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Preface

The planning community has traditionally been primarily concerned with the problem
of generating a plan that satisfies a collection of goals. In many real-world planning
problems, it is necessary to trade the benefits of achieving goals against the cost of
achieving them. In practice, many goals are not absolute requirements, but an expres-
sion of preferences of varying degrees of importance. Some of these goals might even
be unsatisfiable, perhaps because achieving them all would demand more resources
than are available. In these problems, it is important to generate plans of good or opti-
mal quality by achieving a subset of the goals, while attempting to maximise the benefits
and miminise the costs in doing so. Relative value of plans can be expressed as prefer-
ences over the goals to achieve, constraints on the trajectory of the plan, or over other
properties such as the resources used by the plan.

Soft constraints on plan trajectories are constraints over possible actions in the plan
and intermediate states reached by the plan. Soft problem goals are goals that are
desirable, but that do not have to be necessarily achieved. When a planning problem
involves soft constraints or goals, some of them may be more important than others. In
planning with soft constraints and goals, the best quality plan should satisfy as many of
the soft constraints and goals as possible, according to one or more specified preference
relations distinguishing alternative feasible plans.

Soft constraints have been extensively studied in the CP community, but are still
a relatively new topic in the planning community. In this workshop we seek to bring
together the experiences and expertise of the CP community and of the planning com-
munity in order to identify the common issues of interest and the approaches to these
problems that can be shared. We also intend to use the workshop as an opportunity to
present approaches to the management of soft constraints and goals in planning devel-
oped by competitors in the ICAPS’06 International Planning Competition, in which this
problem is a focus.

This volume contains 11 papers. The papers concern various approaches to plan-
ning extended with different methods for representing and handling preferences and
soft constraints. In particular, five papers describe implemented planning systems that
are among the participants in the 2006 International Planning Competition. At the time
of writing, these planners are running the competition benchmarks, which include many
test problems requiring to handle preferences and soft constraints.

We hope that the workshop will be a stimulating and fruitful opportunity to discuss
the state-of-the-art in planning with preferences and soft constraints, as well as an to
identify promising directions for current and future research in this important emerging
field.
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Abstract

In this paper we describe a planner that extends the TLPLAN
system to enable planning with temporally extended prefer-
ences specified in PDDL3, a variant of PDDL that includes
descriptions of temporal plan preferences. We do so by com-
piling preferences into nondeterministic finite state automata
whose accepting conditions denote achievement of the pref-
erence described by the automata. Automata are represented
in the planning problem through additional predicates and
actions. With this compilation in hand, we are able to use
domain-independent heuristics to guide TLPLAN towards
plans that realize the preferences. We are entering our plan-
ner in the qualitative preferences track of IPC5, the 2006 In-
ternational Planning Competition. As such, the planner de-
scription provided in this paper is preliminary pending final
adjustments prior to the close of the competition.

Introduction
Standard goals in planning allow us to distinguish between
plans that satisfy the goal and those that do not, however,
they fail to discriminate between the quality of different suc-
cessful plans. Preferences, on the other hand, express infor-
mation about how “good” a plan is thus allowing us to distin-
guish between desirable successful plans and less desirable
successful plans.

PDDL3 (Gerevini & Long 2005) is an extension of previ-
ous planning languages that includes facilities for expressing
preferences. It was designed in conjunction with the 2006
International Planning Competition. One of the key features
of PDDL3 is that it supports temporally extended preference
statements, i.e., statements that express preferences over se-
quences of actions. In particular, in the qualitative prefer-
ences category of the planning competition preferences can
be expressed with temporal formulae that are a subset of
LTL (linear temporal logic). A plan satisfies a preference
whenever the sequence of states generated by the plan’s exe-
cution satisfies the LTL formula representing the preference.

PDDL3 allows each planning instance to specify a
problem-specific metric used to compute the value of a plan.
For any given plan, over the course of its execution various
preferences will be violated or satisfied with some prefer-
ence perhaps being violated multiple times. The plan value
metric can depend on the preferences that are violated and
the number of times that they are violated. The aim in solv-

ing the planning instance is to generate a plan that has the
best metric value, and to do this the planner must be able to
“monitor” the preferences to determine when and how many
times different preferences are being violated. Furthermore,
the planner must be able to use this information to guide its
search so that it can find best-value plans.

We have crafted a preference planner that uses various
techniques to find best-value plans. Our planner is based
on the TLPLAN system (Bacchus & Kabanza 1998), ex-
tending TLPLAN so that fully automated heuristic-guided
search for a best-value plan can be performed. We use two
techniques to obtain heuristic guidance. First, we translate
temporally extended preference formulae into nondetermin-
istic finite state automata that are then encoded as a new set
of predicates and action effects. When added to the exist-
ing predicates and actions, we thus obtain a new planning
domain containing only standard ADL-operators. Second,
once we have recovered a standard planning domain we can
use a modified relaxed plan heuristic to guide search. In
what follows, we describe our translation process and the
heuristic search techniques we use to guide planning. We
conclude with a brief discussion of related work.

Translation of LTL to Finite State Automata
TLPLAN already has the ability to evaluate LTL formulae
during planning. It was originally designed to use such for-
mulae to express search control knowledge. Thus one could
simply express the temporally extended preference formulae
in TLPLAN directly and have TLPLAN evaluate these for-
mulae as it generates plans. The difficulty, however, is that
this approach is by itself not able to provide any heuristic
guidance. That is, there is no obvious way to use the par-
tially evaluated LTL formulae maintained by TLPLAN to
guide the planner towards satisfying these formulae (i.e., to
satisfy the preferences expressed in LTL).

Instead our approach is to use the techniques presented in
(Baier & McIlraith 2006) to convert the temporal formulae
into nondeterministic finite state automata. The algorithm
we use is a modification of one originally proposed in (Gerth
et al. 1995). Intuitively the states of the automata “monitor”
progress towards satisfying the original temporal formula.
In particular, as the world is updated by actions added to the
plan, the state of the automata is also updated dependent on
changes made to the world. If the automata enters an accept-
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ing state then the sequence of worlds traversed by the partial
plan has satisfied the original temporal preference formula.

There are various issues involved in building efficient au-
tomata from an arbitrary temporal formula, and more details
are provided in (Baier & McIlraith 2006). However, once
the automaton is built, we can integrate it with the planning
domain by creating an augmented planning domain. In the
augmented domain there is a predicate specifying the cur-
rent set of states that the automata could be in (it is a non-
deterministic automata so there are a set of current states).
Moreover, for each automata, we have a single predicate (the
accepting predicate) that is true iff the automata has reached
an accepting condition, denoting satisfaction of the prefer-
ence. In addition, we define a post-action update sequence
of ADL operators, which take into account the changes just
made to the world and the current state of the automata in
order to compute the new set of possible automata states.
This post-action update is performed immediately after any
action of the domain is performed. TLPLAN is then asked
to generate a plan using the new augmented domain.

To deal with multiple preference statements, we apply this
method to each of the preferences in turn. This generates
multiple automata, and we combine all of their updates into
a single ADL action (actually to simplify the translation we
use a pair of ADL actions that are always executed in se-
quence).

A number of refinements must be made however to deal
with some of the special features of PDDL3. First, in
PDDL3 a preference can be scoped by a universal quanti-
fier. Such preferences act as parameterized preference state-
ments, representing a set of individual preference statement
one for each object that is a legal binding of the universal
variable. To avoid the explosion of automata that would
occur if we were to generate an distinct automata for each
binding, we translate such preferences into “parameterized”
automata. In particular, instead of having a predicate de-
scribing the current set of states the automata could be in, we
have a predicate with extra arguments which specifies what
state the automata could be in for different objects. Simi-
larly, the automata update actions generated by our translator
are modified so that they can handle the update for all of the
objects through universally quantified conditional effects.

Second, PDDL3 allows preference statements in action
preconditions. These preferences refer to conditions that
must ideally hold true immediately before performing an ac-
tion. These conditions are not temporal, i.e., they refer only
to the state in which the action is performed. Therefore, we
do not model these preferences using automata but rather as
conditional effects of the action. If the preference formula
does not hold and the action is performed, then, as an effect
of the action, a counter is incremented. This counter, repre-
senting the number of times the precondition preference is
violated, is used to compute the metric function, described
below.

Third, PDDL3 specifies its metric using an “is-violated”
function. The is-violated function takes as an argument
the name of a preference type, and returns the number of
times preferences of this type were violated. Individual
preferences are either satisfied or violated by the current

plan. However, many different individual preferences can
be grouped into a single type. For example, when a prefer-
ence is scoped by a universal quantifier, all of the individual
preference statements generated by different bindings of the
quantifier yield a preference of the same type. Thus the is-
violated function must be able to count the number of these
preferences that are violated. Similarly, action precondition
preferences can be violated multiple times, once each time
the action is executed under conditions that violated the pre-
condition preference. The automata we construct utilizes
TLPLAN’s ability to manipulate functions to keep track of
these numbers.

Finally, PDDL3 allows specification of hard temporal
constraints, which can also be viewed as being hard tem-
porally extended goals. We also translate these constraints
into automata. The accepting predicate of these automata
are then treated as additional final-state goals. Moreover,
we use TLPLAN’s ability to incrementally check temporal
constraints to prune from the search space those plans that
already have violated the constraint.

Heuristic Search
The new augmented planning domain no longer has tempo-
rally extended preferences. Instead, the domain is much like
a standard planning domain. Thus, we can compute relaxed
plans and use those relaxed plans to compute heuristics.

In particular, we have augmented TLPLAN to allow it to
compute relaxed state sequences: sequences of states that
can be generated from the current state when ignoring the
delete effects of actions. Notice that since the automata
predicates are part of the new domain, the relaxed state se-
quences include predicates describing the “relaxed state” of
the automata. Thus in the relaxed sequence of states not
only can we compute various goal distance functions, but
we can also compute various functions that depend on au-
tomata states. That is, we can compute information about
the distance to satisfying various preferences. Since each
preference is given a different weight in valuing a plan we
can even weight the “distance to satisfying a preference” dif-
ferently depending on the value of the preference.

Specifically, our heuristic function is a combination of the
following functions, which are evaluated over partial plans.
At the time of writing, these functions were not finalized.

Goal distance A function that is a measure of how hard it
is to reach the goal. It is computed using the relaxed plan
graph (similar to the one used by the FF planner (Hoff-
mann & Nebel 2001)). It computes a heuristic distance to
the goal facts using a variant of the heuristic proposed by
(Zhu & Givan 2005). The exact value of the � exponent
in this heuristic is still being finalized.

Preference distance A measure of how hard it is to reach
the preference goals, i.e., how hard it is to reach the ac-
cepting states of the various preference automata. Again,
we use Zhu & Givan’s heuristic to compute this distance.

Optimistic metric A lower bound1 for the metric function
1Without loss of generality, we assume that we are minimizing

the metric function.
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of any plan that completes the partial plan, i.e., the best
metric value that the partial plan could possibly achieve
if completed to satisfy the goal. We compute this num-
ber assuming that no precondition preferences will be vi-
olated in the future, and assuming that all temporal for-
mulae that are not currently violated by the partial plan
will be true in the completed plan. To determine whether
a temporal formula is not violated by the partial plan, we
simply verify that its automaton is currently in a state from
which there is a path to an accepting state. Finally, we as-
sume that the goal will be satisfied at the end of the plan.

Relaxed Optimistic Metric In the same spirit as the opti-
mistic metric, the relaxed optimistic metric is an estima-
tion of the best metric value that a partial plan can have
when completed to satisfy the goal. We compute this
value as the best metric value of the relaxed states. As
with the optimistic metric, we assume that no precondi-
tion preferences will be violated in the future.
The relaxed optimistic metric is more realistic than the
optimistic metric since it takes into account that some au-
tomata satisfaction facts are possibly not achievable from
certain states. The preferences corresponding to those un-
reachable facts are regarded by this metric as violated.

Discounted metric A weighting of the metric function
evaluated in the relaxed states. Let ��������� be the met-
ric value of a state �	� , and ��
���	��������� be the relaxed states
reachable from state � until a fixed point is found. The
discounted metric for � and discount factor � , ���������� , is
computed as:

������������������� � ��� � �!
" #
$ � �������

#&%

 �(')�����

#
���*�

#
�

The factor of � we are finally going to use is not yet de-
cided.

The final heuristic function is obtained by a combination of
the functions defined above.

Our planner is able to return plans with incrementally im-
proving metric values. It does best-first search using the
heuristic described above. At all times, it keeps the metric
value of the best plan found so far. Additionally, the planner
prunes from the search space all those plans whose relaxed
optimistic metric is worse than the best metric found so far.
This is done by dynamically adding a new TLPLAN hard
constraint into the planning domain.

Discussion
The technique we use to plan with temporally extended pref-
erences presents a novel combination of techniques for plan-
ning with temporally extended goals, and for planning with
preferences.

A key enabler of our planner is the translation of LTL
preference formulae into automata, exploiting work de-
scribed in (Baier & McIlraith 2006). There are several pa-
pers that address related issues. First is work that compiles
temporally extended goals into classical planning problems
such as that of Rintanen (Rintanen 2000), and Cresswell

and Coddington (Cresswell & Coddington 2004). Second
is work that exploits automata representations of temporally
extended goals (TEGs) in order to plan with TEGs, such
as Kabanza and Thiébaux’s work on TLPLAN (Kabanza &
Thiébaux 2005) and work by Pistore and colleagues (Lago,
Pistore, & Traverso 2002). A more thorough discussion of
this work can be found in (Baier & McIlraith 2006).

There is also a variety of previous work on planning with
preferences. In (Bienvenu, Fritz, & McIlraith 2006) the au-
thors develop a planner for planning with temporally ex-
tended preferences. Their planner performs best first-search
based on the optimistic and pessimistic evaluation of partial
plans relative to preference formulae. Preference formulae
are evaluated relative to partial plans and the formulae pro-
gressed, in the spirit of TLPLAN, to determine aspects of
the formulae that remain to be satisfied. Also noteworthy
is the work of Son and Pontelli (Son & Pontelli 2004) who
have constructed a planner for planning with temporally ex-
tended goals using answer-set programming (ASP). Their
work holds promise however ASP’s inability to deal effi-
ciently with numbers has hampered their progress. Brafman
and Chernyavsky (Brafman & Chernyavsky 2005) recently
addressed the problem of planning with preferences by spec-
ifying qualitative preferences over possible goal states us-
ing TCP-nets. Their approach to planning is to compile the
problem into an equivalent CSP problem, imposing variable
instantiation constraints on the CSP solver, according to the
TCP-net. This is a promising method for planning, though
at the time of publication of their paper, their planner did not
deal with temporal preferences.
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Abstract

In this work a model for planning with multivalued fluents
and graded actions, that allows preferences specifications
and plan metric, is introduced. This model is based on the
infinity-valued Łukasiewicz logic. In multivalued planning,
fluents can assume truth values in the interval[0, 1] and ac-
tions can be executed at different application degrees also
varying in [0, 1]. The notions of planning problem and solu-
tion plan also reflect a multivalued approach. Multivalued flu-
ents and graded actions allow to model many real situations
where some features of the world are fuzzy and where actions
can be executed with varying strength. Moreover, the spec-
ification of soft preconditions allows a more flexible model
for the solution plan while the use of soft preferences in-
creases the expressive power of the plan quality specification.
A correct/complete algorithm which solves bounded multi-
valued planning problems based on MIP compilation is also
described and a prototype implementation is presented.

Introduction
In many planning domains disagreement and fuzziness of
real world properties need to be modeled. Since classical
actions and constraints with crisp boolean values are not ad-
equate to represent these domains, it is necessary to intro-
duce into planning no–boolean fluents and soft constraints
that can partially violated.

Consider for instance a simple scenario where the action
opendoor is available in the domain and modifies the truth
value of the fluentdoor is open.

A typical probabilistic planning model would regard to
the degree of uncertainty about the fluentdoor is openand
the actionopendoor as the uncertainty of the system, or
belief degree.

A planner able to handle numerical resources would treat
the fluentdoor is openas a real function whose initial value
has to be measured, for instance by the openness angle.
Since it is not possible to model the strength ofopendoor,
the value ofdoor is opencan only be changed by a fixed
value.

From a multivalued point of view, instead, the truth value
of the fluentdoor is open denotes a real world property
which can vary from 0 (the door is completely closed) to

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1 (the door is completely opened). In other words the
door can “really” be opened at an intermediate degree, be-
tween “completely opened” and “completely closed”. More-
over the graded actionopendoor can be applied with dif-
ferent “strength”, ranging from 1 (completely applied) to
0 (not applied at all). The resulting effect on the fluent
door is openwill depend on the application degree of the
actionopendoor and on the previous truth value of the flu-
ent itself.

The idea underlying multivalued planning is to model in
a logical framework fuzzy concepts, such as “the door is
slightly open” or “the door is wide open”, and graded ap-
plication of actions with additive effects, such as “open the
door a bit more” or “open the door as much as possible”.

It is worth noticing that many fuzzy concepts cannot be
represented by numerical resources, because the fuzzy val-
ues could not be obtainable by a measurement process or
they could be affected by subjective factors.

In this sense the approach is orthogonal with respect to
planning models for uncertainty and incompleteness. Since
in this approach an underlying multivalued logic is used,
the management of soft constraints in action preconditions,
goals, and preferences is straightforward.

In the multivalued/fuzzy logics scenario we preferred to
use a logic based on T-norms because of its well-founded
mathematical aspects. Among this class of logics we have
chosen the Łukasiewicz logic because the semantics of its
operators is more suitable for our framework. For these rea-
sons we have excluded other well-known logics as Product
Logic, in which for instance the negation operator is not in-
volutive.

In this paper a new framework for a general theory of mul-
tivalued planning based on the infinite-valued Łukasiewicz
logic (Cignoli, D’Ottaviano, & Mundici 2000; Hajek 1998)
is introduced and an algorithm for a multivalued planner is
described. The proposed model can be seen as a generaliza-
tion of the classical planning, since boolean and multivalued
actions and fluents can be used in the same domain.

The paper is organized as follows. First of all some basic
concepts on Łukasiewicz logic are recalled, then the model
of multivalued planning is presented and an algorithm solv-
ing problems in such a model is proposed. An example
is introduced and finally related works and conclusions are
pointed out.
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A brief introduction to Łukasiewicz logic
Łukasiewicz logic is a multivalued extension of classical
logic, well known from the theoretical point of view (Ha-
jek 1998; Cignoli, D’Ottaviano, & Mundici 2000). In this
section we will report only some useful definitions. The
conjunction operator,x ¯ y = max(0, x + y − 1), has the
properties of a genericT − norm: it is commutative, asso-
ciative, monotonic with respect to all the variables; it has0
as absorbing element and1 as unit element.

The implication is defined as the residual of the conjunc-
tion operator and is expressed byx → y = min(1, 1−x+y).

The negation, which can be defined as¬x = x → 0,
is expressed as¬x = 1 − x and is involutive. Using the
last property and De Morgan’s law it is possible to define a
disjunction operator, expressed asx ⊕ y = min(1, x + y).
This operation is aco–norm: it is commutative, associative
and monotonic with respect to all the variables; it has1 as
absorbing element and0 as unit element.

Implication and disjunction are related by the condition
x → y = ¬x⊕ y.

It is possible to define an operation similar to subtraction
asx ª y = x ¯ ¬y = max(0, x − y), which under some
condition onx andy can behave as the inverse of additive
disjunction. Moreover(xª y)ª z = xª (y ⊕ z) holds.

Note that in Łukasiewicz logic the lattices operators
calledmin–conjunctionx ∧ y = x ¯ (x → y) andmax–
disjunctionx ∨ y = (x → y) → y coincide, respectively,
with the minimum and the maximum betweenx andy.

The Model
In this section the model of multivalued planning is pre-
sented. This model allows to use boolean fluents and clas-
sical actions jointly with two new kinds of fluents and ac-
tions, called multivalued fluents and graded actions. Here
the model is shortly presented, for details see (Baiolettiet
al. 2006).

Multivalued States
Let F be the finite set of fluents. A state is described by a
functionS assigning to each fluentf at a given time–stept
a truth value belonging to[0, 1], denoted bySt(f), i.e.

S : F × T → [0, 1].
It can be seen as a natural extension of the classical state

definition in which the range of the state function is[0, 1]
instead of{0, 1}.

The value at a time–stept of a negated fluent is denoted
by St(¬f) and it is computed as the negation of the truth
value off in St, i.e. St(¬f) = ¬St(f).

Multivalued Constraints
Definition 1 Multivalued Constraints.

A multivalued constraintis represented by a tuple
(k, χ,f) , wherek∈ {b, s} is a flag that denotes the kind
of the constraint (boolean or soft),χ is a value in[0, 1] rep-
resenting a threshold andf is a literal (i.e. a fluent or its
negation). A boolean constraint in the stateSt is defined by
the classical constraintSt(f) ≥ χ, while the soft constraint
is defined by the Łukasiewicz implicationχ → St(f).

The expressionχ → St(f) is chosen to encode the soft
constraints because it is a fuzzy extension of the crisp rela-
tion St(f) ≥ χ. In fact, if St(f) ≥ χ, then the implication
assumes truth value1, while if St(f) < χ, the implication
assumes a value lesser than 1. The higher the difference be-
tweenSt(f) andχ, the lesser the value of the implication.

Definition 2 Satisfaction Degree of a Multivalued Con-
straint.
LetS a set of states,X a set of constraintsmc = (k, χ, f),
where χ is a threshold in[0, 1], f is a literal and k a
flag in {b,s }. Let S ∈ S, then thesatisfaction degree
of the constraint in the stateS is defined by the function
D : S ×X → [0, 1],

D(S, mc) =

{ 1 if k=b and S(f) ≥ χ
0 if k=b and S(f) < χ
χ → S(f) if k=s

(1)

Although we restricted our attention to constraints over
literals, the extension to constraints over arbitrary proposi-
tional formulae of Łukasiewicz logic is straightforward.

Graded Actions
Extending the classical action definition introduced in
STRIPS, an actionA is described by a list of preconditions
prec(A), a list of effectseff(A)and list of preferencespref(A).

Each precondition and each preference are defined by a
multivalued constraint of the form presented in Definition
1. The preferences do not affect the executability of the ac-
tions but they are involved only in the plan quality evalu-
ation. Differently from the classical model, an application
degree belonging to[0, 1] is assigned to each action. The
degrees0 and1 have the same meaning as in the classical
model.

The execution of an action can modify the truth value of
fluents. In this framework we propose to model the action
effects by means of additive changing over the fluent values.

Moreover, this model allows to use classical boolean ac-
tions simply bounding/restricting the domain for its applica-
tion degree. In other words, when a multivalued planning
domain needs boolean actions, the user have to restrict the
action application domain to{0, 1}.
Action Preconditions and Action Executability
Definition 3 Action Preconditions.
The preconditions of an actionA are defined by a list of
multivalued constraintsmc=(k, χ,f) .

The value ofχ can be read as the threshold for the fluent
truth value. The maximum satisfaction degree of the pre-
condition is reached when the fluent truth value is above the
threshold.

The satisfaction degree of a preconditioncorresponds to
the satisfaction degree of the multivalued constraint com-
puted byD(S, mc).
Definition 4 Action Executability.
An actionA ∈ A is executable in a stateSt with application
degreeαt ∈ [0, 1] if αt ≤ αmax(A,St), where

αmax(A,St) =
∧

mc∈pre(A)

D(St,mc). (2)
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αmax provides the maximum application degree of the ac-
tion A in the stateSt.

It is reasonable to compute a maximum application de-
gree because in this multivalued extension of planning the
planner can choose how much to apply an action. While in
the classical model the planner can only decide if to apply an
executable actionA, in this model the planner can choose to
applyA with any actual application degree smaller or equal
to αmax(A,St).

The value ofαmax(A,St) is computed using the lattice
conjunction (i.e. the minimum) among the precondition con-
tributionsD(St,mc).

The use of themin–conjunction∧ instead of the usual
Łukasiewicz conjunction̄ is justified by the fact the latter,
differently from the former, is not idempotent and ifx and
y are smaller than1, x¯ y is smaller thanx andy.

Finally, it is important to note that a negative precondi-
tion has a particular semantics. In the classical model, a
negative precondition is equivalent to require the fluent to
be false. In this model it requires that the truth value of
the fluent is small, i.e. that its negation is enough true. In
fact χ → S(¬f) holds 1 if and only ifS(¬f) ≥ χ, i.e.
S(f) ≤ 1− χ.

From the point of view of the action executability we have
to point out that the violation of boolean constraints yields to
a maximum application degree equal to 0, while the use of
soft constraints allows to execute actions even ifS(f) ≤ χ,
i.e it is possible to have a solution plan that violates soft
preconditions.

However the violations of soft preconditions have to be
taken into account, i.e. a plan with some unreached pre-
conditions cannot have the same quality of a plan with all
satisfied preconditions (seePlan Qualitysection).

Action Preferences
Recently, the AI planning community has driven its attention
to the specification of preferences in goal and action precon-
dition conditions (Gerevini & Long 2005). The aim is to
specify some conditions that are not necessary for the action
executability or the goal satisfiability but that are considered
important for the plan quality estimation. In this multival-
ued model we consider both boolean and soft preferences
specifying either a crisp or a fuzzy threshold.

Definition 5 Preferences.
The preferences of an actionA are defined by a list of multi-
valued constraintmc=(k, χ,f) , whereχ is calledprefer-
ence thresholdof f .

How the penalties for violations of preferences are used
in the metric is shown inPlan Qualitysection.

Action Effects and Action Execution
In this model, effects are intended as modifications of the
truth value of fluents. A positive effect provides an incre-
ment of the truth value, while a negative effect provides a
decrement. The amount of increment is proportional to the

application degree of the action and can be tuned by a pa-
rameter which models the strength of the effect. It is not
allowed to have an action having both a positive and a nega-
tive effect over the same fluent.

Definition 6 Action Effects.
The effects of an actionA are defined by a list of pair(γ, e),
wheree is a literal andγ is a real number in[0,+∞), called
weightof A overe.

Note that positive (negative) literals denote positive (neg-
ative) effects.

Definition 7 Action Execution.
Let A an action executed with application degreeαt in a
stateSt and(γ, e) ∈ eff(A), then

St+1(e) = St(e)⊕∆Ae, (3)

where∆Ae = min(γ · αt, 1).

The quantity∆Ae can be seen as a unary operator depend-
ing onγ; it allows to reduce or to amplify the effect over the
fluente with respect to the application degree. In particular,
it reflects the idea of effects which are proportional to the
application degree of the action, in fact the amount∆Ae is
directly proportional to both the application degreeαt and
the weight ofA overe.

It is easy to prove that applying the definition (3) to a
negated fluent¬e we obtain

St+1(e) = St(e)ª∆Ae.

Therefore, as expected, the action execution decrements
the truth value of fluents in its negative effects by the
quantity ∆Ae, while increments the the truth value of
fluents in its positive effects.

It is also possible to encode boolean effects that assign
0 or 1 to the truth value of fluents, independently from the
execution degree. We chose the symbolic value∞ denoting
an infinite weightγ. In this case the effect is equal to a
classical action effect that makes true or false the value of
the fluent. In fact, the intended semantics for these effects
is: ( ∞,e) over the fluente producesSt+1(e) = 1, while
( ∞,¬ e) producesSt+1(e) = 0.

Multivalued Planning Problems
Definition 8 Multivalued Planning Problems.
A multivalued planning problemis defined by a quadruple
(I,O, G, σ) whereI : F → [0, 1] is a truth assignment over
the fluents and denotes the initial state;O is a set of boolean
and multivalued actions;G is the goal list and is defined by
a list of multivalued constraintsmc=(k, χ,f) ; σ is a real
number in[0, 1] calledglobal threshold.

A valid plan is an ordered sequence of pairs
{(a0, α0), (a1, α1), . . . , (an−1, αn−1)}, where each αi

represents the application degree of actionai ∈ O; more-
over, let S0 = I and Si+1 the state resulting from the
execution of the actionai in Si, each actionai must be
executable inSi with application degreeαi.
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Definition 9 Solution Plan.
A solution plan is a valid plan where in the final stateSn

∧

mc∈G

D(Sn,mc) ≥ σ (4)

Note that a solution plan is a plan which achieves all the
goals in a multivalued fashion. Similarly to the precondi-
tions, the problem goals are defined by classical/soft con-
straints and preferences and their satisfaction degrees are
computed by theD function. Then,σ specifies a global pa-
rameter which represents a minimal satisfaction degree de-
sired for the solution plan.

Plan Quality
The plan quality is evaluated by a metric specified by any
arithmetic expression. The presented model allows involv-
ing in the metric violations of preferences or soft precondi-
tions, as well as action application degrees. An optimal plan
will minimize (maximize) the metric.

In order to compute the penalties of violations of soft pre-
conditions and preferences we suppose that every multival-
ued constraintmc is labeled by an univocally constantname.
The total of penalties for the violations of constraints labeled
by name is computed by

Λ(name) =
∑

i

Λi(name). (5)

Let mc = (k, χ, f) the multivalued constraint labeled by
name andSi a state, then

Λi(name) = ¬D(Si, mc).

The sumΛ(name) is computed considering only the actions
that are in the solution plan, having the constraintmc as pre-
condition or preference. Note that, the functionD(Si, mc)
is defined both for boolean and soft preconditions. But
since violations of preconditions can exist only for soft pre-
conditions, thenD(Si, mc) = 1 for every boolean constraint.

A violation of a boolean preference increases by 1 the
value ofΛ, while a violation of a soft preference increase
Λ by a value in [0,1] depending on ”how much” the soft
constraint is violated. This yields that a violation of a
boolean preference can have much more weight than
the same violation of a soft preference. In fact, let two
preferencesmc1, mc2 respectively labeled byp1 and p2
with mc1 = (b, χ, f), mc2 = (s, χ, f) andSt(f) = v < χ,
thenΛt(p1) = 1 while Λt(p2) = χ − v. It is simple to
prove thatΛt(p1) ≥ Λt(p2), ∀v, χ ∈ [0, 1].

This difference is very useful for the user because it al-
lows to take into account not only the satisfaction degrees of
the soft constraints but also the differences between classical
and soft constraints. The user can specify a boolean pref-
erence when he/she considers very important its violation,
while it can use a soft preference when he/she considers that
is important only the difference between the desired value
and the actual value.

The presence of precondition violations can appear in
contradiction with the classical planning model. In fact a se-
quence of actions having not achieved preconditions is not
a valid plan in the classical model, while in this multivalued
model, preconditions can be also partially achieved.

Further, it can be interesting to specify action application
degrees in the metric for the plan quality, especially in such
domains where action application degrees are directly pro-
portional to action costs. In this case the function

Ω(A) =
T−1∑
t=0

αt (6)

is used to compute the total of application degreesαt of each
occurrence of the actionA in the solution plan.

An Algorithm for Multivalued Planning
The idea of the algorithm is to solve bounded multival-
ued planning problems in three steps. At first, a planning
graph (Blum & Furst 1997) is constructed until either the
upper boundU for time–steps is exceeded or a state veri-
fying the necessary condition for the solution existence is
reached. Then the graph representation is translated into a
MIP problem (Mixed Integer Programming), and finally a
MIP problem solver is called. If the MIP problem has a so-
lution, then also the planning problem has a solution which
is directly derived from the MIP problem solution. If the
MIP problem has no solution, the main loop continues by
adding a new level until a solution is found or the boundU
is exceeded. It is easy to prove that this algorithm is cor-
rect and complete in the class of theU–bounded multival-
ued planning problems. The pseudo–code of the algorithm
is presented in Figure 1, whereinitialize is the proce-
dure which creates the planning graph starting from the ini-
tial state;goal sat is the function which checks the goal
condition,add new level is the procedure which adds to
the graph a new level of actions and the corresponding new
level of fluents;translate to MIP andsolve MIP create
and solve the MIP problem (if the MIP problem has no so-
lution, ⊥ is returned bysolve MIP); finally, the function
extract solution translates the solution of the MIP prob-
lem into the corresponding solution of the planning problem.

Planning Graph Construction
The planning graph built in our system is similar to the plan-
ning graph used in Graphplan and other planning systems.
The planning graph is a(2T +1)–leveled graphG = (V,E)
whose vertex set isV = F0∪A0∪F1∪A1∪ . . .∪FT , where
Ft is the set ofmultivalued fluentsat timet = 0, . . . , T and
At is the set ofgraded actionsat time t = 0, . . . , T − 1.
Each edge inE links either a fluentf ∈ Ft to an action
a ∈ At, such that(k, χ, f) ∈ pre(a), or an actiona ∈ At to
a fluentf ∈ Ft+1, such that(γ, f) ∈ eff(a).

In the following,α∗t (a) denotes the upper bound for the
action application degreeαt. It is computed by a function
depending on the precondition set of the action and on upper
and lower bounds of the truth values of the fluents involved
in such preconditions.
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function planner
begin

t := 0;
G := initialize(I);
while t<U andnot goal sat(G)do

t := t+1;
addnew level(G,t);

end;
sol :=⊥;
while t<U and sol=⊥ do

M := translateto MIP(G);
sol := solveMIP(M);
if sol=⊥ then

t := t+1;
addnew level(G,t);

endif;
end;
if sol6= ⊥ then

return extractsolution(sol);
else

return ⊥ ;
endif

end

Figure 1:The algorithm

The values ofS0(f) andα∗0(a) can be computed in an ex-
act way, because the initial state is completely known.S0(f)
is the initial truth value of the fluentf andα∗0(a) is computed
directly using the formula (2).

If t > 0, since it is not known which action will be exe-
cuted in each time–step, the truth valueSt(f) for each fluent
f ∈ Ft is unknown and, for the same reason, it is not pos-
sible to compute a realistic value ofα∗t (a) for each action
a ∈ At.

Anyway, it is possible to compute a lower boundSt(f)
and an upper boundSt(f) for the valueSt(f) by taking into
account the upper and the lower bounds forSt−1(f) and the
maximum change (in the positive and in the negative cases)
caused tof by any possible action executed at timet− 1.

In particularS0(f) = S0(f) = S0(f) holds.
Therefore for each fluentf ∈ Ft and each actiona ∈

At−1, we define the interval[Sa
t (f), S

a

t (f)] which provides
bounds forSt(f), knowing that the actiona will be exe-
cuted at timet − 1. Clearly, since the maximum change
will be achieved whena is executed at the largest possible
application degreeα∗t−1(a), we have thatSa

t (f) =
{

St−1(f) if (γ,¬f) /∈ eff(a)
St−1(f)ªΠγ(α∗t−1(a)) if (γ,¬f) ∈ eff(a) andγ 6= ∞
0 if (∞,¬f) ∈ eff(a)

andS
a

t (f) =
{

St−1(f) if (γ, f) /∈ eff(a)
St−1(f)⊕Πγ(α∗t−1(a)) if (γ, f) ∈ eff(a) andγ 6= ∞
1 if (∞, f) ∈ eff(a)

Finally, we obtain the interval

[St(f), St(f)] = [ min
a∈At−1

Sa
t (f), max

a∈At−1
S

a

t (f)] (7)

We can now show how to compute the values ofα∗t (a),
for an actiona ∈ At, by using the intervals[Sb

t(f), S
b

t(f)]
computed for each fluentf ∈ Ft and each actionb ∈ At−1.

For this purpose we defineα∗bt(a) as the maximum
execution degree of the actiona, computed considering

[Sb
t(p), S

b

t(p)] as the interval bounding the truth value at
time t for each fluentp involved in the preconditions of the
actiona. In other words,α∗bt(a) is the maximum execution
degree of the actiona at the timet, knowing that the action
b has been executed at timet− 1. More formally,α∗bt(a) =

∧
(k,χ,f)∈pre(a)

D(S
b
t , (k, χ, f)) ∧

∧
(k,χ,¬f)∈pre(a)

D(Sb
t , (k, χ,¬f))

(8)
wheref is a fluent.

Finally, we compute

α∗t (a) = max
b∈At−1

α∗bt(a). (9)

It is easy to prove that the computation ofα∗t (a) directly
from St(f) andSt(f), would produce a higher estimate of
the maximum application degree.

Anyway a complete implementation of this method is
not feasible. In fact the computation ofα∗t (a) at a
time t would require the computation ofSa0,...,at−1

t (f)
and S

a0,...,at−1

t (f) for every possible sequence of actions
a0, . . . , at−1. Therefore we restrict the method of comput-
ing α∗t (a) to take into account only the possible actions ex-
ecuted at the previous levelt− 1.

The first time–step where a solution can exist is the firstt
in which the satisfaction degree for the goals, computed by
usingSt(f) andSt(f), can be greater than the goal thresh-
oldσ. Therefore, the graph construction phase ends at a time
t ≤ U , if any, when the goal conditionGt =

∧

(k,χ,f)∈G

D(St, (k, χ, f))∧
∧

(k,χ,¬f)∈G

D(St, (k, χ,¬f)) ≥ σ

(10)
is verified.

Constraints Extraction

A planning problem can be compiled into a Mixed Inte-
ger Programming (MIP) problemM by translating the con-
straints expressed by operators of Łukasiewicz logic into lin-
ear constraints on integer/real variables (Hähnle 1997).

The truth value of each fluentf and the application degree
of each actiona at timet are respectively denoted by the real
variablesxft andxat in [0, 1]. For the boolean casesxft and
xat will be integer variables in{0,1}.

