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Preface

Planning activities such as detection, observation, data memorization, analysis, and
downloading for Earth watching and observing satellites is a challenging application of
automated planning and scheduling techniques.

Since the first Earth observation satellites, this task has evolved from handmade
plans to entirely automatically generated ones. It has also evolved from plans built off-
line on the ground in mission centers under the supervision of human operators to plans
built on-line on-board each satellite. It has finally evolved from the management of one
satellite to the centralized or distributed management of constellations of satellites. In
addition, the ability to perform on-board detection and data analysis added reactivity
requirements. On the other hand, the abilities of the new satellites in terms of attitude
agility offered more observation opportunities, but made the planning activity far more
complex. The future Earth watching and observation satellites will be autonomous in-
telligent cooperative robots.

The objective of this tutorial is first to present all the features of this challenging do-
main, then to show how planning problems can be stated (degrees of freedom, physical
constraints, user soft and hard requirements) using frameworks such as graph theory,
integer programming, constraint programming, scheduling and planning models, and
finally to show how they can be automatically solved using various techniques such as
greedy search, local search, tree search, or dynamic programming.

Tutorial outline:

• Some physical facts about Earth observing satellites

• How they are or could be managed

• How the management problem can be stated

• How it can be solved

• Results from experiments and practice

• A glance at the near and far future

Instructors

• Gérard Verfaillie graduated from Ecole Polytechnique (Paris) in 1971 and from
SUPAERO (Ecole Nationale Superieure de l’Aeronautique et de l’Espace, French
national engineering school in aeronautics and space, computer science special-
ization) in 1985. Since 1986, he has been working as a research engineer at
ONERA (Office National d’Etudes et de Recherches Aerospatiales, French gov-
ernment aerospace research center), in the computer science department, and
then in the automatic control department. He has been working from 2003 to 2005
as a research supervisor at LAAS/CNRS (Laboratoire d’Analyse et d’Architecture
des Systemes, Centre national de la recherche Scientifique, Systems analysis
and architecture laboratory, French national research center). His research ac-
tivity is related to models, methods, and tools for combinatorial optimization and
constrained optimization, especially for planning and decision-making. They take
place at the crossing between Operations Research and Artificial Intelligence. He
carried out studies for CNES (Centre National d’Etudes Spatiales, French space



agency), ESA (European Space Agency), Astrium or Airbus. He has been enti-
tled to supervise academic research since 1997 and teacher at SUPAERO since
1998.

• Michel Lemaitre is a research engineer, graduated from ENSEEIHT (Ecole Na-
tionale Superieure d’Electrotechnique, d’Electronique, d’Informatique, d’Hy-drau-
li-que et des Telecommunications, Toulouse, France) in 1972. He completed
a PhD degree in 1975 at LAAS/CNRS (Laboratoire d’Analyse et d’Architecture
des Systemes, Toulouse, France). From 1976 he worked at ONERA in Data
Bases, Software Engineering and Reactive Systems. Since 1996, his current
research interests include Constraint Programming, Algorithmics, and Decision
Theory. He was involved in several studies with CNES (Centre National d’Etudes
Spatiales) concerning mission planning and scheduling for Earth Observation
Satellites (SPOT and Pliades systems). He is currently involved in a joint ON-
ERA/CNES research program on autonomy in space, and supervises a PhD stu-
dent on fair allocation of satellite resources. He teaches at SUPAERO (Ecole
Nationale Suprieure de l’Aeronautique et de l’Espace).
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Tutorial outline

1. Some physical facts about Earth observing satellites.

2. How they are or could be managed.

3. How the management problem can be stated.

4. How it can be solved.

5. Results from experiments and practice.

6. A glance at the near and far future.
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Some physical facts
about

Earth observing satellites
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The orbit (1)

Usually: circular, quasi-polar, and heliosynchronous orbit.

Low altitude: some hundreds of kilometers (700-800 km).

Alternance of day and night periods.

Always the same local hour when passing the equator.
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The orbit (2)

Track of the satellite over one day, because of the rotation of the Earth on
itself.

Distance between two successive tracks at the equator: some thousands of
kilometers.

