use bars to denote vectors of p(n) state variables
encoding a number in {1, . . . , 2p(n)}.

stateq for all q ∈ Q

head

contenta for all a ∈ Σ�

watched
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Reduction: Initial State Formula

Initial state formula

χ0 = stateq0
∧

∧

q∈Q\{q0}

¬stateq

∧ head = 1

∧
n∧

i=1

((watched = i) → contentwi
)

∧ (watched > n) → content�

∧
∧

a∈Σ�

∧

a′∈Σ�\{a}

¬(contenta ∧ contenta′)

Note: watched tape cell unspecified

Reduction: Operators

Operators

One operator for each transition rule δ(q, a) = (q ′, a′,∆):

precondition:
stateq

∧ ((head = watched) → contenta)

If ∆ = −1, conjoin with head > 1.
If ∆ = +1, conjoin with head < 2p(n).

effect:
¬stateq

∧ stateq′

∧ (head := head + ∆)

∧ ((head = watched) → (¬contenta ∧ contenta′))
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Reduction: Goal

Goal
∨

q∈QY
stateq

Outline

1 Conditional Planning

2 Full Observability

3 Deterministic Operators

4 General Case
Membership in 2-EXP
Hardness for 2-EXP
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Membership in 2-EXP

PlanEx ∈ 2-EXP

Explicitly construct the transition graph for the set of
belief states, then solve by backward induction.
(Translate observations into operators.)

Hardness for 2-EXP

PlanEx is 2-EXP-hard (Rintanen 2004)

Combine the techniques of the previous two proofs:

Consider alternating Turing Machine
with exponential space

Use (unobservable) watched tape cell to reduce planning task
description from exponential to polynomial size

 result follows with AEXPSPACE = 2-EXP
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Planning and Complexity

Part 4: Numeric Planning

Malte Helmert

June 7th, 2006

Outline

1 Numeric Planning
Overview
Planning Formalisms
Planning Tasks

2 Problem Hierarchy

3 Undecidable Cases

4 Decidable Cases

5 Conclusion
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Infinite State Spaces

We now introduce numbers.

 infinite state spaces

 decidability issues

Where Numbers Appear

Base formalism:

STRIPS subset of PDDL2.1 level 2

Numerical state variables

Numerical preconditions

Numerical goal conditions

Numerical effects

 How does the type of numerical conditions and effects
 affect the hardness of the problem?

ICAPS 2006

54 Tutorial on Planning and Complexity



Planning Formalisms

Definition: Planning formalism

A planning formalism is represented by a triple 〈G,P, E〉,
where G,P, E ⊆

⋃
k∈N

(Qk → Q).

G: functions in goal conditions

P: functions in operator preconditions

E : functions in operator effects

States

From now, VP and VN are disjoint finite sets of variables,
and C,G,P, E ⊆

⋃
k∈N

(Qk → Q).

Definition: State

A state over 〈VP, VN〉 is a pair

〈α, β〉 ∈ (VP → {T,F}) × (VN → Q).
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Conditions

Definition: Condition

A condition over 〈VP, VN, C〉 is either

a propositional condition:
v or ¬v (v ∈ VP), or

a numerical condition:
f(v1, . . . , vk) relop 0
for k ∈ N, f ∈ C of arity k, v1, . . . , vk ∈ VN,
relop ∈ {=, 6=, <,≤,≥, >}

Effects

Definition: Effect

An effect over 〈VP, VN, E〉 is either

a propositional effect:
v or ¬v (v ∈ VP), or

a numerical effect:
v0 := f(v0, v1, . . . , vk)
for k ∈ N0, f ∈ E of arity k + 1, v0, v1, . . . , vk ∈ VN
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Operators

Definition: Operator

An operator over 〈VP, VN, C, E〉 is a pair 〈p, e〉, where

p is a finite set of conditions over 〈VP, VN, C〉

e is a finite set of effects over 〈VP, VN, E〉

Operator Semantics

Definition: Applicable operators

Operator 〈p, e〉 is applicable in state 〈α, β〉 iff

for all propositional conditions l ∈ p:
α |= l

for all numerical conditions f(v1, . . . , vk) relop 0 ∈ p:
f(β(v1), . . . , β(vk)) relop 0
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Operator Semantics (continued)