Different kinds of constraint must be satisfied in order to
have a solution plan according to the model presented. They
can be grouped inaction executability rules, action execu-
tion rulesandgoal satisfiability rules; moreover, according
to the definition of valid plan, we have to express a linearity
condition for each plan calledplan linearity constraint.

Finally if a metric is present in the problem, a suitable
objective functionhas to be added to the MIP system.
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It is easy to see that the number of constraints and the
number of variables in the MIP problemM will be a poly-
nomial of the number of fluents and actions in the planning
graph.

Action Executability Rules At each time–stept, the ac-
tual application degree of an actiona must be less (or equal)
than the upper bound represented byα∗t (a). Since the for-
mula (2) requires to compute a minimum, it is easy to sep-
arate the contribution of soft preconditions from the contri-
bution of boolean preconditions.

First, we have that for the soft preconditions

xat ≤ min( min(s,χ,f)∈pre(a){χ → xft},
min(s,χ,¬f)∈pre(a){χ → ¬xft} ).

Therefore for eacha ∈ At and for everyt = 0, . . . , T − 1
we add toM the following constraints
{

xat ≤ (1− χ) + xft for all (s, χ, f) ∈ pre(a)
xat ≤ (1− χ) + (1− xft) for all (s, χ,¬f) ∈ pre(a)

considering thatxat ≤ 1 is always verified.

The treatment of boolean preconditions is slightly more
difficult. In fact for each(b, χ, p) ∈ pre(a), wherep = f or
p = ¬f , it is required the creation of a new0/1 integer vari-
ableµa

ft and the addition toM of the following constraint

xft − χ ≤ µa
ft ≤ xft − χ + 1, if p = f

or

(1− χ)− xft ≤ µa
ft ≤ (1− χ)− xft + 1, if p = ¬f

and, in any case, the addition of the constraint

xat ≤ µa
ft.

Action Execution Rules The truth value of a fluentf at a
time–stept = 1, . . . , T is equal to:

• the truth value at the time–stept− 1, if the action chosen
at the time–stept− 1 does not modifyf

• the truth value at the time–stept− 1 increased/decreased
(with Łukasiewicz operators⊕ andª) by ∆f,t−1, if the
action chosen hasf as positive/negative effect and finite
γ

• the truth value 1/0 if the action chosen hasf as posi-
tive/negative effect and infiniteγ

Thereforexf,t+1 can be computed by the following equa-
tion xf,t+1 =

xft ⊕


 ∑

(∞,f)∈eff(a)

λat +
⊕

(γ,f)∈eff(a)

Πγ(xat)




ª


 ∑

(∞,¬f)∈eff(a)

λat +
⊕

(γ,¬f)∈eff(a)

Πγ(xat)


 (11)

whereλat is the0/1 variable, which will be introduced in
the following sectionLinearity Plan Rule.

Note that since only one action is executed at each time–
step, in (11) at most one term amongΠγ(xa,t−1) or λat is
greater than zero and affects the value ofxft.

The translation of (11) in MIP constraints is performed in
several steps. First, it is possible to encode constraints of
the kindsz = x ⊕ y andz = x ª y in small linear systems
with an additional binary variable. Then, to encode a con-
straint likez = ⊕n

j=1xj , instead of iterating the encoding of
the binary operator⊕, it is possible to use a linear system
with a fixed number of inequalities obtained by a method of
disjunctive programming (Balas 1979). Finally, the con-
straints representing (11) so obtained are added to the MIP
subsystemM.

Goal Satisfiability Rule This rule derives directly from
the goal condition defined in (10) and requires that each sub-
goal (k, χ, f) must be fulfilled with a truth value greater or
equal to the global threshold. Similarly to what happens for
the preconditions, it is possible to separate the contribution
of soft goals and boolean goals. Soft goals are encoded as{

(1− χ) + xfT ≥ σ for all (s, χ, f) ∈ G
(1− χ) + (1− xfT ) ≥ σ for all (s, χ,¬f) ∈ G

,

while, for the boolean goals(b, χ, p) ∈ G, wherep = f or
p = ¬f , the encoding uses the constraint

xfT − χ ≤ νf ≤ xfT − χ + 1, if p = f

or the constraint

(1− χ)− xfT ≤ νf ≤ (1− χ)− xfT + 1, if p = ¬f

and, in any case, the constraint

νf ≥ σ

(νf is a new0/1 variable).

Linearity Plan Rule With this constraint we express the
condition that only one action can be executed in a given
time–step, i.e. at each timet, ∃!a ∈ At : xat 6= 0.

This constraint can be represented directly by the MIP
system {

xat ≤ λat for all a ∈ At∑
a∈At

λat = 1 (12)

whereλat is a new0/1 variable, for eacha ∈ At.
It is easy to check that this condition is true if and only if

at each time–stept eitherxat = 0 for all a ∈ At, or there
exists a uniquea such thatxat 6= 0.

The first case cannot really happen. In fact if there ex-
ists a solution where in at least one time–step no action was
executed, such a solution would be equivalent to a shorter
solution. Since our algorithm operates in an incremental
way, this shorter solution would have been found in an ear-
lier stage.

Objective function If a metric is present in the planning
problem specification, then a suitable objective functionφ
is added to the MIP systemM. It is obvious that a MIP
solver can only optimize linear functions, therefore we re-
strict the functional form of the metric to a linear combi-
nation of terms involving violations of preferences and soft
preconditions and terms related to action execution degrees.
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Suppose that in the metric a term(is− violated p) ap-
pears, wherep is the name of a soft preference or a soft
precondition(s, χ, q) in the actiona. Then a new real vari-
able, calledypt, for t = 0, . . . , T − 1, is added toM, whose
value is exactlyΛt(p). Since the violation has not be taken
into account if the actiona is not executed, then it is easy to
see that ifq = f , for a fluentf ,

ypt = λat ª (χ → xft)

while, if q = ¬f , the same formula holds, wherexft is
obviously replaced with1 − xft. Then the translation
of the former equation is added toM. In φ the term
(is− violated p) is represented with the term

∑T
t=0 ypt.

If p is the name of a boolean preference(b, χ, q), the vari-
ableypt associated is now a0/1 variable. We will also use a
new0/1 variable, calledµpt, subject to the constraint

xft − χ ≤ µpt ≤ xft − χ + 1, if q = f

or the constraint

(1− χ)− xft ≤ µpt ≤ (1− χ)− xft + 1, if q = ¬f.

We add toM the previous constraint and the translation
of

ypt = λat ª µpt.

Finally, in φ the term(is− violated p) is again repre-
sented with the term

∑T
t=0 ypt.

The treatment of terms involving the execution degrees is
straightforward. A term(is− executed a) is represented
in φ with the linear term

∑T−1
t=0 xat.

Implementation
A prototype implementation of the previously described al-
gorithm has been made in C++, using as a MIP solver the
open–source librarylpsolve, which is not very performant,
although the preliminary results obtained on small examples
are encouraging.

We expect that some further code optimizations and
mainly the use of some more efficient linear programming
libraries, like CPLEX, will produce good results from the
computational point of view.

Another different approach to solve multivalued planning
problems could be a compilation into a mixed boolean– real
linear system, handled by solvers like MathSAT (Bozzano
2005), if there is no metric.

An Example
In order to have domains and problems with multivalued flu-
ents and graded actions we have to add some little features
to PDDL3. We started from this version of the language
because it allows to specify preferences both in the action
precondition and goal fields. In particular, we had to add:

• the field(:type boolean|graded) in action specifica-
tion, in order to specify if the action is boolean or graded,

• two parameters in the structure of each precondition, pref-
erence or goal, in order to specify the kind of constraint
(boolean or soft) and the value for the threshold,

• a parameter in the structure of each effect, in order to
specify the weight of the action over the effect,

• the field(:threshold v) for the global threshold,

• the initial truth value for each fluent in the initial state,

• the possibility to label soft preconditions in order to use
them in the function(is-violated p) , as the PDDL3
allows for preferences,

• the use of(is-executed a) in the metric specification,
in order to use the action application degrees in the metric
for the plan quality.

The SLIPPERY-GRIPPERDomain
In this small example we present a domain having generic
objects that can be wet and must to be painted; there
are also some grippers that can be wet and hold ob-
jects. These domain properties are represented by the fol-
lowing fluents: (obj wet o), (painted o), (gr wet
g), (holding o g) whereo is an object andg is a grip-
per.

This domain has four actions.dry is a graded action that
can dry a free gripper (represented by(free g) ). paint
is a graded action that can paint an object held by a gripper
and prefers to paint not too much wet objects.pickup and
putdown are boolean actions that respectively pick an object
up from the table and put an object down to the table. The
property to be ontable is represented by(ontable o) . A
gripper can hold only one object; it can pick an object up
only if it is free and the object is on the table; it can put an
object down only if it holds it. A gripper can be wet, and we
can safely use it only if it is not too much wet.

This example cannot realistically be modeled by classi-
cal planning domains, because qualitative properties like ”be
wet” or ”be painted” cannot suitable represented by boolean
propositions. A gripper is not only wet or not wet, it can be
”a little wet” or ”just damp”. To have soft preconditions al-
lows, for instance, to execute the actionpickup(gr,obj)even
if the gripper is not totally dry. Moreover, the classical plan-
ning model is too rough for an action likedry(gr) because
any planner applies it with the same strength, both when the
gripper isvery wetand when isa little wet. These are the
action descriptions:
(:action paint

:type graded

:parameters (?obj - object ?gr - gripper)

:precondition (and (b 1 (holding ?obj ?gr))

(preference p1 s 0.5 (not(obj wet ?obj))) )

:effect (0.8 (painted ?obj)) )

(:action dry

:type graded

:parameters (?gr - gripper)

:precondition (s 0.8 (gr wet ?gr))

:effect (0.9 not(gr wet ?gr)) )

(:action pickup

:type boolean

:parameters (?obj - object ?gr - gripper)

:precondition (and (b 1 (free ?gr))

(b 1 (ontable ?obj))

(p2 s 0.7 (not(gr wet ?gr))) )

:effect (and ( ∞ not(free ?gr)) ( ∞ (not(ontable ?obj)))

(∞ (holding ?obj ?gr)) ) )
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(:action putdown

:type boolean

:parameters (?obj - object ?gr - gripper)

:precondition (b 1 (holding ?obj ?gr))

:effect (and ( ∞ (free ?gr)) ( ∞ (ontable ?obj))

(∞ (not(holding ?obj ?gr))) ) )

An example of a problem is presented. We suppose to
have the goal to paint the objects minimizing thedry ap-
plication and the violations of the preferencep1 and of soft
preconditionp2.
(define (problem example)

(:domain slippery_gripper)

(:objects gr1-gripper gr2-gripper obj1-object obj2-object)

(:init (= 1 (free gr1)) (= 1 (free gr2))

(= 1 (ontable obj1)) (= 1 (ontable obj2))

(= 0.2 (gr_wet gr1)) (= 0.5 (gr_wet gr2))

(= 0.2 (obj_wet obj1)) (= 0.7 (obj_wet obj2))

(= 0.3 (painted obj1)) (= 0.6 (painted obj2)) )

(:goal (and (s 0.8 (painted obj1))(s 0.7 (painted obj2))) )

(:threshold 0.9)

(:metric minimize (+ ( * 5 (is-violated p1))

( * 3 (is-violated p2)) ( * 10 (is-executed dry)) ))

)

Related Works
One of the main related planning models is the non–Boolean
approach introduced in (Miguel, Jarvis, & Shen 2001) based
onflexible operatorsandpropositions. The main difference
is that the multivalued planning approach proposed here can
manage a continuous range of values in [0,1]; another dif-
ference is that, in the flexible planning model, the mapping
between preconditions and effects is obtained by a set of dis-
joint conditional clauses, where each clause determines the
satisfaction degree of the effects associated with it. Despite
of the fuzziness of the approach, the activation of a condi-
tional clause is crisp. Finally the concept of graded action
is not present: the operators are applied only at a fixed ap-
plication degree and the effects of the action depend only by
the satisfaction degree of preconditions. In our approach, in-
stead, the planner decides which application degree to assign
to an action among the available values.

Models for planning with resources (for example as in
(Koehler 1998)) can also be related to our work. In these
approaches numerical constraints can be posed on resources
which are incremented/decremented by actions. It is easy to
see that most types of resources can be encoded in our model
by appropriate multivalued properties values and by additive
effects.

Recently PDDL (Gerevini & Long 2005) has been ex-
tended in order to allow boolean preferences; the number of
preference violations are used to estimate the plan quality. It
is worth noticing that, in our approach, preferences are en-
coded by multivalued constraints with satisfaction/violation
degree in[0, 1]. This allows to define more expressive and
accurate metric functions because we can take into account
not only the number of violations of boolean preferences but
also the violations degree of the soft preferences.

Conclusions
In this work a model for planning in a multivalued frame-
work has been introduced. The model allows to manage

multivalued fluents and graded execution of actions. More-
over the model allows to specify soft constraints in prefer-
ences, preconditions and goals. This model is yet prelimi-
nary and requires further investigations: several extensions
can be proposed in order to integrate the management of plan
trajectory constraints and resources. Another important ex-
tension would be to allow the use of parallel actions in the
plan, with the definition of a suitable concept of mutually
exclusive actions.

An interesting direction for future investigations is how to
redefine our multivalued planning model in a finite-valued
logic. While the treatment of the constraints used in the pre-
conditions and goals would not need major modifications, it
is not clear how to model the multiplicative weights of the
effects with a finite number of truth values. Anyway in a
finite-valued logic the elicitation of fuzzy values would be
easier than in an infinite valued one.

Different and more efficient approaches to solve multival-
ued planning problems need to be considered, such as graph
based algorithms or using mixed boolean–real solvers. On
the other hand the current algorithm, which uses a transla-
tion into a MIP problem, allows to introduce into the model
linear objective functions and plan metrics and to solve the
corresponding optimization problems.

Finally, from an experimental point of view, it is neces-
sary to develop a set of benchmark problems for significant
domains involving graded actions in order to test the perfor-
mance of the implementation.
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Abstract

We present an integer programming approach for han-
dling preferences and trajectory constraints in plan-
ning. Our main aim is to illustrate through examples
how simple it is to express preferences and trajectory
constraints by linear constraints over 0-1 variables. We
are currently in the process of incorporating these con-
straints in the context of efficient integer programming
encodings that we developed recently.

Introduction

Given the recent success of integer programming ap-
proaches to automated planning (van den Briel, Vossen,
& Kambhampati 2005), we believe that these ap-
proaches are a good avenue to explore further both
because of the recent improvements, and the fact
that with preferences, planning becomes an optimiza-
tion problem, which integer programming is naturally
equipped to handle.

Preferences and trajectory constraints are two new
language features in PDDL3.0 that can be used to ex-
press hard and soft constraints on plan trajectories, and
that can be used to differentiate between hard and soft
goals. Hard constraints and goals define a set of condi-
tions that must be satisfied by any solution plan, while
soft constraints and goals define a set of conditions that
merely affect solution quality.

In particular, preferences assume a choice between
alternatives and the possibility to rank or order these
alternatives. In PDDL3.0, preferences can be defined
on states, on action preconditions, on trajectory con-
straints, or on some combination of these. Since prefer-
ences may or may not be satisfied for a plan to be valid
they impose soft constraints or goals on the planning
problem. Trajectory constraints, on the other hand,
define a set of conditions that must be met throughout
the execution of the plan. They can be used to express
control knowledge or simply describe restrictions of the
planning domain. Since trajectory constraints define
necessary conditions for a plan to be valid (except in
the case where the trajectory constraint is a preference)

Copyright c© 2006, American Association for Artificial In-
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they impose hard constraints or goals on the planning
problem.

Neither preferences nor trajectory constraints have
yet gotten a lot of attention from the planning com-
munity, but the importance of solution quality and the
efficient handling of hard and soft constraints and goals
has increasingly been addressed by some recent works.

Planning with preferences is closely related to over-
subscription planning. In oversubscription planning
goals are treated as soft goals as there are not enough
resources to satisfy all of them. This problem has been
investigated by Smith (2004) and further explored by
several other works.

Preferences, however, are more general than soft
goals as they also include soft constraints. Son and
Pontelli (2004) describe a language for specifying pref-
erences in planning problems using logic programming.
Their language can express a wide variety of prefer-
ences, including both soft goals and soft constraints,
but it seems that it has not been used for testing yet.
Empirical results for planning with preferences are pro-
vided by Rabideau, Engelhardt and Chien (2000) and
Brafman and Chernyavsky (2005). Rabideau, Engel-
hardt and Chien describe an optimization framework
for the ASPEN planning system, and Brafman and
Chernyavsky describe a constraint based approach for
the GP-CSP planning system.

Planning with trajectory constraints is closely re-
lated to reasoning about temporal control knowledge
and temporally extended goals. Edelkamp (2005) han-
dles trajectory constraints by converting a PDDL3.0
description into a PDDL2.2 description and then using
a heuristic search planner.

In this paper we show numerous examples of how to
express preferences and trajectory constraints by linear
constraints over 0-1 variables. These constraints would
need to be added to the integer programming formu-
lation of the planning problem. Currently, we are still
in the process of incorporating these constraints in the
formulations described by van den Briel, Vossen and
Kambhampati (2005).

The organization of this this paper is as follows. The
next section is concerned with the formulation of integer
optimization problems, that is, how to translate a ver-
bal description of a problem into mathematical state-
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ment. In particular, we will show how we can use 0-1
variables to model different relations between events.
We then show various planning examples for both sim-
ple preferences and qualitative preferences, and some
concluding remarks will be given at the end.

Modeling with 0-1 Variables

Integer programming is a powerful and natural mod-
eling framework for solving optimization problems in-
volving integer decision variables. The case where the
integer variables are restricted to be 0 or 1 are referred
to as 0-1 programming problems or binary integer pro-
gramming problems. In mathematical programming,
0-1 variables are commonly used to represent binary
choice, where binary choice is simply a choice between
two things. For example, consider the problem of decid-
ing whether an event should or should not occur. This
decision can be modeled by a binary variable x, where
x = 1, if the event occurs and, x = 0, if the event does
not occur. Depending on the problem being considered,
the event itself could be almost anything. For example,
in scheduling, an event x could represent whether some
job should be scheduled before another job.

Here we show some standard relationships between
events and how they can be modeled by 0-1 variables.

• The relation that at most one of a set J of events
is allowed to occur is represented by a packing con-
straint,

∑
j∈J xj ≤ 1.

• The relation that at least one of a set J of events is
allowed to occur is represented by a cover constraint,∑

j∈J xj ≥ 1.

• The relation that exactly one of a set J of events
is allowed to occur is represented by a partitioning
constraint,

∑
j∈J xj = 1.

• The relation that neither or both events 1 and 2 must
occur, that is, event 1 equals event 2, is represented
by the linear equality x2 − x1 = 0.

• The relation that event 2 can occur only if event 1
occurs, that is, event 2 implies event 1, is represented
by the linear inequality x2 − x1 ≤ 0.

Sometimes, the occurrence of an event is limited to
a set of pre-specified time periods 1 ≤ t ≤ T . The
decision whether an event should or should not occur
at time period t can can be modeled by a time-indexed
binary variable xt, where xt = 1, if the event occurs at
time period t and, xt = 0, if the event does not occur
at time period t. For example, in planning, an event xt

could represent the execution of an action or the truth
value of a proposition at a specific plan step.

Here we show some standard relationships between
time dependent events and how they can be modeled
by time-indexed 0-1 variables.

• The relation that event 1 may occur at most once
during the time horizon, is represented by the linear
inequality

∑
t x1,t ≤ 1.

• The relation that event 1 must occur sometime dur-
ing the time horizon, is represented by the linear in-
equality

∑
t x1,t ≥ 1.

• The relation that if event 1 occurs, event 2 must occur
sometime-before event 1, is represented by the linear
inequalities x1,t ≤

∑
1≤s<t x2,s for all 1 ≤ t ≤ T .

• The relation that if event 1 occurs, event 2 must occur
sometime-after event 1, is represented by the linear
inequalities x1,t ≤

∑
t≤s≤T x2,s for all 1 < t ≤ T .

• The relation that event 1 must always occur is rep-
resented by the linear equalities x1,t = 1 for all
1 ≤ t ≤ T .

• The relation that event 1 must occur at the end of
the time horizon is represented by the linear equality
x1,T = 1.

Note that most of these standard relationships co-
incide with the new modal operators: at-most-once,
sometime, sometime-before, sometime-after,
always, at end, in PDDL3.0. Even though there some
differences in semantics, this suggests that modeling
these modal operators and the preferences and trajec-
tory constraints that are expressed by them through
integer programming should be rather straightforward.

In the next two sections we give various examples of
how to model preferences and trajectory constraints by
linear constraints over 0-1 variables. The examples are
all borrowed from the International Planning Competi-
tion resources 1.

Simple Preferences
Simple preferences are preferences that appear in the
goal or that appear in the preconditions of an action.
Goal preferences can be violated at most once (at the
end of the plan), whereas precondition preferences can
be violated multiple times (each time the corresponding
action is executed).

For each goal preference in the planning problem we
introduce a 0-1 variable p, where p = 1, if the goal
preference is violated and, p = 0 if the goal preference
is satisfied. Similarly, for each precondition preference
for action a at step t (1 ≤ t ≤ T ) we introduce a
0-1 variable pa,t, where pa,t = 1, if the precondition
preference is violated for action a at step t and, pa,t =
0 if the precondition preference is satisfied for action
a at step t. This way all violations can be counted
for separately and given different costs in the objective
function of the formulation.

Constraints for goal and precondition preferences are
easily modeled by integer programming. There are only
finitely many operators in PDDL3.0, including some
standard operators like or, and, and imply, which can
all be represented by one or more linear constraints.

Examples

In the examples we will use variables xa,t to denote the
execution of an action a at step t, and use variables yf,t

1http://zeus.ing.unibs.it/ipc-5/
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to denote the truth value of a fluent f at step t. This is
slightly different from the notation and variables used in
the formulations by van den Briel, Vossen, and Kamb-
hampati 2005, but it provides a concise representation
of the resulting constraints.

In PDDL3.0, the goal preference p1 “We would like
that person1 is at city2” is expressed as follows.

(:goal (and (preference p1
(at person1 city2))))

The inequality corresponding to preference p1 is
given by:

p1 ≥ 1 − yat person1 city2,T (1)

Thus preference p1 is violated (p1 = 1) if person1 is not
at city2 at the end of the plan (yat person1 city2,T = 0).

The goal preference p2 “We would like that person1
or person2 is at city2” is expressed as follows.

(:goal (and (preference p2 (or
(at person1 city2) (at person2 city2)))))

The inequality corresponding to preference p2 is
given by:

p2 ≥ 1 − yat person1 city2,T − yat person2 city2,T (2)

Now, preference p2 is violated if neither person1 nor
person2 is at city2 at the end of the plan. Preference
p2 is satisfied when either or both person1 and person2
are at city2 at the end of the plan.

The goal preference p3 “We would like that person2
is at city1 if person1 is at city1” is expressed as follows.

(:goal (and (preference p3 (imply
(at person1 city1) (at person2 city1)))))

The inequality corresponding to preference p3 is
given by:

p3 ≥ yat person1 city1,T − yat person2 city1,T (3)

So preference p3 is violated if person2 is not at city1
while person1 is.

The goal preference p4 “We would like that person3
and person4 are at city3” is expressed as follows.

(:goal (and (preference p4 (and
(at person3 city3) (at person4 city3)))))

Note that preference p4 is very similar to prefer-
ence p1 with the exception that p4 is defined over
a conjunction of fluents. For each fluent in the
conjunction we will state a separate constraint, thus
the inequalities corresponding to preference p4 are
given by:

p4 ≥ 1 − yat person3 city3,T (4)

p4 ≥ 1 − yat person4 city3,T (5)

Now, preference p4 is violated if either or both person3
and person4 are not at city3 at the end of the plan.

Preferences over preconditions are different from
goal preferences as they depend on both the execution
of an action and on the state of the precondition of that
action. Moreover, a precondition preference is defined
for each plan step t, where 1 ≤ t ≤ T . In PDDL3.0, the
precondition preference p5,fly?a?c1?c2,t “We would like
that some person is in the aircraft” whenever we fly air-
craft ?a from city ?c1 to city ?c2 is expressed as follows:

(:action fly
:parameters (?a - aircraft ?c1 ?c2 - city)
:precondition (and (at ?a ?c1)
(preference p5

(exists (?p - person) (in ?p ?a))))
:effect (and (not (at ?a ?c1))
(at ?a ?c2)))

The inequalities corresponding to each ground
fly ?a ?c1 ?c2 action is given by:

p5,fly?a?c1?c2,t ≥ xfly ?a ?c1 ?c2,t −
∑

?p

yin ?p ?a,t

∀1 ≤ t ≤ T (6)

Thus, preference p5,fly?a?c1?c2,t is violated at step t if
we fly aircraft ?a from city ?c1 to city ?c2 at step t
(xfly ?a ?c1 ?c2,t = 1) without having any passenger ?p
onboard at step t (yin ?p ?a,t = 0, for each ?p).

Qualitative Preferences
In propositional planning, qualitative preferences in-
clude trajectory constraints and preferences over trajec-
tory constraints none of which involve numbers. Given
the space limitations we will mainly concentrate on the
trajectory constraints here that use the new modal op-
erators of PDDL3.0 in this section.

There is a general rule of thumb for the operators
forall and always. forall indicates that the tra-
jectory constraint must hold for each object to which
it is referring to. For example, forall (?b - block)
means that the trajectory must hold for each instantia-
tion of ?b, thus we generate the trajectory constraint for
all blocks ?b. always in propositional planning is equiv-
alent to saying for all t, thus we generate the trajectory
constraint for all t where 1 ≤ t ≤ T .

Constraints for trajectories are easily modeled by in-
teger programming through observing the different op-
erators carefully. It is often the case, that the trajec-
tory constraint simply represent one of the standard
relationships described earlier in this paper.

Examples

In PDDL3.0 the trajectory constraint “A fragile block
can never have something above it” is expressed as
follows.

(:constraints (and (always (forall (?b - block)
(implies (fragile ?b) (clear ?b))))))
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The inequality corresponding to this trajectory
constraint corresponds to the relation that fragile
implies clear for all blocks ?b, for all steps t, where
1 ≤ t ≤ T . It is given by:

yfragile ?b,t − yclear ?b,t ≤ 0 ∀?b, 1 ≤ t ≤ T (7)

The trajectory constraint “Each block should be
picked up at most once” which is expressed as follows.

(:constraints (and (forall (?b - block)
(at-most-once (holding ?b)))))

It translates to an at most once relation for all
blocks ?b and is given by:

yholding ?b,0 +
∑

a∈A,1≤t≤T :holding ?b∈ADD(a)

xa
t ≤ 1 ∀?b (8)

Likewise the trajectory constraint “Each block
should be picked up at least once” is expressed as
follows.

(:constraints (and (forall (?b - block)
(sometime (holding ?b)))))

This translates to a sometime relation for all
blocks ?b and is given by:

∑

t

yholding ?b,t ≥ 1 ∀?b (9)

Continuing in the same way, the trajectory con-
straint “A truck can visit city1 only if it has visited
city2 sometime before” is expressed in PDDL3.0 as
follows.

(:constraints (and (forall (?t - truck)
(sometime-before

(at ?t city1) (at ?t city2)))))

The corresponding inequality describes a sometime-
before relationship for all trucks ?t and is given
by:

∑

1≤s<t

yat ?t city2,s ≥ yat ?t city1,t ∀?t, 1 ≤ t ≤ T (10)

Similarly the trajectory constraint “If a taxi has
been used and it is at the depot, then it has to be
cleaned.”

(:constraints (and (forall (?t - taxi)
(sometime-after (and (at ?t depot) (used ?t))

(clean ?t)))))

This translates to a sometime-after relationship
for all taxis ?t. Note, however, that this trajectory
constraint has two conditions, which if satisfied,
require that taxi ?t is to be cleaned. The inequality
corresponding to this trajectory constraint is given by:

yat ?t depot,t + yused ?t,t − 1 ≤
∑

t≤s≤T

yclean ?t,s

∀?t, 1 ≤ t ≤ T (11)

Now, if taxi ?t is at the depot at step t (yat ?t depot,t = 1)
and if it has been used (yused ?t,t = 1), then it must be
cleaned sometime after step t (

∑
t≤s≤T yclean ?t,s ≥ 1).

More examples can be presented, but we hope it is
enough to bring the point across that integer program-
ming provides a natural framework for modeling propo-
sitional planning with preferences and trajectory con-
straints.

Conclusions
We have shown numerous examples of how to model
preferences and trajectory constraints by integer pro-
gramming. The main challenge is to automatically
generate these constraints and add them to the inte-
ger programming formulation of the planning problem.
Especially, generating constraints for complicated in-
stances of preferences and trajectory constraints that
contain nested expressions can be tricky. Even though
we haven’t had the time to implement this yet, we be-
lieve this can be done.

An interesting analysis for future work would be to
see the impact on performance when preferences and
trajectory constraints are added to integer program-
ming formulation of the planning problem. Also we
would like to compare the performance of the integer
programming formulations that use preferences and tra-
jectory constraints as side constraints (as shown in the
examples in this paper) with integer programming for-
mulations that handle preferences and trajectory con-
straints which are compiled down into PDDL2.2.
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Abstract

Work in partial satisfaction planning (PSP) has hither to as-
sumed that goals are independent. This implies that that indi-
vidual goals have additive utility values. In many real-world
problems we cannot make this assumption and thus goal util-
ity is not additive. In this paper, we motivate the need for rep-
resenting and handling goal utility dependencies in PSP and
we provide a framework for representing them using the Gen-
eral Additive Independence (GAI) model (Bacchus & Grove
1995). We then present an algorithm based on forward heuris-
tic planning to solve this problem using heuristics derived
from the planning graph. To show the effectiveness of our
framework, we provide empirical results on benchmark plan-
ning domains.

Introduction
Classical planning aims at finding a plan that achieves
a set of conjunctive goals. Partial satisfaction (or over-
subscription) planning relaxes this all-or-nothing constraint,
focusing on finding a plan to achieve the “best” subset of
goals (i.e. the plan that gives the maximum tradeoff be-
tween total achieved goal utilities and total incurred action
cost). The process of selecting the set of goals on which
to focus is complicated by two types of dependencies be-
tween goals: (i) A set of goals may havecost dependencies
in that there are dependencies among the actions to achieve
them (making the cost of achieving them together signifi-
cantly more or less than the sum of costs of achieving them
in isolation) (ii) A set of goals may haveutility dependencies
in that achieving the goals together may lead to utility thatis
significantly different from the sum of utilities of achieving
each goal in isolation. Both cost and utility dependencies are
common in many real world applications such as NASA’s
data collection domains.

Although some recent work in partial satisfaction plan-
ning (van den Brielet al. 2004) has begun to handle cost de-
pendencies between goals, there has not yet been any work
on handling utility dependencies. The primary contribu-
tion of our paper is a systematic approach for handling cost
and utility dependencies together in PSP. The main techni-
cal challenges here include developing a model where goal
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utility dependencies can be compactly represented and us-
ing utility interactions with cost interactions to find a high
net benefit plan. Our approach builds upon the methods
for handling utility dependencies from decision theory (c.f.
(Bacchus & Grove 1995; Boutilier et. al. 2001)) and combi-
natorial auctions (c.f. (Nisan 2005)).

We start with a brief overview of two types of utility de-
pendencies that need to be handled:

1. Mutual dependency:Utility of the set of goals is different
from the summation of the utility of each individual goal.
Thus, forS ⊆ G, u(S) 6= Σg∈Sug. Examples: (1) while
the utility of having either a left or right shoe alone is
zero, utility of having both of them is much higher (i.e.
the goals “complement” each other); (2) utility of having
two cars is smaller than the summation of the individual
utilities of having each of them (i.e. the goals “substitute”
each other).

2. Conditional dependency:The utility of a goal or set of
goals depend on whether or not another goal or set of
goals are already achieved. Examples: (1) the utility of
having a hotel reserved in Hawaii depends on whether or
not we have a ticket to Hawaii; (2) in the logistics domain,
packages containing parts of a machine that need to be de-
livered to a given location are only useful in the presence
of other parts in the same group.

In this paper, we develop an approach for representing
these utility dependencies between planning goals using the
Generalized Additive Independence (GAI)model (Bacchus
& Grove 1995) and describe a planning algorithm based on
forward search that solves this extended PSP problem. The
algorithm is based on the forward heuristic search used in
theSapaPS planner (van den Brielet al. 2004). To guide
the heuristic search algorithm, we introduce two different
heuristics based on the planning graph structure. The first
one is admissible and can be used to find optimal solutions.
The second one is inadmissible but is more effective in find-
ing good quality solutions in less time. The main innovation
of our heuristic approach is its ability to take into account
both goal utility and goal achievement cost dependencies.
Our heuristic framework combines both (1) a greedy search
for low-cost relaxed plans that handle cost interactions be-
tween goals, and (2) a declarative Integer Linear Program-
ming (ILP) encoding that captures both mutual goal achieve-
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ment cost and goal utility dependencies to select the best
subset of goals. The solution of this latter ILP encoding is
used to guide an anytime best-first search algorithm that re-
turns higher net benefit solutions.

For the rest of this paper, we will first formalize the prob-
lem of goal utility dependency. After that we will introduce
the GAI model (Bacchus & Grove 1995) and then describe
the important steps of the main heuristic search framework.
We finish the paper with empirical results showing the effec-
tiveness of our approach and the related and future work.

Problem Formulation
A classical planning problem is a 4-tuple〈F, I, G, A〉
where: F is a set of predicate symbols representing state
facts;I is the initial state, completely defined by predicates
in F ; G is a goal state, which is partially defined by a set
of predicates inF ; A is a set of actions witha ∈ A defined
by pre- and post-conditionsPrecond(a), Effect(a) ⊆ F .
A plan P is a sequence of actions fromA such that, when
executed fromI, P will result in a state that achieves all
g ∈ G.

In partial satisfaction planning (PSP) (Smith 2004; van
den Briel et al. 2004), goalsg ∈ G have utility values
ug ≥ 0, representing how much each goal is worth to a user,
and each actiona ∈ A has an associated positive execution
costca, which represents the resources spent executing each
action. Moreover, not all goals inG need to be achieved.
Let P be the lowest-cost plan that achieves a subsetG′ ⊆ G
of those goals, the objective is to maximize the tradeoff be-
tween total utilityu(G′) of G′ and total cost of all actions
a ∈ P :

maximizeG′⊆G u(G′)−
∑

a∈P

ca (1)

Work on PSP has until now assumed that goals have
no utility dependencies and thus their utilities are additive:
u(G′) = Σg∈G′ug. As we showed in the previous sec-
tion, there are many scenarios in which this assumption is
not true. To represent the goal utility dependencies as dis-
cussed, we adopt theGeneralized Additive Independence
(GAI) model (Bacchus & Grove 1995). Specifically, we as-
sume that the utility of the goal setG can be represented by
k local utility functionsfu(g[k]) ∈ R over setsg[k] ⊆ G of
goals whereg[k] may contain a single goal thereby captur-
ing the utility of that goal. For any subsetG′ ⊆ G the utility
of G′ is:

u(G′) =
∑

g[k]⊆G′

fu(g[k]) (2)

For the rest of this paper, we name the newPSP
problem with utility dependencies represented by GAI
model PSPUD . If there are|G| local functionsfk(g[k])
and eachg[k] contains a single goal then there are no utility
dependencies and thusPSPUD reduces to the original
PSP problem. We chose the GAI model because it is
simple, intuitive, expressive and it is more general than
other commonly used models such as UCP-Net (Boutilier
et. al. 2001). To facilitate the discussion on the GAI

model for PSPUD , we will use the following exam-
ple in the Mars Rover domain (Smith 2004).

Example: In the Mars Rover domain, a Rover needs to
travel between different locations. It then collects the sam-
ples and takes either high or low resolution pictures at dif-
ferent locations. Achievement of each goal gives a utility
value. We havegl

1 = sample(l), gl
2 = high res(l), gl

3 =
low res(l) with the utility valuesu(gl

1) = 200, u(gl
2) =

150 andu(gl
3) = 100 for all locationsl of interest. There

are also utility dependencies between combinations of goals
such as:

• complementrelation: Utility of having samples at re-
lated locationsl1 and l2 will give additional utility (e.g.
u({sample(l1), sample(l2)}) = u(gl1

1 ) + u(gl2
1 ) + 50).

• substituterelation: Taking both low and high resolution
images of the same location will reduce the overall utility
(e.g.u({gl

2, g
l
3}) = u(gl

2) + u(gl
3)− 80).

• conditionalrelation: Finally, if we already have a picture
of a given locationl, then the utility of taking a sample
at l increases, due to the available information to aid fu-
ture analysis (e.g. ifgl

2 then u(gl
1) += 100, if gl

3 then
u(gl

1) += 50 and ifgl
2 ∧ gl

3 thenu(gl
1) += 110).

