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Preface

The partially observable Markov decision process (POMDP) is a widely used model
for planning under uncertainty. Classification and regression are standard statistical
tools for reconstructing a source (or its attributes) from noise-corrupted data. Studies of
POMDPs and classification/regression have been mostly pursued independently in the
past. Recently, however, there has been reported research work showing the possibility
of using classification/regression techniques to solve POMDPs or using a POMDP to
build cost-sensitive classifiers. The work along the first line includes trajectory-based
policy search, value approximation with regression models, while the work along the
second line includes POMDP methods for cost-sensitive feature selection and sen-
sor scheduling with the ultimate goal of classification. Despite of the researches re-
ported to date, there remain many unknowns regarding how POMDP and classifica-
tion/regression techniques can be applied to each other in a mutually beneficial way.
The possibilities have not been explored to their full extent. This workshop aims to bring
this research topic to the attention of more researchers and stimulate a broader range
of contributions to both POMDP and classification/regression by looking at them from
new and unified perspectives. The first paper included in this workshop note describes a
new way of reducing the POMDP planning problem to a sequence of classification prob-
lems. The second paper represents a novel application of POMDPs in multi-modality
autonomous sensing in a complicated environment. The third paper presents a POMDP
formulation of the random disambiguation path (RDP) problem. While this workshop
note does not intend to exhaust all state-of-the-art work on this topic, we hope it will
stimulate more researches that could expand the topic in both the depth and the scope.

Xuejun Liao and Lawrence Carin

Organizers

• Xuejun Liao, Duke University, USA

• Lawrence Carin, Duke University, USA

Programme Committee

• Alfred Hero , University of Michigan at Ann Arbor, USA

• Carey E. Priebe, Johns Hopkins University, USA

• Ronald Parr, Duke University, USA

• Carey Schwartz, DARPA/DSO, USA

• Douglas Cochran, Arizona State University , USA

• Vikram Krishnamurthy, University of British Columbia, Canada

• David Castanon, Boston University, USA





Optimal Sensor Scheduling via Classification Reduction of Policy Search (CROPS)

Doron Blatt and Alfred O. Hero ∗

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, Michigan, USA

Abstract

The problem of sensor scheduling in multi-modal sens-
ing systems is formulated as the sequential choice of ex-
periments problem and solved via reinforcement learn-
ing methods. The sequential choice of experiments
problem is a partially observed Markov decision prob-
lem (POMDP) in which the underlying state of nature is
the system’s state and the sensors’ data are noisy state
observations. The goal is to find a policy that sequen-
tially determines the best sensor to deploy based on past
data, which maximizes a given utility function while
minimizing the deployment cost. Several examples are
considered in which the exact model of the measure-
ments given the state of nature is unknown but a gener-
ative model (a simulation or an experiment) is available.
The problem is formulated as a reinforcement learning
problem and solved via a reduction to a sequence of su-
pervised classification subproblems. Finally, a simula-
tion and an experiment with real data demonstrate the
promise of our approach.

Introduction
The advent of agile sensing systems that collect data through
a variety of sensing modalities has brought about new and
exciting challenges to the field of signal processing. Agile,
multi-modal, sensing (see e.g. (Krishnamurthy 2002) and
(Kastella & Hero 2005)) exploit the capability of control-
ling the data collection process. Examples of agile sensing
systems include a radar that can control its beam direction,a
land mine detector that can deploy radar or seismic sensors,
or a LANDSAT satellite that can control the frequency band
of its radar. The key element that differentiates agile sensing
systems from other data collection systems is a resource al-
location constraint that precludes using all sensor modalities
at all times. We formulate agile sensing as an optimization
in which the system must automatically select the best sens-
ing modality based on past observations to maximize a given
objective function while minimizing the data collection cost.

When formulated as a sequential choice1 of experiments
problem (DeGroot 1970), the agile sensing problem consists

∗This research was partially supported by DARPA-MURI grant
ARO DAAD 19-02-1-0262.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1The key difference from the related sequential design of ex-

of an episodic task that is divided into a sequence of deci-
sion epochs. Each episode begins as the first observation is
collected. Then, at each subsequent decision epoch two de-
cisions are made. The first one is to decide if the amount of
information collected thus far is sufficient for making infer-
ence (detection or estimation) on the data with a desired ac-
curacy or whether more observations are required. This first
decision also determines the choices available at the second
decision. If more observations are required, the next best
sensor modality needs to be determined. If the information
is deemed sufficient for inference, the final estimation or de-
tection decision is made. Every sensor modality has an asso-
ciated deployment cost and a decision rule must balance the
expected information gain from a sensor deployment, which
results in improved inference capabilities, with the deploy-
ment cost. The collection of decision rules, i.e., the sequence
of mappings from past observations to the decision space, is
called a policy and the goal is to find a policy that optimally
trades-offs the overall average sensor deployment costs and
the estimation or detection performance, e.g., mean squared
estimation error or classification error rate.

The problem of finding optimal policies for sequen-
tial choice of experiments suffers from the curse-of-
dimensionality (Bellman 1957) and scenarios in which a
closed form solution for the optimal policy exists are rare.
Past research has focused on the asymptotic regime in
which one assumes a large number of data collection iter-
ations (or sensor dwells) and low sensor deployment cost
(see (Keener 2005) and references therein). Another focus
has been on “experiment sufficiency” – when is one experi-
ment (or sensor modality) always better than another exper-
iment (see (Goel & Ginebra 2003) and references therein).

In this paper, we take a different approach. We assume
that the underlying model is unknown and aim at finding
approximatesolutions to the optimal policy. In particular, in
the absence of a model, optimal policies are approximated
from data using a generative model, where data is generated
by a simulator or collected in a field experiment. It is shown
that this problem formulation falls into the class of reinforce-
ment learning problems and the Classification Reduction of
Policy Search (CROPS) methodology that has been recently

periment problem is that instead of adapting a set of continuous
experiment parameters, here we choose from a finite set of fixed
experiments.
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proposed by the authors (Blatt & Hero 2005) is applied. Two
case studies are reported as well. The first is the problem of
finding sensor scheduling policies for land-mine detection.
For this problem a simulator is used to generate data which
is then used for policy search. The second problem is per-
form optimal waveform selection for a multi-band radar on
a land classification satellite. In this application competitive
policies are found from experimental LANDSAT data.