Complete cycle: some tens of days.
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The platform

Maintenance of the satellite on its reference orbit: regular orbital
manoeuvres via ergol thrusters.

Attitude control: see further.

Energy production via solar panels.

Energy storage via batteries.

Communication with the ground via low-rate antennas.

Communication only when the satellite is in visibility of a ground station:
around 10% of the time.
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The payload

One or several observation instruments.

Optical, infra-red, or radar, eventually multi-spectral.

Various resolutions, until sub-metric ones.

Various swaths on the ground, from some hundreds of kilometers until some
kilometers.

Mass memory to store data before downloading them via high-rate
antennas.
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Non agile (optical) satellites (1)

Example: the French SPOT family.
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Non agile (optical) satellites (2)

Maintenance of the satellite in a geocentric attitude.

One degree of freedom in terms of observation via a mobile mirror in
front of each instrument.

The Spot satellites seen from below:
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Non agile (optical) satellites (3)

Possible sequence of observations:

Fixed observation window
associated with each candidate observation.

Incompatibilities between observations
due to an overlapping between observation windows
or to an insufficient transition time
to allow the required mirror movement.

Satellite
ground
track

corridor
Visibility

Selected

Candidate

Observation
window
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Agile (optical) satellites (1)

Example: the American Ikonos satellite, the French Pléiades ones.
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Agile (optical) satellites (2)

Permanent control of the satellite attitude along the three axes (roll,
pitch, and yaw) via gyroscopic actuators.

Allows the satellite to perform observations and transitions between
observations.

See video simulation.
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Agile (optical) satellites (3)

Possible sequence of observations:

Visibility window
associated with each candidate observation.

Variable observation window
within this visibility observation.

More degrees of freedom in terms of observation.

More observation sequence opportunities.

Satellite
ground
track

corridor
Visibility

Selected

Candidate

Observation
window

Visibility
window
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Data memorization and downloading

Within the visibility window of a ground station, observation data can be
directly downloaded.

Otherwise, they must be memorized in a mass memory and downloaded
afterwards.

The available mass memory is limited.

Data downloading takes time and must be performed within limited
visibility windows.

In case of an agile satellite, data downloading ability depends on the
satellite attitude.
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Energy production

Energy is limited.

It is produced by solar panels only during day periods.

In case of an agile satellite, it depends on the satellite attitude.
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Possible observation failures

In case of an optical satellite, the main source of observation failure is the
possible Earth cloud cover, which is not accurately predictable.
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Summary

A space robot.

No obstacle to avoid. Only a reference trajectory to maintain.

An attitude to control.

No action on the world. Only observations to perform and observation data
to download via equipment activations

Limited communications with the ground within visibility windows.

No opportunity for repairing. Possible reconfigurations using redundant
equipments.
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How
Earth observing satellites
are or could be managed
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The usual approach

Daily planning of all the satellite activities, performed on the ground, given
the current user observation requests.

Uploading to the satellite of a very precise activity plan (all the basic
activities with precise activation dates), without any on-board re-planning
opportunity.

reception

TC TM data
Observation

Processed
images

requests
Observation

center
Mission

Users

Daily
activity

plans

Observation
data

station

Satellite

Control
center

Data
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The usual resulting problem (1)

Each day, to build for the next day an activity plan that is executable and
may satisfy as well as possible the user observation requests.

At the beginning, performed by hand with a large world map and small scraps
of paper.

Then, the same thing with computer support to visualize observation
requests and planning choices and to check plan executability.

Finally, automatic planning on the basis of:

1. the current user observation requests;

2. a plan quality evaluation criterion;

3. a model of the observation requirements;

4. a model of the satellite capabilities.
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The usual resulting problem (2)

Automatic

User

requests
observation

Quality
evaluation
criterion

capability
Satellite

model

requirement
Observation

model

Physical system model

User model

planning
Activity

plan

No special difficulties with the physical system model.

Main difficulties with the user model, especially with the plan quality
evaluation criterion.