For our GAI model, the local functions for these relations
in this example would be:f(gl

1) = 200, f(gl
2) = 150,

f(gl
3) = 100, f({gl1

1 , gl2
1 }) = 50, f({gl

2, g
l
3}) = −80,

f({gl
1, g

l
2}) = 100, f({gl

1, g
l
3}) = 50 andf({gl

1, g
l
2, g

l
3}) =

110−(100+50) = −40. At first glance, it may seem strange
to have the local functionf({gl

1, g
l
2, g

l
3}) having negative

value even though those three goals have a complement re-
lation. That’s because the formulation to calculate the util-
ity of {gl

1, g
l
2, g

l
3} includes two other complement functions

for {gl
1, g

l
2} and{gl

1, g
l
3}. Using GAI functions, the utility

of a set of goals can be calculated as:U({gl
1, g

l
2, g

l
3}) =

f(gl
1) + f(gl

2) + f(gl
3) + f({gl

1, g
l
3}) + f({gl

1, g
l
2}) +

f({gl
1, g

l
2, g

l
3}) = 200 + 150 + 100 + 50 + 100− 40 = 560

Search Algorithm
There are several approaches to solve the PSP problems such
as selecting the subset of goals up-front, compilation to ILP,
or adapting theA∗ search algorithm to PSP (Smith 2004;
van den Brielet al. 2004). We choose to extend the best-
first search framework inSapaPS to handlePSPUD , which
uses anA∗ based search algorithm. With this framework we
can analyze the action cost and utility dependencies at each
search node.

The search algorithm, which we callA∗
PSP is sketched in

Figure 1. It starts with the initial stateSinit and continues
to dequeue the most promising nodeS (i.e. highestf(S) =
g(S) + h(S) value). For each search nodeS, let PC be the
partial plan leading fromSinit to S, let GS be the set of
goals satisfied inS, U(S) = Σg∈GS

ug be the utility ofS,
and letc(S) = c(PC) = Σa∈PC

ca be the total cost to visit
S. We haveg(S) = u(S) − c(S). Let PR be the plan that,
when we apply inS, will lead toS′ such thatPR maximizes
h(S) = (U(S′)− U(S))− c(PR). While calculatingg(S)
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Open State Queue:SQ={Sinit}

Best achieved benefit:BB = U(Sinit)
while SQ6={}

S:= Dequeue(SQ)
if (g(S) > 0) ∧ (h(S) = 0) then

Terminate Search;
forall a applicable inS

S’ := Apply(a,S)
if g(S′) > BB then

Print BestBeneficialNode(S′)
BB ← g(S′)

if f(S′) = g(S′) + h(S′) ≤ BB then
Discard(S)

elseEnqueue(S’,SQ)
end while;

Figure 1: A* search with negative edges for PSP problems.

is trivial, having a good estimate ofh(S) is hard and is the
key to the success of best-first search algorithms.

Definition ST is a termination node if: h(ST ) = 0,
g(ST ) > 0, and∀S : g(ST ) > f(S).

If a stateS is a termination node, we stop the search. If
not, we generate children ofS by applying applicable ac-
tionsa to S. If the newly generated nodeS′ = Apply(a, S)
is a beneficial node (i.e.g(S′) > 0) and has a betterg(S′)
value than the best beneficial node visited so far, then
we print the plan leading fromSinit to S′. Finally, if S′

is a promising node (i.e.f(S′) > BB where f(S′) is
the f value of stateS′ andBB is the g value of the best
beneficial node found so far), then we will put it in the
search queueSQ sorted in the decreasing order off values.
Notice that because we keep outputting the best beneficial
plans while conducting search (until a terminal node is
found), the algorithm has an “anytime” property. Thus, it
can quickly return some beneficial plan. It also can continue
to return plans with better net benefit1.

Proposition If h(S) is admissible (over-estimates the
achievable benefit), thenA∗

PSP returns an optimal solution.

Proof sketch: If f(S) over-estimates the real achievable
benefit, then the discarded nodes (not enqueued) cannot lead
to nodes with higher benefit value than the current best node
(BB). If A∗

PSP finishes with an empty queue then the op-
timal solution should be found because all nodes enqueued
are visited. IfA∗

PSP found a termination nodeST , all nodes
remaining in the queue can lead to solutions with lower total
benefit thanST . ThusST is an optimal solution.

1If we consider heuristic planning search as a graph search
problem, then PSP has some interesting properties (1) the edge
costv = (u(S′) − u(S)) − ca of moving from a stateS to state
S′ = apply(S,a) can be negative; (2) any reachable state can be a
valid goal state. We have not found a cyclic graph search algorithm
dealing with problems having the same properties.

Heuristics for Maximizing Plan Benefit
The main objective of PSP planners, as de-
scribed in Equation 1, is to find the best plan
in terms of total benefit, which is calculated as
benefit = total achieved utility - total action cost. The
key to the success ofA∗

PSP is an effective heuristic function
capable of estimating the remaining achievable benefith(S)
for each generated stateS during forward search. We base
our heuristic routine on the planning graph cost-propagation
framework first used in theSapa planner (Do & Kambham-
pati 2001). We how describe how our heuristic estimates
cost and utility.

Cost-Propagation on the Relaxed Planning-Graph
For PSP problems, the cost-propagation process on the plan-
ning graph is used to estimate the achievement cost for
each individual goal. Starting with the achievement cost of
c(f) = 0 for factsf in the initial stateI andc(f) = c(a) =
∞ for all other facts and all actions, the propagation rules
to estimate costs to achieve different factsp and to execute
actionsa are2:

1. Facts:∀f : c(f) = min (c(a) + ca) : f ∈ Effect(a)

2. Max-prop:∀a ∈ A, f ∈ Precond(a) : c(a) = max c(f)

3. Sum-prop:∀a ∈ A, f ∈ Precond(a) : c(a) = Σc(f)

The update rules are used while extending the (relaxed)
planning graph structure (Blum & Furst 2001) from the
initial state, with eachc(f) or c(a) value updated exactly
once. After the propagation is done, for each individual goal
g ∈ G, the valuec(g) is an estimate on the cost to achieve
g. As shown in (Do & Kambhampati 2001), if we usemax
propagation, thenc(g) will underestimate the cost to achieve
g while there is no such guarantee forsumpropagation. Us-
ing c(g) calculated bymaxpropagation, we can estimate the
achievable benefit value as below:

hmax = maxG′⊆G [u(G′)− (maxg∈G′c(g))] (3)

It’s easy to see thathmax overestimates the real achiev-
able benefit and thusA∗

PSP usinghmax will output an op-
timal solution. One brute force way to estimatehmax is by
enumerating over all (2|G|) possible subsets ofG, which can
be prohibitive for a large goal set. In the following, we will
introduce an approach for estimatinghmax using an Integer
Linear Programming (ILP) encoding.

Relaxed-Plan based Heuristic
Because the cost estimate for each goal using the cost-
propagation on the planning graph can highly under-
estimate the real cost of a set of goals, themax family of
heuristics as inhmax tends to perform badly in practice.
Therefore, we use an alternative approach of utilizing the
relaxed plan employed bySapaPS for partial satisfaction

2ca, which is the execution cost ofa, is different fromc(a),
which is the cost to enable the execution ofa (i.e. cost to achieve
preconditions ofa)
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planning3. For each stateS explored in a progression plan-
ner we build the relaxed planning graph and perform a for-
ward cost propagation on the graph. After this we use the
following general procedure to extract a relaxed plan to sup-
port a subset of goalsG′ ⊆ G:

1. Let subgoal setSG = G and the relaxed-planRP = ∅.

2. For eachg ∈ SG \ I select actiona : g ∈ Effect(a).
Add a to RP andp ∈ Precond(a) \ I to SG.

3. Repeat untilSG = ∅.

The planRP is called a “relaxed plan” because we ignore
negative effects of all actions in the planning graph while
extracting it. This relaxation allows a non-backtracking plan
extraction process that findsRP quickly. Ideally, we would
like to extract the relaxed-plan with the highest net bene-
fit. Let RP (G′) be the relaxed-plan with highest net benefit
value among those achievingG′ ⊆ G. The relaxed plan
heuristic forPSPUD is:

hrelax = maxG′⊆G (u(G′)−
∑

a∈RP (G′)

ca) (4)

Extracting the relaxed plan that has the highest net bene-
fit (i.e. utility minus cost), tends to get complex as the set
of goalsG′ we need to focus on depends both on the cost
dependencies as well as their utility dependencies. To ap-
proximatehrelax in previous work, the cost dependencies
were partially handled by biasing the relaxed plan extrac-
tion to: (i) greedily select actions with lowest achievement
cost (c(a) + ca); (ii) reuse actions selected for other goals.
We further extend this approach to approximate the optimal
relaxed plan in the presence of utility dependencies as fol-
lows:

1. Greedily extract the lowest-cost relaxed planRP that
achieves thelargestset of achievable goals. The relaxed
plan extraction is not sensitive to utility dependencies. We
now can search in its neighborhood for a plan that at-
tempts higher net benefit, while taking utility dependen-
cies into account.

2. Capture the achievement cost dependencies between
achievable goals using the causal structure ofRP .

3. Pose the problem of extracting the optimal relaxed plan
within RP that takes both cost and benefit dependencies
into account as an ILP encoding. This encoding is then
solved by an ILP solver, and the solution is used as the
heuristich(S) to guideA∗

PSP .

Alert readers would have noted that if we compile the en-
tire relaxed planning graph (rather than just the greedily ex-
tracted relaxed plan) we can post the entire relaxed plan ex-
traction process (including step 1) as an ILP problem. De-
spite its conceptual elegance, we chose not to follow this
route as the cost of heuristic computation increases quite sig-
nificantly (especially for our progression planner which ex-
tracts relaxed plans at each node). Related to this is whether

3Variants of this approach are also used in several other PSP
planners such asAltAlt ps (van den Brielet al. 2004) and the ori-
enteering planner (Smith 2004).

g2

g3

g4

a1: Move(l1,l2)
a2: Calibrate(camera)
a3: Sample(l2)
a4: Take_high_res(l2)

a5: Take_low_res(l2)
a6: Sample(l1)

At(l1) At(l2) Calibrated
ca1=50

ca2 =20

ca3= 40

ca4=40

ca5=25

g1

ca6=40

Figure 2: Relaxed plan for Mars Rover domain.

we can encode the full general problem as an ILP. While this
is possible, previous work has shown that this approach does
not scale well in even simpler problems (van den Brielet al.
2004).

As another observation, note the possibility of perform-
ing steps 2 and 3 in a greedy procedural form. We found
that such a procedure becomes quite hairy because of the
complex utility dependencies. We also note that because the
relaxed planning graph may not contain the optimal relaxed
plan,hrelax is not guaranteed to be admissible (and can thus
underestimate the achievable net benefit).
Cost Dependencies In our ongoing example, plans consist
of actions for traveling between different locations, calibrat-
ing instruments and carrying out experiments; all have costs
(e.g. in proportion to the amount of energy and time con-
sumed by different actions). Because certain actions con-
tribute to the achievement of multiple goals, there are also
mutual dependencies between the costs of achieving sets of
goals. Those relations can be discovered by using the causal
structure of the extracted relaxed plan.

Figure 2 shows the relaxed plan for the planning instance
in which the Rover is initially located atl1 and the de-
sired goals are{g2, g3, g4} with g2 = sample(l2), g3 =
high res(l2), andg4 = low res(l2). The relaxed plan con-
tains 5 actions:a1 = move(l1, l2) with costca1

= 50, a2 =
calibrate(camera) with ca2

= 20, a3 = take sample(l2)
that achieve goalg2 with cost ca3

= 40, and two actions
a4, a5 to take the pictures atl2 of different quality with
cost ca4

= 40 and ca5
= 25 respectively. As discussed

above, partial plans achieving different individual goalscan
overlap. For example, the partial plans to achieve individ-
ual goalsg2, g3 andg4 all share actiona1 and plans forg3

andg4 share the actiona2. Thus, the cost to achieve the set
Sg of goals follows thesubstitutedependencies in which the
cost to achieveSg can be smaller than the summation of the
individual costs to achieve eachg ∈ Sg. For example, the
cost to achieve goalg3 is c(g3) = ca1

+ ca2
+ ca4

= 110
and c(g4) = ca1

+ ca2
+ ca5

= 95 while c({g3, g4}) =
ca1

+ ca2
+ ca4

+ ca5
= 135 < c(g3) + c(g4) = 205.

To capture the mutual dependencies between the goal
achievement costs, we find the set of actions shared between
different partial plans achieving different goals. This pro-
cedure utilizes the causal links, each of which specifies the
achievement action for a goal or action precondition, gath-
ered while extracting the relaxed plan.

ICAPS 2006

26 Workshop on Preferences and Soft Constraints in Planning



1. Initialize: ∀a ∈ P : GS(a) = ∅; ∀p ∈

Effect(a)
⋃

Prec(a) : GS(p) = ∅; ∀g ∈ G : GS(g) =
{g}.

2. Backward sweep from goals and update:GS(a) =⋃
GS(p) : p ∈ Effect(a) andGS(p) =

⋃
GS(a) :

p ∈ Precond(a)

Using the update procedure above, for each actiona,
GS(a) contains the set of goalsg to which a contributes.
For example,GS(a1) = {g2, g3, g4}, GS(a2) = {g3, g4}

andGS(a3) = {g2}.

Estimating Achievable Benefit A realistic planning prob-
lem with goal utility dependencies will likely include sev-
eral goals involved in multiple dependencies, considerably
increasing the complexity of the problem. The challenge is
to use the relaxed plan as means of capturing possible goal
combinations while also being informed by the cost of the
relaxed actions involved in achieving these goals.

Given the utility dependencies represented by GAI local
functionsfu and the goal achievement cost dependencies
represented by goal supporting action setGS(a), we set up
an ILP encoding forhrelax:

• Binary Variables:

– ∀a ∈ P : create one binary integer variableXa.
– ∀g ∈ G: create one binary integer variableXg.
– ∀G′ ⊆ G, fu(G′) 6= 0: create one binary integer vari-

ableXG′ .

• Constraints:

– ∀a ∈ P, ∀g ∈ GS(a) : (1−Xg) + Xa ≥ 1

–
∑

g∈G′(1−Xg) + XG′ ≥ 1

– ∀g ∈ G′ : (1−XG′) + Xg ≥ 1

• Objective function:max (Σfu(G′) ∗XG′ − ΣXa ∗ ca)

The purpose of this encoding is to capture the set of goals
G′ ⊆ G that gives the maximum tradeoff between the utility
of G′ and the cost of actions in the relaxed plan supporting
G′.

The first constraint enforces that if a given goal is se-
lected for achievements, then any action that contributes to
the achievement of that goal should be selected too. The
second and third types of constraints ensure that if there is
a GAI local function for a set of goalsG′ ⊆ G, then this
local function (represented by a binary variableXG′) will
be activated (XG′ = 1) if and only if all goalsg ∈ G′ are
selected (Xg = 1). The value we get from solving this ILP
encoding can then be used as an estimate of the achievable
benefit for a given state (h(S) value) for theA∗

PSP search
algorithm outlined in Figure 1.

For hmax we can also setup an ILP encoding which is
simpler than the encoding forhrelax because there is no need
for variables and constraints related to actions and goal sup-
portingGS(a) sets.

• Variables: besidesXg andXG′ , create one variableXCG

representing the cost to achieveG.

• Constraints: besides the second and third types of con-
straints as in the encoding forhrelax above, introduce one
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Figure 3:SPUDSandSapaPS in ZenoTravel domain.

constraint:∀g ∈ G : XCG
−Xg ∗ c(g) ≥ 0 wherec(g)

is calculated during cost propagation on the graph (as in
Equation 3).

• Objective Function:max (Σfu(G′) ∗XG′ −XCG
)

The variableXCG
and the constraint withXg guarantee

that the cost to achieve a set of goalsG′ is the maximum of
the cost to achieve any goalg ∈ G′.

Empirical Results
We have implemented the heuristic search algorithm for
the PSPUD problems discussed in this paper on top of the
SapaPS planner. We call the new plannerSPUDS. We
tested our planner on two sets of randomZenoTraveland
Satelliteproblems, which were generated on top of the prob-
lem sets used in the Third International Planning Competi-
tion (Long & Fox 2003). The ZenoTravel domain involves
moving people by airplanes between different cities and the
Satellite domain involves turning satellites to point at dif-
ferent objects and taking pictures of them. A more detailed
description of these domains can be found at the IPC3 web-
site4.

All tests were run using a Pentium IV 2.66GHz with 1GB
RAM and a 1200 second time limit. BecauseA∗

PSP con-
tinuously finds better solutions given more time (or a ter-
mination node is found), the results reported in this section
represent the plan with highest benefit value found within
the time limit. For solving the ILP encoding, we use the C
version oflp solve version 5.5, a free solver with
a Java wrapper.
Generating Test Problems: Given that in general, action
cost is decided by the amount of resources consumed and/or
the time spent by that action, we decided to automatically
generate thePSPUD problems from a set of metric tempo-
ral planning problems from the ZenoTravel and Satellite do-
mains (used in IPC3) as follows:

• Domain File: We modified the domain files by adding a
cost field to each action description. Action cost is repre-
sented as a mathematical formula involving numeric vari-
ables that exist in the original problem description and

4http://planning.cis.strath.ac.uk/competition/
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Figure 4:SPUDSandSapaPS in Satellite domain.

also new numeric variables that we have added to the do-
main description file. The cost field utilizes both the func-
tions representing numeric quantities in the original prob-
lem descriptions, and the newly introduced cost-related
functions used to convert the temporal and resource con-
sumption aspects of each action into a uniform plan ben-
efit represented by the amount of money spent (as in the
ZenoTravel domain) or energy consumed (as in Satellite
domain).

• Problem File: For each domain, we implemented a Java
program that parses the problem files used in IPC3 and
generates thePSPUD version with cost-related function
values randomly generated within appropriate upper and
lower bounds. The goal utilities are also randomly gener-
ated within different upper and lower bounds. The goals
are randomly selected to be “hard” or “soft”. The set
of goal dependencies along with their utility values are
also randomly generated. Thus, the number of dependen-
cies, size of the dependencies, set of goals involved and
the utility values are all randomly selected within certain
lower and upper bounds (e.g. upper bound on the number
of dependencies is3 ∗ |G|).

Analysis: We ran bothSapaPS andSPUDSon problems
from the two domains. While the latter is sensitive to both
cost and utility dependencies, the former (SapaPS ) only ac-
counts for cost dependencies. Due to poor performance of
hmax in comparison tohrelax in tests5, we focus only on
hrelax in evaluatingSPUDS. The empirical evaluation is de-
signed to test whetherSPUDSis able to solve thePSPUD

problems more effectively (i.e. with higher net benefit). Fig-
ures 3 and 4 show the comparison between those two plan-
ners.

In the ZenoTravel domain,SPUDSis better thanSapaPS

in 10/13 problems. Both planners find the same solutions in
the remaining three problems.

In the Satellite domain,SPUDSis better in 16/18 prob-
lems, and most of the time is significantly better (up to 16
times better in overall best plan quality). They are equal in1

5In our empirical tests usinghrelax allowed SPUDSto find
plans that were on average 27% better than those found when using
hmax (when usinghmax found a plan at all).
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Figure 5: Example run of planners. (Problem 11 in Zeno-
Travel)

problem andSapaPS is slightly (0.3%) better in 1 problem.
We found that the ILP encoding increases the time spent

per search node by 3 to 200 times with the highest increase
occurring on the larger problems. The advantage gained by
SPUDSin heuristic guidance offsets this additional compu-
tation cost. This behavior is shown in Figure 5 through a plot
of a run on problem 11 of ZenoTravel. For this case,SPUDS
finds a better plan thanSapaPS at533 milliseconds and this
trend continues;SPUDSretains its net benefit superiority.

Of the problems solved bySPUDS, the average number
of actions in the plans was 14.5 for ZenoTravel and 126.2 in
Satellite. For Satellite, this number excludes a single outlier
problem that included 1850 actions. ForSapaPS , the av-
erage number of actions included in ZenoTravel plans was
13.75 and in Satellite plans was 121.1. These averages ex-
clude the same outlier problem in Satellite. Our results un-
derscore the fact thatSPUDSfinds higher net benefit plans
even though shorter plans are found usingSapaPS . In fact,
most of the plans found bySapaPS are shorter because they
achieve fewer goals and therefore lose out on the utility that
those goals give.

In conclusion,SPUDSis significantly better thanSapaPS

in both the ZenoTravel and Satellite domains. This shows
that our declarative heuristic technique of using an ILP en-
coding to extract the best part of the relaxed plan regarding
the utility dependencies pays off despite higher overhead.
We are in the process of more creating test problems based
on other benchmark problem sets. We also hope to enable
other PSP planners such asAltAlt ps andOptiPlan(van den
Briel et al. 2004) to handlePSPUD problems and compare
these withSPUDS.

Related Work
There has been work on PSP problems usingorienteering
to select goal subsets by David Smith (2004). Also, van
den Briel et. al. (2004) introduced several planners such as
AltAlt ps , SapaPS , andOptiP lan that tackle PSP by either
greedily selecting goals up-front, heuristically searching for
solutions, or compiling the problem into ILP. None of those
planners deal with utility dependencies as described in this
paper.
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PrefPlan (Brafman & Chernyavsky 2005) can find opti-
mal plans with preferences between goals specified in CP-
Net. Both PSP planners and PrefPlan can handle soft-goals;
however, PSP planners explicitly reason about quantitative
goal utility and action costs, while PrefPlan handles qualita-
tive goal preferences.

Besides the GAI model that we used to represent the util-
ity dependencies, there are several other attractive models
such as UCP-Net (Boutilier et. al. 2001) and the graphi-
cal model (Bacchus & Grove 1995). While both provide a
graphical representation that can make it easier for users to
understand the dependencies, the GAI has advantages in that
it is more general than UCP-Net while still being simple and
intuitive.

In combinatorial auctions, the utility for a set of items up
for bid are normally non-additive and share many similar-
ities with reasoning about sets of goals that are dependent
in PSP. While a bidding process is different from planning,
the bidding language (Nisan 2005) can be used to represent
utility dependencies inPSPUD .

Conclusion & Future Work
In this paper, we discussed a framework of solving partial
satisfaction planning (PSP) problems with utility dependen-
cies. We show how to represent various types of depen-
dencies using the GAI framework. We also introduced an
admissible heuristic,hmax, and an inadmissible heuristic,
hrelax, that when used with theA∗

PSP search algorithm,
will find optimal or inoptimal solutions respectively. We em-
pirically demonstrated the effectiveness of the new heuristic
framework on two benchmark planning domains.

We plan to extend this work to combine both quantita-
tive preferences as in PSP with qualitative preference model
as handled in PrefPlan. To improve the performance, we
plan on investigating more effective admissible heuristics
and more aggressively take into account negative informa-
tion, such as residual cost as described in AltWlt (Sanchez
& Kambhampati 2005) to improve the heuristic quality. We
are also looking at the possibility of converting the utility
dependencies into dummy goals to simplify the problems.

References
Bacchus, F. and Grove, A. 1995. Graphical Models for
Preference and Utility InProc. of UAI-95.

Blum, A., and Furst, 1997. Fast Planning through Planning
Graph Analysis. InArtificial Intelligence, 90:281–300.

Boutilier, C., Bacchus, F., and Brafman, R. 2001. UCP-
Networks: A Directed Graphical Representation of Condi-
tional Utilities. InProc. of UAI-2001.

Boutilier, C., Brafman, R., Hoos, H., and Poole, D.
1999. Reasoning with conditional ceteris paribus prefer-
ence statements. InProc. of UAI-2001.

Brafman, R., and Chernyavsky, Y. 2005. Planning with
Goal Preferences and Constraints. InProc. of ICAPS-2005.

Brafman, R. 2004. Eliciting, Modeling, and Reasoning
about Preference using CP-netsTutorial at UAI-2004

Dasgupta, P., Sen, A., Nandy, S., and Bhattacharya, B.
2001. Searching Networks with Unrestricted Edge Costs.
IEEE Transactions on Systems, Man, and Cybernetics
Dechter, R. 2003. Constraint Processing.Morgan Kauf-
mann Publishers.
Do, M. and Kambhampati, S. 2001. Sapa: A Domain-
Independent Heuristic Metric Temporal Planner. InProc.
of ECP-01.
Long, D. and Fox, M. 2003. The 3rd International Plan-
ning Competition: Results and Analysis.Journal of AI
Research.20:1-59.
Nisan, N. 2000. Bidding and Allocation in Combinatorial
Auctions InProc. of ACM conf. on Electronic Commerce.
Sanchez, R. and Kambhampati, S. 2005. Planning Graph
Heuristics for Selecting Objectives in Over-subscription
Planning Problems. InProc. of ICAPS-05..
Smith, D. 2004. Choosing Objectives in Over-Subscription
Planning. InProc. of ICAPS-04.
van den Briel, M., Sanchez, R., Do, M, and Kambham-
pati, S. 2004. Effective Approaches for Partial Satisfaction
(Over-Subscription) Planning. InProc. of AAAI-04
Williamson, M., and Hanks, S. 1994. Optimal Planning
with a Goal-Directed Utility Model. InProc. of AIPS-94.

ICAPS 2006

Workshop on Preferences and Soft Constraints in Planning 29



Cost-Optimal Symbolic Pattern Database Planning with State
Trajectory and Preference Constraints

Stefan Edelkamp∗

Otto-Hahn Straße 14
University of Dortmund

eMail: stefan.edelkamp@cs.uni-dortmund.de

Abstract

This paper considers strategies for planning problems
with state trajectory and plan preference constraints
– two recently added PDDL features that have been
introduced in the context of the 5th international plan-
ning competition.

A symbolic breadth-first search exploration algorithm
is devised that is guaranteed to find the cost-optimal
plan wrt. the preference conditions imposed. For un-
timed trajectory constraints we propose to run a syn-
chronized property automata concurrent to the uncon-
strained state space, while timed trajectory constraints
are checked during plan construction. Plan preferences
are evaluated in the cost function after a successful plan
has been generated. For deriving good search heuris-
tics, we turn to the construction of symbolic pattern
databases and the pattern selection problem.

Introduction

State trajectory and plan preference constraints are the
two language features introduced in PDDL3 (Gerevini
& Long 2005) for describing benchmarks of the 5th in-
ternational planning competition.

State trajectory constraints provide an important
step of the agreed fragment of PDDL towards the de-
scription of temporal control knowledge (Bacchus & Ka-
banza 2000; Kabanza & Thiebaux 2005) and temporally
extended goals (DeGiacomo & Vardi 1999; Lago, Pis-
tore, & Traverso 2002). They assert conditions that
must be met during the execution of a plan and are
often expressed using using quantification over domain
objects. Through the decomposition of metric and tem-
poral plans into happenings, state trajectory constraints
feature also higher levels of the PDDL hierarchy (Fox
& Long 2003). For sequential plans π = (S0, . . . , Sn)
with unit time actions, trajectory constraints are inter-
preted as shown in Fig. 1. Note that the definitions of
some constraints have been adapted, identifying time
with the position in the state sequence.

∗The author is supported by the German Research Foun-
dation (DFG) project Heuristic Search Ed 74/3.
Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

π |= φ ≡ π |= (at end φ) ⇔ Sn |= φ
π |= (always φ) ⇔ ∀0 ≤ i ≤ n : Si |= φ
π |= (sometimes φ) ⇔ ∃0 ≤ i ≤ n : Si |= φ
π |= (within t φ) ⇔ ∃0 ≤ i ≤ t : Si |= φ
π |= (at-most-once φ) ⇔ ∀0 ≤ i ≤ n : Si |= φ
⇒ ∃i ≤ j ∀i ≤ l ≤ j : Sl |= φ ∧ ∀j < l ≤ n : Sl 6|= φ
π |= (sometimes-after φ ψ) ⇔ ∀0 ≤ i ≤ n : Si |= φ
⇒ ∃i < j ≤ n : Sj |= ψ
π |= (sometimes-before φψ) ⇔ ∀0 ≤ i ≤ n : Si |= φ
⇒ ∃0 ≤ j < i : Sj |= ψ
π |= (always-within t φ) ⇔ ∀0 ≤ i ≤ n : Si |= φ
π |= (hold-during t t′ φ) ⇔ ∀t ≤ i < t′ : Si |= φ
π |= (hold-after t φ) ⇔ ∀t < i ≤ n : Si |= φ

Table 1: Semantics of State Trajectory Constraints.

Annotating goal conditions or state trajectory con-
straints with preferences models soft constraints. For
example, if we prefer block a to reside on the table
after the plan’s execution, we add (preference p (on-
table a)) to the planning goal and maintain a propo-
sition (is-violated-p) that denotes the inverse of prefer-
ence satisfaction. Such propositions are interpreted as
natural numbers that can be included into the plan’s
cost function. This function allows planners to search
for cost-optimal plans. For planning with preferences
the cost function first scales and then accumulates the
numerical interpretation of the propositions referring to
the violation of the preference constraints.

Symbolic exploration based on BDDs (Bryant 1985)
acts on sets of states rather than on singular ones and
exploit redundancies in the joint state representation.
In this work we make optimal BDD solver technology
applicable to planning with PDDL3 domains. We com-
pile state trajectory expressions back to PDDL2 (Fox
& Long 2003). The grounded representation is an-
notated with propositions that maintain the truth of
preferences and operators that model that the syn-
chronized execution or an associated property automa-
ton (Edelkamp 2006b). We introduce to Cost-Optimal
Symbolic BFS (Edelkamp 2006a) and adapt it to the
search with preference constraints. We compare the
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approach with Cost-Optimal Symbolic Breadth-First
Branch-And-Bound and show the latter’s limitation
with respect to currently considered cost functions.
Last but not least, we consider the acceleration of the
search process with symbolic pattern databases.

Symbolic Breadth-First Search

Symbolic search is based on satisfiability checking. The
idea is to make use of Boolean functions to avoid (or at
least lessen) the costs associated with the exponential
memory blow-up for the state set involved as problem
sizes get bigger. For propositional action planning prob-
lems we can encode the atoms that are valid in a given
planning state individually by using the binary repre-
sentation of their ordinal numbers, or via the bit vector
of atoms being true and false.

There are many different possibilities to come up with
an encoding of states for a problem. The more obvious
ones seem to waste a lot of space, which often leads to
bad performance of BDD algorithms. We implemented
the approach of (Helmert 2004) to infer a minimized
encoding of a propositional planning domain.

Given a fixed-length binary encoding for the state
vector of a search problem, characteristic functions rep-
resent state sets. The function evaluates to true for the
binary representation of a given state vector, if and only
if, the state is a member of that set. As the mapping is
1-to-1, the characteristic function can be identified with
the state set itself. Transitions are formalized as rela-
tions, i.e., as sets of tuples of predecessor and successor
states, or, alternatively, as the characteristic function
of such sets. The transition relation has twice as many
variables as the encoding of the state. If x is the binary
encoding of a state and x′ is the binary encoding of
a successor state, then T (x, x′) evaluates to true. We
observe that T is the disjunct of all individual state
transitions TO, with O being an operator in O. What
we are really interested in, is to compute the (parti-
tioned) image

∨
O∈O ∃x (TO(x, x′)∧S(x)) of a state set

represented by S wrt. a transition relation T .
For symbolic breadth-first search, let Si be the

boolean representation of a set of states reachable from
the initial state I in i steps, initialized with S0 = I, and
Si+1(x′) =

∨
O∈O ∃x (TO(x, x′)∧Si(x)). Note that S on

the right hand side of the equation depends on x com-
pared to x′ on the left hand side. Thus, it is necessary
to substitute x′ with x in Si, written as Si[x↔ x′]. To
terminate the exploration, we check Si ⇒ G, or equiv-
alently, Si ∧ G 6= ⊥ (false function).

In order to retrieve the plan path we assume that all
sets S0, . . . , Si are available. We start with a state S
that is in the intersection of Si and the goal G. This
state is the last one on the sequential optimal plan path.
We take its characteristic function S into the relational
product with T to compute its potential predecessors.
Next we compute the second last state on the optimal
plan path in the intersection of Pred and Si−1, and it-
erate until the entire plan has been constructed.

We employ BDDs for symbolic exploration. A BDD
is a data structure for a concise representation of
Boolean functions in form of a DAG with a single root
node and two sinks, labeled “1” and “0”, respectively.
For evaluating the represented function for a given in-
put, a path is traced from the root node to one of the
sinks. By detecting unnecessary variable tests and iso-
morphisms in subgraphs, one obtains a unique represen-
tation that is polynomial in the length of the bit strings
for many interesting functions. Given the uniqueness of
BDD representations we have that the satisfiability test
is available in O(1) time. This is a clear benefit to a
general satisfiability testing, which – by the virtue of
Cook’s Theorem – is NP hard.

The variable ordering has a huge influence on the size
of a reduced and ordered BDD. In an interleaved rep-
resentation, that we employ for the transition relation,
we alternate between x and x′ variables. In usual im-
plementations of BDD libraries, different BDDs share
their structures. Such libraries have efficient operations
of combining BDDs and feature the computation of an
image. Moreover, BDD packages often support arith-
metics (on finite domains) with BDDs.

Cost-Optimal Symbolic BFS
Action planning refers to a world description in logic.
A number of propositions describe what can be true or
false in each state of the world. By applying operations
in a world, we arrive at another world where different
atoms might be true or false. Usually, only some few
atoms are affected by an operator, and most of them
remain the same.

We build the binary representation for the objective
function as follows. For ordinary preferences of type
(preference p φp) we associate a Boolean variable vp
(denoting the violation of p) and construct the following
indicator function: Xp(v) = (vp ⇔ φp).

For the computation of a BDD for a linear objective
function f(x) =

∑n
i=1 aivi we first compute the mini-

mal and maximal value that f can take. This defines
the range that has to be encoded in binary. For the
ease of presentation we assume vi ∈ {0, 1}.

The work of (Bartzis & Bultan 2006) shows that the
BDD for representing f has at most O(n

∑n
i=1 ai) nodes

and can be constructed with matching time perfor-
mance. Even while taking the most basic diagram rep-
resentation, this result improves on alternative, more
expressive structures like ADDs. Moreover, the result
generalizes to variables vi ∈ {0, . . . , 2b} and the con-
junction/disjunction of several linear arithmetic formu-
las. This implies that metric planning for bounded lin-
ear arithmetic expressions in the preconditions and ef-
fects is actually efficient for BDDs. The BDD construc-
tion algorithm in our planner differs from the special-
ized construction above, but computes the same result.
As most BDD packages support variables of finite do-
main, FDD variables for short, we can abstract from
their binary encoding. We first combine mult(ai, vi, ti),
encoding the ternary relation ai · vi = ti and compute
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Procedure Cost-Optimal-Symbolic-BFS
Input: PDDL3 Instance with Transition Relation T ,

Linear Objective F (to be minimized on [0,maxf ]),
List of Symbolic Goal Preferences Xp,
Goal BDD G, and Initial BDD I

Output: Cost-Optimal Plan (stored)

U ← maxf
loop

Reach(x′)← I(x′); Open(x′)← I(x)
Intersection(x)← I(x) ∧ G(x)
Bound(v)← F (v) ∧

∨U
i=0[v = i]

Eval(v, x)← Intersection(x) ∧
∧
pXp(v, x)

Metric(x)← ∃v : Eval(v, x) ∧Bound(v)
while (Metric(x) 6= ⊥)

if (Open = ⊥) return ”Exploration completed”
Succ(x′) =

∨
O∈O ∃x TO(x, x′) ∧Open(x)

Open(x)← (Succ(x′) ∧ ¬Reach(x′))[x′ ↔ x]
Reach(x′)← Reach(x′) ∨ Succ(x′)
Intersection(x)← Open(x) ∧ G(x)
Eval(v, x)← Intersection(x) ∧

∧
pXp(v, x)

Metric(x)← ∃v : Eval(v, x) ∧Bound(v)
U ← ConstructAndStorePlan(Metric(x))

Figure 1: Cost-Optimal BFS Planning Algorithm.

X(v) = sn with s0 = 0 and ∃s0, . . . , sn−1,∃t1, . . . , tn :
add(si, ti+1, si+1), with add(si, ti+1, si+1) encoding the
ternary relation si + ti+1 = si + 1.

Figure 1 displays the pseudo-code for a symbolic
BFS-exploration incrementally improving an upper
bound U on the plan length. For the sake of brevity in
the pseudo-code we assume that we have a minimization
problem in the range [0,maxf ]. The implemented sys-
tem, however, is capable of maximization and general
intervals. It computes a lower and upper bound of f
and improves them, until the search space is exhausted
or the two values match.

The state sets that are used are represented in form
of BDDs. With each BDD, the underlying variable is
provided. The search frontier denoting the current BFS
layer is tested for an intersection with the goal, and this
intersection is further reduced according to the already
established bound.

There might be many different goal states contained
in the Intersection. The plan construction process in
ConstructAndStorePlan first determines the state in the
intersection that has the minimal cost. This is achieved
by iterative intersection of [v = i], for i ∈ {0, . . . , U}.
The obtained value minus 1 is the return value for the
next threshold.

Theorem 1 The latest plan stored by the symbolic
search planner Cost-Optimal-Symbolic-BFS has min-
imal cost.

Proof: The algorithm applies full duplicate detection and
traverses the entire planning state space. It generates each

possible planning state exactly once. Only clearly inferior states
are pruned in the intersection when evaluated in Eval and taken
into a conjunct with Bound. Therefore, Metric is empty only if
there is no state in the intersection of the search frontier Open
with the goal G that has an improved bound.

BDDs already save space for large state sets. But
still, memory is the main concern in practice. One
implemented idea for further memory limitation is
Frontier-Search (Korf et al. 2005), which has been pro-
posed for undirected or directed acyclic graph struc-
tures. In more general planning problems we have es-
tablished that a small duplicate detection scope (a.k.a.
locality) is sufficient to guarantee termination for Cost-
Optimal-Symbolic-BFS.