Problem Formulation
Let X1 ∈ X1, X2 ∈ X2, . . . , XK ∈ XK beK random vari-
ables that correspond to the outputs ofK sensors orK sen-
sor modalities. Note that each of these random variables
lies, in general, in a different space. We append each ran-
dom variables with its index so that a value of an observa-
tion also indicates which sensor was used to collect it. Let
Y ∈ Y be a discrete random variable that represent the state
of nature whose value we try to predict. The presented re-
sults can also be applied whenY is a continuous random
variables, whose value we try to estimate, but we focus on
the detection problem for concreteness.

A policy π specifies which sensor to deploy first, say sen-
sork. Then based of the value ofXk the policy determines
if an accurate prediction ofY is possible, and if so, what
is the best prediction, or, otherwise, which is the next best
sensor to deploy to collect additional data. This process con-
tinues until either a prediction ofY is made or all available
sensors are deployed. We assume that each sensor can be
applied at most once and hence, the total number observa-
tions is bounded byK. Therefore, a policyπ is sequence
of K + 1 decision rulesπ = [π1, π2, . . . , πK+1]. This as-
sumption is valid when the randomness in the process, e.g.
the observation noise, is governed by clutter that cannot be
averaged out by repeated measurements, rather than by ther-
mal noise. Note thatπ1 simply indexes the first sensor to
deploy (excluding the possibility of predictingY without
taking any observations), and hence,π1 ∈ {1, 2, . . . ,K}.
Also note thatπK+1 is used only if at all the decision epochs
the decision was to defer the prediction ofY and deploy
another sensor. The decision ruleπK+1 is a map from
X1 × X2 × . . . × XK to Y. If the objective is to try to
minimize the detection error, then it is well known that the
optimal map is the Bayes classifier (Hastie, Tibshirani, &
Friedman 2001)

π∗
K+1(x1, x2, . . . , xK) = arg max

y∈Y

Pr {Y = y|X1 = x1, X2 = x2, . . . , XK = xK} .

The domain and range of the decision rules for stages
2, . . . ,K depend on the sequence of sensors deployed up
to the decision time. For example, ifπ1 = k, then

π2 : Xk → ({1, 2, . . . ,K} \ k)
⋃

Y.

If π2(xk) ∈ ({1, 2, . . . ,K} \ k) then the decision is to take
another observation using sensorπ2(xk). Alternatively, if
π2(xk) ∈ Y, then the decision is that the amount of infor-
mation is sufficient andπ2(xk) is the predictor ofY . Instead
of explicitly defining the policy through a sequence of map-
pings whose domains and ranges depend of past decisions

and observations, we letZ = [X1, . . . , XK ] and define the
policy π as a two-dimensional function ofZ. Given, the
value of Z, its first argument[π(Z)]1 is the resulting se-
quence of sensors that were deployed prior to the final de-
cision and its second argument[π(Z)]2 is the prediction for
Y . Note that in general, only a subset of the elements ofZ
are observable at the time the final decision is made.

Denote byPc(π) = Pr{[π(Z)]2 = Y } the probability of
correctly predicting the value ofY based on the data col-
lected according to the policyπ, by C([π(Z)]1) the cost as-
sociated with the sequence of sensor deployments[π(Z)]1,
e.g., the number of sensor dwells, and byE {C([π(Z)]1)}
the expected cost. We assume that the cost of the deploy-
ment of a sequence of sensors is the sum of the costs of
deploying each of the sensors, and hence, does not depend
on the order of deployment. The optimal policyπ∗ is the
policy that maximizes

Pc(π) − λE {C([π(Z)]1)} , (1)
whereλ is a tuning parameter that trades off the cost of
data collection and the cost of prediction error. Under cer-
tain regularity conditions, the optimal policy can be de-
fined though backward induction (see e.g. (Puterman 1994)).
However, whenX1, . . . ,XK are continuous or discrete and
large, the solution becomes intractable. Furthermore, even
whenX1, . . . ,XK are finite and relatively small, the back-
ward induction iterations require computing expectations
with respect to the joint distribution ofZ andY .

In this paper we allowX1, . . . ,XK to be continuous or
discrete and large, and consider the case in which the joint
distribution ofZ andY is unknown. We assume thatn real-
izations of(Z, Y ) are available and the goal is find a policy
that maximizes (1) based on this data set. Hence, this is a
model free instance of the sequential choice of experiments
problem as formulated in (DeGroot 1970), which, to the best
of our knowledge, has not been considered previously in the
literature.

Partially Observable Markov Decision
Processes and Reinforcement Learning

The field of reinforcement learning is centered around the
challenge of designing agents that learn to act in a stochastic
environment by interacting with it (Sutton & Barto 1998).
As the agent interacts with the environment it receives re-
wards, and the goal is to eventually learn through these re-
wards which actions maximize the future sum of rewards. A
common mathematical model for reinforcement learning is
the problem of finding the optimal policy for controlling a
finite-horizon partially observable Markov decision process
(POMDP) (Kearns, Mansour, & Ng 2000). The formulation
of our sequential choice of experiments problem as finite-
horizon POMDP consists of several elements:
• The decision epochsdetermine the times in which the

agent is to take an action. In the discrete model adopted
here, decision epochs occur att = 0, . . . , τ . At every de-
cision epoch either another observation is collected, or a
final prediction ofY is made. In the later case the pro-
cesses terminates. Therefore,τ is a random variable that
depends on the deployed policy andZ.

ICAPS 2006

6 Workshop on POMDPs, Classification and Regression: Relationships and Joint Utilization



• The system’s state is the realization ofY which is fixed
throughout the episode.

• The state at time zero is a random variable with distribu-
tion D overY.

• The state of the system cannot be directly observed but
instead after every decision epocht = 0, . . . , τ , in which
the decision is to collect another observation, a noisyob-
servation Ot of the systems’ state is collected. The do-
main and distribution of the observation depends on the
underlying systems’ stateY and the deployed sensor. De-
note byOt = [O0, O1, . . . , Ot] the observations up to and
including timet < τ , and note thatOt is a subset ofZ.