ICAPS Tutorial, Planning activities for Earth watching and observing satellites and constellations, Cumbria, UK, June 2006 20

How to evaluate an activity plan (1)

1. It is usually not possible to satisfy at the same time all the user observation
requests: how to evaluate a set of selected observations (and thus a
set of not selected ones)?

2. Earth observation systems are very expensive. In Europe, they are more and
more funded by several countries or several civil and military organisations:
how to evaluate a set of selected observations from the point of view
of a fair sharing between owner entities?

3. Some observation requests require several elementary observations (for
example, a stereo observation request or a large area observation request):
how to evaluate a request partial satisfaction?

4. There may be various ways of performing a given observation (for example,
with various angular conditions), resulting in various quality levels:
how to take into account the expected quality?

ICAPS Tutorial, Planning activities for Earth watching and observing satellites and constellations, Cumbria, UK, June 2006 21



How to evaluate an activity plan (2)

5. When an observation is planned, its success is not guaranteed, mainly
because of the possible presence of clouds (with optical satellites):
how to take into account this uncertainty?

6. New observation requests may arrive at any time, but there is no accurate
model of this flow:
how to deal efficiently with the dynamic nature of the problem?

7. Building an optimal activity plan over the next day is not the real problem.
The real problem is to satisfy as well as possible the user observation
requests all through the satellite life:
how to plan activities for the next day by taking into account the
days after?
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The resulting problem

A dynamic multi-criteria constrained optimization problem under
uncertainty.

Usual size: from some tens to some hundreds of candidate observations
to consider.
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Current and future changes
in the satellite management approach

1. From the management of one satellite to the management of
constellations of satellites, eventually not homogeneous (not the same
instruments, not the same orbits, not the same degrees of freedom in terms
of observation . . . );

2. From the centralized management of one satellite or one constellation to
the distributed or coordinated management of several space observation
systems managed by independent entities;

3. From a rigid management (planning each day for the next day) to a more
flexible one, for example, taking into account the arrival of urgent
requests;

4. From a ground management to an autonomous on-board management.
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Towards autonomous Earth observation satellites (1)

Main interest: to allow the satellite to react even out of visibility of a ground
station (that is usually 90% of its time), in order to improve its return in terms
of observation:

a. to allow it to reconfigure itself in case of failure and to recover as well as
possible the curse of its mission;

b. to take into account at any time the actual state of the satellite and the
actual level of its resources (energy, memory);

c. to detect the actual cloud cover in front of the satellite and to plan
observations only in cloud free areas;
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Towards autonomous Earth observation satellites (2)

d. to analyze roughly observation data, to remove too bad quality or
useless images, and thus to avoid memorizing and downloading them;

e. to detect ground phenomena via image on-board analysis and to
generate on-board new observation requests.

→ Towards intelligent Earth watching and observation agents.

EO-1: an operational example, with some of these capabilities.
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The impact on planning

From regular off-line ground planning to on-line on-board planning, with
interleaved planning and execution:

ON−LINE

EventsDecisions
Plans

Time

Execution

Planning

OFF−LINE

Time

Plans
ExecutionPlanning

1. to take into account any change in the system and environment states and
in the user requests;

2. to produce good quality decisions in good time;

3. to do that with limited computing resources.
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Two existing approaches

1. a plan-repair approach, for example via local search in case of change,
coming from the Planning and Scheduling community.
See for example (Chien & al.);

2. a decision-making approach, with variable look-ahead, coming from
the Real-time Search and Anytime Reasoning communities.
See for example (Damiani & al.).
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How
the management problem

can be stated
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Let us consider the special case of a non agile satellite and the central problem
of deciding upon observations over a given horizon (for example, one half
revolution of the satellite), with an additive gain associated with each selected
observation.

→ A selection problem: among a set S of candidate observation requests, to
select a subset S′ that is consistent and optimal (maximum total gain).

See (Bensana & al., Constraints, 1999) for a precise definition of the
problem.
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Many ways of modelling this problem

1. Graph Theory;

2. Multi Knapsack Problem;

3. Integer Linear Programming;

4. Valued Constraint Satisfaction Problem;

5. Constraint Programming;

6. Sequential Decision-making;

7. State and Action Models.

In fact, each community from Computer Science, Operations Research,
or Artificial Intelligence has its own solution.
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1. Graph Theory

See (Gabrel & al.).