For purely propositional domains we can apply
bidirectional symbolic BFS to obtain step-optimal
plans (Edelkamp & Helmert 2001), which is often much
faster as unidirectional search. For cost-optimal BFS
search in PDDL3, however, this is no longer available as
computing the goal preferences and selecting the states
on the optimal path is involved. To overcome this lim-
itation. instead of evaluating the intersection, it is also
possible to encode goal preferences directly into the op-
erators. While we have done this for single-state ex-
ploration approach. for symbolic exploration, however,
we stick to evaluate goal constraints for the intersec-
tion. As an advantage of this, we do not need to reason
about goal preferences for non-goals. As a disadvan-
tage we loose the option for invoking bidirectional and
heuristic search.

State Trajectory Constraints
State trajectory constraints (Gerevini & Long 2005) can
be interpreted in Linear Temporal Logic (LTL) (Clarke,
Grumberg, & Peled 1999) and translated into automata
that run concurrent to the search and accept when the
constraint is satisfied (Gastin & Oddoux 2001). LTL
includes temporal modalities like A for always, F for
eventually, and U for until. We propose to compile the
automata back to PDDL with each transition introduc-
ing a new operator (Edelkamp 2006b). Predicate at
denotes an automaton state for each automaton that
has been created. For detecting accepting states we
include a flag accepting. The initial state of the plan-
ning problem includes the start state of the automaton
and an additional proposition if it is accepting. For all
automata, the goal includes their acceptance.

Allowed transitions in form of planning actions take
the current automaton state and the transition label as
a precondition and modify them accordingly. For run-
ning the constraint automaton and the original plan-
ning space in parallel, we toggle synchronization flags
to ensure perfect alternation. More formally, for

(hold-after t φ) we impose that φ is satisfied for the
search frontier in all steps i > t by applying frontier
shaping Openi ← Openi ∧ φ

(hold-during t1 t2 φ) and for all t1 ≤ i < t2 we addi-
tionally impose Openi ← Openi ∧ φ.
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(sometimes φ) we apply automata-based model
checking. Let P be the original planning space and
AFφ be the constructed automaton for formula AFφ

and ⊗ the cross product between two automata,
then P ← P ⊗ AFφ and G ← G ∪ {accepting(Aφ)}.
The initial state is extended by the initial state of
the automaton, which, in this case, is not accepting.

(sometimes-before φ ψ) we compile

P ← P ⊗A(¬φ∧¬ψ)U((¬φ∧ψ)∨(A(¬φ∧¬ψ)))

and adapt the goal and initial states accordingly.

(always φ) we construct P ← P⊗AGφ. Alternatively,
for all i we could impose Openi ← Openi ∧ φ in anal-
ogy to hold-during and hold-after.

(at-most-once φ) we assign the planning problem P
to P ⊗AG(φ→(φU(G¬φ))).

(within t φ) we build P ← P⊗AFφ. Moreover, we set
Opent ← Opent ∧ {accepting(AFφ)}.
We do not support preference preconditions (Gerevini

& Long 2005). Actually, we can parse and process the
conditions, but as the domains of the violation-variables
are increased and potentially unbounded this affects a
possible encoding as a BDD.

For space efficiency, we do not store intermediate
BDD layers corresponding to state trajectory automata
transitions. Only the layers that correspond to the orig-
inal unconstrained state space are stored and only for
these layers duplicates are eliminated.

For preferences on state trajectory constraints that
are constructed via automata theory, we apply the fol-
lowing construction. Instead of adding the automaton
acceptance to the goal state we combine the acceptance
with the violation predicate. If the automaton accepts
then the preference is not violated; if it is located in a
non-accepting state, then it is violated. A specialized
operator skip allows to fail the automata completely. If
an automaton is failed once, it remains invalid for the
rest of the computation.

Cost-Optimal Symbolic Breadth-First
Branch-and-Bound

Having a monotonically increasing cost-function usually
allows for better pruning in a branch-and-bound algo-
rithm. Instead of the intersection with the goal we can
now evaluate the search frontier, and prune away the
states that have a worse evaluation. As one represen-
tative for the symbolic search according to this princi-
ple we have depicted the pseudo-code for Cost-Optimal
Symbolic Breadth-First Branch-and-Bound in Figure 2.
Different to depth-first branch-and-bound (Korf 1993),
the breadth-first search order allows an easier imple-
mentation with BDDs. The main difference wrt. Cost-
Optimal-Symbolic-BFS is that the search frontier itself
is evaluated and used for pruning.

The core search routine relies on an additional bound
U on the optimal plan length, which can be provided

Procedure Cost-Optimal-Symbolic-BFBnB
Input: PDDL3 Instance with Transition Relation T ,

Linear Objective F (to be minimized on [0,maxf ]),
List of Symbolic Goal Preferences Xp,
Goal BDD G, and Initial BDD I

Output: Cost-Optimal Plan (stored)

U ← maxf
loop

Reach(x′)← I(x′)
Intersection(x)← I(x) ∧ G(x)
Bound(v)← F (v) ∧

∨U
i=0[v = i]

Eval(v, x)← I(x) ∧
∧
pXp(v, x)

Open(x)← ∃v : Eval(v, x) ∧Bound(v)
while (Intersection(x) 6= ⊥)

if (Open = ⊥) return ”Exploration completed”
Succ(x′) =

∨
O∈O ∃x TO(x, x′) ∧Open(x)

Open(x)← (Succ(x′) ∧ ¬Reach(x′))[x′ ↔ x]
Eval(v, x)← Open(x) ∧

∧
pXp(v, x)

Open(x)← ∃v : Eval(v, x) ∧Bound(v)
Reach(x′)← Reach(x′) ∨ Succ(x′)
Intersection(x)← Open(x) ∧ G(x)

U ← ConstructAndStorePlan(Intersection(x))

Figure 2: Cost-Optimal Anytime Breadth-First
Branch-and-Bound Planning Algorithm.

by the user or non-optimal search algorithms like beam
search. Using the bound, states are neglected from
search if their f -values are larger than U .

Theorem 2 Let P be a propositional PDDL3 planning
problem with cost function f(v) =

∑k
i=1 aivi, where vi

defines the violation of ith preference constraint and
ai > 0, for all i ∈ {1, . . . , k}. If all preference con-
straints are monotone increasing wrt. f (i.e. on every
path they are violated but not satisfied again), then the
latest plan stored by the symbolic search planner Cost-
Optimal-Symbolic-BnB has minimal cost.

Proof: Symbolic breadth-first branch-and-bound prunes
away frontier states, which have a cost evaluation that is larger
than an already established one. As the cost is monotonically
increasing no plan of lower cost gets pruned.

If we do not have an cost function that is monotoni-
cally increasing, we cannot easily prune states with an
evaluation larger than the current one. Unfortunately,
such non-monotonicities are frequent in PDDL3 plan-
ning. For a goal preference (preference (at end φ)) it
may happen that φ is set in one operator and deleted
in another and vice versa. For example, take φ = a
and a ∈ add(O′) ∪ del(O′) \ add(O) and O is executed
directly before O′. Let u be the state after the appli-
cation of O, and v be the state after the application of
O′. Then the value of aivi at u is ai, which decreased
to aivi = 0 at v.

This unfortunate observation is also true for
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Figure 3: Automata for State Trajectory Constraints.

preferences on state trajectory constraints. For
preference like (sometimes φ), (sometimes-after φ),
(at-most-once φ), (within t φ), and (always-within t φ)
we consider a prototypical automaton representation of
the condition as illustrated in Fig. 312. There is only
one automata that allows a transition from a accept-
ing state to an non-accepting state, namely the one
for always-within and sometimes-after. On all other
automata there are only transitions from accepting to
non-accepting state such that the corresponding viola-
tion-variable in the objective function would decrease
on every path.

If we allow sub-optimal plans there are many good
strategies to apply symbolic beam-search by omitting
non-promising states from consideration. In the current
search frontier, we can simply drop states that have a
large f -value (compared to the others).

Beam search ranks successors by their f -value, a
common strategy in heuristic search planners. Some
symbolic algorithms have been proposed for heuris-
tic search planning like BDDA* (Edelkamp & Reffel
1998), SetA* (Jensen, Bryant, & Veloso 2002) and Sym-
bolic BFBnB (Jensen et al. 2006). In the following,
we consider one option to compute search heuristics
for directed symbolic search fully automatically. We
will only consider propositional domains, where cost-
optimal plans are the ones with minimal number of
actions. Nonetheless it is not difficult to extend the
results to cost-optimal PDDL3 planning by providing
estimates not on the plan length but on its cost.

Symbolic Planning Pattern Databases

Admissible heuristics for planning under-approximate
the shortest path distance of the current state to the
goal. They are important to guarantee optimality in
heuristic search algorithms like A* and IDA*. The max-
atom heuristic (Haslum & Geffner 2000) is an approx-
imation of the optimal cost for solving a relaxed prob-

1As within is the constraint version of sometimes and
always-within is the constraint version of sometimes-after,
we only have shown one automata for both.

2The double circles denote accepting state in the corre-
sponding automata, single ones non-accepting states. The
dotted circles are non-accepting in the Büchi automata in-
terpretation for infinite words and accepting for the finite
state interpretation that we use.

lem in which the delete lists are ignored. Its extension
max-pair improves the information without loosing ad-
missibility, approximating the cost of atom pairs. The
heuristic h+ (Hoffmann & Nebel 2001) is another ex-
tension to max-atom defined as the length of the short-
est plan that solves the relaxed problem with ignored
delete lists. The heuristic is admissible but solving re-
laxed plans is computationally hard.

Planning pattern databases as proposed
by (Edelkamp 2001; Haslum, Bonet, & Geffner
2005) refer to state space abstraction, where propo-
sitions are neglected. This forms a state space
to be used for abstraction (Knoblock 1994). An
abstraction P|R = < S|R,O|R, I|R,G|R > of a
STRIPS planning problem P = < S,O, I,G >
wrt. a set of atoms R is formally defined by
S|R = {S ∩ R | S ∈ S}, G|R = {G ∩ R | G ∈ G},
O|R = {O|R | O ∈ O}, where O|R for O ∈ O is given
as (pre(O) ∩ R, add(O) ∩ R, del(O) ∩ R). Knoblock’s
idea has been extended to automatically inferred fact
groups. The approach refers of mutual exclusive atoms
and leads to a multi-variate variable encoding of a
state (Helmert 2004). Fact groups are distributed
into patterns, where each pattern corresponds to an
abstraction of the state space. This is achieved by
abstract states that represent only a subset of the
original atoms - taken from the groups of the chosen
pattern. Using this approach each concrete state is
mapped to an abstract state. The projection can also
be achieved in operators, intersecting the precondition,
add and delete list with the pattern. The selection of
and the partitioning into patterns is a computationally
hard problem, critically influencing the quality of the
estimate (Haslum, Bonet, & Geffner 2005).

For multiple pattern databases (Holte et al. 2004),
in each abstraction i and for each state S we compute
estimated costs hi(S). The estimate h(S) is aimed to
be the accumulated cost of the costs in the different
abstractions, i.e., h(S) =

∑
i hi(S). In general we can-

not expect that each operator contributes to only one
pattern. This implies that the inferred heuristic is no
longer admissible. There are two options. First, we
may assume that each operator is applicable for only
one pattern. Another option considered is to count the
abstract problem graph edge weight induced by an op-
erator in only one abstraction. In each BFS level, each
zero-cost operator is fired until a fixpoint is reached. If
an admissible heuristic is obtained, we call the data-
bases additive or disjoint (Korf & Felner 2002).

The main limitation for applying pattern databases
in search practice is the restricted amount of (main)
memory. Many strategies for leveraging the problem
have been suggested, e.g. (Zhou & Hansen 2004). Sym-
bolic pattern databases as introduced by (Edelkamp
2002) are pattern databases that have been constructed
symbolically for a latter use either in symbolic or ex-
plicit heuristic search. Each state set in a shortest path
layer is efficiently represented by a corresponding char-
acteristic function. Different to the posterior compres-
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sion of the state set, the construction itself works on
compressed representation, allowing much larger data-
bases to be constructed.

Automated Pattern Selection
Finding good patterns is not simple, as there are usu-
ally an exponential number of possible choices. Manual
pattern selection implies that the planning process is
problem-dependent. On the other hand, the problem of
pattern selection is involved, especially if multiple pat-
tern databases are requested. So far, automated pat-
tern selection is an unresolved challenge. One reason is
that the quality of approximation algorithm for pattern
partitioning is hard to predict.

Since the number of vector elements can be consider-
ably large, for explicit search one simplifies the problem
of finding a suitable partition to bin-packing. The goal
is to distribute the possible state variables into the bins
in such a way that a minimal number of bins is used.
A state variable is greedily added to an already exist-
ing bin, until the corresponding abstract state space
exceeds main memory. Adding entities to the pattern
corresponds to a multiplication of the domain sizes of
the selected state variables to the expected abstract
state size, so that the bin-packing variant that is needed
for automated pattern selection is based on multiplying
variable domain sizes. Bin-packing is NP complete such
that efficient approximations are used.

Representation and Initialization
For the implementation of pattern optimization we
adapt a genetic algorithm. Patterns are represented
as binary chromosomes of size p × g, where g is the
number of variable domains (fact groups) and p is the
number of (disjoint) patterns with p ≤ g. In the first
dimension (row), state variables are indexed, while in
the second dimension (column) patterns are selected. A
chromosome represents a complete distribution of state
variables into multiple PDBs. In Figure 4 we illustrated
such a binary chromosome. In Pattern 1, the groups
1,5,6,8 and n are included, whereas in Pattern 2, the
groups 3,5 and 7 are present.

We found that the amount of work to find an good
partition by performing a randomized assignment of
the chromosomes is by far larger as with prior bin
packing and has no significant advantage in the overall
search. Therefore, we initialized the chromosomes with
bin packing. To avoid all chromosomes of the initial
population to be identical, we chose a random permu-
tation to the fact groups prior to their automated par-
titioning into patterns. This leads to comparable good
but different distributions of groups into patterns and
a feasible initial population for the genetic algorithm.

Recombination and Mutation
The motivation of recombination of two parent chromo-
somes is the hope, that the good properties of the one
combines well with the good properties of the other.

Repräsentation der Individuen
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Figure 4: Bitvector Representation of a Chromosome.

The simplest technique is the n-point-crossover. For
our representation a 2-point crossover in the dimension
of the pattern is adequate. This means, that the parent
chromosomes exchange parts of their patterns. If the
two parents have a different number of patterns, so do
the two children.

During mutation, chromosome bits are flipped with
a small probability. For our case this operator is an
important, as it allows to add or delete groups in pat-
terns. We also included a mutation operator which adds
and deletes entire patterns. In the bin packing analogy
of multiple pattern partition, adding a pattern corre-
sponds to opening a bin, and deleting a pattern corre-
sponds to closing a bin.

Selection
During selection an enlarged population (as produced
using recombination) is truncated back based on the fit-
ness value(s) to its original size. The normalized fitness
evaluation for the population is interpreted as a dis-
tribution function, which governs the selection process
for the next population. Chromosomes with a better
fitness are chosen with higher probability.

The fitness function plays a central role in a genetic
algorithm. It defines the evolutionary strength of chro-
mosomes. The construction of an fitness function is
often difficult, like in our case, where the conditions for
good patterns are hardly accessible.

A fundamental question concerns the relationship be-
tween the size of the pattern database for a heuristic,
and the number of nodes expanded when the heuris-
tic is used to guide the search. (Korf 1997) gives some
more insights in the performance of pattern databases.
As one result of his research, we can characterize the
effectiveness of an admissible heuristic function h by
its expected value h over the problem space. If the
heuristic value of every state were equal to its expected
value h, then a search to depth d would be equivalent
to searching to depth d − h without a heuristic, since
the f -value for every state would be its depth plus h.
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This means that in most search spaces, a linear gain in
h corresponds to an exponential gain in search efforts.

For the pattern selection problem we conclude that
the higher the average heuristic values, the better the
corresponding pattern database. As a consequence we
compute the mean heuristic value for each database and
More formally, the average estimate of a singular pat-
tern database wrt. state space abstraction φ is

h =
max∑
h=0

h · |{φ(u) ∈ PDB | entry(u) = h}|
|PDB|

,

where entry is the distance value stored for u. For mul-
tiple pattern databases, we compute the mean heuristic
value for each database and add these for a chromo-
some. More formally, if PDBi is the i-th pattern data-
base, i ∈ {1, . . . , k}, then the fitness of a chromosome
c is

k∑
i=1

maxi∑
hi=0

hi · |{φi(u) ∈ PDBi | entryi(u) = hi}|
|PDBi|

.

For experimenting with symbolic pattern databases,
we choose various problems from IPC benchmarks. For
domains from IPC-4 good exploration results of sym-
bolic pattern databases are already known (Edelkamp
2005). For the construction of symbolic pattern data-
bases we choose a population size of 5, and a number
of 20 epocs (resulting in at most 100 pattern databases
to be evaluated; some of them were eliminated due to
size and state variable constraints). The random seed
was fixed for all experiments.

The initial population the GA is based on randomiz-
ing the order of groups in the state vector. Therefore
bin packing yields better results than GA search in some
cases. We apply symbolic A* search with full duplicate
elimination.

In Fig. 5 our results of comparing greedy bin-packing
with GA pattern selection are shown. The abstract
state space size limit (2l) is an additional parameter
in both cases. The searching time ts is compared to
the total running time t which includes the parsing of
the grounded domain. The time for instantiation is not
counted. The setup times t−ts for the genetic algorithm
includes the time for computing all pattern databases
during the optimization process. The additional time
for pattern optimization contributes to the gain in the
quality of the heuristic estimate, measured in h, the
mean heuristic estimate of the first (greedy bin-packing)
or best surviving (genetic algorithm) pattern. To judge
the quality of the heuristic, we provide the plan lengths.
While greedy bin packing often runs out of memory,
improved pattern selection with GAs scales better.

Conclusion
We have devised cost-optimal propositional PDDL3
planning algorithms and shown a promising approach
so generate well-informed symbolic estimator functions
fully automatically. To evaluate the fitness function it

is necessary to compute the PDBs for every chromo-
some in every generation. This is very costly, but as
symbolic pattern database construction is faster than
an explicit one, we showed the potential to save total
search efforts compared to the simpler bin-packing-only
heuristic. The performance of a randomized GA search
is still hard to predict, so even if it can result in much
better explorations in most cases, under the hard time
and space constraints at IPC-5, we actually switched
this feature off.

As the approach for state trajectory constraints relies
on a translation to LTL, it has the potential to deal with
much larger language expressiveness than currently un-
der consideration. Nonetheless, there is still a small
discrepancy between LTL semantics that is devised for
infinite words and state trajectory constraints that are
proposed for finite plans. This is the price for applying
the existing tool LTL2BA for translation. It is possi-
ble but still unfinished work to transfer the tool to an
LTL2NFA equivalent.

As related work, a neat solution to compile prefer-
ences as PDDL2 derived predicates (Baier 2006) and
apply the FFX planning system for derived predicates.
So far, it has shown advances to TLPlan. For the fu-
ture, we plan to generalize the symbolic planning ap-
proach from finite domain variables to integer and real
variables over linear arithmetic (Boigelot, Jodogne, &
Wolper 2005).
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automata translation. In CAV, 53–65.
Gerevini, A., and Long, D. 2005. Plan constraints and
preferences in PDDL3. Technical report, Department
of Electronics for Automation, University of Brescia.
Haslum, P., and Geffner, H. 2000. Admissible heuris-
tics for optimal planning. 140–149.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New ad-
missible heuristics for domain-independent planning.
In AAAI, 1163–1168.
Helmert, M. 2004. A planning heuristic based on
causal graph analysis. In ICAPS, 161–170.
Hoffmann, J., and Nebel, B. 2001. Fast plan gener-
ation through heuristic search. Journal of Artificial
Intelligence Research 14:253–302.
Holte, R. C.; Newton, J.; Felner, A.; Meshulam, R.;

and Furcy, D. 2004. Multiple pattern databases. In
ICAPS, 122–131.
Jensen, R.; Hansen, E.; Richards, S.; and Zhou, R.
2006. Memory-efficient symbolic heuristic search. In
ICAPS, To Appear.
Jensen, R. M.; Bryant, R. E.; and Veloso, M. M. 2002.
SetA*: An efficient BDD-based heuristic search algo-
rithm. In AAAI, 668–673.
Kabanza, F., and Thiebaux, S. 2005. Search control
in planing for termporally extended goals. In ICAPS,
130–139.
Knoblock, C. A. 1994. Automatically generat-
ing abstractions for planning. Artificial Intelligence
68(2):243–302.
Korf, R. E., and Felner, A. 2002. Disjoint pattern
database heuristics. Artificial Intelligence 134(1-2):9–
22.
Korf, R. E.; Zhang, W.; Thayer, I.; and Hohwald, H.
2005. Frontier search. Journal of the ACM 52(5):715–
748.
Korf, R. E. 1993. Linear-space best-first search. Arti-
ficial Intelligence 1(62):41–78.
Korf, R. E. 1997. Finding optimal solutions to Rubik’s
Cube using pattern databases. In AAAI, 700–705.
Lago, U. D.; Pistore, M.; and Traverso, P. 2002. Plan-
ning with a language for extended goals. In AAAI,
447–454.
Zhou, R., and Hansen, E. 2004. Space-efficient
memory-based heuristics. In AAAI, 677–682.

ICAPS 2006

Workshop on Preferences and Soft Constraints in Planning 37



Cost-Optimal Planning with Constraints and Preferences in Large
State Spaces

Stefan Edelkamp1, Shahid Jabbar2, and Mohammed Nazih3 ∗

Computer Science Department
University of Dortmund, Dortmund, Germany

1stefan.edelkamp@cs.uni-dortmund.de
2shahid.jabbar@cs.uni-dortmund.de
3mohammed.nazih@uni-dortmund.de

Abstract

This paper deals with planning in the presence of con-
straints and preferences as proposed for the 5th Inter-
national Planning Competition. State trajectory con-
straints are translated into LTL formulae and are com-
piled into Büchi automata in PDDL format. Preference
constraints are compiled into numerical fluents. Values
of these fluents are changed by grounded operator ef-
fects upon violation.

We propose two exploration strategies for optimal
planning in PDDL3 domains: (i) a best-first branch-
and-bound weighted heuristic search; (ii) an external
breadth-first search exploration algorithm that exploits
secondary memory, such as harddisk, to save the open
and closed lists. We prove an upper bound on the lo-
cality of the search in planning graphs that dictates
the number of layers that have to be kept to avoid
re-openings. For non-optimal planning, we present an
external variant of enforced hill climbing.

Introduction
In recent years, AI Planning has seen significant growth
in both theory and practice. PDDL (Planning Domain
Description Language) provides a common framework
to define planning domains and problems. Starting
from a pure propositional framework, it has now grown
into accommodating more complex planning problems.
In Metric planning, we see a numerical extension to the
STRIPS planning formalism, where actions can con-
tribute an increase or decrease of numeric variables.
The task is then to find a path from an initial state to
a state where all goal criteria are fulfilled, additionally,
the values of a set of numeric variables are minimized
(or maximized).

State trajectory and preference constraints are the
two language features introduced in PDDL3 (Gerevini
& Long 2005) for describing benchmarks of the 5th in-
ternational planning competition. State trajectory con-
straints provide an important step of the agreed frag-

∗All three authors are supported by the German Re-
search Foundation (DFG) projects Heuristic Search Ed 74/3
and Directed Model Checking Ed 74/2.
Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

ment of PDDL towards the description of temporal con-
trol knowledge (Bacchus & Kabanza 2000; Kabanza &
Thiebaux 2005) and temporally extended goals (DeGia-
como & Vardi 1999; Lago, Pistore, & Traverso 2002;
Pistore & Traverso 2001). They assert conditions that
must be met during the execution of a plan and are
often expressed using quantification over domain ob-
jects. Through the decomposition of metric and tempo-
ral plans into happenings, state trajectory constraints
also feature higher levels of the PDDL hierarchy (Fox
& Long 2003).

Unfortunately, as the planning problems get compli-
cated, the size of the state and the number of states
grow significantly too - easily reaching the limits of main
memory capacity. Having a systematic mechanism to
flush the already seen states to the disk can circumvent
the problem. Algorithms that utilize secondary stor-
age devices have seen significant success in single-agent
search. In (Korf & Schultze 2005) we see a complete ex-
ploration of the state space of 15-puzzle made possible
utilizing a 1.4 Terabytes of secondary storage. In (Jab-
bar & Edelkamp 2005) a successful application of ex-
ternal memory heuristic search for LTL model checking
is presented. (Zhou & Hansen 2004b) proposed struc-
tured duplicate detection for external search, where the
state space structure was exploited to define a partition
on the state space. Among the reported results are ap-
plications on STRIPS planning problems.

The paper is structured as follows: We first dis-
cuss the planning problem with temporal and prefer-
ence constraints as proposed for the 5th International
Planning Competition. The temporal constraints are
compiled into Büchi automata that are synchronized
with the exploration of the planning problem, while
preference constraints are transformed into numerical
fluents. Upon violation, a penalty cost is imposed to
the corresponding fluent. We then discuss some im-
plementation details for the realization of this compi-
lation procedure. An overview of the external mem-
ory model is presented afterward. Then, we introduce
external Breadth-First Search for implicit undirected
graphs. Directed graphs are treated in the next sec-
tion, where we discuss a formal basis to determine the
locality of planning graphs which dictates the number
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of previous layers to look at during duplicates removal
to avoid re-expansions (Edelkamp & Jabbar 2006). For
non-optimal planning, we discuss an external memory
variant of enforced hill climbing.

State Trajectory Constraints

We briefly recall automata-based model checking, a com-
mon approach for model checking of softwares.

Automata-based Model Checking
In automata-based model checking both the model to
be analyzed and the specification to be checked are
modeled as non-deterministic Büchi automata. Syn-
tactically, Büchi automata are ordinary automata. For
accepting infinite words, or runs, a different acceptance
condition is applied. Let ρ be a run and inf(ρ) be the
set of states reached infinitely often in ρ, then a Büchi
automaton accepts, if the intersection between inf(ρ)
and the set of final states F is not empty.

The desired property of the system is specified in
some form of temporal logic. We briefly introduce linear
temporal logic (LTL). A path in modelM is a sequence
of states π = S0, S1, . . . and πi denotes the suffix of π
starting at Si. LTL formulae have the form “Always f”,
where f is a path formula. If p is an atomic proposition
then p is a path formula. If f and g are path formulae
so are ¬f, f ∨ g, f ∧ g,X f,F f,G f , and f U g.

For the next time operator X we have M,π |= X f ⇔
M,π1 |= f . For the until operator g U f we have
M,π |= g U f ⇔ ∃0 ≤ k : M,πk |= f ∧ ∃k ≤
j : M,πj |= g, for the eventually operator we have
M,π |= F f ⇔ ∃0 ≤ k : M,πk |= f , and for the globally
operator we have M,π |= G f ⇔ ∀0 ≤ k : M,πk |= f .

Transforming the model and the specification into
Büchi automata assumes that the system can be mod-
eled by a deterministic finite state machine, and that
the LTL formula can be transformed into an equiva-
lent Büchi automaton. The contrary is not always pos-
sible, since Büchi automata are clearly more expres-
sive than LTL expressions (Wolper 1983). Checking
correctness is reduced to checking language emptiness.
More formally, the model checking procedure validates
that a model represented by an automatonM satisfies
its specification represented by an automaton S. The
task is to verify if L(M) ⊆ L(S). In words: the lan-
guage accepted by the model is included in that of the
specification. We have L(M) ⊆ L(S) if and only if
L(M) ∩ L(S) = ∅.

Büchi automata are closed under intersection and
complementation (Buchi 1962), so that there exists an
automaton that accepts L(S) and an automata that
accepts L(M) ∩ L(S).

It is possible to complement a Büchi automaton, but
the worst-case running time of such a construction is
double-exponential in the size of the formula. There-
fore, in practice, one constructs the automaton for nega-
tion of the LTL formula, avoiding complementation.

The product is synchronous, that is, each transition
in one automata implies one in the other. The property
automaton is non-deterministic, such that both the suc-
cessor generation and the temporal formula representa-
tion may introduce branching to the overall exploration
module. The construction assumes that all states in the
model are accepting.

Application to Temporal Plan Constraints
In the proposed extension to planning we do not have
to negate the property formula. Planning goals already
correspond to the negations of properties in model
checking. If ordinary goals without temporal modali-
ties are used, we add their satisfaction to the acceptance
condition of the model. For state trajectory constraints
φ, we search for a witness in L(M) ∩ L(φ) 6= ∅, where
M is the original plan space.

For the exploration we, therefore, need a Büchi au-
tomaton for the model and one for the trajectory con-
straint, together with some algorithm that validates if
the language intersection is not empty. By the seman-
tics of (Gerevini & Long 2005) it is clear that all se-
quences are finite, so that we can interpret a Büchi
automaton as a non-deterministic finite state automa-
ton (NFA), which accepts a word if it terminates in a
final state. The labels of such an automaton are condi-
tions over the propositions and fluents in a given state.
We will illustrate how these conditions can be modeled
using planning operators. There are some important
observations to be made:

1. It is well known that an NFA can be transformed
into an equivalent deterministic one using a power set
construction (Hopcroft & Ullman 2000). This DFA,
however, can become exponentially large, so that in
most cases a simulation of the NFA is preferable.

2. Most state trajectory constraints are universally
quantified. The quantified expressions can be un-
rolled. This is always possible as the scope of the
quantified object variables is finite.

3. As the union of the conditions of all outgoing tran-
sitions is not always trivial, synchronizing the plan-
ning model with the automata of state trajectory con-
straint may also prune the exploration.

Examples
In PDDL3, the constraint a fragile block can never have
something above it is expressed as
(always (forall (?b - block)

(implies (fragile ?b) (clear ?b))

We call this condition an always/every constraint. The
LTL formula for two selected blocks a and b is
[] ((fragile_a -> clear_a) &&

(fragile_b -> clear_b))

The corresponding automaton is shown in Fig. 11. The

1The automata in the figures are constructed automati-
cally using the LTL to Büchi automaton converter. The in-
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fragile_a −> clear_a && fragile_b −> clear_binit

Figure 1: Automaton for the always/every constraint
with a transition in clause form.

less_equal_fuel_used_10init

Figure 2: Automaton for numeric constraint.

automaton consists of only one state. Numeric condi-
tions as generated, e.g., by (always (<= (fuel-used)
10)) do not lead to additional expressiveness as for
the translation process they are interpreted as integral
propositions to be combined in transition labels. Fig. 2
provides a simple example. When applying such an au-
tomata, the construction has to be followed by a back-
ward translation of edges to numeric conditions.

The assertion each block should be put on the table at
least once corresponds to
(forall (?b - block)(sometime (ontable ?b)))

called an every/sometime constraint. For two blocks
a Büchi automaton with respect to the LTL formula
(<> ontable_a) && (<> ontable_b) is constructed.
It is shown in Fig. 3 (top right).

The statement in some state visited by the plan all
blocks are on the table is expressed as
(sometime (forall (?b - block) (ontable ?b))

denoted as sometime/every constraint. The according
LTL formula is <> (ontable a && ontable b) with a
Büchi automata shown in Fig. 3 (top left). It is much
simpler than the previous one.

The expression each truck should visit each city at
most once is given by the constraint

(forall (?t - truck ?c - city)
(at-most-once (at ?t ?c)))

We use a simple instantiation with one truck and one
city, yielding the LTL formula (cf. (Gerevini & Long
2005))
[](at_truck_a_city_a->

(at_truck_a_city_a U ([]!at_truck_a_city_a)))

The corresponding Büchi-Automaton is displayed in
Fig. 3 (bottom). The translation from a PDDL con-
straint to a Büchi automata is not lossless. This is due
to the fact that PDDL constraints are defined over fi-
nite runs while Büchi automata are defined over infinite
runs. It is not possible to capture the exact semantics

termediate LTL notation satisfies the syntax of SPIN model
checker; always is denoted as [] and eventually as <>. We
avoid hyphens in declaring the propositions as they are mis-
interpreted by the converter. They are re-introduced when
generating the translated PDDL description.

true

ontable_a && ontable_b

trueinit

true

truetrue

trueinit

1 2

3

ontable_a && ontable_b

ontable_a

ontable_a

ontable_b

ontable_b

!at_truck_a_city_ainit

1

2

!at_truck_a_city_a

!at_truck_a_city_a

at_truck_a_city_a

at_truck_a_city_a

Figure 3: Büchi automata for the sometime/every con-
straint (top left), every/sometime constraint (top right)
and exactly-once constraint (bottom).

of, e.g., at-most-once φ, when the plan consists of just
one action and φ holds in the initial state as well as in
the goal state. In our previous example, this implies
that we will terminate at the state 1 of the automata
and will claim that the constraint is not satisfied.

Instead of deriving one automata for both constraints
in common, simulating two synchronized automata, one
for each constraint, is equivalent. Hence, we observe
a trade-off between the size of the automata for one
constraint and the maintenance of several concurrent
automata.

Preferences
Preferences model soft constraints that are desirable
but do not have to be fulfilled in a valid plan. The de-
gree of desirability of satisfying a preference constraint
is specified in the plan metric.

Simple Preferences
Simple preferences refer to ordinary propositions (and
are included to the planning goal). E.g., if we prefer
block a to reside on the table during the plan execu-
tion, we write (preference p (on-table a)) with a
validity check (is-violated p) in the plan objective.
Such checks are interpreted as natural numbers that
can be scaled and combined with other variable assign-
ments in the plan metric. To evaluate the costs for a
given plan, we have to accumulate how often the stated
preference condition is violated in the preconditions of
the actions in the plan. The according numerical value
is substituted in the metric for its evaluation. Quanti-
fied preference constraints like
(forall (?b - block) (preference p (clear ?b))

ICAPS 2006

40 Workshop on Preferences and Soft Constraints in Planning



are flattened to multiple instantiated preference condi-
tions (one for each block), while the inverse expression
(preference p (forall (?b - block) (clear ?b))

leads to only one constraint.

Preference on Temporal Plan Constraints
Preferences for state trajectory constraints like
(preference cleaned

(forall (?t truck) (always (clean ?t))))

can, in principle, also be dealt with automata theory.
Instead of requiring to reach an accepting state we pre-
fer to be there, by means that not arriving at an ac-
cepting state incurs costs to the evaluation of the plan
metric using the (is-violated cleaned) variable.

Language Compilation
Have the two language extensions enriched the PDDL
language or is it possible to translate the new constructs
away? Fortunately, we can show how to implement a
language compilation from PDDL3 to PDDL2.

Temporal Plan Constraints
To encode the simulation of the synchronized au-
tomata, we devise a predicate (at ?n - state ?a -
automata) to be instantiated for each automata state
and each automata that has been devised. For detect-
ing accepting states, we include instantiations of predi-
cate (accepting ?a - automata). The initial state of
the planning problem includes the start state of the au-
tomata and an additional proposition if it is accepting.
For all automata, the goal includes their acceptance.

Next, we have to specify allowed automata transi-
tions in form of planning actions. This is done by
declaring a grounded operator for each automata tran-
sition, with the current automaton state and the tran-
sition label as preconditions, as well as the current au-
tomaton state as the delete and the successor state as
the add effect. For transition leading to an accepting
state, we include the corresponding automata accep-
tance proposition to the add effects. As we require a
tight synchronization between the constraint automa-
ton transitions and the operators in the original plan-
ning space, we include synchronization flags that are
flipped when an ordinary or a constraint automaton
transition is chosen. An example for a grounded tran-
sition is
(:action sync-trans-a-0-init-a-0-accept-0
:precondition

(and (at-a-0-init) (sync-automaton-a-0)
(in-package1-truck2))

:effect
(and (accepting-a-0) (not (at-a-0-init))

(at-a-0-accept-0) (not (sync-automaton-a-0))
(sync-ordinary)))

As said, the size of the Büchi automaton for a given for-
mula can be exponential in the length of the formula2.
In practice, the size of the automaton is often small
compared to the size of the (grounded) model.

2In the notion of essentiality (Nebel 2000), which pro-
vides a complexity theory for domain compilations, the com-

Metric Time Constraints

So far we have only seen how to derive automata
for the untimed plan constraints sometime, always,
at-most-once. Fortunately, (Gerevini & Long 2005)
show that sometime-before and sometime-after can
be expressed using standard LTL expressions, so these
modalities easily fit into the above framework. For
metric time constraints like within, always-within,
hold-during, and hold-after we have to restrict ac-
tions to the execution time window specified in the con-
straints. Moreover, these constraints necessarily call for
parallel/temporal planning, as they refer to absolute
points in time for plan execution.

These expressions can be tackled using timed ini-
tial literals as already contained in the language
PDDL2 (Hoffmann & Edelkamp 2005). Timed initial
literals denote fixed dates in plan time in which an atom
is true or false. As they are only allowed to be checked
in operators’ preconditions, they correspond to action
execution time windows. The modalities hold-after,
and hold-during immediately translate to timed initial
literals for the operators, in which the stated conditions
are satisfied in the preconditions. If the state formula is
disjunctive the planner has to deal with multiple action
windows.

For combined metric and temporal modalities as in
within and always-within action execution time win-
dow are included in form of additional timed initial lit-
eral for the preconditions of the automata’s transitions.