• At every decision epoch0 ≤ t ≤ τ the agent chooses an
action at, based on the past observations, from a set of
possible actions called theaction spaceAt. Though not
explicitly appearing in the notation, the set of available
actionsAt may depend on the past actions. In our appli-
cation, only actions that correspond to sensors that have
not be previously deployed can be taken.

• There exists a termination action which ends the process,
such as the action of making the prediction ofY .

• We note that even though in our formulation the state of
the system is fixed throughout the episode, the results can
be generalized to the case in which upon taking actiona
at statey, the system makes a transition to statey′ accord-
ing to a transition probability Py,a. In other wards, it
is possible to generalize to the case in which the system’s
states evolve as a Markov process. This generalization is
important for cases in which sensor deployment may be
sensed by the target and lead to changes in the target’s
state as in (Kastella & Hero 2005).

• A reward r(Y, a) is received after each time an action
is taken. When a sensor is deployed to collect another
observation,r(Y, a) is minus the cost of deploying sensor
a regardless of the state of the system. When the final
prediction is made a reward of one unit is received only
if the predictiona = Ŷ (Oτ−1) equalsY , i.e.,r(Y, a) =
I(a = Y ), whereI is the indicator function that equals
one when its argument is true and zero otherwise.

• A policy π is a sequence of decision rules, or mappings
from past observations to the action spaces, which speci-
fies the action to take at each decision epoch. The policy
is composed ofK + 1 decision rules(π0, π1, . . . , πK),
however, if the termination action is taken prior to deci-
sion epochK then not all decision rules are executed.

A typical episode is a sequence

a0 → O0 → a1(O0) → O1 → a2(O1) . . .

Oτ−1 → aτ (Oτ−1) = Ŷ (Oτ−1),

where a0 is the first decision to deploy a sensor before
any observations were collected,O0, O1, . . . , Oτ−1 are the
observations whose domains and distributions depend on
Y and the decisionsa0, a1, . . . , aτ−1, respectively, and
aτ (Oτ−1) is a decision that the past observations are suf-
ficient for making a prediction onY , and it specifies the pre-
dictor Ŷ (Oτ−1). The objective is to find a policyπ that

maximizes the expected sum of rewards:

V (π) = Eπ

{
τ∑

t=0

r(Y, πt(Ot−1))

}
, (2)

where the expectation is taken with respect to the joint distri-
bution ofZ andY , which, throughπ, induce a distribution
on the observationsO0, O1, . . . , Oτ−1. The expected sum
of rewardsV (π) is called the value of the policyπ.

It is well known that when the underlying joint distribu-
tion of the system state and the observations is known and
the observations can take a finite number of possible val-
ues, it is possible to formulate the problems in terms of the
information state and solve for the optimal policy (Kael-
bling, Littman, & Cassandra 1998). In our setting, how-
ever, the joint distribution is unknown and the observations
are, in general, continuous random variables. Approximat-
ing the optimal policy in this case is a classic problem in re-
inforcement learning. Here, we adopt the generative model
assumption of (Kearns, Mansour, & Ng 2000). Under this
assumption, the initial distributionD and the distribution of
the observations conditioned on the system state and the de-
ployed sensor are unknown but it is possible to generate re-
alizations of the system stateY according toD and observa-
tions conditioned on arbitrary stateY and deployed sensor.
In particular, we assume that we haven realizations of the
pair (Z, Y ) denoted by{(Z1, Y1), (Z2, Y2), . . . , (Zn, Yn)}.
Note that given a realization(Z1, Y1) it is possible to gen-
erate the entire decision tree associated with the sequential
choice of experiment problem. An example of the decision
tree in a problem in which there are two sensorsK = 2 and
Y = {0, 1} is given in Figure 1. Given a realization(Z1, Y1)
and a policyπ, it is possible to follow the path that a system
that usesπ will follow and compute the sum of rewards for
this realization. Prior to the prediction ofY , the rewards
are minus the sensor deployment costs, and, at the predic-
tion epoch, a unit reward is received only ifŶ (Oτ−1) = Y1,
whereŶ (Oτ−1) is chosen by following the path induced by
π.

Figure 1: A decision tree for a sequential choice of experi-
ment problem withK = 2 andY = {0, 1}.

Now, consider a class of policiesΠ, i.e., each element
π ∈ Π is a sequence of decision rulesπ = (π0, π1, . . . , πK).
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It is possible to estimate the valueV (π) (2) of any policy in
the class from the set of trajectory trees by simply averaging
the sum of rewards on each tree along the path that agrees
with the policy (Kearns, Mansour, & Ng 2000). A policy
specifies the action to take at each decision epoch and so
there is exactly one path in every tree that agrees with a given
policy. Denote byV̂ i(π) the observed sum of rewards on
thei’th tree along the path that corresponds to the policyπ.
Then the value of the policyπ is estimated by

V̂n(π) = n−1

n∑

i=1

V̂ i(π). (3)

In (Kearns, Mansour, & Ng 2000), the authors show that
with high probability (over the data set)̂Vn(π) converges
uniformly (overΠ) to V (π) with rates that depend on the
VC-dimension of the policy class. This result motivates the
use of policiesπ with high V̂n(π), since with high probabil-
ity these policies have high values ofV (π).

In (Blatt & Hero 2005) it is shown that while the task of
finding the global optimum within a class of non-stationary
policies may be overwhelming, the componentwise search,
i.e., optimizing a single decision rule at a time, leads to sin-
gle step reinforcement learning problems which can be re-
duced to a sequence of multi-class weighted classification
problems. Multi-class weighted classification problems can
be solved using re-sampling methods or heuristic extensions
of methods for binary weighted classification (see (Abe,
Zadrozny, & Langford 2004) for both approaches). Below,
it is shown how to convert a multi-action RL problem into a
binary RL problem by introducing dummy decision epochs.
Then, applying the method in (Blatt & Hero 2005) leads to a
sequence of binary weighted classification problems that can
be directly solved using off-the-self classification methods.