Definition: Applying operators

The result of applying operator 〈p, e〉 to state 〈α, β〉
is the state 〈α′, β′〉 with:

α′(v) =






T if v ∈ e

F if ¬v ∈ e and v /∈ e

α(v) otherwise

β′(v0) =

{
f(β(v0), . . . , β(vk)) if v0 := f(v0, . . . , vk) ∈ e

β(v0) otherwise

Planning Tasks

Definition: Planning task

A planning task of planning formalism 〈G,P, E〉
is a 5-tuple 〈VP, VN, s0, G,O〉 with:

VP finite set of propositional state variables

VN finite set of numerical state variables
(disjoint from VP)

s0 state over 〈VP, VN〉 (initial state)

G finite set of conditions over 〈VP, VN,G〉 (goal)

O finite set of operators over 〈VP, VN,P, E〉

 definition of plans omitted
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Outline

1 Numeric Planning

2 Problem Hierarchy
The Planning Problem
Condition Types
Effect Types
Problem Family

3 Undecidable Cases

4 Decidable Cases

5 Conclusion

Plan Existence

Let 〈G,P, E〉 be a planning formalism.

PlanEx-〈G,P, E〉 (Plan Existence)

Given: Planning task Π of formalism 〈G,P, E〉
Question: Is there a plan for Π?
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Possible Values for G and P

C∅ = ∅:
no numerical conditions

C0 = {x 7→ x}:
compare to 0

Cc = { x 7→ x − c | c ∈ Q }:
compare to constants

C= = { (x1, x2) 7→ x1 − x2 }:
compare other numerical state variable

Cp = Q[x]:
compare polynomial of state variable to 0

Cp+ = Q[x1, x2, x3, . . . ]:
compare polynomial of multiple state variables to 0

Possible Values for G and P : Hierarchy

C∅ C0 Cc Cp

C= Cp+
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Possible Values for E

E∅ = ∅:
no numerical effects

E+1 = { x 7→ x + c | c ∈ {+1} }:
increase by 1

E±1 = { x 7→ x + c | c ∈ {−1,+1} }:
increase or decrease by 1

E+c = { x 7→ x + c | c ∈ Q+ }:
increase by constants

E±c = { x 7→ x + c | c ∈ Q }:
increase or decrease by constants

Possible Values for E (continued)

E=c = { x 7→ c | c ∈ Q }:
assign constant

E=c

+1
= E=c ∪ E+1:

increase by 1 or assign constant

E=c

±1
= E=c ∪ E±1:

increase or decrease by 1 or assign constants

E=c

+c
= E=c ∪ E+c:

increase by constants or assign constant

E=c

±c
= E=c ∪ E±c:

increase or decrease by constants, or assign constants
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Possible Values for E (continued)

Ep = Q[x]:
assign polynomial of old value

Ep+ = Q[x1, x2, x3, . . . ]:
assign polynomial of old values of multiple state variables

Possible Values for E : Hierarchy

E+c

E∅ E+1 E±c

E±1

E=c

+c

E=c E=c

+1 E=c

±c
Ep Ep+

E=c

±1

ICAPS 2006

62 Tutorial on Planning and Complexity



How Many Questions to Answer?

Investigate decidability status of PlanEx-〈G,P, E〉 for. . .

6 values of G

6 values of P

12 values of E

 432 combinations (not all interesting)

Outline

1 Numeric Planning

2 Problem Hierarchy

3 Undecidable Cases
Diophantine Equations
PCP
Abacus Programs

4 Decidable Cases

5 Conclusion
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Multi-Variable Polynomials in Goals

Theorem: PlanEx-〈Cp+, C∅, E+1〉 is undecidable

Proof idea.