Preferences

For preference p we include numerical fluents
is-violated-p to the grounded domain description.
For each operator and each preference we apply the
following reasoning. If the preferred predicate is con-
tained in the delete list then the fluent is increased, if it
is contained in the add list, then the fluent is decreased,
otherwise it remains unchanged3.

For preferences p on a state trajectory con-
straint that has been compiled to an automaton a,
the fluents (is-violated-a-p) substitute the atoms
(is-accepting-a) in an obvious way. If the au-
tomata accepts, the preference is fulfilled, so the value
of (is-violated-a-p) is set to 0. In the transition that
newly reaches an accepting state (is-violated-a-p)
is set to 0, if it enters a non-accepting state it is set to
1. The skip operator also induces a cost of 1 and the
automaton moves to a dead state.

pilation is essential. Similar essential compilations have
been proposed by (Gazen & Knoblock 1997) for ADL to
STRIPS and by (Thiebaux, Hoffmann, & Nebel 2005) for
domain axioms.

3An alternative semantic to (Gerevini & Long 2005)
would be to set the fluent to either 0 or 1. For rather com-
plex propositional or numerical goal conditions in a prefer-
ence condition, we can use conditional effects.
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Implementation

We first transform PDDL3 files with preferences and
state trajectory constraints to grounded PDDL3 files
without them. For each state trajectory constraint, we
parse its specification, flatten the quantifiers and write
the corresponding LTL-formula to disk.

Then, we derive a Büchi-automaton for each LTL for-
mula and generates the corresponding PDDL code to
modify the grounded domain description4. Next, we
merge the PDDL descriptions corresponding to Bc̈hi
automata and the problem file. Given the grounded
PDDL2 outcome, we apply efficient heuristic search
forward chaining planner Metric-FF (Hoffmann 2003).
Note that by translating plan preferences, otherwise
propositional problems are compiled into metric ones.
For temporal domains, we extended the Metric-FF
planner to handle temporal operators and timed initial
literals. The resulting planner is slightly different from
known state-of-the-art systems of adequate expressive-
ness, as it can deal with disjunctive action time windows
and uses an internal linear-time approximate scheduler
to derive parallel (partial or complete) plans. The plan-
ner is capable of compiling and producing plans for all
competition benchmark domains.

Due to the numerical fluents introduced for prefer-
ences, we are faced with a search space where cost is
not neccessarily monotone. For such state spaces, we
have to look at all the states to reach to an optimal solu-
tion. The issue then arises is if it is possible to reach an
optimal solution fast. We propose to use a branch-and-
bound like procedure on top of the best-first weighted
heuristic search as offered by the extended Metric-FF
planning system. Upon reaching a goal, we terminate
our search and create a new problem file where the goal
condition is extended to minimize the found solution
cost. The search is restarted on this new problem de-
scription. The procedure terminates when the whole
state space is looked at. The rationale behind this is to
have improved guidance towards a better solution qual-
ity. If internal search fails to terminate within a spec-
ified amount of time, we switch to External Breadth-
First search (BFS).

External Exploration

For complex planning problems, the size of the state
space can easily surpass the main memory limits. Most
modern operating systems provides a facility to use
larger address spaces through virtual memory that can
be larger than internal memory. When the program is
executed, virtual addresses are translated into physical
addresses. Only those portions of the program currently
needed for the execution are copied into main memory;
the rest stays on the harddisk. For the programs that
do not exhibit any locality of reference for memory ac-

4www.liafa.jussieu.fr/∼oddoux/ltl2ba. Similar
tools include LTL→NBA and the never-claim converter in-
herent to the SPIN model checker.

cesses, such general purpose virtual memory manage-
ment can instead lower down their performances.

Algorithms that explicitly manage the memory hier-
archy can lead to substantial speedups, since they are
more informed to predict and adjust future memory
access. The standard model for comparing the perfor-
mance of external algorithms consists of a single pro-
cessor, a small internal memory that can hold up to M
data items, and an unlimited secondary memory. The
size of the input problem (in terms of the number of
records) is abbreviated by N . Moreover, the block size
B governs the bandwidth of memory transfers. Only
the number of block reads and writes are counted, com-
putations in internal memory do not incur any cost.
The single disk model for external algorithms has been
devised by (Aggarwal & Vitter 1988).

It is convenient to express the complexity of external-
memory algorithms using a number of frequently occur-
ring primitive operations. Here D represents the num-
ber of disks that can be accessed simultaneously.

1. Scanning : scan(N) with an I/O complexity of Θ( N
DB )

that can be achieved through trivial sequential access.

2. Sorting : sort(N) with an I/O complexity of
Θ( N

DB logM/B
N
B ) that can be achieved through

Merge or Distribution Sort

External Breadth-First Search in
Undirected Graphs

Munagala and Ranade’s algorithm (Munagala &
Ranade 1999) for explicit Breadth-First Search has
been adapted for implicit graphs. The new algorithm is
known as delayed duplicate detection for frontier search.
It assumes an undirected search graph. Let I be the
initial state, and N be the implicit successor generation
function. The algorithm maintains BFS layers on disk.
Layer Open(i − 1) is scanned and the set of successors
are put into a buffer of size close to the main memory
capacity. If the buffer becomes full, internal sorting fol-
lowed by a duplicate elimination scanning phase gener-
ates a sorted duplicate-free state sequence in the buffer
that is flushed to disk.

In the next step, external merging/sorting is applied
to remove duplicates in the flushed buffers. This results
in a duplicates-free sorted file corresponding to Open(i).
One also has to eliminate Open(i− 1) and Open(i− 2)
from Open(i) to avoid re-expansions; that is, nodes ex-
tracted from the external queue are not immediately
deleted, but kept until after the layer has been com-
pletely generated and sorted, at which point duplicates
can be eliminated using a parallel scan. The process is
repeated until Open(i− 1) becomes empty, or the goal
has been found.

The corresponding pseudo-code is shown in Fig-
ure 4. A-sets in the algorithm correspond to tempo-
rary files. Termination is not shown, but imposes no
additional overhead. As with the algorithm of Muna-
gala and Ranade, delayed duplicate detection applies
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Procedure External-BFS
Open(−1)← ∅,Open(0)← {I}
i← 1
while (Open(i− 1) 6= ∅)

A(i)← N(Open(i− 1))
A′(i)← remove duplicates from A(i)
Open(i)← A′(i) \ (Open(i− 1) ∪Open(i− 2))
i← i + 1

Figure 4: Delayed duplicate detection in BFS.

O(sort(|N(Open(i−1))|)+scan(|Open(i−1)|+|Open(i−
2)|)) I/Os. However, since no explicit access to the ad-
jacency list is needed, by

∑
i |N(Open(i))| = O(|E|)

and
∑

i |Open(i)| = O(|V |), the total execution time is
O(sort(|E|) + scan(|V |)) I/Os.

Locality in Planning Domains
How many layers are sufficient for full duplicate de-
tection in general is dependent on a property of the
search graph called locality. For integer weighted prob-
lem graphs, it is defined as the maximum max{δ(s, u)−
δ(s, v), 0} of all nodes u, v, with v being a successor of u
and δ the shorted path distance. For undirected graphs
we always have that δ(s, u) and δ(s, v) differ by at most
one so that the locality is 1. The locality determines the
thickness of the boundary slice of the graph needed to
prevent duplicates.

Let l be the graphs locality, and k the number of
stored layers. In breadth-first search, when layer m is
expanded, all previous layers with g-value smaller than
m have been closed, and are known by their optimal
g-value. Thus, if a node u at level m is expanded, and
its successor v has a shorter optimal distance to s, i.e.,
m = δ(s, v) < δ(s, u) = m′, then v must have been
encountered earlier in the search, in the worst case at
layer m′ = m−l. The re-generation of v will be avoided
if and only if it is contained in the stored layers m −
k . . .m− 1; i.e., if and only if k ≥ l. This is the basis of
the following theorem due to (Zhou & Hansen 2004a)

Theorem 1 (Locality Determines Boundary) The
number of previous layers of a breadth-first search graph
that need to be retained to prevent duplicate search ef-
fort is equal to the locality of the search graph.

As a special case, in undirected graphs, the locality
is 1 and we need to store the immediate previous layer
only to check for duplicates.

The condition max{δ(s, u)− δ(s, v), 0} over all nodes
u, v, with v being a successor of u is not a graph prop-
erty. So the question is if we can find a sufficient con-
dition or upper bound for it.

Theorem 2 (Upper-Bound on Locality) The locality of
a uniformly weighted graph for breadth-first search can
be bounded by the minimal distance to get back from a
successor node v to u, maximized over all u. In other

words, with Γ representing the set of successors, we have

max
u,v∈Γ(u)

{δ(v, u)} ≥ max
u,v∈Γ(u)

{δ(s, u)− δ(s, v), 0}

Proof: For any nodes s, u, v in a graph the triangular
property of shortest path δ(s, u) ≤ δ(s, v) + δ(v, u) is
satisfied, in particular for s being the start node of the
BFS and v ∈ Γ(u). Therefore δ(v, u) ≥ δ(s, u)− δ(s, v)
and maxu,v∈Γ(u){δ(v, u)} ≥ maxu,v∈Γ(u){δ(s, u) −
δ(s, v)}. In positively weighted graphs we have
δ(v, u) ≥ 0 such that maxu,v∈Γ(u){δ(v, u)} is larger than
the locality.

As for graphs without self-loops we have
maxu,v∈Γ(u){δ(v, u)} = maxu{δ(u, u)} − 1, in or-
der to bound the locality we have to look for largest
minimal cycles in the graph.

The question then arises is: How can we decide the
condition in an implicitly given graph as they appear
in action planning? In the following we provide an an-
swer to this question based on the rules or operators
involved in a state space. Without loss of generality,
we consider STRIPS planning operators in the form
of 〈pre(O)add(O), del(O)〉, representing preconditions,
add, and delete lists for an operator O. A duplicate
node in an implicit graph appears when a sequence of
operators, applied to a state generate the same state
again, i.e., they cancel the effects of each other. Hence
the following definition:
Definition 1 (no-op Sequence) A sequence of opera-
tors O1, O2, . . . , Ok is a no-op sequence if its applica-
tion on a state produces no effects, i.e, Ok◦. . .◦O2◦O1 =
no-op,

This definition provides us the basis to bound the lo-
cality of the implicit graphs in the following theorem. It
generalizes undirected search spaces, in which for each
operator O1 we find an inverse operator O2 such that
O2 ◦O1 = no-op.
Theorem 3 (no-op Sequence determines Locality) Let
O be the set of operators in the search space and l =
|O|. If for all operators O1 we can provide a sequence
O2, . . . , Ok with Ok◦. . .◦O2◦O1 = no-op, where no-op is
the identity mapping, then the locality of the implicitly
generated graph is at most k − 1.
Proof: If Ok ◦ . . . ◦ O2 ◦ O1 = no-op we can reach
each state u again in at most k steps. This im-
plies that maxu{δ(u, u)} = k. Theorem 2 shows that
maxu{δ(u, u)} − 1 is an upper bound on the locality.

The condition Ok ◦ . . .◦O2◦O1 = no-op can be tested
in O(lk) time. It suffices to check that the cumulative
add effects of the sequence is equal to the cumulative
delete effects. Using the denotation by (Haslum & Jons-
son 2000), the cumulative add CA and delete CD effects
of a sequence can be defined inductively as,

CA(Ok) = Ak CD(Ok) = Dk and,

CA(O1, . . . , Ok) = (CA(O1, . . . , Ok−1)−Dk) ∪Ak

CD(O1, . . . , Ok) = (CD(O1, . . . , Ok−1)−Ak) ∪Dk
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Procedure Cost-Optimal-External-BFS
U ←∞; i← 1
Open(−1)← ∅; Open(0)← {I}
while (Open(i− 1) 6= ∅)

A(i)← N(Open(i− 1))
forall v ∈ A(i)

if v ∈ G and Metric(v) < U
U ← Metric(v)
ConstructSolution(v)

A′(i)← remove duplicates from A(i)
for loc← 1 to locality

A′(i)← A′(i)\ Open(i− loc)
Open(i)← A′(i)
i← i + 1

Figure 5: Cost-Optimal External BFS Planning. G is
the set of goals and U the best goal cost found.

Theorem 3 gives us the missing link to the successful
application of external breadth first search in planning.
Subtracting k previous layer plus the current layer from
the successor list in an external breadth-first search
guarantees its termination on finite planning graphs.

Cost-Optimal External BFS

In planning with preferences, we often have a monotone
decreasing instead of a monotonic increasing cost func-
tion. Hence, we cannot prune states with an evaluation
larger than the current one. Essentially, we are forced
to look at all states.

Figure 5 displays the pseudo-code for external BFS
exploration incrementally improving an upper bound U
on the solution length. The state sets that are used are
represented in form of files. The search frontier denot-
ing the current BFS layer is tested for an intersection
with the goal, and this intersection is further reduced
according to the already established bound.

In an internal non memory-limited setting, a plan is
constructed by backtracking from the goal node to the
start node. This is facilitated by saving with every node
a pointer to its predecessor. For memory-limited fron-
tier search, a divide-and-conquer solution reconstruc-
tion is needed for which certain relay layers have to be
stored in main memory. In external search divide-and-
conquer solution reconstruction and relay layers are not
needed, since the exploration fully resides on disk.

There is one subtle problem: predecessor pointers are
not available on disk. This is resolved as follows. We
propose to save predecessor together with every state.
Once a goal is found, backtracking to the initial state
along the stored files, and by looking for the matching
predecessors constructs the whole solution. This results
in a I/O complexity that is at most linear to the number
of stored states. In the pseudo-codes this procedure is
denoted by ConstructSolution.

Procedure External Enforced Hill-Climbing
u← I
h = Heuristic(I)
while (h 6= 0)

(u′, h′) ← External-EHC-BFS(u, h)
if (h′ =∞) return ∅
u← u′

h← h′

return ConstructSolution(u)

Figure 6: External Enforced Hill-Climbing.

Procedure External-EHC-BFS(u, h)
Open(−1, h)← ∅,Open(0, h)← u
i← 1
while (Open(i− 1, h) 6= ∅)

A(i)← N(Open(i− 1, h))
forall v ∈ A(i)

h′ = Heuristic(v)
if h′ < h

return (v, h′)
A′(i)← remove duplicates from A(i)
for loc← 1 to locality

A′(i)← A′(i)\ Open(i− loc)
Open(i)← A′(i)
i← i + 1

Figure 7: External-BFS for External Enforced Hill
Climbing. u is the new start state with the heuristic
estimate h.

External Enforced Hill Climbing
Enforced Hill Climbing (EHC) is an enforced form of
hill climbing search. Starting from a start state, a
breadth-first search is performed for a successor with
a better heuristic value. As soon as such a succes-
sor is found, the hash tables are cleared and a fresh
breadth-first search is started. The process continues
until the goal is reached. Since EHC performs a com-
plete breadth-first search on every state with a strictly
better heuristic value, it is guaranteed to find a solu-
tion. The following theorem is due to (Hoffmann &
Nebel 2001).

Theorem 4 For directed graphs without dead-ends,
Enforced Hill Climbing is complete and guaranteed to
find a solution.

Having external BFS in hand for planning domains,
an external algorithm for enforced hill limbing can be
constructed by utilizing the heuristic estimates. In Fig-
ure 6, we show the algorithm in pseudo-code format
for external enforced hill-climbing. The externalization
is embedded in the sub-procedure (Figure 7) that per-
forms external breadth-first search for a state with bet-
ter heuristic estimate. As heuristic guidance, we chose
relax plan heuristics (Hoffmann 2003).
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Conclusions

In this paper, we discussed a method to translate tem-
poral and preference constraints into PDDL2. Tempo-
ral constraints are converted into Büchi automata in
PDDL format, and are executed synchronously with
the main exploration. Preferences are compiled away
by a transformation into numerical fluents that impose
a penalty upon violation. Incorporating better heuris-
tic guidance, especially, for preferences is still an open
research frontier.

We discuss two external algorithms in this paper:
Cost-optimal external breadth-first search and exter-
nal enforced hill climbing search for non-optimal plan-
ning. The crucial problem in external memory algo-
rithms is the duplicate detection with respect to previ-
ous layers to guarantee termination. Using the local-
ity of the graph calculated directly from the operators
themselves, we provide a bound on the number of pre-
vious layers that have to be looked at.

Since states are kept on disk, external algorithms
have a large potential for parallelization. We noticed
that most of the execution time is consumed while
calculating heuristic estimates. Distributing a layer
on multiple processors can distribute the internal load
without having any effect on the I/O complexity.
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Abstract

In many read-world planning domains, generating good plan
quality is a central issue. This is especially true for prob-
lems with many solutions, or with many goals that cannot be
achieved altogether. We propose an extension to the PDDL
language that aims at a better characterization of plan qual-
ity by allowing the user to express strong and soft state con-
straints about the structure of the desired plans, as well as
strong and soft problem goals. In the plan quality evalua-
tion, soft goals and constraints are evaluated according the
their violation penalty weights, which are expressed by the
user in the plan metric. The new language, PDDL3, al-
lows us to distinguish alternative feasible plans (satisfying all
strong constraints and goals), preferring plans that minimize
the weighted violations for soft goals or constraints, possibly
combined with other plan quality criteria. We describe the
syntax and semantics of PDDL3.0 and we give several exam-
ples, including a domain from the very recent fifth Interna-
tional planning competition, which focused on soft trajectory
constraints and goals.

1 Introduction
The notion of plan quality in automated planning is of great
practical importance. In many real-world planning domains,
we have to address problems with a large set of solutions,
or with a set of goals that cannot all be achieved. In these
problems, it is important to generate plans of good or opti-
mal quality achieving as many goals as possible. When only
a subset of goals can be achieved (because they conflict with
each other, or because achieving all goals is computation-
ally too expensive), the ability to distinguish the importance
of different goals is critical.

PDDL is the standard planning language used in the
International planning competitors (Ghallabet al. 1998;
Fox & Long 2003; Edelkamp & Hoffmann 2004). The cur-
rent version of PDDL, PDDL2.2, allows us to express some
criteria for plan quality, such as the number of plan actions
or parallel steps, and relatively complex plan metrics involv-
ing plan makespan and numerical quantities. These are pow-
erful and expressive in domains that include metric fluents,
but plan quality can still only be measured by plan size in the
case of propositional planning. We believe that these criteria
are insufficient, and we propose to extend PDDL with new
constructs increasing its expressive power in specifying the
plan quality metric.

The proposed extended language, PDDL3, allows us to
expressstrong and soft constraints on plan trajectories(that

is, constraints over possible actions in the plan and interme-
diate states reached by the plan), as well asstrong and soft
problem goals(that is, goals that must be achieved in any
valid plan, and goals that we desire to achieve, but that do
not have to be necessarily achieved).

Some informal examples of plan trajectory constraints
and soft goals in a blocksworld domain are:a fragile block
can never have something above it, or it can have at most
one block on it; we would like that the blocks forming the
same tower always have the same colour; in some state of
the plan, all blocks should be on the table; we would like
that in the goal state there is only one block on the table.

Some additional examples in a transportation domain are:
we would like that every airplane is used(perhaps because
it is better to distribute the workload among the available
resources and limit heavy usage);whenever a ship is ready
at a port to load the containers it has to transport, all such
containers should be ready at that port; we would like that
at the end of the plan all trucks are clean and at their source
location; we would like no truck to visit any destination more
than once.

Strong constraints and goals must be satisfied by any valid
plan, while soft constraints and goals express desirable out-
comes, some of which may be more preferred than others.
Informally, in planning with soft constraints and goals, the
best quality plan should satisfy “as much as possible” the
soft constraints and goals according to the specified prefer-
ence relation distinguishing alternative feasible plans (satis-
fying all strong constraints and goals).

While soft constraints have been extensively studied in
the CSP literature (e.g., (Dubois, Fargier, & Prade 1996;
Bistarelli, Montanari, & Rossi 1997; Rossi, Venable, &
Yorke-Smith 2004)), only very recently has the plan-
ning community started to investigate them (Brafman &
Chernyavsky 2005; Brielet al. 2004; Delgrande, Schaub,
& Tompits 2005; Miguel, Jarvis, & Shen 2001; Smith 2004;
Son & Pontelli 2004). A significant recent effort along this
direction has been undertaken by the fifth International Plan-
ning Competition (IPC-5), which focuses on planning with
soft goals and constraints using PDDL3.0 (Gerevini & Long
2005b), a first version of PDDL3 where we have imposed
some simplifying restrictions to the language to make it
more accessible for the competitors.

When we have soft constraints and goals, it can be use-
ful to give different priorities to them, and this should be
taken into account in the plan quality evaluation. While
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there is more than one way to specify the importance of a
soft constraint or goal, as a first attempt to tackle this is-
sue, in PDDL3.0 we have chosen a simple quantitative ap-
proach: each soft constraint and goal is associated with a
numerical weight representing the cost of its violation in a
plan (and hence also its relative importance with respect the
other specified soft constraints and goals). Weighted soft
constraints and goals are part of the plan metric expression,
and the best quality plans are those optimising such an ex-
pression (more details are given in the next sections).

Using this approach we can express that certain plans are
more preferred than others. Some examples are:I prefer a
plan where every airplane is used, rather than a plan using
100 units of fuel less, which could be expressed by weighting
a failure to use all the planes by a number 100 times bigger
than the weight associated with the fuel use in the plan met-
ric; I prefer a plan where each city is visited at most once,
rather than a plan with a shorter makespan, which could
be expressed by using constraint violation costs penalising a
failure to visit each city at most once very heavily;I prefer
a plan where at the end each truck is at its start location,
rather than a plan where every city is visited by at most one
truck, which could be expressed by using goal costs penal-
ising a goal failure of having every truck at its start location
more heavily than a failure of having in the plan every city
visited by at most one truck. Other formalised examples are
given in following sections.

We also observe that the rich additional expressive power
we propose to add for goal specifications allows the ex-
pression of constraints that are actually derivable necessary
properties of optimal plans. By adding them as goal con-
ditions, we have a way to express constraints that we know
will lead to the planner finding optimal plans. Similarly, one
can express constraints that prevent a planner from exploring
parts of the plan space that are known to lead to inefficient
performance.

2 State Trajectory Constraints
2.1 Syntax and Intended Meaning
State trajectory constraints assert conditions that must be
met by the entire sequence of states visited during the ex-
ecution of a plan. They are expressed through temporal
modal operators over first order formulae involving state
predicates. We recognise that there would be value in also
allowing propositions asserting the occurrence of action in-
stances in a plan, rather than simply describing properties of
the states visited during execution of the plan, but we choose
to restrict ourselves to state predicates in this extension of
the language.

The basic modal operators we propose to use in IPC-5
are: always , sometime , at-most-once , andat end (for
goal state conditions). We addwithin which can be used
to express deadlines. In addition, rather than allowing arbi-
trary nesting of modal operators, we introduce some spe-
cific operators that offer some limited nesting. We have
sometime-before , sometime-after , always-within .
Other modalities could be added, but we believe that these
are sufficiently powerful for an initial level of the sublan-
guage modelling constraints.

It should be noted that, by combining these modalities
with timed initial literals (defined in PDDL2.2 (Edelkamp
& Hoffmann 2004)), we can express further goal constraints.
In particular, one can specify the interval of time when a goal
should hold, or the lower bound on the time when it should
hold. Since these are interesting and useful constraints, we
introduce two modal operators as “syntactic sugar” of the
basic language:hold-during andhold-after .

Trajectory constraints are specified in the planning prob-
lem file in a new field. In addition, we allow constraints to
be specified in the action domain file on the grounds that
some constraints might be seen as safety conditions, or op-
erating conditions, that are not physical limitations, but are
nevertheless constraints that must always be respected in any
valid plan for the domain (say legal constraints or operating
procedures that must be respected).

Note that none of the new temporal modal operators is
allowed in preconditions of actions. That is, all action pre-
conditions are with respect to a state (or time interval, in the
case ofover all action conditions). In effect, an action can
only rely on “local” conditions at the point of execution —
the state in which it is applied and the states that hold dur-
ing its duration — never on conditions in the trajectory as a
whole.

The specific BNF grammar of PDDL3.0 is given in
(Gerevini & Long 2005a). The following is a fragment of
the grammar concerning the new modalities of PDDL3.0 for
expressing constraints (con-GD ):
<con-GD> ::= (at end <GD>) | (always <GD>) |

(sometime <GD>) | (within <num> <GD>) |

(at-most-once <GD>) |

(sometime-after <GD> <GD>) |

(sometime-before <GD> <GD>) |

(always-within <num> <GD> <GD>) |

(hold-during <num> <num> <GD> |

(hold-after <num> <GD> | ...

where <GD> is a goal description (a first order logic for-
mula), <num> is any numeric literal (in STRIPS domains
it will be restricted to integer values). There is a minor com-
plication in the interpretation of the bound forwithin and
always-within when considering STRIPS plans (and sim-
ilarly for hold-during andhold-after ): the question is
whether the bound refers to sequential steps (in other words,
actions) or to parallel steps. For STRIPS plans, the numeric
bounds will be counted in terms of planhappenings. For
instance,(within 10 φ) would mean thatφ must hold
within 10 happenings. These would be happenings of one
action or of multiple actions, depending on whether the plan
is sequential or parallel.

2.2 Semantics
The semantics of goal descriptors in PDDL2.2 evaluates
them only in the context of a single state (the state of ap-
plication for action preconditions or conditional effects and
the final state for top level goals). In order to give meaning
to temporal modalities, which assert properties of trajecto-
ries rather than individual states, it is necessary to extend
the semantics to support interpretation with respect to a fi-
nite trajectory (as it is generated by a plan). We propose a
semantics for the modal operators that is the same basic in-
terpretation as is used in TLPlan (Bacchus & Kabanza 2000)
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〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (at end φ) iff Sn |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= φ iff Sn |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (always φ) iff ∀i : 0 ≤ i ≤ n · Si |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (sometime φ) iff ∃i : 0 ≤ i ≤ n · Sj |= φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (within t φ) iff ∃i : 0 ≤ i ≤ n · Si |= φandti ≤ t
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (at-most-once φ) iff ∀i : 0 ≤ i ≤ n · if Si |= φ then

∃j : j ≥ i · ∀k : i ≤ k ≤ j · Sk |= φ
and∀k : k > j · Sk |= ¬φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (sometime-after φ ψ) iff ∀i · if Si |= φ then∃j : i ≤ j ≤ n · Sj |= ψ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (sometime-before φ ψ) iff ∀i · if Si |= φ then∃j : 0 ≤ j < i · Sj |= ψ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (always-within t φ ψ) iff ∀i · if Si |= φ then∃j : i ≤ j ≤ n · Sj |= ψ

andtj − ti ≤ t

Figure 1: Semantics of the basic modal operators in PDDL3.

for LT and other standard LTL treatments. Recall that a
happeningin a plan for a PDDL domain is the collection of
all effects associated with the (start or end points of) actions
that occur at the same time. This time is then the time of the
happening and a happening can be “applied” to a state by si-
multaneously applying all effects in the happening (which is
well defined because no pair of such effects may be mutex).

Definition 1 Given a domainD, a plan π and an initial
stateI, π generates the trajectory

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉

iff S0 = I and for each happeningh generated byπ, with
h at time t, there is somei such thatti = t andSi is the
result of applying the happeningh to Si−1, and for every
j ∈ {1 . . . n} there is a happening inπ at tj .

Definition 2 Given a domainD, a planπ, an initial state
I, and a goalG, π is valid if the trajectory it gen-
erates, 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉, satisfies the goal:
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= G.

This definition contrasts with the original semantics of
goal satisfaction, where the requirement was thatSn |= G.
The contrast reflects precisely this requirement that goals
should now be interpreted with respect to an entire trajec-
tory. We do not allow action preconditions to use modal
operators and therefore their interpretation continues to be
relative to the single state in which the action is applied. The
interpretation of simple formulae,φ (containing no modali-
ties), in a single stateS continues to be as before and con-
tinues to be denotedS |= φ. In the following definition we
rely on context to make clear where we are using the inter-
pretation of non-modal formulae in single states, and where
we are interpreting modal formulae in trajectories.

Definition 3 Letφ andψ be atomic formulae over the predi-
cates of the planning problem plus equality (between objects
or numeric terms) and inequalities between numeric terms,
and lett be any real constant value. The interpretation of
the modal operators is as specified in Figure 1.

Note that this interpretation exploits the fact that modal
operators are not nested. A more general semantics for
nested modalities is a straight-forward extension of this one.
Note also that the last four expressions in Figure 1 are ex-
pressible in different ways if one allows nesting of modali-

ties and use of the standard LTL modalityuntil (more details
on this in (Gerevini & Long 2005b)).

The constraintat-most-once is satisfied if its argument
becomes true and then stays true across multiple states and
then (possibly) becomes false and stays false. Thus, there is
only at most oneinterval in the plan over which the argu-
ment proposition is true.

For general formulae (which may or may not contain
modalities):

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (and φ1...φn) iff, for
everyi, 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= φi

and similarly for other connectives.
Of the constraintshold-during and hold-after ,

(hold-during t1 t2 φ) states thatφ must be true during
the interval[t1, t2), while (hold-after t φ) states thatφ
must be true after timet. The first can be expressed by using
timed initial literals to specify that a dummy timed literald
is true during the time window[t1, t2) together with the goal
(always (implies d φ)) .
A variant ofhold-during whereφ must holdexactlydur-
ing the specified interval could be easily obtained in a similar
way. The second can be expressed by using timed initial lit-
erals to specify thatd is true only from timet, together with
the goal(sometime-after d φ) .

3 Soft Constraints and Preferences
A soft constraint is a condition on the trajectory generated by
a plan that the user would prefer to see satisfied rather than
not satisfied, but is prepared to accept might not be satisfied
because of the cost of satisfying it, or because of conflicts
with other constraints or goals. In case a user has multiple
soft constraints, there is a need to determine which of the
various constraints should take priority if there is a conflict
between them or if it should prove costly to satisfy them.
This could be expressed using a qualitative approach but,
following careful deliberations, we have chosen to adopt a
simple quantitative approach for this version of PDDL.

3.1 Syntax and Intended Meaning
The syntax for soft constraints falls into two parts. Firstly,
there is the identification of the soft constraints, and sec-
ondly there is the description of how the satisfaction, or lack
of it, of these constraints affects the quality of a plan.
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Goal conditions, including action preconditions, can be
labelled as preferences, meaning that they do not have to be
true in order to achieve the corresponding goal or precondi-
tion. Thus, the semantics of these conditions is simple, as
far as the correctness of plans is concerned: they are all triv-
ially satisfied in any state. The role of these preferences is
apparent when we consider the relative quality of different
plans. In general, we consider plans better when they satisfy
soft constraints and worse when they do not. A complication
arises, however, when comparing two plans that satisfy dif-
ferent subsets of constraints (where neither set strictly con-
tains the other). In this case, we rely on a specification of
the violation costs associated with the preferences.

The syntax for labelling preferences is simple:

(preference [name] <GD>) .

The definition of a goal description can be extended to
include preference expressions. However, in PDDL3.0, we
reject as syntactically invalid any expression in which pref-
erences appear nested inside any connectives, or modalities,
other than conjunction and universal quantifiers. We also
consider it a syntax violation if a preference appears in the
condition of a conditional effect.Note that where a named
preference appears inside a universal quantifier, it is consid-
ered to be equivalent to a conjunction (over all legal instan-
tiations of the quantified variable) of preferences all with the
same name.

Where a name is selected for a preference it can be used to
refer to the preference in the construction of penalties for the
violated constraint. The same name can be shared between
preferences, in which case they share the same penalty.

Penalties for violation of preferences are calculated using
the expression

(is-violated <name>)

where <name> is a name associated with one or more
preferences. This expression takes on a value equal to the
number of distinct preferences with the given name that are
not satisfied in the plan. Note that in PDDL3.0 we do not
attempt to distinguish degrees of satisfaction of a soft con-
straint — we are only concerned with whether or not the
constraint is satisfied. Note, too, that the count includes each
separate constraint with the same name. This means that:

(preference VisitParis
(forall (?x - tourist)

(sometime (at ?x Paris))))

yields a violation count of 1 for (is-violated
VisitParis) , if at least one tourist fails to visit Paris
during a plan, while

(forall (?x - tourist)
(preference VisitParis

(sometime (at ?x Paris))))

yields a violation count equal to the number of people who
failed to visit Paris during the plan. The intention behind
this is that each preference is considered to be a distinct pref-
erence, satisfied or not independently of other preferences.
The naming of preferences is a convenience to allow dif-
ferent penalties to be associated with violation of different
constraints.

Plans are awarded a value through the plan metric, intro-
duced in PDDL2.1 (Fox & Long 2003). The constraints can
be used in weighted expressions in a metric. For example,

(:metric minimize
(+ (* 10 (fuel-used))

(is-violated VisitParis)))

would weight fuel use as ten times more significant than vi-
olations of theVisitParis constraint. Note that the vi-
olation of a preference in the preconditions of an action is
counted multiple times, depending on the number of the ac-
tion occurrences in the plan. For instance, suppose thatp is
a preference in the precondition of an actiona, which occurs
three times in planπ. If the plan metric evaluatingπ con-
tains the term(* k (is-violated p)) , then this is in-
terpreted as if it were(* v (* k (is-violated p))) ,
wherev is the number of separate occurrences ofa in π for
which the preference is not satisfied.

3.2 Semantics
We say that

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (preference Φ)

is always true, so this allows preference statements to be
combined in formulae expressing goals. The point in mak-
ing the formula always true is that the preference is a soft
constraint, so failure to satisfy it is not considered to falsify
the goal formula. In the context of action preconditions, we
saySi |= (preference Φ) is always true, too, for the same
reasons.

We also say that a preference(preference Φ) is sat-
isfied iff 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= Φ andviolated
otherwise. This means that(or Φ (preference Ψ)) is the
same as(preference (or ΦΨ)) , both in terms of the sat-
isfaction of the formulae and also in terms of whether the
preference is satisfied. The same idea is applied to action
precondition preferences. Hence, a goal such as:

(and (at package1 london)
(preference (clean truck1)))

would lead to the following interpretation:

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(and (at package1 london)

(preference (clean truck1)

iff

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(at package1 london)

and

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(preference (clean truck1))

iff Sn |= (at package1 london)
iff (at package1 london) ∈ Sn, since the preference

is always interpreted as true. In addition, the preference
would besatisfiediff:

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |=
(at end (clean truck1))
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iff (clean truck1) ∈ Sn.

If the preference is not satisfied, it is violated.
Now suppose that we have the following preferences and

plan metric:
(preference p1 (always (clean truck1)))

(preference p2 (and (at end (at package2 paris))

(sometime (clean track1))))

(preference p3 (...))

(:metric (+ (* 10 (is-violated p1)) (* 5 (is-violated p2))

(is-violated p3))).

Suppose we have two plans,π1, π2, andπ1 does not satisfy
preferences p1 and p3 (but it satisfies preference p2) and
π2 does not satisfy preferences p2 and p3 (but it satisfies
preference p1), then the metric forπ1 would yield a value
(11) that is higher than that forπ2 (6) and we would say that
π2 is better thanπ1.

Formally,a preference precondition is satisfied if the state
in which the corresponding action is applied satisfies the
preference. Note that the restriction on where preferences
may appear in precondition formulae and goals, together
with the fact that they are banned from conditional effects,
means that this definition is sufficient: the context of their
appearance will never make it ambiguous whether it is nec-
essary to determine the status of a preference. Similarly,a
goal preference is satisfied if the proposition it contains is
satisfied in the final state. Finally, an invariant (over all )
condition of a durative action is satisfied if the correspond-
ing proposition is true throughout the duration of the action.

In some case, it can be hard to combine preferences with
an appropriate weighting to achieve the intended balance be-
tween soft constraints and other factors that contribute to the
value of a plan (such as plan make span, resource consump-
tion and so on). For example, to ensure that a constraint
takes priority over a plan cost associated with resource con-
sumption (such as make span or fuel consumption) is partic-
ularly tricky: a constraint must be weighted with a value that
is higher than any possible consumption cost and this might
not be possible to determine. With non-linear functions it
is possible to achieve a bounded behaviour for costs associ-
ated with resources. For example, if a constraint,C, is to be
considered always to have greater importance than the make
span for the plan then a metric could be defined as follows:
(:metric minimize (+ (is-violated C)

(- 1 (/ 1 (total-time))))).

This metric will always prefer a plan that satisfiesC, but will
use make span to break ties.

Nevertheless, for the competition, where it is important
to provide an unambiguous specification by which to rank
plans, the use of plan metrics in this way is clearly very
straightforward and convenient. We leave for later proposals
the possibilities for extending the evaluation of plans in the
face of soft constraints.