A Nonlinear Gauss Seidel Approach
Suppose an initial policy is given and one wishes to im-
prove upon it by optimizing one of the decision rules at a
time while holding the rest fixed. In (Blatt & Hero 2005)
it is shown that this component-wise search is equivalent
to simple tree pruning operations. In particular suppose
πk is updated while the decision rules(π0, . . . , πk−1) and
(πk+1, . . . , πK) are held fixed. Since(π0, . . . , πk−1) are
held fixed, the path taken by the policy up to and includ-
ing epochk−1 will not change when we updateπk. Hence,
it is possible to prune the tree from the top down to epochk
by removing the branches that do not agree with the actions
taken according to(π0, . . . , πk−1). Since(πk+1, . . . , πK)
are held fixed, the path taken by the policy after taking
each of the possible actions at epochk are known and will
not change when we updateπk. Hence, it is possible to
prune the tree fromk + 1 to the leaves by removing the
branches that do not agrees with the actions taken accord-
ing to (πk+1, . . . , πK). Furthermore, since by the second
pruning the path that will be followed after taking each of
the actions at decision epochk is known, it is possible to
obtain realizations of the sum of future rewards that results
in taking each of the actions at decision epochk. In math-
ematical programming, a component-wise optimization of a

nonlinear function is often referred to as nonlinear Gauss-
Seidel algorithm (Bertsekas 1999). It is in this sense that
we call the above component-wise policy search a nonlinear
Gauss-Seidel approach.

This procedure is illustrated for the simple decision tree
of Figure 1 in Figure 2. Note that since after taking an ac-
tion at decision epoch1 the path of the tree is fixed regard-
less of the policy (see Figure 1), there is no tree pruning,
only reward propagation according to the value ofŶ (O2).
Specifically, after the reward propagation, we can observe
that taking action ’make prediction‘ results in an immediate
and final rewardI(Ŷ (O1) = Y ) and taking action ’deploy
sensor 2‘ lead to an immediate reward of minus the deploy-
ment cost associated with sensor2 plus the subsequent re-
ward I(Ŷ (O2) = Y ). Since at epoch1 the future sum of
rewards is determined for every action, the task of updating
policy π1 is a single step RL problem. Below it is shown
that this problem is equivalent to a certain supervised learn-
ing problem. Before the conversion to supervised learning,
we convert the RL problem into a binary RL problem.

Figure 2: Updatingπ1 while holdingπ0 andπ2 fixed.

From Multiple-Action Reinforcement
Learning to Binary Reinforcement Learning

The nonlinear Gauss-Seidel approach of the previous sec-
tion breaks the multi-stage search associated with the trajec-
tory tree method into a sequence of single-stage RL subprob-
lems. In (Blatt & Hero 2005) these single-stage RL subprob-
lems were converted to multi-class weighted classification
problems, which can then be solved using, e.g., re-sampling
methods (Abe, Zadrozny, & Langford 2004). In this sec-
tion it is shown that it is possible to convert a single-stage
RL problem into multi-stage binary RL problem, apply the
nonlinear Gauss-Seidel approach, and arrive at a sequence
of binary single-stage RL subproblems.

Consider a single-stage RL problem withK possible ac-
tions. It is possible to describe any action as the answer
to at most⌈log2(K)⌉ ’yes or no‘ questions, where⌈x⌉ is
the smaller integer larger than or equal tox. Then, the
single-stage RL problem is described by the decision tree
associated with these binary decision epochs. Once an in-
termediate decision is made, it corresponds to a transition
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to the same state, i.e., the state does not evolve, but with a
reduced (halved) action space. Only when the decision is
between two actions, does the chosen action is executed and
a state transition occurs. Figure 3 demonstrate converting
a 4-action single-stage RL problem into a two-stage binary
RL problem.

Finally, reapplying the nonlinear Gauss-Seidel algorithm
of the previous section leads to a sequence of single-stage
binary RL subproblems.

Figure 3: Converting a4 action single-stage RL problem
into a two-stage binary RL problem.

A Reduction From a Single Step
Reinforcement Learning Problem to Weighted

Classification
In this section we present the conversion of a single-step bi-
nary RL problem into a supervised learning problem, which
is a special case of the classification reduction in (Blatt &
Hero 2005). The goal is to leverage techniques and theo-
retical results from supervised learning for solving the more
complex problem of reinforcement learning (Barto & Diet-
terich 2004). To simplify to presentation we do not carry the
heavy notation of the previous section but rather introducea
simple generic notation to explain the conversion. Consider
a single-step binary RL problem. An initial stateS0 ∈ S
generated according to the distributionD is followed by one
of 2 possible actionsA ∈ {0, 1}, which leads to a transition
to stateS1 whose conditional distribution given that the ini-
tial state iss and the action isa is given byPs,a. Given a
class of policiesΠ, where a policy inΠ is a map fromS to
A, the goal is to find

π̂ ∈ arg max
π∈Π

V̂n(π). (4)

In this single stage problem the data aren realizations
of the random element{S0, S1|0, S1|1}, whereS1|0 (re-
spectivelyS1|0) is a realization ofS1 after taking action0
(respectively1) at stateS0. Denote thei’th realization by

{si
0, s

i
1|0, si

1|1}. In this case,̂Vn(π) can be written explic-
itly by

V̂n(π) = En

{
1∑

l=0

r(S0, l, S1|l)I(π(S0) = l)

}
, (5)

wherer(S0, l, S1|l) is the reward gained when taking action
l at stateS0 and making a transition to stateS1|l, for a func-
tion f , En {f(S0, S1|0, S1|1)} is its empirical expectation
n−1

∑n

i=1
f(si

0, s
i
1|0, si

1|1), andI(·) is the indicator func-
tion taking a value of one when its argument is true and zero
otherwise.

The following theorem shows that the problem of max-
imizing the empirical reward (5) is equivalent to a binary
weighted classification problem.

Proposition 1 Given a class of policiesΠ and a set ofn
trajectory trees,

arg max
π∈Π

En

{
1∑

l=0

r(S1|l)I(π(S0) = l)

}
= arg min

π∈Π

En

{
|r(S1|0) − r(S1|1)|I(π(S0) 6= arg max

k
r(S1|k))

}

Proof 1 Take L = 2 in Proposition 1 in (Blatt & Hero
2005).