DiophantN0
: Given k ∈ N and p ∈ Q[x1, . . . , xk],

does p have a solution in N
k

0
?

Map to planning task:

State variables: numerical variables x1, . . . , xk

Initial state: all set to 0

Goal: p(x1, . . . , xk) = 0

Operators: one operator [EFF: xi := xi + 1]
for each i ∈ {1, . . . , k}

Comparing Variables in Goals

Polynomials in Effects

Theorem: PlanEx-〈C=, C∅, Ep〉 is undecidable

Proof idea.

MPCP7: Given word pairs (a1, b1), . . . , (a7, b7) in {1, 2}∗,
is there a sequence i1, . . . , iM ∈ {1, . . . , 7}+

with i1 = 1 and ai1
ai2

. . . aiM
= bi1

bi2
. . . biM

?

Map to planning task:

State variables: numerical variables a, b

Initial state: a set to #a1, b set to #b1

Goal: a = b

Operators: one operator
[EFF: a := 10|ai |a + #ai; b := 10|bi |b + #bi]
for each i ∈ {1, . . . , 7}
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Comparing to Zero in Goals

Polynomials in Effects

Theorem: PlanEx-〈C0, C∅, Ep〉 is undecidable

Proof idea.

very similar reduction from MPCP7

Abacus Programs

Definition: Abacus program

An abacus program is a 5-tuple 〈V,L, l0, lH , P 〉:

V finite set of variables or registers

L finite set of labels

start label l0 ∈ L

halt label l? ∈ L

program P : mapping of labels to

increment statements
INC v;→ l′ for v ∈ V , l′ ∈ L, or
conditional decrement statements
DEC v;→ l

=
, l> for v ∈ V , l

=
, l> ∈ L

 semantics omitted
 abacus program formalism is Turing-complete
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Comparing to Zero in Preconditions

Add/Subtract 1 in Effects

Theorem: PlanEx-〈C∅, C0, E±1〉 is undecidable

Proof idea.

Map abacus program 〈V,L, l0, l?, P 〉 to planning task:

State variables: propositional: L, numerical: V

Initial state: l0 set to T, other labels set to F;
numerical variables set to 0

Goal condition: l?

Operators:
for P (l) = INC v;→ l′:

[PRE: l; EFF: ¬l; l′; v := v + 1]

for P (l) = DEC v;→ l=, l>:

[PRE: l; v = 0; EFF: ¬l; l
=
]

[PRE: l; v > 0; EFF: ¬l; l>; v := v − 1]

Comparing Variables in Preconditions

Adding 1 in Effects

Theorem: PlanEx-〈C∅, C=, E+1〉 is undecidable

Proof idea.

very similar reduction from halting problem
for abacus programs
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Outline

1 Numeric Planning

2 Problem Hierarchy

3 Undecidable Cases

4 Decidable Cases
Trivial
Domain Simplification
Condition Simplification
Precondition Elimination
Cycle Counting

5 Conclusion

Trivial Results

Theorem: PlanEx-〈C∅, C∅, Ep+〉 is decidable

Proof idea.

ignore numerical state variables

Theorem: PlanEx-〈Cp+, Cp+, E=c〉 is decidable

Proof idea.

numerical variables assume a finite range of values
 compile away
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Scalable Function Sets

Definition: scalable function sets

A set of rational functions F is called scalable if for each q ∈ Q+

and for each n-ary function f ∈ F there is some function f[q] ∈ F
such that for all x1, . . . , xn ∈ Q,

sgn(f(x1, . . . , xn)) = sgn(f[q](qx1, . . . , qxn)).

Examples:

Cp: (x 7→ p(x))[q] = (x 7→ p(x

q
))

Cc: (x 7→ x − c)[q] = (x 7→ x − qc)

C=: ((x1, x2) 7→ x1 − x2)[q] = ((x1, x2) 7→ x1 − x2)

Domain Simplification

Theorem: Domain simplification

Let 〈G,P, E〉 be a planning formalism such that
G and P are scalable and E ∈ {E=c, E+c, E

=c

+c
, E±c, E

=c

±c
}.