4 Some Examples
In this section, we give some examples from well known do-
mains and also from one of the PDDL3 domains that have
recently been developed by the organizers of IPC-5: the
Travelling and Purchase Problem (TPP).1

1For IPC-5 several new domains involving preferences have
been defined. A detailed description of them is outside the scope

4.1 Blocks World and Rovers
The following state trajectory constraints could be stated ei-
ther as strong constraints or soft constraints.
“A fragile block can never have something above it”:
(always (forall (?b - block)

(implies (fragile ?b) (clear ?b))))

“A fragile block can have at most one block on it”:
(always (forall (?b1 ?b2 - block)

(implies (and (fragile ?b1) (on ?b2 ?b1))

(clear ?b2))))

“The blocks forming the same tower always have the same
color”:
(always (forall (?b1 ?b2 - block ?c1 ?c2 - color)

(implies (and (on ?b1 ?b2) (color ?b1 ?c1)

(color ?b2 ?c2))

(= ?c1 ?c2))))

“Each block should be picked upat leastonce”:
(forall (?b - block) (sometime (holding ?b)))

“Each block should be picked upat mostonce”:
(forall (?b - block) (at-most-once (holding ?b)))

“In some state visited by the plan all blocks should be on the
table”:
(sometime (forall (?b - block) (on-table ?b)))

This constraint requires all the blocks to be on the table
in thesamestate. In contrast, if we only require that every
block should be on the table insomestate we can write:
(forall (?b - block) (sometime (on-table ?b)))

The following two examples use the IPC-3 Rovers domain
involving numerical fluents. “We would like that the energy
of every rover should always be above the threshold of 5
units”:
(always (forall (?r - rover) (> (energy ?r) 5))))

“Whenever the energy of a rover is below 5, it should be at
the recharging location within 10 time units”:
(forall (?r - rover)

(always-within 10 (< (energy ?r) 5)

(at ?r recharging-point)))

4.2 TPP
TPP is a relatively recent planning domain that has been in-
vestigating in Operation Research (OR) for several years.
TPP is a known generalization of the Travelling Salesman
Problem, and is defined as follows. We have a set of dif-
ferent types of goods and a set of markets. Each market is
provided with a limited amount of each type of goods at a
known price. The TPP consists in selecting a subset of mar-
kets such that a given demand of each type of goods can be
purchased, minimizing the routing cost and the purchasing
cost. This problem arises in several applications, mainly in
routing and scheduling contexts, and it is known to be NP-
hard. In OR, computing optimal or near optimal solutions
for TPP instances is an active research topic.

For IPC-5, several variants of this domain have been for-
malized in PDDL3.0. One of them is equivalent to the orig-
inal TPP, while the others are simplified or extended formu-
lations.2

of this paper.
2A description of each of these variants is available from the

website of IPC-5:http://ipc5.ing.unibs.it .
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(:action drive

:parameters (?t - truck ?from ?to - place)

:precondition (and (at ?t ?from) (connected ?from ?to)

(preference p-drive (forall (?g - goods) (ready-to-load ?g ?from level0))))

:effect (and (not (at ?t ?from)) (at ?t ?to)))

(:action load

:parameters (?g - goods ?t - truck ?m - market ?l1 ?l2 ?l3 ?l4 - level)

:precondition (and (at ?t ?m) (loaded ?g ?t ?l3) (ready-to-load ?g ?m ?l2) (next ?l2 ?l1) (next ?l4 ?l3))

:effect (and (loaded ?g ?t ?l4) (not (loaded ?g ?t ?l3)) (ready-to-load ?g ?m ?l1) (not (ready-to-load ?g ?m ?l2))))

(:action unload

:parameters (?g - goods ?t - truck ?d - depot ?l1 ?l2 ?l3 ?l4 - level)

:precondition (and (at ?t ?d) (loaded ?g ?t ?l2) (stored ?g ?l3) (next ?l2 ?l1) (next ?l4 ?l3))

:effect (and (loaded ?g ?t ?l1) (not (loaded ?g ?t ?l2)) (stored ?g ?l4) (not (stored ?g ?l3))))

(:action buy

:parameters (?t - truck ?g - goods ?m - market ?l1 ?l2 ?l3 ?l4 - level)

:precondition (and (at ?t ?m) (on-sale ?g ?m ?l2) (ready-to-load ?g ?m ?l3) (next ?l2 ?l1) (next ?l4 ?l3))

:effect (and (on-sale ?g ?m ?l1) (not (on-sale ?g ?m ?l2)) (ready-to-load ?g ?m ?l4) (not (ready-to-load ?g ?m ?l3))))

Figure 2: Propositional version with preferences of the TPP domain developed for IPC-5.

Examples from the Propositional Version of TPP
Figure 2 shows the operators of the “Propositional” version
of TPP (with preferences) developed for IPC-5. This is a
simplified version of the original TPP, where the amounts
of goods that we can buy are discrete and are modeled by a
certain number of qualitative levels, that are specified in the
problem initial state. Moreover, goods have no price. Note
that eachdrive action has a soft precondition

(preference p-drive (forall (?g - goods)

(ready-to-load ?g ?from level0))))

expressing the preference that “a truck can move from
a market only if it leaves at that market no amount of
(ready-to-load ) goods”. The goods that are ready to load
are those that have been purchased at the corresponding mar-
ket, so this implies that it is prefered that a truck should never
leave a location in which there are still purchased goods.

In the following, we illustrate several preferences over
goals and state trajectory constraints that are included in
a IPC-5 test problem for the propositional version of TPP
with preferences The first three sets of goal preferences, to-
gether with their penalty weights (see below), encode the
more global preference of “maximising the level of pur-
chased goods that are stored in a depot”, for each type of
goods specified in the initial state (in this problem, goods
have four levels):

(forall (?g - goods)

(preference G1 (exists (?l - level)

(and (not (= ?l level0)) (not (= ?l level1))

(stored ?g ?l)))))

(forall (?g - goods)

(preference G2 (exists (?l - level)

(and (not (= ?l level0)) (not (= ?l level2))

(stored ?g ?l)))))

(forall (?g - goods)

(preference G3 (exists (?l - level)

(and (not (= ?l level0)) (not (= ?l level3))

(stored ?g ?l)))))

Moreover, we prefer that “everything we buy is then stored
in a depot”, that is, that the level of the goods that we have
bought (that areready-to-load ), and that have been left
at a market or on a truck, is zero:

(forall (?g - goods)

(preference G4

(and (forall (?m - market)

(ready-to-load ?g ?m level0))

(forall (?t - truck) (loaded ?g ?t level0)))))

The soft state trajectory constraints in TPP Propositional are
the following ones. “Each market should be visited at most
once by a truck”:

(forall (?m - market ?t - truck)

(preference C1 (at-most-once (at ?t ?m))))

“Each type of goods should be loaded at most once in a
truck” (we want to buy and load the whole amount of the
goods before storing them in a depot).
(forall (?t - truck ?g - goods)

(preference C2 (at-most-once (exists (?l - level)

(and (loaded ?g ?t ?l)

(not (= ?l level0)))))))

“There should be at most one truck at a market at the same
time”:
(forall (?m - market ?t1 ?t2 - truck)

(preference C3 (always (imply (and (at ?t1 ?m)

(at ?t2 ?m))

(= ?t1 ?t2)))))

“Each truck should be used”:
(forall (?t - truck)

(preference C4 (sometime (exists (?g - goods ?l - level)

(and (loaded ?g ?t ?l)

(not (= ?l level0))))))))

“A particular type of goods (goods5 ) should be stored at
some level before another particular type of goods (goods4
or goods3 ) is stored at that same level” (in other words, the
level of goods5 should always be greater than or equal to
the level ofgoods3 andgoods4 ):
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(forall (?l - level)

(preference C5 (sometime-before

(and (stored goods4 ?l) (not (= (?l 0)))

(stored goods5 ?l))))

(forall (?l - level)

(preference C6 (sometime-before

(and (stored goods3 ?l) (not (= (?l 0)))

(stored goods5 ?l))))

The following is an example of plan metric for the previous
preferences. Note that preferencep-drive is a soft precon-
dition of eachdrive action appearing in the plan:
(:metric minimize

(+ (* 1 (is-violated p-drive))

(* 12 (is-violated G1)) (* 10 (is-violated G2))

(* 8 (is-violated G3)) (* 4 (is-violated G4))

(* 1 (is-violated C1)) (* 1 (is-violated C2))

(* 2 (is-violated C3)) (* 3 (is-violated C4))

(* 13 (is-violated C5)) (* 13 (is-violated C6))))

Assuming that in the initial state there are four possible lev-
els for each type of goods, the decreasing penalty weights
associated with goal preferencesG1–G3 encode the desire
that we maximise the level of stored goods (for each type of
goods, there is no penalty if we have four levels of stored
goods, and the higher is the level of the stored goods, the
less is the penalty we get).

In the particular TPP problem which the plan metric
above is associated with, in general the way we achieve
the goals is less important than achieving them. Thus, the
penalty for violating the preferences over trajectory con-
straints (C1–C4) and action preconditions (p-drive ) are
lower than the penalties for violating soft goals. Prefer-
encesC5 andC6 are exceptions and have the highest penalty
weights. This is because in this specific problem it is very
important to keep a balance between the pair of goods in-
volved by these constraints (that is, the levels ofgoods3
andgoods4 should never exceed the level ofgoods5 ).

Finally, note that constraintsC5 andC6 may interfere with
goal preferencesG1–G3, because the maximum levels of
available goods at the markets may be different for differ-
ent types of goods (as specified in the problem initial state).
For example, if the maximum level forgoods5 is 2, then
constraintsC5 andC6 impose thatgoods3 andgoods4 can
never exceed this level (even if the an extra level of these
goods could be purchased).

Examples from the Metric-Time Version of TPP
The Metric-Time version of TPP is significantly more com-
plex than the Propositional one, and it is similar to the orig-
inal formulation of TPP, with some extensions. The hard
numeric goals are that the amounts of the stored goods are
not less than the corresponding amounts of requested goods,
which are specified in the initial state.

Concerning the goal preferences and soft constraints for
this domain version, most of them are similar to some of the
preferences for the propositional version of TPP, except that
here we use numerical fluents for expressing the amounts of
goods. Examples of additional soft constraint are
“whenevergoods3 are loaded in a truck,goods3 should be
in a depot within 2390 time units” (because, for instance,
these goods get deteriorated by longer travels):

(forall (?t - truck)

(preference C7 (always-within 2390

(>= (loaded goods3 ?t) 0) (= (loaded goods3 ?t) 0))))

“The amount of certain goods stored in a depot should al-
ways be less than the amount of other particular goods”:
(preference C8 (always

(> (stored goods13) (stored goods6))))

“We start storing some particular goods only after we have
stored the requested amount of other particular goods”:
(preference C9 (sometime-before (> (stored goods12) 0)

(>= (stored goods2) (request goods2))))

“We start storing some particular goods only after we
have bought the requested amount of some other particular
goods”:
(preference C10 (sometime-before (> (stored goods10) 0)

(>= (bought goods8) (request goods8)))).

5 Extensions and Generalization
There is considerable scope for developing the proposed ex-
tension. First, and most obviously, modal operators could be
allowed to nest. This would allow a rich expressive power
in the specification of modal temporal goals. Nesting would
allow constraints to be applied to parts of trajectories, as is
usual in modal temporal logics. In addition, we could in-
troduce propositions representing that an action appears in a
plan.

Other modal operators could be added. We have excluded
them PDDL3.0 because we have found that many interest-
ing and challenging goals can be captured without them,
and we do not wish to add unnecessarily to the load on
potential competitors. The modal operatoruntil would be
an obvious one to add. Without nesting, a relatedalways-
until andsometime-until would allow expression of goals
such as “every time a truck arrives at the depot, it must stay
there until loaded” or “when the truck arrives at the depot,
it must stay there until cleaned and fully refuelled at least
once in the plan”. The formal semantics ofalways-until
andsometime-until can be easily derived from the one of
until in LTL. By combiningalways-until and other modali-
ties we can express complex constraints such as that “when-
ever the energy of a rover is below 5, it should be at the
recharging location within 10 time units and remain there
until recharged”:
(and (always-until (charged ?r) (at ?r rechargepoint))

(always-within 10 (< (charge ?r) 5)

(at ?r rechargingpoint)))

Another modality that would be an useful extension of
the expressive power is a complement forwithin , such as
persist, with the semantics that a proposition once made
true must persist for at least some minimal period of time.
Without nesting, a relatedalways-persist andsometime-
persist would allow expression of goals such as “I want to
spend at least 2 days in each of the cities on my tour”, or
“every time the taxi goes to the station it must wait for at
least 10 without a passenger”.
The formal semantics ofalways-persist and sometime-
persist is given in Figure 3. A generalisation that would
allow within andpersist to be combined would be to al-
low the time specification to be associated with a compar-
ison operator to indicate whether the bound is an upper or
lower bound.
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〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (always-persist t φ) iff ∀i : 0 < i ≤ n · if Si |= φ andSi−1 |= ¬φ then
∃j : j − i ≥ t · ∀z : i ≤ z ≤ j · Sz |= φ and
if S0 |= φ then∀z : z ≤ t · Sz |= φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (always-persist t φ) iff ∃i : 0 < i ≤ n · if Si |= φ andSi−1 |= ¬φ then
∃j : j − i ≥ t · ∀z : i ≤ z ≤ j · Sz |= φ, or
if S0 |= φ then∀z : z ≤ t · Sz |= φ

Figure 3: Semantics ofalways-persist andsometime-persist.

We have deliberately not introduced the operatornext,
which is common in modal temporal logics. This is because
concurrent fragments of a plan might cause a state change
that is not relevant to the part of the state in which thenext
condition is intended to apply. Furthermore, the fact that
PDDL plans are embedded on a real time line means that the
intention behindnext is less obviously relevant. We realise
thatnext has been particularly useful in expressing control
rules for planners like TALPlanner (Kvarnström & Magnus-
son 2003) and TLPlan (Bacchus & Kabanza 2000), but our
intention in developing this extension is to focus on provid-
ing a language that is useful for expressing constraints that
govern plan quality, rather than for control knowledge. We
believe that the use ofalways-within captures a much
more useful concept for plan quality that is actually a far
more realistic constraint in modelling planning problems.

Extensions to the use of soft constraints include the def-
inition of more complex preferences, such as conditional
preferences, and a possible qualitative method for express-
ing priorities over preferences. Moreover, the evaluation
of the soft constraints could be extended by considering
a degree of constraint violation, such as the amount of
time when analways constraint is violated, the delay that
falsifies awithin constraint, or the number of times an
always-after constraint is violated.

6 Conclusions
Planning has been tackling increasingly difficult problems
with greater success over recent years. An objective for the
community is to move the focus of research towards the so-
lution of problems with increasing relevance to application.
In many application areas, the quality of plans is central to
their usefulness. It is essential to consider the quality in
terms of constraints across the trajectories and in terms of
preferences that are imposed by the users. To manage these
problems, planning algorithms must have access to this in-
formation and we have proposed an extension to PDDL that
will provide this. The role of PDDL in forming a common
foundation for the extension of existing planning technology
has been proven repeatedly over the past 8 years. Although
the concepts of constraints, both hard and soft, are not new,
even to planning, the adoption of a common language and
the basis for benchmarks will play a central role in promot-
ing research into these areas. The interest in the 5th IPC is
already a clear demonstration of the way in which the re-
search agenda can be moved forward through the vehicle
of PDDL.
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Abstract

In this paper, we present the partition-and-resolve strat-
egy in SGPlan (hereafter called SGPLan5) for fully sup-
porting all language features in PDDL3.0. Based on the
architecture of SGPlan that supported PDDL2.2 (here-
after called SGPLan4), SGPLan5 partitions a large plan-
ning problem into subproblems, each with its own sub-
goal, and resolves those inconsistent solutions using our
extended saddle-point condition. Subgoal partitioning
is effective for solving large planning problems because
each partitioned subproblem involves a substantially
smaller search space than that of the original problem.
In SGPLan5, we generalize subgoal partitioning so that
the goal state of a subproblem is no longer one goal fact
as in SGPLan4, but can be any fact with loosely coupled
constraints with other subproblems. We have further de-
veloped methods for representing a planning problem in
a multi-valued form and for carrying out partitioning in
the transformed space. The multi-valued representation
leads to more efficient heuristics for resolving trajectory
and temporal constraints and goal preferences.

INTRODUCTION
In this paper, we present the partition-and-resolve strategy
in SGPLan5 for fully supporting all language features in
PDDL3.0 (Gerevini & Long 2005). By extending the archi-
tecture of SGPLan4 (Chen, Wah, & Hsu 2006) that supports
PDDL2.2 (Edelkamp & Hoffmann 2004), SGPLan5 parti-
tions a large planning problem into subproblems, each with
its own subgoal, and resolves those inconsistent solutions of
subgoals using our extended saddle-point condition.

Inspired by real applications, Smith recently introduced
the over-subscription planning problem (Smith 2004) that
has a number of soft goals with different violation costs. Un-
like PDDL2.2 domains whose goal state is a conjunctive list
of facts, the planning task in an over-subscription planning
problem entails the selection of an appropriate subset of soft
goals when it is infeasible to achieve the entire set of goals.
The idea has been extended in PDDL3.0 in such a way there
are soft constraints over intermediate states.

∗Research supported by the National Science Foundation Grant
IIS 03-12084.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

To develop a planner that fully supports the PDDL3.0
planning models and to accommodate its new features on
trajectory constraints and goal preferences, we have trans-
formed each planning problem into a multi-valued domain
formulation and have revised our partitioning strategy in
SGPLan4 based on the new representation. We have de-
veloped new search techniques, both at the global and the
subproblem levels, for optimizing goal preferences and for
resolving trajectory and temporal constraints.

DESIGN GOALS
PDDL3.0 extends the previous PDDL2.2 specifications by
introducing several new features: a) simple preferences over
only action preconditions or goals, b) qualitative preferences
that are logical preferences over trajectory constraints, c)
complex constraints that are trajectory constraints with met-
ric time and possibly numeric fluents, and d) complex pref-
erences that are preferences over trajectory constraints with
metric time and possibly numeric fluents. We have devel-
oped new components in SGPLan5 to support these features.

Given a plan π, an initial state I , a sequence of actions
and possibly their schedule, we can derive the trajectory of π
under the domain definition. We can compute for this trajec-
tory its violated constraints, which include mutex constraints
as in PDDL2.2, inconsistent state-variable assignments, and
trajectory constraints introduced in PDDL3.0. The objective
is to satisfy all the hard constraints or goals as well as to
optimize the soft-constraint violations and the plan quality.

SGPLan5 uses a multi-valued domain formulation (MDF)
based on the SAS+ formalism. MDF has been used in
several planners, including Fast Downward (Helmert 2004)
and the IP planner (van den Briel, Vossen, & Kambhampati
2005). Its advantage is that it allows a more compact rep-
resentation of facts and their dependencies. For example, in
the traditional representation of binary facts, the location of
truck1 in the TPP domain is represented in binary facts, such
as at(truck1, location1), . . . , at(truck1, location8). These
facts can be denoted more compactly in MDF by one vari-
able location(truck1) that takes multiple values: location1,
. . . , location8. The MDF variables further allows us to
derive the possible transitions among their values. For in-
stance, location1 −→ location2 represents the connection
between two locations.

Based on the MDF formulation, we can derive causal
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Figure 1: The locality of the constraint-variable structure in the
fifth instance of the TPP-SimplePreferences domain.

dependencies among the variables, where variable a has a
causal dependency on another variable b if a transition in
a has a state requirement on b. For example, in order for
truck1 to move crate from location1 to location2, it has to
be at location1. In this case, the transition for crate has a
causal dependency on the location of truck1.

We have implemented our preprocessing engine for trans-
lating a PDDL3.0 problem into MDF. There are several rea-
sons for using MDF.

a) It provides a more compact representation than a binary-
valued representation and leads to a more effective parti-
tioning of the constraints.

b) MDF facilitates the analysis of the transition graphs of
variables and causal dependencies among the variables.
These can be used to derive a much more accurate heuris-
tic guidance than the previous Metric-FF heuristic.

c) Using the new heuristic function, high-quality approxi-
mate plans can be extracted for efficiently resolving tem-
poral constraints in PDDL3.0 planning problems.

CONSTRAINT LOCALITY
In PDDL2.2 planning, we have shown that constraint parti-
tioning by subgoals leads to localized constraints when we
partition the constraints in such a way that a majority of them
are within a partition. This approach, however, cannot be di-
rectly applied in PDDL3.0 domains because there are some
soft goals that are never present in an optimal solution. Con-
straint locality will also be different when problems are rep-
resented in MDF.

Because it is possible to have inconsistencies among soft
constraints, our previous subgoal partitioning strategy that
aims to satisfy a conjunctive list of conditions on the fi-
nal state cannot be applied directly. To address this issue,
we have extended our partitioning approach. Using multi-
valued domain analysis, we first eliminate a number of mu-
tual exclusions as well as inconsistencies among the soft
constraints. Moreover, we have found that constraint lo-
cality is associated with some state variables with causal
dependencies to other state variables. Conceptually, these
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Figure 2: Architecture of SGPLan5.

variables can be treated as goals because their transitions in-
cur changes on other variables. As a result, we partition the
problem by these variables and formulate global constraints
as those that involve variables across different partitions.

We have evaluated our revised partitioning method
on some IPC5 benchmarks. Figure 1 illustrates the
constraint-variable structure in the fifth instance of the TPP-
SimplePreferences domain that aims to plan the purchase
and storage of five products. In this problem, each vari-
able represents an action and its schedule in the plan, and a
constraint can be an active mutual exclusion, an inconsistent
state variable assignment, or a violated trajectory constraint.
By partitioning those variables that represent the status of
products (five in this instance) into five subproblems, each
involving one product, it is obvious that a majority of the
constraints can be localized. In this form, a global constraint
involves variables that are across two partitions, such as a
constraint on the equality of the quantity of two products.

Note that the difficulty of resolving constraints is domain
dependent, although constraint locality is common in all
IPC5 benchmarks. For instance, all the subproblems in the
OpenStacks domain are trivial to solve, but the major chal-
lenge is to enforce the consistency of its shared variables.

ARCHITECTURE OF SGPLan5

By formulating a subproblem in such a way that each has
one goal state, SGPLan5 partitions a planning problem into
subproblems and finds a feasible plan for each goal fact (Fig-
ure 2). In the global level, it partitions the problem by its
multi-valued state variables and resolves its violated global
constraints using the theory of extended saddle points (Wah
& Chen 2006). In the local level, it calls a basic planner
for solving each partitioned subproblem, using the violated
global constraints and the global preferences as biases.
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Global-Level Search

Partitioning strategy. We have observed that the remain-
ing constraints have a strong locality if we can first eliminate
those that involve a large number of state variables. From
the causal graph, we can extract those (low-level) state vari-
ables that influence many other state variables. Dependen-
cies due to these variables would cause active mutual exclu-
sions across subproblems, regardless of how the constraints
are partitioned. On the other hand, there are (high-level)
variables whose state transitions involve a set of low-level
variables. Since constraint locality is associated with high-
level state variables, we can formulate constraints that in-
volve variables across partitions as global constraints. Also,
we have chosen an optimal grain size that minimizes the
number of shared variables in order to reduce the number
of global constraints. For example, in the TPP domain,
there will be a lot of active mutual exclusions if we use the
same truck to generate two subplans for buying two prod-
ucts, whereas the number of mutual exclusions will be min-
imal when two trucks are used.

Resolution of global constraints. A planning problem
solved by SGPLan5 is defined in mixed space with a non-
linear objective and one or more constraints. By formulat-
ing a penalty function that consists of the sum of the objec-
tive and the transformed constraint functions weighted by
penalties, SGPLan5 implements a search to find extended
saddle points (ESPs) of the penalty function (Wah & Chen
2006). Here, an ESP is a local minimum of the penalty func-
tion with respect to the original variables and a local max-
imum with respect to the penalties for all penalties larger
than a threshold. The algorithm is based on the ESP con-
dition (ESPC), which states the one-to-one correspondence
between the ESPs and those feasible local optima in mixed
space. To implement the ESPC, the search consists of two
loops: an inner loop that looks for a local minimum of the
penalty function and an outer loop that looks for any penalty
value larger than the threshold. The ESPC also allows the
search of ESPs to be partitioned into multiple searches, each
looking for a local ESP in a subproblem, and an outer loop
that resolves the inconsistencies among the subproblems.

A direct implementation of ESPC in a search algorithm
may get stuck in an infeasible region when the objective is
too small or when the penalty values and/or constraint viola-
tions are too large. To address this issue, SGPLan5 performs
backtracking to escape from infeasible local traps.

Handling local constraints. Since the minimum causal
dependency-cost (MCDC) heuristic can generate a highly
accurate approximate plan from a state, we can use it as
a tight lower bound on the makespan when resolving tem-
poral constraints. For temporal constraints in the form of
deadlines, we prune any state whose MCDC value exceeds
the deadlines. For trajectory constraints, we evaluate the ap-
proximate MCDC plan and add penalty for those that are
violated in the approximate MCDC plan.

Handling preferences. There are three classes of meth-
ods developed for handling soft goals in a planning prob-
lem. The first class solves the problem by encoding it as an
integer program, as in OptiPlan (van den Briel et al. 2004).
The second class first heuristically selects a subset of goals
and then applies an existing planner to achieve them (Ni-
genda & Kambhampati 2005). Last, the third class does not
select a subset of goals upfront but treats soft goals as soft
planning constraints (Benton, Do, & Kambhampati 2005).
It then derives new heuristics and reachability analysis for
each soft goal in order to guide the search to an optimal final
state. The success of these approaches based on heuristic
functions, however, depends on the assumption that either
all the soft goals are independent or their interactions have
been addressed in the heuristic function (Smith 2004).

We have classified all trajectory preferences into two cat-
egories. The first class of preferences consists of those soft
constraints on the final state and the persistent soft con-
straints (model operator always). We consider them with the
original goal definitions because they have temporal over-
laps on the final state. Although it is not easy to find an
optimal set of soft constraints to be satisfied, it is trivial to
compute their violation cost, when given an assignment of
all state variables involved in the goal preferences. There-
fore, we enumerate all reachable elements of each state vari-
able involved and choose an optimal combination of facts
to achieve. These enumerations can be decomposed because
those constraints on the final state also have strong localities.
It is still possible to make an unreachable assignment, even
though the MDF analysis can detect many implicit mutual
exclusions. For those unreachable assignments, we perform
backtracking to find alternative assignments. When the cost
of the assignment (such as a weighted sum of preference vi-
olations and plan quality) is unknown until the end of plan-
ning, we also perform backtracking to find better solutions.

The second class of preferences are those with insuffi-
cient information on their satisfiability. This may happen
because the related soft constraints are not always active. To
address this issue, we have devised a relax-and-tighten strat-
egy that ignores initially all those preferences belonging to
the second class and that penalizes those unsatisfied prefer-
ences to generate a solution. As is done earlier in resolving
constraints, we have developed a number of heuristics for
estimating the reachability of preferences and have applied
iterative refinements until no better solutions can be found.

Note that the penalties on constraints are independent of
the preference weights. For those soft constraints in the first
class, they are enforced by the basic planner because they are
local constraints when we partition by state variables. On
the other hand, we update the penalties of constraints in the
second class based on their violation but not their weights.
Because we rely on changes in penalty values in order to find
a better solution in terms of the plan metrics, our strategy
does not guarantee plan optimality.

Local-Level Basic Planner
Our basic planner follows the heuristic search algorithm
used in Metric-FF (Hoffmann 2003), but employs a new
heuristic based on MDF.
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MCDC heuristic planner. Using MDF, we have imple-
mented a new search heuristic by exploring the value tran-
sition graph of each variable and the causal dependencies
between the transition graphs. The general idea is inspired
by and similar to the heuristic used in the Fast Downward
planner (Helmert 2004). However, our MCDC heuristic is
very different from the Fast Downward heuristic in a num-
ber of aspects.

First, our MCDC heuristic employs a complete recursive
depth-first search for generating a heuristic plan with the
minimum cost without pruning the causal graphs. In con-
trast, the Fast Downward heuristic is incomplete since it per-
forms strongly-connected-component analysis and removes
nodes with low connectivity. We have found that our com-
plete recursive search leads to much less node expansions
during planning.

Second, we have developed a set of strong necessary
conditions for pruning infeasible or dominated paths when
searching for the best approximate plan. We have also devel-
oped an algorithm for detecting symmetric objects in a given
state to further reduce the cost of evaluating the MCDC
heuristic. These rules can help reduce the average comput-
ing time of our heuristic by one to two orders of magnitude.

Third, in addition to sequential propositional planning
supported by the Fast Downward heuristic, MCDC supports
parallel temporal planning and can generate estimates of
makespans for temporal plans.

The heuristic plan found by MCDC is approximate be-
cause the transition graphs found are not complete and some
of its actions may not be supported. Moreover, numerical
and trajectory constraints are ignored in MCDC.

MCDC is not admissible because, when computing an ap-
proximate plan, we consider each subgoal individually and
sum the costs of all subgoals in order to estimate the overall
heuristic value. Thus, MCDC ignores the positive interac-
tions among the subgoals and is not admissible.

Search-space reduction. Before solving a partitioned
subproblem, we can often eliminate many irrelevant actions
in its search space. We identify those relevant actions by
traversing the causal graphs in MDF and by ignoring actions
that are not useful for achieving the current subgoal state
variables. We also prioritize actions that do not cause an in-
consistent assignment of multi-valued state variables. This
is done by following our partitioning setting to compute a
set of local state variables for each subproblem, and by ap-
plying the helpful action idea introduced in FF (Hoffmann
& Nebel 2001) in order to defer those actions that change
the value of non-local state variables.

Preliminary Experimental Results
We have defined predicates and functions for capturing the
violation and the corresponding cost of each constraint. We
have modified the parser and the pre-processor of SGPLan4

in such a way that all the constraints are grounded and all
ADL features in their conditions are compiled away. We
have also integrated all the techniques for handling soft con-
straints in the search engine of SGPLan5, both at the top-

level of the search and in the local-level basic planner. At
this time, we have evaluated SGPLan5 on four IPC5 bench-
marks: TPP, OPENSTACKS, TRUCKS, and STORAGE and
have obtained promising results and solutions with good
quality. Further, for the SimplePreferences domain, if the
objective value is only determined by the final state, then
we can compute the optimal assignment of the final state by
only considering those constraints on the final state and by
ignoring all other constraints. Since the solution is the opti-
mal assignment of a relaxed problem, it is an optimal solu-
tion to the original problem when the assignment is actually
achieved.
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Abstract

We present a new efficient algorithm for obtaining utili-
tarian optimal solutions to Disjunctive Temporal Problems
with Preferences (DTPPs). The previous state-of-the-art
system achieves temporal preference optimization using a
SAT formulation, with its creators attributing its performance
to advances in SAT solving techniques. We depart from
the SAT encoding and instead introduce the Valued DTP
(VDTP). In contrast to the traditional semiring-based formal-
ism that annotates legal tuples of a constraint with prefer-
ences, our framework instead assigns elementary costs to the
constraints themselves. After proving that the VDTP can ex-
press the same set of utilitarian optimal solutions as the DTPP
with piecewise-constant preference functions, we develop a
method for achieving weighted constraint satisfaction within
a meta-CSP search space that has traditionally been used to
solve DTPs without preferences. This allows us to directly in-
corporate several powerful techniques developed in previous
decision-based DTP literature. Finally, we present empirical
results demonstrating that an implementation of our approach
consistently outperforms the SAT-based solver by orders of
magnitude.

Introduction
Several recent studies have addressed the topic of prefer-
ential optimization in constraint-based temporal reasoning
(Khatib et al. 2001). In this line of research, traditional tem-
poral constraints (Dechter, Meiri, & Pearl 1991) are aug-
mented with local preference functions that express how
well a particular assignment satisfies the corresponding con-
straint. For instance, these functions might convey that a
certain activity should be as long as possible, or that it is de-
sirable for a pair of activities to be scheduled very close to
one another. Early versions of this research focused on the
problem of maximizing the minimum such preference value
(Khatib et al. 2003; Peintner & Pollack 2004), although
later developments have begun to address the more chal-
lenging problem of utilitarian optimization (Kumar 2004;
Morris et al. 2004; Peintner & Pollack 2005), where the
sum of the individual preference values is maximized. As
researchers continue to incorporate temporal constraints into
their planning systems (Fox & Coddington 2002; Schwartz
& Pollack 2004; Gerevini, Saetti, & Serina 2005), it is likely
that these ongoing efforts in the CP community will be used
extensively when integrating preferences into the design of
expressive languages and efficient algorithms for planning.

Recently, Sheini et al. (2005) introduced a highly efficient
approach to finding utilitarian optimal solutions to Disjunc-
tive Temporal Problems with Preferences (DTPPs), a pow-
erful representation that subsumes many common temporal
preference optimization problems. In their work, the logical
structure of the DTPP is decomposed into a Mixed Logi-
cal Linear Program, where the Boolean literals are linked
to simple temporal constraints. The resulting problem is
solved by a system named ARIO, in which a top-level SAT
solver invokes a special-purpose temporal constraint engine.
Experimental results showed that ARIO is several orders
of magnitude faster than alternative methods for solving
DTPPs (Peintner 2005), and the creators of ARIO credit ad-
vances in SAT techniques as the principal reason for this
success.

In this paper, we present a new efficient algorithm for ob-
taining utilitarian optimal solutions to Disjunctive Temporal
Problems with Preferences. To facilitate our approach, we
introduce the Valued DTP (VDTP). In contrast to the tra-
ditional semiring-based formalism that annotates legal tu-
ples of a constraint with preferences, our framework in-
stead assigns elementary costs to the constraints themselves.
While this reformulation provides no increase in expressive
power, it simplifies some of the computational difficulties
related to temporal optimization, since search strategies for
disjunctive temporal reasoning typically view constraints as
meta-level variables. After proving that the VDTP can ex-
press the same set of utilitarian optimal solutions as the
DTPP with piecewise-constant preference functions, we de-
velop a method for achieving weighted constraint satisfac-
tion within a meta-CSP search space that has traditionally
been used to solve DTPs without preferences. This allows
us to directly incorporate techniques developed in previous
decision-based DTP literature in order to make preferential
optimization particularly efficient. Finally, we present em-
pirical results demonstrating that an implementation of our
approach consistently outperforms the SAT-based solver by
orders of magnitude.

Background
Disjunctive Temporal Problems A Disjunctive Temporal
Problem (DTP) (Stergiou & Koubarakis 1998) is a constraint
satisfaction problem defined by a pair 〈X,C〉, where each
element Xi ∈ X designates a time point, and each element
Ci ∈ C is a constraint of the form: ci1 ∨ ci2 ∨ ... ∨ cini
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where in turn, each cij is of the form: aij ≤ xij − yij ≤ bij

with xij , yij ∈ X and aij , bij ∈ � (we will refer to the
interval [aij , bij ] as the feasible region for cij). DTPs are
thus a generalization of Simple Temporal Problems (STPs),
in which each constraint is limited to a single disjunct.

There are generally two ways of defining a solution to a
DTP. The first of these is as an object-level assignment of a
numeric value to each of the time points in X , such that all
the constraints in C are satisfied. A second type of solution
is a meta-CSP assignment. Here, instead of directly consid-
ering assignments to the time points in X , a meta-variable
Ci is created for each constraint in the DTP. The domain
D(Ci) is simply the set {ci1, ci2, ..., cini

}, representing the
various disjuncts one can choose to satisfy that disjunctive
constraint. A complete assignment in the meta-CSP thus in-
volves a selection of a single disjunct for each constraint,
commonly referred to as a component STP.

Within the meta-CSP formulation, the constraints are im-
plicitly defined by the underlying semantics of the disjuncts:
the values (disjuncts) assigned to each meta-variable must
be mutually consistent. The consistency of a set S of such
inequalities can be determined by first constructing its dis-
tance graph, a graph that includes a node for each time point
and an arc with weight b from y to x whenever x − y ≤ b
is in S. Then S is consistent if and only if its distance
graph contains no negative cycles, which can be determined
in polynomial time by computing its all-pairs shortest path
(APSP) matrix and checking the entries along the main di-
agonal (Dechter, Meiri, & Pearl 1991).

Disjunctive Temporal Problems with Preferences To
extend a DTP to a DTP with Preferences (DTPP) (Peintner
& Pollack 2004), each disjunct cij : aij ≤ xij −yij ≤ bij is
augmented with a preference function 〈fij : t ∈ [aij , bij ] →
{0,�+}〉 that maps every allowable temporal difference to
a preference value expressing its relative utility (Khatib et
al. 2001).1 DTPPs subsume STPPs (Simple Temporal Prob-
lems with Preferences) in the same way that DTPs subsume
STPs. Given a solution S to the DTPP D, the preference
value of a disjunctive constraint Ci in C is defined to be the
maximum value achieved by any of its disjuncts:

valD(S,Ci) = max
cij∈D(Ci)

fij(xij − yij)

With the addition of preferences, we are no longer con-
cerned with simply finding a feasible solution; we also want
a solution of high quality. This requires us to define an ob-
jective function with respect to each of the individual pref-
erence functions. In this paper, we will consider the useful
utilitarian objective, where the global value of a solution S
is equal to the sum of the preference values of the individual
constraints (Morris et al. 2004):

valD(S) =
∑

i

valD(S,Ci)

Solving DTPPs Two approaches have been developed in
previous literature for performing utilitarian optimization
of a DTPP. Both can handle problems containing complex

1Note that zero is the minimum preference value that can be
obtained by an assignment that satisfies the constraint.

preference functions, requiring only that they be piecewise-
constant in shape.2

The first is based on a SAT reformulation of a DTPP
(Sheini et al. 2005). It involves the creation of a Mixed Log-
ical Linear Programming (MLLP) problem composed of two
types of constraints: logical constraints over Boolean vari-
ables, and Unit-Two-Variable-Per-Inequality (UTVPI) inte-
ger constraints of the form ax − by ≤ d, where a, b ∈
{−1, 0, 1}. The disjuncts in the DTPP are converted to a set
of UTVPI constraints, a Boolean indicator variable is cre-
ated for each constraint, and a SAT problem is constructed
in which these indicator variables are used to represent the
logical structure of the DTPP. The reformulated problem is
then solved by system named ARIO, which is composed of a
tightly integrated UTVPI engine and SAT solver. Since this
approach can handle only the decision variant of the DTPP,
optimization is achieved by repeatedly calling the combined
constraint engine on a sequence of satisfaction problems
with increasingly higher objectives until no feasible solution
can be found. Efficient SAT-solving techniques (Moskewicz
et al. 2001) make the approach taken by ARIO particularly
attractive.