The theorem implies that the maximizer of the empirical
reward over a class of policies is the output of an optimal
weights-dependent classifier for the data set:
{(

si
0, arg max

k∈{0,1}
r(si

1|k), |r(si
1|0) − r(si

1|1)|

)}n

i=1

,

where for each sample, the first argument is the example, the
second is the label, and the third is a realization of the cost
incurred when misclassifying the example. The implication
is that a variety of supervised learning methods, such ask-
nearest neighbors (Devroye, Györfi, & Lugosi 1996), neu-
ral networks (Bishop 1995), Boosting (Freund & Schapire
1997), and support vector machines (Schölkopf & Smola
2002), can be applied to solve the single-stage binary RL
problem.

Sensor Scheduling for Land-Mine Detection
This section reviews a sequential choice of experiment prob-
lem that arises in the design of unmanned land-mine detec-
tion vehicle. The vehicle carries three sensors for perform-
ing the detection: an EMI sensor, a ground penetrating radar
(GPR), and an acoustic sensor. As can be seen in Figure 4,
the sensors have different responses under different typesof
land-mines and clutter. In addition, deploying a sensor takes
time and energy and hence not all sensors are deployed at
every potential land-mine location. Upon reaching a new lo-
cation, in which a land-mine is potentially present, a policy
that trades of the cost of a sensor deployment and detec-
tion probability determines the first sensor to deploy. Based
on the collected measurement, either a prediction regarding
the presence of the land-mine is made or a second sensor is
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deployed. Finally, based on the output of the first two de-
ployed sensors, either a prediction regarding the presenceof
the land-mine is made or a third sensor is deployed followed
by the final prediction based on all three measurements. The
goal is to maximize the probability of correct detection mi-
nus a constantc > 0 (1) times the number of sensor dwells.

Since there are a total of three sensorsZ = [X1, X2, X3].
The state space is binaryY = {0, 1}, whereY = 0 means
no land-mine is present andY = 1 indicates the presence of
a land-mine. The decision tree associated with this problem
is presented in Figure 5.

Figure 4: Sensors signatures for several land-mine and clut-
ter types.

Figure 5: The decision tree associated with the land-mine
detection problem.

Figure 7 summarizes the features extracted from each sen-
sor and their expected signatures under different scenarios.
In the simulation, one of the possible eight scenarios was
first chosen randomly. Then, a realization of each of the
features, which together composeZ, is generated as a Gaus-
sian random variable with means0, 0.5, or 1, corresponding
to low, medium, or high, respectively. The covariances of
sensors1, 2, and3, were0.5I, 0.45I and0.1, respectively,
whereI is the 2-dimensional identity matrix. These values
of means and covariances were chosen in correspondence
with experiments that were conducted in a sand box (Mar-
ble, Blatt, & Hero 2006). Hence the marginal distribution
of the vector of sensor outputs is a five-dimensional eight-
component Gaussian mixture.

Before searching for the optimal sensor scheduling policy,
the classifierŝY (O1), Ŷ (O2), Ŷ (O3) for all possible combi-
nations of sensor selections

X1, X2, X3,

(X1, X2), (X1, X3), (X2, X3),

(X1, X2, X3)

were found by training two-layer feed-forward neural net-
works, each with ten input and two output nodes, on1000
samples of(Z, Y ). By testing the performance of these clas-
sifiers on a separate test set of1000 samples, we found that
the best single sensor to use for detecting a land-mine is the
EMI sensor, that the two best fixed sensors are GPR plus
the Seismic, and that in this scenario the classifier which is
based on the output of all three sensors has a probability of
correct detection of0.887. The search for the optimal sen-
sor scheduling policy was conducted while these classifiers
remained fixed. In other words, only decisions regarding
whether or not to deploy a sensor, and which sensor to de-
ploy next were considered. Since the classifiers remained
fixed during the policy search, once a decision to make pre-
diction is made, the reward is gained according to the clas-
sifier output, without trying to further optimize its perfor-
mance.

As explained above, the optimal policy was approximated
by introducing dummy decision epochs, so that all the deci-
sions are binary. We then performed the nonlinear Gauss-
Seidel decomposition into a sequence of single-stage binary
reinforcement learning problems. Each subproblem was
then converted to a weighted classification problem that was
solved by a weights-sensitive two-layer feed-forward neural
network with seven input and two output nodes.

Figure 6 summarizes the results. The horizonal axis is the
average number of sensor dwells and the vertical is the prob-
ability of correct detection. The three solid circles corre-
spond to the performance of the best single sensor, best two
sensors, and the performance when all three sensors are de-
ployed, respectively. These points are connected by a solid
line that corresponds to performance that can be achieved by
randomly selecting one of these fixed sensor configurations.
The crosses corresponds to the performance (estimated from
a 1000 trail test set) obtained by the approximated optimal
sensor scheduling policies. Each cross correspond to a dif-
ferent choice ofc (1), ranging fromc = 0.2 at the left lower
corner andc = 0 at the outmost upper right cross. When
c = 0.2 the price of taking more than a single measurement
is too dear compared to the improvement in the probability
of correct detection and the policy dictates making decision
using only a single sensor. Asc decreases, more and more
observations are allowed. It is interesting to see that when
c is zero, i.e, the sensor deployment cost is zero, the algo-
rithm does not always deploy all three sensors, but achieves
better performance than when all three sensors are always
deployed. This happens since the classifiers used at the pre-
diction stages are not the Bayes classifiers (in which more
information can never worsen performance) but rather sub-
optimal classifiers that were found by training neural net-
works.
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Figure 6: Performance of sensor-scheduling-based detection compared to detection under optimal fixed sensor allocations.

Figure 7: Sensor mean responses under various scenarios. M-Metal, P-Plastic, AP-Anti personal, AT-Anti tank, Cltr-1-Hallow
metal clutter, Cltr-2-Hallow non-metal clutter, Cltr-3-Non-metal non-hallow clutter, Bkg-Background.
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Figure 8: Performance of sensor scheduling algorithm for
the land monitoring satellite problem.