A chaining weighted acyclic directed graph G:
{i, j} ∈ G iff observation i can be followed by observation j.

S EA B C D
2 1 3 2

Resulting problem: to find a longest path from S to E.

Strengths: Very simple formulation and efficient polynomial associated
algorithms.

Weaknesses: Does not allow other constraints to be taken into account.
Examples: limitations in terms of memory or energy, stereo observations . . .
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2. Multi Knapsack Problem

See (Vasquez & al.).
Max

nX
i=1

gi · xi

Subject to
nX

i=1

mi · xi ≤ M

nX
i=1

ei · xi ≤ E

∀{i, j} ∈ I, xi + xj ≤ 1

∀i, xi ∈ {0, 1}

Strengths: simple formulation and efficient optimal or approximate
associated algorithms.

Weaknesses: Does not allow some constraints to be taken into account.
Example: stereo observations.
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3. Integer Linear Programming

See (Gabrel & al.), (Bensana & al.).

Max
nX

i=1

gi · yi

Subject to
mX

j=1

mj · xj ≤ M,

mX
j=1

ej · xj ≤ E

∀{j, k} ∈ I, xj + xk ≤ 1

∀{i, j} ∈ M, yi = xj

∀{i, j, k} ∈ S, yi = xj/2 + xk/2

∀i, yi ∈ {0, 1}, ∀j, xj ∈ {0, 1}

Strengths: Allows most of the constraints to be taken into account.
Possible use of efficient ILP tools (example: CPlex).

Weaknesses: The upper bound provided by the linear relaxation is usually
poor → Limited cutting power and poor resulting efficiency, except
with sophisticated decomposition methods like column generation.
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4. Valued Constraint Satisfaction Problem

See (Bensana & al.), (Verfaillie & al.).

Similar formulation, except that non linear constraints and objectives are
allowed.

Strengths: Allows a more natural formulation.

Weaknesses: The computed upper bounds remain poor → Limited
cutting power and poor resulting efficiency, except with sophisticated
upper bound computation methods like for example Russian Doll Search.
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5. Constraint Programming

See (Lemâıtre & al.).

Similar formulation, except a higher level modelling language.

Strengths: Allows a very natural formulation. Possible use of efficient CP
tools (example: ILOG Solver).

Weaknesses: Constraint propagation performs poorly → Limited cutting
power and poor resulting efficiency.

ICAPS Tutorial, Planning activities for Earth watching and observing satellites and constellations, Cumbria, UK, June 2006 36

6. Sequential Decision-making

See (Verfaillie & al.), (Damiani & al.).

Problem seen as a sequential decision-making problem with local gains
over a finite horizon.

N(i) = ∅ → G
∗
(i) = g(i)

N(i) 6= ∅ → G
∗
(i) = g(i) + maxj∈N(i)G

∗
(j)

G
∗
= G

∗
(0)

Strengths: Allows uncertainty about the local gains to be easily taken into
account (→ Markov Decision Process). Efficient associated dynamic
programming algorithms.

Weaknesses: May become quickly complex when introducing some
constraints. Example: stereo observations. Explosion of the state space to
consider.
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7. State and Action Models

See (Chien & al.), (Frank & al.), (Long & Fox).

Modelling in terms of possible actions, each with its preconditions and its
effects on the system state. Possible use of standard model description
languages, such as PDDL.

Action =

1. name +
2. parameters +
3. duration +
4. condition (at start, over all, at end) +
5. effect (at start, over all, at end).

Strengths: Allows a common precise description of all the possible
actions, beyond observations. Examples: data downloading, orbital
manoeuvres . . .
Weaknesses: No optimization. Poor efficiency of the associated
algorithms, except plan-repair ones performing a local search in the space of
the complete plans.
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How
the management problem

can be solved
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Let us consider the same problem, but with an agile satellite.

→ A selection and scheduling problem.

See (Cung & al., ROADEF, 2003) for a precise definition of the problem.