The second approach, named GAPD (Greedy Anytime
Partition algorithm for DTPPs) was designed exclusively
for the purpose of solving DTPPs (Peintner 2005). It is
based largely on the GAPS algorithm (Peintner & Pollack
2005) for finding utilitarian optimal solutions to STPPs. It
begins by first searching for a consistent component STP S
to the DTP D induced by fixing all constraints in the DTPP
at their bottommost preference level of 0. It then either
uses the GAPS algorithm to find an optimal solution to the
STPP S′ corresponding to S, or computes another solution
S′′ to the DTP D, and repeats. In this way, the disjunctive
search for feasible solutions is decoupled from the process
of optimization. Unfortunately, the memory requirements of
GAPS (and GAPD) are exponential in the size of the STPP
(and DTPP). Furthermore, they have both been shown to be
several orders of magnitude slower than ARIO for finding
optimal solutions. However, as the names suggest, these al-
gorithms have desirable anytime properties, and are indeed
complete algorithms.

Valued Disjunctive Temporal Problems
The DTP with Preferences has typically been regarded as a
type of semiring formulation (Bistarelli, Montanari, & Rossi
1997), in which preference values are attributed to the (in-
finitely many) legal object-level tuples that comprise a con-
straint. While being expressive, this modeling of prefer-
ences presents some computational challenges, since search
strategies for disjunctive temporal reasoning operate on the
meta-CSP rather than invoking object-level assignments di-
rectly. In response, we will introduce a variation of the DTP
where the disjunctive constraints themselves are associated
with costs, making our representation comparable to early
versions of the Valued CSP formalism for finite-domain con-
straints (Schiex, Fargier, & Verfaillie 1995).

Definition: A Valued Disjunctive Temporal Problem is a
tuple 〈X,C, S, ϕ〉, where X and C are as in a DTP, S is a

2DTPPs containing other preference function shapes can be ap-
proximated by piecewise-constant functions via discretization.
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valuation structure (E,�,�), and ϕ is a mapping from C to
E. �

In the valuation structure, E is a set whose elements are
called valuations, and are totally ordered by �. The symbol
� denotes a commutative, associative closed binary oper-
ation on E, and expresses how to aggregate the individual
valuations. The function ϕ simply maps each constraint Ci

to an element of E, indicating how important it is for the
constraint to be satisfied.

Rather than explore the entire class of problems that the
Valued DTP can represent, we will focus our attention on a
special weighted case, where E = �+ ∪ {∞} and � = +
(i.e., arithmetic sum), using the usual ordering <. In other
words, each constraint Ci is associated with a positive nu-
meric weight (which we subsequently refer to as wi instead
of ϕ(Ci) to improve readability), and the objective will be to
find an assignment S that imposes the minimal cost, where
the cost is defined to be the weighted sum of violated con-
straints in the VDTP D:

costD(S) =
∑

i

{wi|violates(S,Ci)}

As an example, we present the following (very small) in-
stance of our weighted VDTP:

C1: {c11: 1 ≤ x − y ≤ 2} w1 = 1
C2: {c21: 3 ≤ x − y ≤ 4} ∨ {c22: 5 ≤ x − z ≤ 6} w2 = 2
C3: {c31: 1 ≤ y − z ≤ 2} w3 = 4
C4: {c41: 0 ≤ x − z ≤ 7} w4 = ∞

Clearly there is no assignment that will satisfy all the con-
straints of this problem, since c21 conflicts with c11, and c22

conflicts with the constraint induced by the composition of
c11 and c31. In addition, C4 is a hard constraint having infi-
nite weight, and therefore must be satisfied in any solution.

Once again, we can consider object-level and meta-level
solutions to our VDTP. For instance, the object-level assign-
ment (x, y, z) ← (6, 3, 1) violates only constraint C1. This
has a cost of 1, and since we know that no solution exists
with a cost of 0, it is an optimal solution. Importantly, when
we move to the meta-CSP, a solution is no longer necessar-
ily a total assignment; instead a (meta)-variable may be left
unassigned, signifying that none of the disjuncts associated
with it should be enforced.

The Relationship Between DTPPs and VDTPs
The previous example illustrates an important distinction be-
tween DTPPs and VDTPs. Each constraint in a DTPP plays
a dual role, serving both as a hard constraint that requires as-
signments to be within the feasible region, and as a soft con-
straint expressing the preference values that the assignments
within that region will receive. In contrast, each VDTP con-
straint is either strictly hard (i.e., having an infinite weight,
and thus requiring satisfaction) or strictly soft (i.e., having
finite weight, and permitting violation).

Nonetheless, we can show that for purposes of utilitarian
optimality, any DTPP D′ has an equivalent VDTP D in the
following sense: (i) an assignment S is a solution to D′ iff
it is a solution to D, and (ii) solution S1 is at least as pre-
ferred as S2 in D′ (valD′(S1) ≥ valD′(S2)), iff S1 is also
at least as preferred as S2 in D (costD(S1) ≤ costD(S2)).

In fact, we prove something stronger: we show that in addi-
tion, given any VDTP D, there is a DTPP D′ that is equiv-
alent in exactly the same sense, and hence the VDTP and
DTPP formalisms have equivalent expressive power. This
relationship requires only that the preference functions be
piecewise-constant, an assumption commonly made in prior
DTPP research.

Converting a VDTP into a DTPP
We begin by showing how to convert a VDTP into an equiv-
alent DTPP. Let D be a VDTP with constraints {C1, ..., Cn}
where Ci = ci1 ∨ ... ∨ cini

and cij = aij ≤ xij − yij ≤ bij

and wi is the weight of Ci. Create the derived DTPP D′ by
constructing a derived constraint C′

i from each constraint Ci

in D:

• If Ci is hard (i.e., wi = ∞), let C ′
i = c′i1∨ ...∨c′ini

where
c′ij = aij ≤ xij − yij ≤ bij with preference function
〈fij : t ∈ [aij , bij ] → 0〉. Here, C ′

i is a hard-derived
constraint.

• Otherwise, if Ci is soft (i.e., wi = ∞), let C ′
i = c′i1∨ ...∨

c′ini
where c′ij = −∞ ≤ xij − yij ≤ ∞ with preference

function 〈fij : t ∈ [aij , bij ] → wi, t /∈ [aij , bij ] → 0〉.
Here, C ′

i is a soft-derived constraint.

In what follows, we distinguish the constraint compo-
nent (i.e., the disjunctive constraints themselves) from the
weights or the preference functions. It will also be useful
to refer to the worth of a VDTP solution S, which is the
weighted sum of soft constraints that are satisfied by S:

worthD(S) =
∑

i

{wi|wi = ∞∧ satisfies(S,Ci)}

Note that the worth of a solution is the inverse of its cost,
hence we wish to maximize this metric. We now show that
every VDTP has an equivalent DTPP.

Theorem 1. VDTP D and its derived DTPP D′ are equiv-
alent.

Lemma 1. An assignment S is a solution to D if and only
if it is a solution to D′.

Let S : X → � be an object-level assignment. First, as-
sume S is a solution to the VDTP D. Then, for any arbitrary
hard constraint Ci in D, S satisfies Ci. Since the constraint
component of each hard-derived constraint C′

i in D′ is iden-
tical to that of the hard constraint in D from which it was
derived, S satisfies all hard-derived constraints in D′; it also
satisfies all soft-derived constraints, since each of those con-
tain only disjuncts with infinite feasible regions, and are thus
satisfied by any assignment. So S is a solution to D′. Sim-
ilarly, assume that S is a solution to the DTPP D′. Since it
satisfies all hard-derived constraints C′

i in D′, it must satisfy
every hard constraint in D, because again, the correspond-
ing constraints have identical constraint components. Since
S need not satisfy the soft constraints in D, it is thus also a
solution to D. �

Lemma 2. If S1 and S2 are solutions to D (and D′), then
worthD(S1) ≥ worthD(S2) iff valD′(S1) ≥ valD′(S2).

The worth of the VDTP D is as defined above. For a
given solution S, the value of the DTPP D′ is:
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valD′(S) =
∑

i valD′(S, C′
i)

= 0 +
∑

i {valD′(S, C′
i)|soft derived(C′

i)}
=

∑
i {wi|wi �= ∞∧ satisfies(S, Ci)}

The second equality follows from the fact that the pref-
erence function for all hard-derived constraints is a con-
stant zero. The third is because, by construction, for ev-
ery soft-derived constraint C′

i, valD′(S,C ′
i) = 0 if the con-

straint from which it was derived (Ci) is not satisfied,
and valD′(S,C ′

i) = wi if it is satisfied. Consequently,
worthD(S) = valD′(S), and so the lemma follows triv-
ially. �

Theorem 1 follows directly from Lemmas 1 and 2.

Converting a DTPP into a VDTP
The conversion of a DTPP to a VDTP is slightly more com-
plicated, and relies on the notion of preference projections
(Peintner & Pollack 2005). An STPP preference projection
“slices” an STPP constraint into a set of intervals that pro-
duce a preference value greater than or equal to some spec-
ified level l. A DTPP preference projection generalizes this
notion to all intervals (disjuncts) in a DTPP constraint.

Definition (STPP Preference Projection). Given an
STPP constraint Cij = 〈aij ≤ xij − yij ≤ bij , fij〉,
the preference projection at level l for Cij is Pij [l] =
{c1, c2, ..., cn}, where ck = 〈ak ≤ xij − yij ≤ bk〉, bk <
ak+1 for 1 ≤ k < n and

⋃n
k=1[ak, bk] = {t|fij(t) ≥ l}.

Definition (DTPP Preference Projection). Given a
DTPP constraint Ci = ci1 ∨ ci2 ∨ ... ∨ cin, the preference
projection at level l for Ci is Pi[l] =

⋃n
j=1 Pij [l].

In converting a DTPP into an equivalent VDTP, the basic
idea will be to create multiple VDTP constraints for each
individual DTPP constraint: one for each distinct preference
level. Weights will be assigned in such a way that satisfying
all projected constraints through level k will result in a total
weight of k. The procedure is as follows:

Let D′ be a DTPP with constraints {C′
1, ..., C

′
n}. Then

create the derived VDTP D as follows. For each constraint
C ′

i in D′:
• Create a hard constraint C<i,0> in D, where C<i,0> =∨Pi[0] and wi,0 = ∞. Set l to zero.
• Find the smallest l′ > l such that Pi[l′] = Pi[l].
• Create a soft constraint C<i,l′> in D, where C<i,l′> =∨Pi[l′] and wi,l′ = (l′ − l). Set l to l′.
• Iterate until an l′ is reached such that Pi[l′] = �.

Theorem 2. DTPP D′ and its derived VDTP D are equiv-
alent.

Lemma 3. An assignment S is a solution to D′ if and
only if it is a solution to D.

Suppose S is a solution to D′. By definition, it must nec-
essarily satisfy every C ′

i in D′. As in Lemma 1, we note that
every hard constraint C<i,0> in D has a constraint compo-
nent identical to that of the C′

i from which it was derived;
thus, these must be satisfied as well, as must D as a whole
(since the soft constraints may be violated by any solution).
Now assume that S is a solution to D. It then necessar-
ily satisfies every hard constraint C<i,0> (and observe that
these are the only hard constraints). It must then also satisfy
every C ′

i in D′ since the constraint components are again
identical. Hence, S is a solution to D′. �

Lemma 4. If S1 and S2 are solutions to D′ (and D), then
worthD(S1) ≥ worthD(S2) iff valD′(S1) ≥ valD′(S2).

For an arbitrary constraint C′
i in D′, let valD′(S,C ′

i) =
ki. Then by construction, S will satisfy any constraint
C<i,l> in D for which l ≤ ki. Furthermore, S will not sat-
isfy any constraint C<i,m> in D for which m > ki. Also,
by construction we have:

∑

l

{wi,l|l = 0 ∧ l ≤ ki} = ki

Since this holds for all constraints C′
i in D′, we again get

worthD(S) = valD′(S), and the lemma follows immedi-
ately.3 �

Theorem 2 follows directly from Lemmas 3 and 4.
Theorem 3. For the objective of utilitarian optimality,

DTPPs and VDTPs are equivalent in expressive power.
This follows directly from Theorems 1 and 2. �

The fact that a utilitarian aggregation of preference val-
ues can be obtained by a Valued DTP should come as
little surprise, since this objective function is commonly
found in Valued CSP literature (Freuder & Wallace 1992;
Schiex, Fargier, & Verfaillie 1995). In addition, similar
proofs of equivalence have been drawn between the Valued
CSP and Semiring CSP for finite-domains (Bistarelli et al.
1999). However, much of the prior work on preferences in
TCSPs has had no need to move to the valued representa-
tion, in part because they have exposed tractable cases of
the semiring that require either weaker objective functions
(e.g., Weakest Link Optimality (Khatib et al. 2003)) or dif-
ferent shapes of preferences (e.g., convex piecewise-linear
functions (Morris et al. 2004)). In contrast, our focus is on
a broad range of intractable instances where this alternative
modeling of preferences can be more easily exploited.

Solving Valued DTPs
We have just shown that for utilitarian optimization, any
DTPP with piecewise-constant preference functions can be
translated into an equivalent VDTP. Using this reformula-
tion, we will describe a branch-and-bound algorithm for
finding utilitarian optimal solutions to VDTPs; pseudocode
is given in Figure 1. The input variable A is the current set
of assignments to meta-variables, and is initially �; variable
U is the set of unassigned meta-variables (initially the entire
set C); cost is the total weighted sum of violated constraints
(initially zero); and upperbound is the stored cost of the best
solution found so far (initially set to ∞). Note that unlike
ARIO, we require no MLLP module or SAT-solving compo-
nent, and unlike GAPD, our memory requirements are poly-
nomial in the size of the problem.

This algorithm, which takes an approach similar to that
in (Moffitt & Pollack 2005), resembles the meta-CSP back-
tracking search commonly used for solving traditional DTPs
with two notable differences. First, backtracking occurs
only when the combined weight of the violated constraints

3One interesting consequence of this construction is that sev-
eral disjunctive constraints may be generated from a single non-
disjunctive STPP constraint, if its preference function is not semi-
convex.
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Solve-VDTP(A, U , cost, upperbound)
If (cost ≥ upperbound) return
If (U = �)

best-solution-so-far ← A
upperbound ← cost
return

EndIf
Ci ← select-variable(U ), U ′ ← U − {Ci}
For each disjunct cij of D(Ci)

A′ ← A ∪ {Ci ← cij}
If (consistent(A′))

Solve-VDTP(A′, U ′, cost, upperbound)
EndIf

EndFor
A′ ← A ∪ {Ci ← ε}
Solve-VDTP(A′, U ′, cost + wi, upperbound)

Figure 1: A branch-and-bound algorithm for solving VDTPs

(cost) equals or exceeds that of the current best solution (up-
perbound); in a standard DTP solver, backtracking would
occur whenever cost became nonzero (i.e., when any con-
straint had been violated). Second, in addition to the values
in the original domains of the meta-variables, there is the
possibility of an empty assignment (‘ε’), and so the branch-
ing factor increases by exactly one. This latter modification,
in combination with the meta-CSP search space employed in
temporal reasoning, sets our algorithm apart from previous
applications of weighted constraint satisfaction to classical
CSPs.

The key advantages to our meta-CSP reformulation of
DTPP optimization are that (1) it performs optimization
without the need to solve a sequence of satisfaction prob-
lems, and (2) it allows the direct incorporation of sev-
eral powerful techniques previously developed in decision-
based DTP literature (Stergiou & Koubarakis 1998; Ar-
mando, Castellini, & Giunchiglia 1999; Oddi & Cesta 2000;
Tsamardinos & Pollack 2003), including incremental for-
ward checking, semantic branching, removal of subsumed
variables, conflict-directed backjumping, no-good record-
ing, and several heuristics. Previous CSP-based algorithms
applied these only to the small portion of the search space
corresponding to the DTPP’s lowest preference level, a pos-
sible explanation of their poor performance compared to the
SAT-based solver.

In addition to our branch-and-bound algorithm, an al-
ternative iterative weakening approach to optimization
(Provost 1993) is also available, which begins with infeasi-
bly high objective values and works downwards until consis-
tency is achieved; see (Moffitt & Pollack 2005) for details.

Experimental Results
In this section, we describe the results of a set of experi-
ments that were performed to compare the weighted con-
straint satisfaction approach of our solver (which we name
WEIGHTWATCHER) against the two previous systems for solv-
ing DTPPs: ARIO4 (Sheini et al. 2005) and the GAPD

4At the time of this writing, ARIO is the only participant of the
recent SMT (satisfiability modulo theories) competition (Barrett,
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Figure 2: Median running times for GAPD, ARIO, and
WEIGHTWATCHER for DTPPs of varying sizes (Timeout set
at 300s)

solver (Peintner 2005). All tests were performed on a
2.26GHz Pentium 4 processor with 1 GB of RAM.

Unfortunately, there remains an absence of real-world
benchmarks in temporal preference literature with which
to provide an empirical comparison of solvers. Con-
sequently, we must employ the same problem generator
used in prior DTPP studies, which takes as parameters
〈E,C,D−,D+, L,R−, R+〉. The DTPP is constructed by
generating a set of E events {x1, x2, ..., xE} and a set of C
constraints, where each constraint Ci consists of exactly 2
disjuncts. Each disjunct cij is assigned a pair of events xij

and yij , and the lower and upper bounds aij and bij on the
feasible difference between those events are selected from
the interval [D−,D+]. To define the preference function
for each temporal difference, the values aij and bij serve
as the endpoints for preference level 0. To construct pref-
erence level l, a reduction factor is chosen from the interval
[R−, R+] ⊂ [0, 1] with uniform probability, and is applied
to the interval at preference level l−1; the resulting (smaller)
interval is placed randomly between its endpoints. This pro-
cess is repeated until preference level L is reached or an in-
terval having zero length is created.

We ran three sets of experiments, in which we varied the
problem size, number of preference levels, and constraint
density. For all experiments, we generate 30 trials for each
setting of parameters, and report the median running time
for each solver over the 30 trials. A timeout of 300 seconds
is enforced on all problems. The time required to convert
the DTPP into the VDTP is included in these runtimes, but
is extremely negligible.

Varying Problem Size In our first experiment, we explore
the abilities of WEIGHTWATCHER, ARIO, and GAPD to scale
with the size of the problem. Our ability to perform well
on this set of tests is especially important, since unlike other

de Moura, & Stump 2005) whose difference-logic engine has been
augmented with a reasoning module (in ARIO’s case, an MLLP
solver) that allows it to handle the DTPP objective function and
solve optimization (as opposed to satisfaction) problems.
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Figure 3: Median running times for GAPD, ARIO, and
WEIGHTWATCHER for DTPPs with varying numbers of pref-
erence levels (Timeout set at 300s)

problem parameters (such as the number of preference lev-
els), the size of the problem is often difficult for a knowl-
edge engineer to control directly. We hold fixed the follow-
ing parameters: {D− = −50,D+ = 100, L = 5, R− =
0.5, R+ = 0.9}. These settings are identical to those used
in (Sheini et al. 2005). We vary the number of constraints
C from 10 to 50, and set the number of events E to 4

5C to
maintain a constant constraint density.

Figure 2 displays the results of this experiment. The num-
ber of constraints in the problem is shown on the x-axis, and
on the y-axis is the median running time (note the logarith-
mic scale). GAPD quickly reaches the timeout limit of 300
seconds once the number of constraints equals C = 25. The
median runtime of ARIO consistently remains far below the
cutoff threshold, and reaches 23.8 seconds when C = 50.
Recall that the presence of an efficient SAT solver has been
labeled as the key ingredient in achieving this substantial
improvement. Yet, the branch-and-bound and iterative ver-
sions of WEIGHTWATCHER surpass both GAPD and ARIO on
all problem sizes, without the aid of SAT techniques. For
C = 50 (the largest set of problems), the median runtime of
the iterative version is 0.025 seconds, three orders of magni-
tude faster than ARIO.
Varying the Number of Preference Levels In our second
experiment, we examine the effect of the number of prefer-
ence levels on the performance of these solvers. We hold
fixed the parameters {E = 24, C = 30,D− = −50,D+ =
100, R− = 0.5, R+ = 0.9}, and vary the number of prefer-
ence levels L between 2 and 8.

Figure 3 provides the results of this experiment. Once
again, GAPD tends to be much slower than ARIO, and
ARIO is in turn considerably slower than either incarnation
of WEIGHTWATCHER. A difference of between one and two
orders of magnitude is observed between ARIO and our iter-
ative solver for cases where the number of preference levels
is larger than 3.
Varying the Constraint Density In our third and final ex-
periment, we explore the abilities of these solvers to scale
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Figure 4: Median running times for GAPD, ARIO, and
WEIGHTWATCHER for DTPPs of varying density (Timeout set
at 300s)

with constraint density, which is the ratio of constraints
to events (C/E). We hold fixed the parameters {C =
30,D− = −50,D+ = 100, L = 5, R− = 0.5, R+ = 0.9},
and vary the number of events E between 3 and 36.

In Figure 4 we present the results. For problems hav-
ing constraint densities less than or equal to 2.5, both
WEIGHTWATCHER solvers typically achieve a performance
improvement between one and two orders of magnitude
over ARIO; for densities larger than this, the difference
in speed becomes less evident. It is also near this point
that the branch-and-bound version of WEIGHTWATCHER be-
gins to overtake the iterative version. This is likely because
the costs of the optimal solutions for these extremely con-
strained problems are quite large, and thus several iterations
are required before a solution is discovered.

In summary, WEIGHTWATCHER consistently outperforms
the previous DTPP solvers, including the SAT-based ARIO
system, on several dimensions. This suggests that, despite
recent successes of SAT in solving decision variants of tem-
poral reasoning (Armando et al. 2004; Nieuwenhuis &
Oliveras 2005), there remains considerable room for im-
provement in the application of these techniques to opti-
mization. Of course, by no means does this imply that
the SAT approach is inherently flawed; however, our results
clearly demonstrate that well-established CSP-based meth-
ods should not be ignored or discounted when constructing
algorithms for optimization of temporal preferences.

Conclusion and Future Work
In this paper, we have presented a new efficient algorithm for
obtaining utilitarian optimal solutions to Disjunctive Tempo-
ral Problems with Preferences (DTPPs). To facilitate our ap-
proach, we have introduced the Valued DTP, and have shown
that it can express the same set of utilitarian optimal solu-
tions as the DTPP with piecewise-constant preference func-
tions. Using this relationship, we have developed a method
for achieving weighted constraint satisfaction within a meta-
CSP search space that has traditionally been used to solve
DTPs without preferences, allowing us to leverage several
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techniques employed in previous decision-based DTP lit-
erature. Experimental results demonstrate that our solver
consistently outperforms the state-of-the-art SAT-based ap-
proach by orders of magnitude.

This line of research opens the door to several promis-
ing avenues of continued progress. For instance, while
our focus has been on generating utilitarian optimal solu-
tions, we believe our algorithm can be generalized to han-
dle other objective functions as well. Furthermore, one may
wish to combine this approach with our recent addition of
conditional bounds and finite-domain constraints to DTPs
(Moffitt, Peintner, & Pollack 2005), allowing the encoding
of non-temporal constraints that the SAT-based formulation
can express quite easily. Finally, integration of solvers such
as ours into modern temporal planning systems – especially
those that exploit DTP solving techniques (Schwartz & Pol-
lack 2004; Gerevini, Saetti, & Serina 2005) – appears to be
a logical next step toward efficient reasoning of preferences
in planning domains.
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Abstract 
This paper describes an approach for the elicitation 
and application of authorial goals for interactive 
narrative. A framework is presented for using author 
input to elaborate descriptions of planning problems 
and domains. The authors describe a mixed-initiative 
graphical user interface that exploits this framework 
to allow authors to express narrative goals and 
understand how these goals affect user experiences of 
an interactive narrative.   

Motivation 
The headlamps of the rented Aston Martin illuminated 
more fog than motorway as JB raced smoothly toward 
Windermere on the M6 an hour before dawn.  Although he 
had not seen another vehicle since junction 36, JB’s eyes 
jerked quickly to the mirrors when a rhythmic thumping 
from the right front wheel shattered the stillness.  He could 
not afford to encounter any roadside “assistance” this 
morning; he had no key for the titanium brief case 
handcuffed to his wrist, and no license for the Walther 
PPK holstered to his chest. This was a particularly bad 
time to enter “Spare-Tyre World”.   
 
Automated techniques have proven useful for generating 
plans from the blocks world, to the spare tire world, to 
worlds as difficult as Mars.  Traditional automated 
planners require goals to be represented as a conjunction of 
atomic logical propositions.  A successful plan guarantees 
satisfaction of each of the “hard” constraints of the goal 
state.   As planners have been applied to increasingly 
diverse domains, they have encountered more “over-
subscription problems” (Smith 2004), where available 
resources may be insufficient to satisfy all the desirable 
goals, but a plan that achieves a useful subset of these 
goals is still useful.   
 
The domain of interactive narrative, where human users 
interact with one or more computer controlled agents to 
produce stories, is another where plan goals often contain a 
mix of hard and soft constraints.   Furthermore, these hard 
and soft constraints can be seen as comprising three 
distinct competing motivations fundamental to the genre: 

character believability, user control, and narrative 
coherence.   Ensuring a preferred balance between these 
goals has been described as the narrative paradox: “how to 
reconcile the needs of the user who is now potentially a 
participant rather than a spectator with the idea of narrative 
coherence.” (Aylett 2000). 
 
These conflicts are illustrated in the example narrative that 
introduces this section of the paper. JB’s goal of changing 
the tire may be less important than the story goal of having 
JB arrive at the destination at a particular time.  Having JB 
reach the destination unseen may be more important to the 
narrative structure than reaching it quickly.  It may be seen 
as out of character for JB to change the tire if a more exotic 
alternative mode of transportation is known to be available, 
just as plans where JB uses mix-martini-by-shaking are 
preferable to those that employ stirring.  How should the 
system detect and respond to the human user’s attempt to 
steal the kite surfer that would satisfy JB’s goals and the 
story goals?   
 
This paper investigates a particular strategy for obtaining a 
more elaborate description of the interactive narrative 
domain and applying this information to make more 
preferable planning decisions. 

Background: Interactive Narrative 
A fundamental challenge the domain of interactive poses to   
automated planning is finding a heuristic that quantifies the 
relative “goodness” a story plan (Riedl and Young 2004). 
We lack mature computational models for narrative 
components such as “suspense”, or “romance” and we lack 
automated mechanisms to draw associations between such 
generalized ideals and the semantics of a specific problem 
domain and plan space.  In fact, not only are the heuristics 
unproven, one can argue that we have yet to compile 
comprehensive heuristics that can be used by skilled and 
motivated humans to ensure narrative quality.  As author 
Somerset Maugham quipped, “There are three rules for 
writing the novel.  Unfortunately, no one knows what they 
are”.   Regardless, authors are able to express goals for 

ICAPS 2006

Workshop on Preferences and Soft Constraints in Planning 65



particular narrative elements of particular stories in terms 
relevant to those particular domains. 
 
Perhaps the difficulty in defining the quality of narrative is 
a reason many interactive systems restrict run-time 
behaviors of the user and automated characters to avoid 
conflicts with a narrowly defined plot.  Unfortunately, 
limiting the user’s control reduces the coveted quality of 
“immersion” in the story, and limiting the behaviors of 
computer-control characters can marginalize their 
importance to the story.  On the other hand, systems that 
strive only for character authenticity often lack the control 
to have these emergent creatures contribute to the plot. 
 
Interactive narrative domains have some advantages that 
could be more fully exploited to confront these challenges.  
The virtual worlds in which these narratives take place are 
both fully knowable and fully malleable.  In fact, the plan 
authors may be responsible not only for the domain 
representation, but also may have a role in the construction 
of the domain itself. Because interactive narrative planning 
is a component within this larger creative process, the set 
of allowable actions and the propositions used to describe 
initial and goal states for use by the planner are subject to 
changes large and small.  
 
If planning is situated advantageously within this larger 
process, human creativity can be leveraged to solve 
problems of increasing complexity.  The authors are in the 
process of creating a mixed-initiative planning interface 
called Bowman.  Bowman is a component of the Zócalo 
suite of planning tools available through NCSU at 
http://zocalo.csc.ncsu.edu.  Zócalo is a web-services 
extension of the Mimesis architecture described by Riedl, 
Saretto, and Young (2003). Mimesis and Zócalo use a 
planner is based on Longbow, a decompositional (HTN) 
partial order causal link planner described by Young, 
Pollack and Moore (1994), that automatically detects user 
actions that could threaten the goals of a hierarchical story 
plan.  The planner responds to these threats by creating a 
set of policies to be applied at run-time if the user chooses 
a threatening action. 
 
Bowman provides a GUI that allows authors to describe 
types, objects, operators, conditions and the initial and goal 
state of a planning problem. Bowman represents the 
planning problem in a XML structure that is sent to the 
web-service to generate plans.  The planner interface 
supports requests for the next N plans, planning for N 
seconds, or simply until a complete plan is found.  The 
plan space and individual plan nodes are sent back to 
Bowman, also in an XML wrapper.  Integrated, scalable 
vector graphic rendering of both the plan space, and 
individual plans allow authors to navigate from plan to 
plan to explore structural differences.  

Background: Domain Elaboration  
To obtain a broader and deeper set of the plan author’s 
preferences requires a richer understanding of the planning 
domain.   This has not been a traditional focus of 
automated planning.  As Nau (2005) noted in a recent 
historical survey, much of the work in classical, domain-
independent planners has taken place in highly abstract and 
tightly restricted domains.  The domains are simple enough 
that the limited expressiveness of STRIPS (Fikes and 
Nilsson 1971), or languages that are slight extensions to 
STRIPS in a direction of immediate concern to the 
research can sufficiently describe problems of interest.  
Nau argues that the restrictions demanded by many 
supposedly “domain-independent” classical planners admit 
a class of domains that is so small and so far removed from 
reality that it can be effectively considered a single 
specialized world.  In contrast, most planners that work in 
the real world are customized to a specific domain, fine-
tuning their input, output, and world model to the 
environment in which they operate.  Nau points in the 
direction of richer domain descriptions by advocating a 
shift toward what he calls “configurable planners”.   
 
A configurable planner combines a domain-independent 
planning engine with configuration information describing 
how to solve problems in that domain. Configurable 
planners often employ higher-level abstractions like 
hierarchical task networks to capture and exploit domain 
knowledge.  Nau claims recent planning competitions have 
shown that configurable planners rival the efficiency of 
domain-specific planners and yet work in a broader class 
of domains than either the domain-specific or the 
ostensibly domain-independent planners.   
 
Nau’s configurable planners require more elaborate 
domain descriptions to represent the knowledge that enable 
the domain-independent planning engines to achieve better 
performance.   Similarly, research efforts in advisable and 
mixed-initiative planning have led to a richer language for 
expressing the characteristics of planning domains. 
Advisable planning (Myers 1996) attempts to shape the 
behavior of the planner by adding additional constraints to 
extend the definitions of the domain and the problem prior 
to the invocation of the planner. Mixed initiative systems 
allow for the iterative and incremental construction of the 
plan with both the user and the planner capable of 
proposing or initiating requests to change aspects of the 
problem or solution.  In essence, advisable planning is a 
special case of mixed-initiative planning, where the 
initiative is first taken by the plan author to extend the 
domain description with preferences in the form of 
constraints, then by the planning system, which uses this 
additional information in the construction of plans.  
 
The success of an advisable planning system is perhaps 
more strongly tied to the effectiveness of its domain 
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knowledge representation than is the case for mixed-
initiative systems where ambiguities can be iteratively 
resolved.  Myers has demonstrated the value of a “domain 
metatheory” (Myers 2000a) that describes the planning 
domain in terms an author can use to evaluate resulting 
plans (Myers and Lee 1999).  Further research in this area 
has shown methods for prioritizing the decision choices 
made available to the plan author to maximize the impact 
on plan quality (Wolverton 2004). 
 
Myers’ domain metatheory serves two roles in that it is 
meant to be intelligible and relevant to human plan authors 
but also serves as a basis for automated reasoning about 
plans.   Her model is built on three constructs: roles, 
features, and measures.  Roles describe the function of an 
object within a particular operator.  Features are author-
defined modifiers that differentiate operators.  Measures 
are user-defined criteria that determine partial orderings of 
features.  For example, “By Air” and “By Land” could be 
two features that are applied to operators.  A measure of 
“Affordability” may order operators with the “By Air” 
feature ahead of operators with the “By Land” feature.  
Conversely, the measure of “Speed” may provide the 
reverse ordering.  Myers extends measures to apply to 
object instances, and allows for reasoning about which 
specific object-instances can be role-fills for particular 
operators in the plan.  For example, in a travel domain the 
role of  <Accommodation> may be constrained for certain 
operators in certain circumstances to a role-fill of “3-star 
hotel”.  The authors provide a more complete review of 
Myers’ work and mixed initiative planning can be found in 
(Thomas and Young, 2006). 
 

Bowman’s “Domain Elaboration Framework” 
Rather than exposing all elements of the domain 
metatheory directly to the plan author, Bowman translates 
the constructs presented to human authors into a more 
compact representation for use by the planner.  This 
separation allows for some preprocessing of the human 
input to gain computational efficiencies on the one hand, 
and it allows for richer interactions with the human on the 
other. Bowman is not unique in representing the planning 
problem solving state at multiple levels of abstractions. 
Allen and Ferguson (2002) employ a four-layer model. 
Their model allowed the user to move from high-level 
hierarchical objectives, through task structures that 
summarized classes of concrete solutions, to more 
primitive descriptions of particular plan fragments and 
world states.  
 
The lowest layer internal representation used by Bowman 
is called the Domain Elaboration Framework, or DEF. The 
basis of DEF is a STRIPS-style planning domain 
characterized by objects, conditions and operators.   
Operators are either primitive or abstract compositions of 
one or more primitive or abstract operators. 
 

Where the domain metatheory introduced by Myers relies 
on a description logic of roles, role-fills, features, and 
measures, DEF uses an alternate grammar of types, 
dimensions, weights, and measurements.  
 
A type is a symbolic name of a node in a global hierarchy 
of types.  This hierarchy has a predefined unique root node 
named “anyThing”.  The author creates and names all the 
other nodes of the type hierarchy. Every operator, 
parameter, and object instance has at least one associated 
type and zero or more associated measurements.  There is 
no restriction on the maximum number of types or 
measurements that can be associated with a single entity, to 
help mitigate inheritance conflicts that would otherwise 
arise in even marginally deep hierarchies.   
 
A measurement consists of a dimension and a weight. A 
dimension is a symbolic name selected from a global list 
of unique author-defined dimensions.  A weight specifies a 
relative intensity of the dimension normalized over the 
interval [-1, 1].  This interval was chosen to facilitate 
application of a neutral default value (‘0’), in cases where 
author preferences have yet to be discerned.    
 
DEF does not appear to be the most ambitious knowledge 
representation scheme.  The intended strategy is for DEF to 
be general and simple enough to be applied fairly 
orthogonally to the constituent elements of the planning 
domain.  This in turn should to provide the human users of 
Bowman the power to experiment with the creation of 
higher-level abstractions that may be useful in interactive 
narrative.  As noted in the background sections, there is not 
yet a strong consensus of what those higher-level 
abstractions ought to be so it seems prudent to avoid 
building particular guesses into the foundations of the 
system. Bowman attempts to allow for abstractions of 
arbitrary complexity at the interface level, while preserving 
an underlying representation in DEF that facilitates 
efficient reasoning about the qualities of individual plans 
and the qualitative differences between plans. 
 

Expressivity of DEF 
An example that illustrates some of the synergy between 
Bowman and DEF is the simple application of type.  
Because every object instance in the domain and every 
parameter of an operator or a condition that expresses an 
initial or goal state has a type, Bowman can reference the 
type hierarchy to ensure that authorial intentions for 
bindings are maintained.   For example, in the case of an 
operator whose semantics are to move something from an 
object of type location specified in a parameter named 
loc1, the author would associate the type location with 
parameter loc1 through the Bowman interface.  Behind the 
scenes, when the author first creates the type location, 
Bowman automatically creates a condition isalocation(?x) 
that is added to the list of conditions available to describe 
problems in this planning domain.  Then, when the author 
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makes the association between the loc1 parameter and the 
location type, Bowman automatically adds the condition 
isalocation(loc1) to the list of preconditions of the 
associated move operator.   Note that the default type of 
“anyThing” is automatically supplied wherever the plan 
author has not taken the time to be more specific.  Thus, 
this is an optional mechanism to allow the plan author to 
communicate a planning preference with minimal effort.  
Furthermore, this preference is expressed to the planner 
without any extension to the most basic STRIPS 
implementation.   
 
Figure 1 shows how Bowman uses the types expressed in 
DEF to guide the human author in editing the literal 
preconditions of an operator.  Note that a color-coding of 
the type hierarchy is automatically generated and applied 
to the object constants (depicted in the tree view in the 
upper right subwindow), operator parameters, and terms of 
the literals (lower left subwindow).  As the author drags 
and drops objects or operator parameters to make 
associations with the literals, corresponding conditions are 
automatically added to the description of the operator. 
 