It is encouraging that by training the neural networks we
found a policy that accounts for generalization errors at the
predictor level and do not collect the third observation when
that observation might lead to a worse prediction. In sum-
mary, it can be seen that through sensor scheduling it is pos-
sible to achieve better classification performance with fewer
average number of sensor dwells. The actual sensor se-
quences taken under the possible eight scenarios when the
policy whose performance cross is circled is presented in
Figure 7. It is seen that the optimal policy dictates that the
first deployed sensor is the GPR sensor even though the op-
timal single sensor is the EMI sensor. This is not surpris-
ing since an optimal sensor scheduling optimizes the future
sum of rewards rather than choosing the sensor whose stand
alone performance are the best. Furthermore, only when the
underlying system state is a plastic anti-personal land-mine,
which has the weakest signature, does the policy dictate us-
ing all three sensors. In other cases, two sensors are suffi-
cient for the land-mine detection.

Waveform Selection for Land Monitoring
Satellite

In this section, the optimal sensor scheduling algorithm is
applied to real data for the problem of waveform selec-
tion for a LANDSAT land monitoring satellite. The satel-
lite collects a radar backscatter on a patch of land and the
goal is to classify the land type based on the returned sig-
nal. Given a new probing location, the satellite can transmit
one of four possible waveforms. The different waveforms
correspond to different frequency bands. Therefore,Z =
[X1, X2, X3, X4]. Each of the observationsX1, . . . , X4 is a
9-dimensional vector taking values in[0, 255]9, and hence,
Z is a36-dimensional vector. There are six land types, and
henceY = {1, 2, . . . , 6}. In the public data set (Srinivasan
1994), there are4435 points in the training set and2000 in
the test set. For a more detailed explanation of the problem

see (Hastie, Tibshirani, & Friedman 2001) chapter13. In
this section we explore using sensor scheduling for reducing
the number of waveform (frequency band) transmissions. In
particular, we find policies that select the first best two fre-
quency bands and based on the outcome determine if the
remaining frequency bands are required, or whether the first
two bands provide sufficient information for classifying the
land type. Hence, at the first decision epoch there are six
possible actions leading to siz possible measured pairs of
frequency bands:

{[X1, X2], [X1, X3], [X1, X4], ...

[X2, X3], [X2, X4], [X3, X4]}.

The land type classifiers are thek-nearest neighbors algo-
rithm withk set to5, as recommended in (Hastie, Tibshirani,
& Friedman 2001) for the non-sequential problem. Two
classifiers for the policy search were considered. The first
is a [7, 5, 2] feed-forward weights-sensitive neural network.
The second is a weights-sensitivek-nearest neighbor, where
k = 30. The performance are summarized in Figure 8.
The crosses correspond to the performance of policies that
were found by weights-sensitivek-nearest neighbor classi-
fiers asc ranges from0 to 0.18. The squares correspond
to the performance of policies that were found by weights-
sensitive[7, 5, 2] feed-forward neural networks for four val-
ues ofc. To study the effect of the initial network weights
distribution, for each value ofc, the neural networks train-
ing was initiated at four random weights selections, leading
to four resulting policies. As can be seen, under both learn-
ing configurations it is possible to obtain a range of trade-
offs between sensor deployment cost and classification per-
formance. Particularly, the policy learned by thek-nearest
neighbor classifier withc = 0.02 almost achieves the same
performance as when all sensor modalities are used, but with
a significant reduction in deployment cost. From comparing
the performance of thek-nearest neighbor classifier based
policy with the one based on the neural networks it is seen
that the performance achieved by the two architectures are
comparable.

Conclusions
Sensor scheduling for controlling agile sensing systems was
formulated as a sequential choice of experiments problem
and solved via a reduction of the associated RL problem to a
sequence of supervised learning problems. The method was
applied to both real and synthetic data – land mine detection
and LANDSAT terrain classification. Finally, the authors
would like to thank Jay Marble and Raviv Raich for helpful
discussions.
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Scḧolkopf, B., and Smola, A. J. 2002.Learning with Ker-
nels. MIT, Press.
Srinivasan, A. 1994. The landsat data
set. http://www.niaad.liacc.up.pt/
old/ statlog/ datasets/ satimage/
satimage.doc.html.
Sutton, R. S., and Barto, A. G. 1998.Reinforcement Learn-
ing. MIT Press.

ICAPS 2006

Workshop on POMDPs, Classification and Regression: Relationships and Joint Utilization 13



Application of Partially Observable Markov Decision Processes to Robot
Navigation in a Minefield

Lihan He, Shihao Ji, and Lawrence Carin
Department of Electrical and Computer Engineering

Duke University
Durham, NC 27708-0291, USA
{lihan,shji,lcarin}@ee.duke.edu

Abstract

We consider the problem of a robotic sensing system nav-
igating in a minefield, with the goal of detecting potential
mines at low false alarm rates. Two types of sensors are
used, namely, electromagnetic induction (EMI) and ground-
penetrating radar (GPR). A partially observable Markov deci-
sion process (POMDP) is used as the decision framework for
the minefield problem. The POMDP model is trained with
physics-based features of various mines and clutters of in-
terest. The training data are assumed sufficient to produce a
reasonably good model. We give a detailed description of the
POMDP formulation for the minefield problem and provide
example results based on measured EMI and GPR data.

Introduction
In many sensing problems, a robotic platform is preferred
to a humanly-operated platform, an important example be-
ing that of ground-based sensing of landmines (MacDon-
ald 2003). The robotic platform navigates in a minefield
in an autonomous fashion, with optimal decisions dynami-
cally made for its position, orientation, and the deployment
of multiple sensors. The decision optimization is based on
minimizing two fundamental types of costs in landmine de-
tection: the detection cost and the sensing cost.

The landmines and mine-like clutter vary considerably in
their contents (metal, plastic, etc) and size (small, large, etc),
therefore it is vital to build a unified model to represent the
mines and clutter so as to make the decision making possi-
ble. There are several typical sensors used in landmine de-
tection, including ground-penetrating radar (GPR) and elec-
tromagnetic induction (EMI) sensor, which we consider in
the present paper.