To be noted:

1. as in many real problems, it is very easy to produce a consistent solution
(to do nothing); the problem is to improve on it . . .

2. computing the minimum transition time between two observations is
itself a difficult continuous constrained optimization problem without
any good approximation.
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Various algorithmic approaches

1. Temporal Reasoning;

2. Dynamic Programming;

3. Tree Search;

4. Local Search;

5. Greedy Search.
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1. Temporal Reasoning (1)

If the selection and scheduling problem have been solved (one has decided
which observations to perform and in which order to perform them), the
resulting temporal problem (at which time to perform them) is very easy.

→ A Simple Temporal Network (STN) for which local consistency
polynomial algorithms are complete and produce a flexible solution.

time

A

B
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1. Temporal Reasoning (2)

If the selection and scheduling problem have been solved (one has decided
which observations to perform and in which order to perform them), the
resulting temporal problem (at which time to perform them) is very easy.

→ A Simple Temporal Network (STN) for which local consistency
polynomial algorithms are complete and produce a flexible solution.

time

A

B
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2. Dynamic Programming

If the scheduling problem have been solved (one has decided in which order to
perform observations), the resulting selection problem (which observations to
perform) is easy.

→ A Dynamic Programming algorithm based on a discretization of time,
energy, and memory: polynomial and optimal algorithm (under the
discretization restriction).

N(i, t, m, e) = ∅ → G
∗
(i, t, m, e) = g(i)

N(i, t, m, e) 6= ∅ → G
∗
(i, t, m, e) = g(i) + maxj∈N(i)G

∗
(j, t

′
, m

′
, e

′
)

G
∗
= G

∗
(0)

A natural order: the geographic order (to perform observations from the
north to the south).
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3. Tree Search

Used in ILP and CP tools, in any Branch and Bound algorithm, and in
many AI Planning algorithms.

Practicable on small and medium-size problems only if bounds, computed at
each node, allow the tree to be cut very early.

Depth-first vs Best-first strategy:

BF. better heuristically informed search; potentially exponential memory
requirements; may take time before producing a first solution;

DF. worse heuristically informed search; dependence on the first choices;
only polynomial memory requirements; produces quickly a first solution,
but may take time before improving on it; not very good anytime behavior.
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4. Local Search

Many forms: Tabu search, Simulated annealing, Genetic algorithms . . .

No standard. Many parameters to tune before getting an efficient
algorithm. Importance of the programmer’s experience and skills .

Some difficulty dealing conjointly with the constraints and the criterion.

Main parameters:

1. the mechanism used to generate a first solution;

2. the neighborhood relation;

3. the mechanism used to explore the neighborhood and to choose a new
solution in it;

4. the criterion used to stop and eventually restart the search.

Generally good anytime behavior,
especially with Tabu search and Simulated annealing.
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5. Greedy Search

The last solution when everything else failed,
or the first solution if you are lazy or in a hurry.

Importance of the order in which successive choices are made.
Time may be a good order.

An interesting variant: repeated greedy search
with heuristically biased stochastic choices;
used in the domain of telescope management
(see Bresina, AAAI, 1996).
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Results from
experiments and practice
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Results from experiments
carried out at ONERA (1)

See (Lemâıtre, Verfaillie).

Agile satellite. Comparisons between:

1. GA: a Greedy algorithm, making greedy decisions according to the
temporal order;

2. DPA: a Dynamic Programming algorithm, using a fixed observation
sequencing and a time discretization;

3. CPA: a Constraint Programming algorithm, using the generic OPL
Studio tool, that is a combination of tree search and constraint
propagation;

4. LSA: a dedicated Local Search algorithm, locally modifying observation
selection and sequencing.
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Results from experiments
carried out at ONERA (2)

Linear optimization criterion. Stereoscopic constraints ignored.

instance id # strips GA DPA CPA LSA av. (max.)