Figure 1: Bowman – Operator Precondition Editor 
 
Making types and measurements applicable to every 
operator, operator parameter, and condition parameter is an 
expressive advantage of DEF.  This advantage may be 
exploited to express the goals of an author of interactive 
narrative.  Authorial goals can often be articulated in terms 
of the types of actions contained in a story.  A poignant 
example of this can be found in a commercially successful 
narrative: the film The Princess Bride.  The movie begins 
by introducing a boy who is home from school with an 
illness.  His grandfather comes to visit him to read him the 
book The Princess Bride.  He overcomes the boy’s initial 
reluctance by advertising that the story will contain such 
narrative preferences as “Fencing. Fighting. Torture. 
Revenge. Giants. Monsters. Chases. Escapes.  True Love.  
Miracles.” When an explicitly romantic scene appears 
early in the Grandfather’s reading, the boy suspiciously 
interrogates him with “What is this?  Are you trying to 
trick me?  Where’s the sports?  Is this a… kissing book?” 

 
Many of these preferences can be translated to 
quantifications over DEF measurements applied to 
classical planning constructs such as operators and object 
instances.  For example, the author can define “kissing” as 
a dimension assign measurements like (kissing, .95) to 
every operator associated with the act of kissing. Operators 
that have no connection to interpersonal relationships or 
romance can be interpreted to have neutral weights for 
kissing, requiring no action on the part of the plan author.  
If the plan author chooses, she may encode antagonistic 
operators (perhaps fighting, torture) with negative weights 
for the kissing dimension. Similarly, dimensions to classify 
actions consistent with fencing, fighting, and torture can be 
easily specified by the author.   
 
Another kind of preference shown in this example is an 
implication of the types of objects that populate the story, 
for example: giants, monsters, and swords.  Elicitation of 
the author’s preferences may thus involve the addition of 
new types (like “monster”) to the type hierarchy and to the 
list of types for the object instances of “Shrieking Eel”, 
“Rodent of Unusual Size”, or “Zaphod Beeblebrox”.  
 
However, preferences for more complex narrative 
structures, such as those implied by “Chases”, “Escapes”, 
“True Love” and “Revenge” cannot be specified through 
static elaboration of the domain. For example, is attempt-
to-kill(?intended-victim, ?attacker) a ‘revenge’ action?  It 
depends on how the action and the bindings to the objects 
in the action relate to other actions and other objects within 
a particular concrete plan. It is impossible to affix these 
more complex narrative qualities to static elements of the 
domain description.  In the case of “attempt-to-kill”, there 
must have been an earlier action, explicitly articulated in 
the plan or inferred from the initial state, where the victim 
negatively affected the attacker. Clearly, to identify the 
degree to which a construct like “revenge” is satisfied in a 
story requires context-dependent evaluations of actions and 
bindings over an un-circumscribable span of the narrative 
plan.    
 
In fact, most of the constructs used to describe narrative 
since Aristotle’s early exploration of dramatic structure in 
Poetics, require significant story context.  For example, 
Aristotle highlighted “peripeteia”, or reversal of 
circumstance, as a key abstraction for characterizing 
complex plots.  While it would be possible to have a 
reversal of circumstance realized completely within a 
single operator of a narrative plan, not all reversals can be 
defined in a single action.  Narrative structures seem to beg 
for greater expressivity than what is offered by DEF.   
 
A tool that is particularly well suited to the expression of 
context-dependent conditions is that of “Ceteris Paribus” 
or “CP” preference statements.  CP statements take the 
form of conditional expressions linked by logical 
connectives.  For example, it seems that CP statements can 
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define revenge: “Use attempt-to-kill(?intended-victim, 
?attacker)  WHEN  wronged(?intended-victim, ?attacker) 
AND ^wrong-avenged?(intended-victim, ?attacker)”.  
Human users are accustomed to supplying CP preference 
statements in search dialogs and in any number of other 
computer-assisted tasks.  Brafman and Chernyavsky 
(2005), have shown a method to add CP preference 
statements in solving planning problems that have been 
converted to equivalent constraint satisfaction problems, or  
CSPs.  Prestwich (et. al., 2005) have shown algorithms to 
find optimal solutions for CP nets through progressive 
relaxation of CP preference statements. 
 
However, such methods do not provide a general solution 
for narrative preferences.  Even in this small example, two 
literals (“wronged”, “wrong-avenged”) had to be contrived 
to represent the history of the relationship between victim 
and attacker.  The problem is that revenge is a property of 
the plan, not an abstract truth-value of the final state. As 
Brafman and Chernyavsky note, their initial work 
concentrated on goal constraints - the methodology for 
expressing preferences over plan structure has not yet been 
shown.  For the CP statements to have the intended effect, 
“wronged” and “wrong-avenged” must be added as effects 
to all the appropriate operators.  But even this is 
insufficient.  More context information must be taken into 
account in deciding whether or not an actor was wronged.  
Actors have partial knowledge.  What if one of the 
characters does not know they have been wronged, or 
someone has framed a third party for the injury?     
 
What is actually required is a model of the beliefs, desires, 
and intentions (BDI) of each of the characters, and an 
encoding of the domain that expresses how different 
actions may affect character BDI.   As introduced in 
(Thomas and Young, 2006) DEF can be used to construct 
narrative “macros” that mimic a BDI model.  Narrative 
“macros” are relatively general sets of conditions and 
operators that can be used to model dynamic relationships 
between entities in the problem domain.  An example of 
such a relationship is the “attitude” one agent in the 
domain has for another agent in the domain.  A set of 
general “attitude-maintenance” macros (e.g., an “attitude-
up” operator, an “attitude-neutral” condition), can be built 
up from the DEF constructs in Bowman and shared 
between authors of interactive narrative.  In the optimal 
case, such a library is created with suitably general 
parameters like “?attitude-name” so authors can use a 
single set of macros to model “friendship”, “jealousy”, or 
“revenge”.  Bowman users, i.e., actual working authors, 
can use macros to experiment with the construction of 
reusable narrative constructs. This differs from the 
approach suggested for incorporation of the CP statements 
because the macros need not be implicitly tied to particular 
statements of preference.  It might be an interesting 
exercise to see how many of the state trajectory constraints 
proposed for PPDL3 (Gerevini and Long, 2005) could be 
mapped to similar STRIPS-based macro constructs. 

 
As in the early days of computer programming, where 
useful macros pointed the way toward high-level language 
constructs that caused quantum leaps in expressivity and 
productivity, perhaps the approach advocated here can lead 
to a similar bootstrapping of knowledge descriptions in the 
planning domain, at least for interactive narrative.  
 
To summarize, DEF associates a set of one or more types 
and zero or more measurements with every operator, 
operator parameter, condition parameter, and object 
instance.  DEF is a domain-independent representation 
intended to by leveraged by a user interface for use with 
any planner that can work with a STRIPS-style domain 
description.  Planning heuristics that takes these 
measurements as an input can offer a high-degree of 
fidelity to discrimination between candidate plans, but will 
not necessarily provide sufficient expressivity for arbitrary 
narrative constructs. 

Using DEF to Reason About Qualities of Plans 
One of the motivations behind Myers’ advisable planning 
work that is shared by interactive narrative is the desire to 
create multiple plans for a given problem that differ 
according to author-defined qualities. Specifically, the plan 
author can nominate a subset of measures from the domain 
metatheory to serve as the evaluation criteria by which the 
qualities of different plans are to be compared. For each 
evaluation criterion k, an evaluation function returns the 
extent to which that measure is realized in a given plan 
fragment expressed as value from the interval [0, 1].  A set 
of k evaluation criteria defines a k-dimensional evaluation 
space. Myers uses this evaluation function to construct 
formulae that provide several types of measurements.  A 
formula gives the Euclidean distance between two plans 
across the k-dimensional space.  A dispersion formula 
provides the average distance between plans in a plan set.  
A proximity formula measures the degree to which a 
solution set is ‘near’ all the other points in the evaluation 
space.  Because DEF requires explicit normalization of 
weights over an interval [-1, 1], it is simple to create an 
evaluation function that harnesses for the qualitative 
measurements Myers has demonstrated.   
 
Another mechanism for reasoning about types recently 
introduced by Myers (2005) is also easily applicable in the 
DEF context. Myers defines a function MinSuperType(V) 
which finds the most specific super-type common to a set 
of elements V . This allows the author to characterize the 
differences between plans or parts of plans, through the 
five distinct set relationships that correspond to particular 
subsets of their typed elements. Set-arithmetic functions 
are described that help pinpoint key strategic differences 
between plans and show areas where plans are not as 
different as they might seem.  Again, DEF is well-suited to 
make use of this reasoning because of its extensive use of a 
type hierarchy. 
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Relaxable Custom Heuristics 
Heuristics are rules used to measure the desirability of one 
plan compared to another.  The planner uses heuristics to 
rank the order in which nodes of the search space will be 
expanded.  Thus, heuristics are a special case of 
preferences applied to the analysis of a plan.  Typical uses 
of heuristics are to favor plans that have fewer steps, plan 
that have fewer flaws, plans that have more abstract 
(hierarchical) as opposed to primitive steps, or plans where 
particularly problematic causal links are established early. 
The idea of different treatment for conditions derived from 
different sources is not new, as it was featured prominently 
in the description of the NONLIN algorithm (Tate 1976).    
 
With Bowman, the plan author can construct heuristics 
based on any of the attributes described in DEF: types, 
dimensions, or measurements to apply relative weights on 
different flaws or features of a plan. Thus, the author can 
encode arbitrary narrative preferences and use iterative 
refinement of the plan space to ensure that optimal levels 
of “kissing” are in each story, ensure that the possible 
execution paths have the desired level of conformity or 
diversity, or simply understand the shortest and longest 
success paths through a narrative.   
 
Furthermore, the Bowman GUI can allow the author to 
differentiate the weighting of different heuristic factors 
through the assignment of an enforcement priority to each 
precondition and constraint on through sliders that read 
“Ignored” at the bottom of the scale and “Required” at the 
top.   
 
This strategy could be implemented without changing 
existing planning algorithms by exploiting Bowman’s 
iterative problem solving environment and let the author 
determine a global narrative rigidity value, also via a 
slider.  Each individual preference value whose slider is 
lower than the global cutoff value would be automatically 
redacted from the problem definition sent to the planner.  
The author could then perform a manual version of 
simulated annealing, progressively tweaking the relative 
preference values repeatedly requesting plans at different 
levels or the slider to see how varying degrees of their 
authorial preferences affect the diversity of the plan space.  
 
Our hope is that by exploiting the expressivity and 
efficiency of a suitably tuned GUI and the creativity and 
insight of a suitably engaged human author, we can 
facilitate the creation of more interesting and complex 
interactive narratives.  We believe that the architecture of 
the system will allow the experimentation and exploration 
of human authors to create artifacts will be of near term 
usefulness and will also inform future research efforts.  

Alternative Strategies For Advice Conflicts 
Myers (2000b) has researched two techniques for partial 
satisfaction of user-specified advice. The first, minimize 
introduced local advice violations (MILAV) guarantees 
that some plan will be produced but may ignore some 
advice that could be satisfiable. During search, MILAV 
performs a one-step look-ahead for each task node ranking 
the impact of all possible choices (i.e. operator selection, 
variable instantiations) according to the number of new 
advice violations that each will introduce. Search control 
then uses this ranking to select options that minimize 
introduced advice violations. Unfortunately, locally 
optimal decisions made via this heuristic may not be 
globally optimal as there is only a one-step lookahead.  
 
The second technique for partial advice satisfaction is 
Local Maxima Search (LMS). This algorithm selects a 
seed solution that satisfies a selected subset of user advice 
and employs a hill-climbing algorithm to iteratively 
improve on the current best solution by adding a single 
new piece of advice at a time. This continues until no more 
advice can be added that will lead to a complete plan. At 
that point a new seed node is chosen and the process 
repeats. Thus, LMS embodies an anytime approach that 
will yield plans of increasing advice satisfaction quality as 
more time is allotted. Several optimizations for seed 
selection have been tested.  Either of these approaches may 
be workable with the types of narrative advice solicited by 
Bowman. 

Research Status 
A first phase of Bowman has been implemented.  It is part 
of the Zócalo suite of planning tools available through 
NCSU at http://zocalo.csc.ncsu.edu.  Bowman is used with 
Zócalo to define planning domains and planning problems 
using classical constructs, generate plans, and navigate 
through plan spaces and individual plans.  We are in the 
process of elaborating the domain representations 
employed by Bowman and Zócalo to address some of the 
unmet challenges of interactive narrative.   These 
extensions include many of the constructs in DEF, 
narrative macro support, support for relaxable custom 
heuristics, and some additional techniques unique to the 
Mimesis strategies of narrative mediation.  
 
This paper has advocated a “generate-and-test” approach to 
exploring the preferences authors of interactive may want 
to use to describe plan quality.  To lessen the burden of the 
“generate-and-test” methodology we have focused a lot of 
attention on methods to expedite the author’s 
understanding of plan qualities, and plan space 
characteristics.  We are using scaled vector graphic (SVG) 
images of individual plan the plan space and individual 
plans that can be navigated and queried interactively. 
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Figure 2: Bowman – Plan Node Analysis 
 
For example, as shown in figure 2, each step in the plan is 
represented by a collection of four rounded rectangles. The 
center rectangle is labeled with the step number and 
operator  name.  The smaller rectangle on the left side of 
each step labeled with the letter “P” contains the 
preconditions of the step, and the rectangle on the right 
labeled with an “E” contains the effects.  The precondition 
bubble for a step is filled in with a green colored 
background if all the preconditions are satisfied for the 
plan.  If the user moves the mouse over the precondition 
bubble, a semi-transparent window pops up (shown) 
containing each of the preconditions in the plan.  As the 
user moves the mouse down over each precondition, it is 
highlighted in yellow (“alive(?pawn)” in the figure), as is 
the causal link which establishes that condition.   
 
Authors can enter this plan node analysis mode from the 
plan space view simply by clicking on a rectangle for a 
individual plan node.   We continue to add features to 
enhance authors’ understanding of the relationship between 
the domain, the plan space and individual plans. 
 
 

Conclusion  
This paper introduced a general planning domain 
metatheory called DEF and a general plan-authoring 
interface called Bowman, currently under development at 
North Carolina State University.  These tools are being 
used to support author-preference realization in interactive 
narrative. We have significant work yet to do including an 
evaluation of the effectiveness of the tools for non-
technical authors, and potential expansion to work with 
other planners and PDDL input and output descriptions. 
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Abstract

We introduce a new approach for encoding STRIPS planning
problems as Constraint Satisfaction Problems: the encoding
makes use of automata for modelling the dynamics of the
objects involved in the domain. We describe a total order
planner based on Constraint Programming that takes advan-
tage of this encoding, using global constraints to model the
automata and to reduce the search space significantly. The
planner can be easily extended, using soft global constraints,
in order to deal with preferences among the goals in infea-
sible problems. The soft planning infrastructure can also be
exploited to build an effective search heuristic and to approx-
imate the plan length.

Introduction
Constraint Programming (CP) is considered an efficient
and effective paradigm for solving classical planning prob-
lems (see (Nareyeket al. 2005)). Several optimal paral-
lel planners based on CP have been proposed by the re-
search community over the years such as CPlan (Van Beek &
Chen 1999), GP-CSP (Do & Kambhampati 2001), CSP-Plan
(Lopez & Bacchus 2003) and they have shown their effi-
ciency compared to other optimal parallel planners based on
SAT or planning graph encodings. The common approach
for CP-based planners is to encode the planning problem as
a Constraint Satisfaction Problem (CSP) and to use well-
known CP techniques to solve the CSP like generalized
arc consistency (GAC) or conflict-based backjumping (CBJ)
(see (Dechter 2003)). Most of the CP based planners encode
the CSP starting from a planning graph representation and
take advantage of this in order to add mutex constraints to
the CSP model.

We propose a new kind of encoding that exploits automata
for modelling the dynamics of the objects that are involved
in the planning problem. We show how easily this model can
be extended in order to take into account preferences on the
goals. We show some experimental results on a preliminary
version of the planner.

The remainder of the paper is organized as follow: in Sec-
tion 2 we give a brief background on Constraint Program-
ming and the regular constraint. In Section 3 we introduce

Copyright c© 2006, American Association for Artificial Intelli-
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the new encoding and the planner. In Section 4 we show the
soft version of the planner that can handle preferences on the
goals and Section 5 shows the benefits that the soft planner
can bring also to speed up the search. In Section 6 we give
some experimental results. Finally, in Section 7 conclusions
are given.

Background
Constraint Programming
Let X = x1, x2, . . . , xk be a sequence of variables with
respective domainsD1, D2, . . . , Dk. We denoteDX =⋃

1≤i≤n Di. A constraintC on X is defined as a subset of
the Cartesian product of the domains of the variables inX,
i.e. C ⊆ D1 ×D2 × · · · ×Dk. A tuple(d1, . . . , dk) ∈ C is
called asolutiontoC. A valued ∈ Di for somei = 1, . . . , k
is inconsistentwith respect toC if it does not belong to a tu-
ple of C, otherwise it isconsistent. C is inconsistentif it
does not contain a solution. Otherwise,C is calledconsis-
tent. A constraint is called abinary constraintif it is defined
on two variables. If it is defined on more than two variables,
we callC aglobal constraint.

The solution process of constraint programming inter-
leaves constraint propagationand search. The search
process essentially consists of enumerating all possible
variable-value combinations, until we find a solution or
prove that none exists. We say that this process constructs
a search tree. To reduce the exponential number of combi-
nations,constraint propagationis applied to each node of
the search tree: Given the current domains and a constraint
C, remove domain values that do not belong to a solution
to C. This is repeated for all constraints until no more do-
main value can be removed. Very efficient algorithms have
been developped to remove such values from constraints, ex-
ploiting their structure (see (Apt 2003) and (Milano & Trick
2003) for further explanation).

Automaton and Regular Constraint
A deterministic finite automaton (DFA) may be described
by a5-tuple(Q,Σ, δ, q0, F ) whereQ is a finite set of states,
Σ is an alphabet,δ : Q × Σ → Q is a partial transition
function, q0 ∈ Q is the initial state, andF ⊆ Q is the set
of final (or accepting) states. Given an input string, the au-
tomaton starts in the initial stateq0 and processes the string

ICAPS 2006

Workshop on Preferences and Soft Constraints in Planning 73



one symbol at a time, applying the transition functionδ at
each step to update the current state. The string is accepted
if and only if the last state reached belongs to the set of final
statesF . The languages recognized by DFA’s are precisely
regular languages.

A Regular constraint (Pesant 2004) is specified using a
deterministic finite automaton that describes the regular lan-
guage to which the sequence of values taken by the sequence
of variables must belong. That automaton is then unfolded
into a layered directed graph where vertices of a layer corre-
spond to states of the automaton and arcs represent variable-
value pairs. This graph has the property that paths from the
first layer to the last are in one-to-one correspondence with
solutions of the constraint. The existence of a path through
a given arc thus constitutes a support for the corresponding
variable-value pair.

As the cost-variant of the Regular constraint,
CostRegular(X,Π, z, C) holds if the values taken by
the sequence of finite domain variablesX spell out a word
belonging to the regular language associated to the deter-
ministic finite automatonΠ, and if z, a bounded-domain
continuous variable, is equal to the sum of the variable-value
assignment costs given by cost matrixC. Instead of simply
maintaining paths, the filtering algorithm forCostRegular
must consider the length of these paths, defined as the
sum of the costs of individual arcs, representing〈 variable,
value, state〉 tuples, whose costs are given by cost matrix
C. Supports do not come from just any path but rather from
a path whose length falls within the domain ofz. To check
this efficiently, it is sufficient to compute and maintain
shortest and longest paths from the first layer to every vertex
and from every vertex to the last layer: if the shortest way
to build a path through a given arc is larger than the upper
limit of the interval for z, the arc cannot participate in a
solution and can thus be removed; if the longest way to
build a path through a given arc is smaller than the lower
limit of that interval, the arc can again be removed. In this
way, domain consistency is achieved for the variables ofX.
The domain ofz can also be trimmed using the shortest and
longest paths from the first to the last layer.

Modelling planning problems with automata
The basic idea is to model the planning problem as a set
of automata. Each automaton describes the dynamics of a
single object (or entity) involved in the planning problem;
the states of the automata denote the states of the objects
and transitions between the automata states represent ac-
tions. Intuitively, if you look at the set of current states of the
automata as a whole, this corresponds to the current world
state. The initial state of the world and the goals are repre-
sented by the initial state and the final state of the automata.
A valid (total order) plan is a sequence of actions that is rec-
ognized by each automaton; in other words it is a sequence
of actions that brings every automaton (object) from the ini-
tial state to a final state.

Consider, for example, a simple instance of the
blocks world domain in which you have as the initial
state onTable(a), onTable(b), on(c, b) and as the goal
on(a, b), on(b, c), onTable(c). The problem is modelled

as three automata that describe the state of the blocks. Fig-
ure a, b, c shows respectively the automata for blocka, b and
c (note that the automata slightly differ from the following
formal definition for a reason that will be clearer later).

Figure 1: Automata of blocks world example.

Formally, given a plan of lengthL, the definition of the
CSP = (X,D,C) is:

• X = (X1, . . . , XL): a sequence of variables that repre-

ICAPS 2006

74 Workshop on Preferences and Soft Constraints in Planning



sents the total order plan;

• D = (D1, . . . , DL): the variable domains, each domain
initially contains all the possible actions.

• C = (Regular1, . . . , Regulark): the set of constraints
defined on the set of variables; each regular constraint rep-
resents an automaton (i.e. object dynamics in the planning
problem).

Given a variableXi, the instantiationXi = aj denotes that
the actionaj should be performed in the time stepi.

Given an actionaj with preconditionsPre(aj) and ef-
fectsEff(aj), we denote byPreo(aj) the subset of pre-
conditions that contain the literal (object)o and analogously
with Effo(aj) the subset of effects that containo. We use
O to denote the set of objects involved in the planning prob-
lem. Given an objecto ∈ O, we writeP (o) for the set of all
the possible propositions that involveo (i.e. the propositions
that contain the literalo).

Let o be an object of the planning problem: the related
automatonAo contains one state for each possible combi-
nation of the propositions inP (o); in order to simplify the
notation, given a statesk of Ao, we usesk to denote also the
conjunction of propositions represented by the state itself.
A transition (actionask,sq

) is present between two statessk

andsq iff Preo(ask,sq
) ⊆ sk andsq = sk ⊕ Effo(ask,sq

)
(whereA ⊕ B is defined as the operation that adds toA all
the positive effects ofB and deletes fromA all the negative
effects ofB).
The global constraintRegularo is used to model the au-
tomatonAo. Note that the variable set is constrained by
several Regular constraints; this implies that an actionaj

for a given time step can be performed iff it is consistent for
each regular constraint i.e. the preconditions ofaj are met
in each automaton; formally,

⋃
o∈O Preo(aj) = Pre(a).

Intuitively, the regular constraints filter the domains in such
a way that only the actions for which the preconditions are
met, are kept in the domains. Moreover the global nature of
the regular constraints allows to filter also the actions that
can be hypothetically instantiated in a given time step (i.e.
the action precondition are met in that time step) but that do
not lead to the final states within the given plan length hori-
zon. This kind of reasoning restricts the search space and
effectively guides the search towards the goals.

Generally, the automata built in such a way, have a high
number of states; since the regular constraint propagational-
gorithm has a complexity that is proportional to the number
of the state of the underlying automaton hence it is worth
minimizing the number of states of the automata.

The example presented above about blocks world shows
the automata already minimized. Following the example,
in the first time step actions likestack(b, X) are not
allowed because they are pruned by the automatonc.
Suppose now thatX1 = unstack(c, b): the automaton
c will reach the stateholding(c) while the automata
a and b will remain in the initial state. After this in-
stantiation, the automatonc will filter from the domain
of the variable X2 all the actions exceptstack(c, X)
and putdown(c). As you can note, the sequence
unstack(c, b), putdown(c), pickup(b), stack(b, c),

pickup(a),stack(a, b) is correctly recognized by the three
automata.

Description of the algorithm Given a lower bound (even-
tually equal to 1) and an upper bound on the plan length, the
search for a valid plan is performed, following these basic
steps:

• set the plan length L to the associated lower bound;

• solve the related CSP problem with a plan length equal to
L;

– if a solution is found then stop and return the optimal
total order plan

– if no solution is found then increase the plan length and
solve the new CSP problem; the iteration is stopped
when no valid plan is found with a length equal to the
upper bound.

Softening the planner
Soft constraints (see (Petit, Régin, & Bessìere 2001) for fur-
ther explanation) are a convenient modeling feature to find
plans that can lead us ”close” to the goal, to express prefer-
ences among the goals, or in general to deal with unsatisfi-
able planning problems. The presented model and planner
can be easily extended in order to introduce soft constraints.

In each automaton we introduce a set of transitionst =
(si, sf ) ∈ Tfake that go from each state to the final state;
these transitions represent fake actions and are exploitedto
compute the violations. To do that, we introduce a cost func-
tion f : Tfake → R

+. In order to deal with the quantitative
approach proposed with the planning description language
PDDL 3.0, in which a goal is either satisfied or unsatisfied,
we can use the following function:

∀ t ∈ Tfake : f(t) =






0 if the transition starts from
a final state

1 if the transition starts from
a non final state

Another interesting violation function can be the distance
to a goal expressed as the number of remaining actions we
should perform to reach it without considering the interac-
tion with the other goals; this is equivalent to the number of
states that are present in the automaton between a state and
the final state. Given the functiond : S → N that represents
the shortest sequence of action to achieve the goal then

∀ t = (si, sf ) ∈ Tfake : fd(t) = d(si)

The CSP model and the planner are adapted in the following
way:

• Violation variables: for each automaton (regular con-
straint) we associate a cost variable that represents the
violation. A total violation variableTotalV iolation is
added to the model as a function of the previously defined
variables.

• Cost Regular Constraints: we use cost regular constraints
to deal with automata in which there is the notion of cost
associated to the transitions.

ICAPS 2006

Workshop on Preferences and Soft Constraints in Planning 75



• Objective: a minimization objective is added to the model
for the total violation variable.

• Slack Variable: given a plan of lengthL we add a variable
XL+1 instantiated to the fake action. Clearly if all the
goals are achieved withinL time steps, then all the final
transitions will be from final states to final states so the
violation will be null. In the case in which there is at least
one unachieved goal, the fake action will lead to the final
states but with a corresponding violation cost.

Note that the function that relatesTotalV iolation to the
violations of single automata can be seen as a way to ex-
press preferences among the goals. Obviously if we want
to give more importance to a given goal we should give it
more weight in the function. The underlying CP framework
also allows us to define more complex relationships between
violation variables: for example, assuming we are using the
distance violation functionfd, we can use a constraint that
states that the absolute value of the difference between each
pair of variables must be less than a given threshold: this can
be seen as a way to express fairness (we do not allow a goal
to be reached while another is very far from being achieved).

Consider again the example about the blocks world do-
main. Figure shows the automata with the associated fake
actions; on the transitionTfake the two different violation
costs are shown. Suppose that we are searching for a plan of
length 4 andX1, X2, X3, X4 are instantiated respectively to
unstack(c, b), putdown(c), pickup(b), stack(b, c). The
automaton of the blocka will be in the stateonTable(a),
the one for the blockb in the stateon(b, c) and the one for
the blockc in onTable(c). The final fake action will not
change the state for the automatab andc but it will allow to
find a solution since it will lead the automatona to the final
state. According to the two proposed violation functions we
will get a violation equal to 1 (for PDDL-like violation) or
equal to 2 if we consider the distance (we have to perform
two more actions to reach the final state).
Once the violation functions are defined, then it is possi-
ble to define preferences among the goals using the ob-
jective function and/or posting constraints directly on the
single violation variables. In the example, letVa, Vb

and Vc be the three violation variables and let the up-
per bound on the plan length be equal to 5; if we de-
fine the total violationTV as TV = Va + 2 ∗ Vb +
2 ∗ Vc (it is preferable to haveon(b, c), onTable(c)
satisfied thanon(a, b)) then we will get as the final
plan unstack(c, b), putdown(c), pickup(b), stack(b, c),
pickup(a). Note thatVa = 1, Vb = 0 andVc = 0 hence
TV = 1; not satisfying the goals for the blockc or b will
bring an increase of the total violation by at least 2 hence
the solution found is optimal.

Further Advantages of this (soft) planner
Building a search heuristic from the soft planner
In many traditional planners every time a valid plan is
not found, the plan length is increased and the search is
restarted. Clearly, with this approach, we revisit a large part
of the search space at each iteration. However, we can ex-

Figure 2: Soft automata for blocks world. The fake actions
are shown with dashed lines.

ploit soft planning infrastructure to build a heuristic to speed
up the search in soft and also traditional planning problems.

We use the distance based violation function and we
search for a plan that is as close as possible to the goals,
that is it minimizes the total violation variable. For this
variable we propose two functions:TotalV iolationsum =∑

i V iolationi, the sum of the violations from individual
automata, andTotalV iolationmax = maxi(V iolationi),
the greatest individual violation. Once we prove that there
is no valid plan of lengthL (i.e. TotalV iolation > 0) we
store the best solution found and exploit it for the next itera-
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tion, in two ways:

• heuristic: we branch first on the same values as in the
stored solution, in order to quickly arrive to a promis-
ing region of the search space. Note that the proposed
heuristic slightly differs from the one proposed in (Bonet
& Geffner 2001); in that approach the chosen action is
the one that leads to a state that is as close as possible
to the goal but with the strong assumption of considering
the goals independent and without considering the inter-
ference among the actions. In our approach the stored
solution brings us as close as possible to the goal consid-
ering the goal interations and the interference among the
actions. Even though we have not compared experimen-
tally the two heuristics with this planner, we believe that
our solution should be more effective.

• violation bound: the violation cost of the best solution
found in the previous iteration is a valid upper bound on
the violation variable. Clearly this will help to prune the
search space better during the current iteration.

Plan length increase approximation
In the basic algorithm, when no solution is found for a given
plan length, the plan length is increased by 1. Again, the soft
planner gives us some information that we can use to get a
closer approximation of the plan length.

Consider the soft planner with the distance based viola-
tion function and total violation equal to the max of the au-
tomata violations. Since we are minimizing the total viola-
tion, the cost of the best solution found indicates the min-
imum number of additional actions we should perform to
achieve the goals. Hence, given a plan lengthLi in iteration
i and the best total violation foundTotalV iolation∗

i at iter-
ationi, we can set the plan length of the following iteration
to Li+1 = Li + TotalV iolation∗

i .

Proposition 1. The planner with the plan length increase
approximation is optimal.

Proof. Let Li be the length of the plan at iterationi, P ∗
i the

best plan at iterationi with TotalV iolation∗
i > 0 where the

total violation is computed using the max function over the
distance based violations. Suppose that there exists an opti-
mal valid planP ∗ of lengthL∗ < Li + TotalV iolation∗

i .
Consider then the partial planP ∗

partial in which the firstLi

actions are equal to the planP ∗. With P ∗
partial all the goals

can be achieved with a number of actions at most equal to
L∗ − Li < TotalV iolation∗

i . SoP ∗
partial has a violation

strictly less thanP ∗
i , henceP ∗

i is not the best plan with
lengthLi.

Experimental results
The planner was implemented in ILOG Solver 6.1. To illus-
trate its behavior, we report preliminary experiments on re-
duced instances of the Zeno Travel problem (see (ICAPS06
2006)) in which two airplanes (A1 and A2), two persons (P1
and P2) and four cities (C1, C2, C3 and C4) are present. The
instance has been modelled with four automata representing
the two airplanes and the two persons. The violation func-
tion used isfd that considers the distance to the final state of

the automata. We consider different goals in order to test the
soft and hard planners; the following table shows the differ-
ent instances in terms of initial state and final state:

A1 A2 P1 P2
Instance 1 C3→C2 C3→C3 C3→C1 C3→C2
Instance 2 C3→C4 C3→C3 C3→C1 C3→C2
Instance 3 C3→C2 C1→C3 C2→C1 C3→C2

The tests were performed on a Pentium-M 1.6GHz with
1GB RAM; the following table shows the results (plan
length and the time expressed in seconds for finding a fea-
sible plan) for solving the instances with the soft planner
and the hard (traditional) planner; some basic techniques for
breaking the symmetries have been introduced in the plan-
ners.

Plan Length Hard Planner Soft Planner
Instance 1 6 1.6 1.5
Instance 2 7 23.4 3.9
Instance 3 8 23.2 5.2

We tested the impact of the different features of the soft
planner on an instance with a feasible plan of length 9. The
following table show the results (B: violation bound, P: plan
length increase approximation, S: basic symmetry breaking
techniques, H: search heuristic, Back: backward search):

Planner features Time Planner Features Time
Basic 153.3 +B+P+S+H 34.7
+B 160.0 +B+P+H+Back 28.9
+B+P 141.3 +P+S+H+Back 25.3
+B+P+S 123.8 +B+P+S+H+Back 24.3

In these preliminary tests, we can see that the search
heuristic allows an interesting performance boost and in
general each proposed feature brings some performance in-
crease.

In order to experiment with preferences, we defined some
preferences on the goals of the first 3 instances: particularly,
we expressed the total violation asTV = VA1 + VA2 + 2 ∗

VP1 + 2 ∗ VP2 whereVA1, VA2, VP1 andVP2 are the viola-
tions of the airplanes and of the persons; with this objective
function the preference is clearly given to the persons. We
used the distance based violation function for the single vio-
lations and we searched for the best plan with a tighter plan
length upper bound:

With a tighter upper bound on the plan length, it was
not possible to satisfy all the goals hence the plan with the
minimum violation has been found. The time for solving
the instances with preferences is comparable to the time for
solving instances without preferences (with the same plan
length). Note that the flexibility of the framework allowed us
to introduce preferences among the goals simply by adding
an ad hoc objective function.
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Plan Length Time Violations
Instance 1 4 2.2 4
Instance 1 5 4.4 2
Instance 2 5 8.8 3
Instance 2 6 6.1 1
Instance 3 6 2.0 2
Instance 3 7 3.9 1

Discussion and open issues
The presented encoding raises one main challenge: it is not
always obvious how to choose the set of objects to fully
and correctly model the problem (actually we could choose
each entity of the planning problem but then the number of
automata would become intractable). Furthermore, the ter-
mination condition for the soft planner is actually given by
achieving all the goals or reaching the upper bound on the
plan length. Both issues are currently under investigation.

An interesting aspect that we are currently studying, is the
introduction of no-goods recording in the planner. Most of
the current state-of-the-art planners showed that it is a very
powerful method to improve the performance of the planner.

Another aspect to investigate in future studies is the in-
troduction of stronger symmetry breaking techniques. It is
well known that total order plans present a lot of symmetries
(two or more actions can be executed in whatever order) and
this can degrade the performance in cases where there is no
valid plan for a given plan length. In order to prove the in-
feasibility of a problem for a given plan length, the actual
planner explores all the search space while symmetry break-
ing methods can help to reduce it significantly.

To the best of our knowledge, no proposed CP-based plan-
ner exploits global constraints that are commonly known as
a powerful tool to speed up the search. The contributions of
this paper are:

• a new encoding for the planning problem;

• use of global constraints for solving planning problems;

• a new violation measure for the soft regular constraint;

• a CP-based planner that provides tools to express prefer-
ences on goals;

• exploitation of the soft planning infrastructure for build-
ing an effective heuristic.

The implementation of the planner in ILOG Solver (proba-
bly the best CP framework commonly used by the research
community and by industry) will allow us to introduce and
exploit several of the sophisticated techniques that the CP
community has proposed. Even if the proposed planner has
some limitations, the actual implementation and the possible
improvements that can be introduced to speed up the search
seem promising.

References
Apt, K. 2003. Principles of Constraint Programming.
Cambridge University Press.
Bonet, B., and Geffner, H. 2001. Planning as Heuristic
search.Artificial Intelligence129:5–33.

Dechter, R. 2003.Constraint Processing. Morgan Kauf-
mann Publishers.
Do, M. B., and Kambhampati, S. 2001. Planning as con-
straint satisfaction: Solving the planning garph by compil-
ing it into CSP.Artificial Intelligence132:151–182.
ICAPS06. 2006. Workshop on Pref-
erences and Soft Constraint in Planning.
http://www.cis.strath.ac.uk/derek/PSCinP.html.
Lopez, A., and Bacchus, F. 2003. Generalizing Graph-
Plan by Formulating Planning as a CSP.International Joint
Conference on Artificial Intelligence IJCAI-2003954–960.
Milano, M., and Trick, M. 2003.Constraint and Integer
Programming - Toward a Unified Methodology. Kluwer
Academic Publishers.
Nareyek, A.; Freuder, E. C.; Fourer, R.; Giunchiglia, E.;
Goldman, R. P.; Kautz, H.; Rintanen, J.; and Tate, A. 2005.
Constraints and AI Planning.IEEE Intelligent Systems
20:62–72.
Pesant, G. 2004. A Regular Language Membership Con-
straint for Finite Sequences of Variables. InPrinciples
and Practice of Constraint Programming – CP-2004: Pro-
ceedings of the Tenth International Conference. Springer-
Verlag LNCS 3258. 482–495.
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