The minefield problem may be cast in the form of an adap-
tive sensor-management problem (Kastella 1997; Abdel-
Samad & Tewfik 1999) (here with two sensors, the GPR
and EMI sensors), though the problem is complicated sig-
nificantly by the variety of the landmine and clutter signa-
tures. We here consider a partially observable Markov de-
cision process (POMDP) formalism (Kaelbling, Littman, &
Cassandra 1998). In the POMDP formulation the environ-
ment under test is assumed to reside within a particular state

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

SE , and this state is not observable directly; the state of the
environment, defined by the presence/absence of a mine in
the region being sensed, is unchanged by the sensing itself.
The state SE is partially observable, in the form of the mea-
sured sensor data. The agent has particular actions at its
disposal, including “moving to a new location”, “deploying
one of the sensors”, “declaring the presence or absence of
landmines’. Each of these actions has an expected immedi-
ate cost, as well as an impact on the long-term sensing cost.
The POMDP constitutes a framework that balances the (dis-
counted) infinite-horizon performance of this multi-sensor
problem, i.e., it accounts for the immediate expected cost,
as well as discounted future costs, over an infinite horizon
(Kaelbling, Littman, & Cassandra 1998).

The POMDP is employed to constitute a sensing pol-
icy, defining the optimal next action to take based upon
the agent’s current belief about the environment under test
(Kaelbling, Littman, & Cassandra 1998). The belief is de-
fined in terms of a belief state, a probability mass function
(pmf) of the environmental states SE , conditional on all pre-
vious actions and observations (Kaelbling, Littman, & Cas-
sandra 1998). To compute the belief state one requires an
underlying model of the environment under test (Kaelbling,
Littman, & Cassandra 1998), characterized by a statistical
representation of observations given a sequence of control-
ling actions. We assume that we have access to a sufficient
ensemble of measured data collected by the GPR and EMI
sensors of the mines and mine-like clutter, so that we can
design the POMDP model and find the corresponding opti-
mal policy. The target states ST of the POMDP are defined
by sensor positions relative to the target, and the sequence
of target states visited is modeled as a Markov process, con-
ditioned on the sensor-platform motion; since the target po-
sition is unknown (hidden), the state is partially observable.
In this setting we must distinguish the overarching state of
the environment under test SE , which is to be inferred by the
POMDP policy (via the belief state), vis-a-vis the states of
the underlying target model ST , which are visited when per-
forming the adaptive sensing. Given a set of GPR and EMI
data, measured at a sequence of spatial positions relative to
the target, we must now develop the POMDP model.

In this paper we develop a POMDP formulation based on
the assumption that a priori and adequate training data are
available for model development. We here employ measured
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GPR and EMI data, for real mines and realistic clutter. The
measured data considered in this study are available upon
request, and therefore it is hoped that it will evolve to a stan-
dard data set researchers may use to test different adaptive
sensor-management algorithms.

Partially Observable Markov Decision
Processes

A POMDP model is represented by a six-element tuple
〈S, A, T, Ω, O, R〉, where S is a finite set of discrete states,
A is a finite set of discrete actions, and Ω is a finite set of
discrete observations. The state-transition probability

T (s, a, s′) = Pr(St+1 = s′|St = s, At = a) (1)

describes the probability of transitioning from state s to state
s′ when taking action a. The observation function

O(a, s′, o) = Pr(Ot+1 = o|At = a, St+1 = s′) (2)

describes the probability of sensing observation o after tak-
ing action a and transiting to state s′. Finally, the reward
function R(s, a) represents the immediate expected reward
the agent receives by taking action a in state s.

Since the state is not observed directly, a belief state b
is introduced. The belief state is a probability distribution
over all states, representing the agent’s probability of being
in each of the states based on past actions and observations,
assuming access to the correct underlying model. The belief
state is updated by Bayes rule after each action and observa-
tion, based on the previous belief state:

bt(s′) =
1
c
O(a, s′, o)

∑

s∈S

T (s, a, s′)bt−1(s) (3)

with the normalizing constant

c =
∑

s′∈S

O(a, s′, o)
∑

s∈S

T (s, a, s′)bt−1(s) = Pr(o|a, b) (4)

A POMDP policy is a mapping from belief states to ac-
tions, telling the agent which action to take based on the
current belief state. The goal of the POMDP is to find an
optimal policy by maximizing the expected discounted re-
ward

V = E[
k−1∑
t=0

γtR(st, at)] (5)

which is accrued over a horizon of length k. The discount
factor γ ∈ (0, 1] describes the degree to which future re-
wards are discounted relative to immediate rewards. If k is
finite the optimal action depends on the distance from the
horizon, and therefore the policy is termed non-stationary.
However, often an appropriate k is not known, so we may
consider an infinite-horizon policy, i.e., k goes to infinity,
for which we require γ < 1. An infinite horizon also im-
plies a stationary policy, independent of the agent’s temporal
position.

When in belief state b, the maximum expected reward k
steps from the horizon V (k) is

V (k)(b)

= max
a∈A

[∑
s

R(s, a)b(s) + γ
∑

o

p(o|a, b)V (k−1)(bo
a)

]
(6)

where bo
a the belief state after the agent takes action a and

observes o, as updated in (5). The V (k)(b) represents the
maximum expected discounted reward the agent will receive
if it is in belief state b and takes actions according to the
optimal policy for future steps. In this paper policy design is
performed using the PBVI algorithm, with details provided
in (Pineau, Gordon, & Thrun 2003).

The POMDP Model for Landmine Detection
We consider a minefield as an area of land where mines of
several known types and other mine-like objects (clutter) are
buried underground. The positions of the mines and clutter
are unknown. The task is to detect the mines at a low false
alarm rate, with an economic use of sensors. This is a highly
dangerous task and therefore a robot platform is designed to
perform it. Below we specify the POMDP model for this
problem.

Feature extraction
The EMI measurement in any position is the complex re-
sponse of the magnetic field as a function of frequency. A
typical EMI response when the sensor is above a metal mine
is shown in Figure 1. The magnetic field induced by a target
is represented by the formula (Gadar, Mystkowski, & Zhao
2001)

H(ω) ∝ a +
b1ω

ω − jω1
+

b2ω

ω − jω2
(7)

where a, b1, b2 are related to the magnetic dipole mo-
ments of the target, and ω1 and ω2 represent the associ-
ated EMI resonant frequencies. Features can be extracted
from an EMI observation by fitting the measured data to the
model in (7), assuming additive noise n in the observation,
i.e.,Y (ω) = H(ω) + n . The nonlinear fitting parameters
{a, b1, b2, ω1, ω2} are our EMI features.