Then tasks of that formalism can be effectively transformed
(within the same formalism) so that

numerical effects are of the type
v := c or v := v + c for c ∈ Z

initial values of numerical state variables are integers

Proof idea.

. . . [continued on next slide]

 numerical state variables only assume integer values
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Domain Simplification (continued)

Theorem: Domain simplification (ctd.)

Proof idea.

find common denominator d of rationals in the task

multiply initial values by d

replace v := c by v := dc

replace v := v + c by v := v + dc

replace conditions on function f by conditions on f[d]

Condition Simplification

Theorem: Condition simplification

Let 〈G,P, E〉 be a planning formalism such that
G and P are scalable and E ∈ {E=c, E+c, E

=c

+c
, E±c, E

=c

±c
}.

Then PlanEx-〈G,P, E〉 ≤T

Then PlanEx-〈(G \ Cp) ∪ Cc, (P \ Cp) ∪ Cc, E〉.

Proof idea.

. . . [continued on next slide]
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Condition Simplification (continued)

Theorem: Condition simplification (ctd.)

Proof idea.

apply domain simplification

for each condition p(v) relop 0, calculate integers l, u
such that l < x < u for all x satisfying p(x) = 0

replace the condition by:

(v ≤ l ∧ p(l) relop 0)
∨ (v = l + 1 ∧ p(l + 1) relop 0)
∨ . . .
∨ (v = u − 1 ∧ p(u − 1) relop 0)
∨ (v ≥ u ∧ p(u) relop 0)

compile away disjunctions

Precondition Elimination

Theorem: Precondition elimination

Let G be a scalable function set and E ∈ {E=c, E+c, E
=c

+c
}.

Then PlanEx-〈G, Cp, E〉 ≤T PlanEx-〈G, C∅, E〉.

Proof idea.

ranges of numerical state variables
fall into finitely many equivalence classes

introduce proposition for each equivalence class
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Cycle Counting

Theorem: PlanEx-〈Cc ∪ C=, C∅, E
=c

±c
〉 is decidable

Cycle Counting algorithm

numerical state variables only matter for the goal
 focus on finite propositional part

compute set Π? of all non-looping paths from
propositional initial state to a propositional goal state

compute set Πc of all minimal cycles
in the propositional state space

generate integer program representing valid plans:
. . . [continued on next slide]

solve integer program

Cycle Counting (continued)

Theorem: PlanEx-〈Cc ∪ C=, C∅, E
=c

±c
〉 is decidable (ctd.)

Cycle Counting algorithm

generate integer program representing valid plans:

one {0, 1}-variable for each path in Π?

one N0-variable for each cycle in Πc

constraint: choose exactly one path in Π?

constraint: only choose cycles incident to chosen path

constraint: goal condition is satisfied

ICAPS 2006

Tutorial on Planning and Complexity 71



Combining Cycle Counting and Simplification

Corollary

PlanEx-F is decidable for:

1 F = 〈Cp, C∅, E
=c

±c
〉

2 F = 〈C=, C∅, E
=c

±c
〉

3 F = 〈Cp, Cp, E
=c

+c
〉

4 F = 〈C=, Cp, E
=c

+c
〉

Proof idea.

for 1 and 3: condition simplification

for 3 and 4: precondition elimination

cycle counting

Outline

1 Numeric Planning

2 Problem Hierarchy

3 Undecidable Cases

4 Decidable Cases

5 Conclusion
Summary
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Summary of Results

type of effects decidable iff. . .

E∅, E
=c always

E+1, E
=c

+1
, E+c, E

=c

+c
G 6= Cp+ and P /∈ {C=, Cp+}

E±1, E
=c

±1
, E±c, E

=c

±c
G 6= Cp+ and P = C∅

Ep, Ep+ G = C∅ and P = C∅

all undecidability results still hold
if {=, 6=} are the only relational operators

all undecidable formalisms still semi-decidable
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