2:13 111 106 532 603 442 574 ( 587 )

2:15 170 295 707 843 527 723 ( 779 )

2:26 96 483 831 1022 782 826 ( 877 )

2:27 22 534 895 1028 777 800 ( 861 )

3:25 22 342 436 482 253 345 ( 375 )

4:17 186 147 188 204 177 192 ( 196 )

1. GA: Greedy algorithm;

2. DPA: Dynamic Programming algorithm;

3. CPA: Constraint Programming algorithm;

4. LSA: Local Search algorithm. GA and DPA: very fast.

ICAPS Tutorial, Planning activities for Earth watching and observing satellites and constellations, Cumbria, UK, June 2006 50

Results from experiments
carried out at ONERA (3)

Non linear optimization criterion. Stereoscopic constraints taken into
account.

instance id # strips CPA LSA av. (max.)

2:13 111 106 241 414 ( 490 )

2:15 170 295 350 446 ( 490 )

2:26 96 483 439 516 ( 592 )

2:27 22 534 410 455 ( 561 )

3:25 22 342 149 255 ( 298 )

4:17 186 147 125 145 ( 156 )

1. CPA: Constraint Programming algorithm;

2. LSA: Local Search algorithm.
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Results from the ROADEF Challenge (1)

See (Verfaillie & al.), (Cung & al.).

10 unknown difficult instances (some hundreds of observations).

5 minutes to solve each instance.

10 executions per instance for non deterministic algorithms.

Independent comparison on the same machine.

The winners: Simulated Annealing or Tabu Search algorithms, highly
tuned to deal with the agile Earth observation management problem and
carefully implemented to allow quick and relevant local changes.
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Results from the ROADEF Challenge (2)

No use of dynamic programming algorithms.

No use of generic ILP or CP tools, like Ilog Solver or CPlex.

Clear failure of the algorithms based on ILP and CP formulations, even with
a highly tuned control of the tree search.
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Lower and upper bounds

See (Vasquez, Hao), (Bianchessi & al.).

Maximization problem:

• optimum lower bounds provided by local search algorithms (the value of
a solution is always an optimum lower bound) → typically fast algorithms;

• optimum upper bounds provided by complete search algorithms running
on problem relaxations (for example problem decomposition; the optimum
of a relaxation is always an optimum upper bound) → typically slow
algorithms.

Results: typically 0, 1, or 2% between lower and upper bounds, using
sophisticated lower and upper bounding algorithms.

Lesson: sophisticated local search algorithms allow near optimal solutions to
be produced.
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A glance at the
near and far future
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The future

A network of interconnected intelligent Earth sensors,
able to detect and to track Earth phenomena, like:

• forest fires;

• volcanic eruptions;

• floods;

• earthquakes;

• tidal waves;

• iceberg formations and movements;

• pollutions . . .
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Forest fires in Amazonia
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Eruption of Etna in Sicily
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Floods in China
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Icebergs in the Arctic Ocean
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Wreck of a tanker in front of Galicia (Spain)
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Challenges

1. a global detection and alarm system;

2. an efficient handling of specific user requests,
from request expression to data delivery;

3. an optimization of the use of the global system;

4. a cooperation between various Earth sensing systems and a stronger
reactivity of each system;

5. sensing, data analysis, and autonomous cooperative
decision-making capabilities on-board each satellite;

6. formation flying satellites to perform for example interferometric
observation missions.

→ A network of autonomous cooperative observation agents.
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Abstract

This document is a commented bibliography around the problem
of planning activities for Earth watching and observing satellites and
constellations. It is associated with a tutorial given on this topic at
ICAPS 2006 (International Conference on Automated Planning and
Scheduling), in Cumbria, English Lake District, UK.

Sometimes, two references point to very similar papers published in
different forums. In such a case, we deliberately we provide the reader
with both references as two paths to the same content.

We are the only responsible for the short commentaries that are
associated with each reference. Any misunderstanding or omission
may be pointed out to us.
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[105] M. Lemâıtre, G. Verfaillie, H. Fargier, J. Lang, N. Bataille,
and J.M. Lachiver. Equitable Allocation of Earth Observing Satel-
lites Resources. In Proc. of the 5th ONERA-DLR Aerospace Sympo-
sium (ODAS-03), Toulouse, France, 2003. Fair sharing the use of
an Earth observation satellite between several self-interested
entities. Problem modelling and solving approaches.

PhD Theses
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