The GPR observation for a given position is recorded as
the radar signature as a function of time. The time dimen-
sion is associated with the depth of the soil: the signals re-
flected from deeper positions have larger time delays. Fig-
ure 2(a) shows a typical GPR observation when the sensor
is above a plastic mine, and Figure 2(b) is a 2-dimensional
scan of the landmine signature. Features extracted from a
GPR observation include the raw moments (corresponding
to energy features) and central moments (corresponding to
variance features) of the time series.

Specification of S, A, Ω, and R(s, a)
The landmine detection problem can be viewed as a gener-
alization of the tiger problem (Kaelbling, Littman, & Cas-
sandra 1998). Each mine type represents a type of tiger,
and each clutter type represents a type of non-tiger (reward).
The robot can observe sensor readings (listening in the tiger
problem) to gain information or make a declaration with
regard to the presence or absence of a mine (opening the
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Figure 1: EMI response and model fit when the sensor is
above a metal mine.
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Figure 2: The GPR response when the sensor is above a
plastic mine. (a) Amplitude vs. time signal in one position.
Units in time are 0.05 ns. The first peak corresponds to the
reflection from the ground surface. (b) 2-dimensional scan
of a plastic mine signature. Units in down-track position
are 2 cm. The arrow indicates the position where a sensor
measures the signal in (a).

door in the tiger problem) to complete the present detection
phase. When learning the policy, the problem resets imme-
diately after a declaration is made, and a mine or clutter is
randomly presented to the robot. This corresponds to the
robot randomly encountering a mine or clutter in the next
detection phase.

Across all five types of mines and clutter considered, we
define a total of 29 states, i.e. S = {1, 2, · · · , 29}. The 29
states are divided into 5 disjoint subsets: S = Sm∪Sp∪Sc1∪
Sc2 ∪ Sc0 , denoting metal mine, plastic mine, Type-1 clut-
ter (large-sized), Type-2 clutter (small-sized), and “clean”,
respectively. The number of states in each of the five sub-
sets are 9, 9, 9, 1, and 1, respectively. The multiple states
of metal mine, plastic mine, Type-1 clutter represent their
respective 9 annulus sectors. Definition of the states is illus-
trated in Figure 3(a).

In most cases, a mine and clutter is cylindrically symmet-
ric and is buried with its axis perpendicular to the ground
surface. This implies that the robot will not distinguish states
1, 2, 3, 4 (which are approximately equidistant to the metal

mine) by observing a single sensor reading in each respec-
tive state. However, by remembering its past observations
and actions, the robot will be able to tell apart these ambigu-
ous states.

The robot has 15 possible actions, i.e., A =
{1, 2, · · · , 15}, of which the first 10 are sensing actions and
the rest are declaration actions. Each sensing action has the
format of “move and then sense”, where move ∈ {stay,
walk south, walk north, walk east, walk west} and sense ∈
{sense with EMI, sense with GPR}, with EMI representing
an electromagnetic induction sensor and GPR a ground pen-
etrating radar. Of the 5 declaration actions, one declares the
present sub-area (where the robot currently is) to be “clean”,
and four respectively declare that there is a “metal mine”,
“plastic mine”, “Type-1 clutter”, or “Type-2 clutter” buried
beneath the present sub-area.

The set of possible observation Ω is obtained as the code-
book resulting from vector quantization (Gersho & Gray
1992) of the continuous sensor signatures. Each of the two
sensors, EMI and GPR, generates its own codebook inde-
pendently, resulting in two disjoint codebooks, which are
taken a union over to produce Ω.

The reward function R(s, a) is specified as follows. De-
note by m any of the 9 states for a metal mine, by p any of the
9 states for a plastic mine, and by c1 any of the 9 states for
a Type-1 clutter. Denote by c2 the Type-2 clutter and by c0

the “clean” state. See Figure 3(a) for definition of the states.
Denote by At the action of declaring the present sub-area to
be the state of t. Then R(s = t, a = At) = 10, for t = m,
p, c1, c2, or c0; R(s = m or p, a = Ac1 or Ac2 or Ac0) =
−100; R(s = c1 or c2 or c0, a = Am or Ap) = −50;
R(s = m, a = Ap) = 5; R(s = p, a = Am) = 5. All
the remaining entries of R(s, a) are zero.

Estimation of T (s, a, s′) and O(a, s′, o)
The two sensing actions involving “stay” do not cause state
transitions, hence T (s, a, s′) is an identity matrix when a is
“stay and sense with GPR” or “stay and sense with EMI”.
All remaining sensing actions can result in transitions from
one state to another. Assuming that the robot travels the
same distance in each step and that the robot’s position is
uniformly distributed in any given state, the probabilities of
these transitions are easily determined by using an elemen-
tary geometric probability computation. Figure 3(b) illus-
trates how the transition probabilities for the two sensing
actions involving “walk south” are computed.

Computing T (s, a, s′) and O(a, s′, o) requires prior
knowledge of the possible mines and clutters. This poses no
problem here, as we have the templates of the possible mines
and clutter, which can be employed to compute T (s, a, s′)
as well as collecting the training signatures for estimating
O(a, s′, o).

Experimental Results
We consider a robot navigating in three simulated mine
fields. The EMI and GPR data are pre-collected over a
1.6× 1.6 m2 per simulated mine field, with sensor data col-
lected at a 2 cm sample rate in two coordinate dimensions.
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Figure 3: (a) Definition of the states for the minefiel navigation problem. Metal mine, plastic mine, and Type-1 clutter (large-
sized) are each modeled by 9 states, indexed 1 to 9, 10 to 18, and 19 to 27, respectively; Type-2 clutter (small-sized) is modelled
by a single state (state 28); state 29 is used to indicate “clean” (i.e., there are no mine or mine-like objects buried underground).
(b) Illustration of the geometric method in computing the state transition probabilities T (s, a, s′) when a is one of the two
sensing actions involving “walk south”. It is assumed that the robot travels the same distance in each step and that the robot’s
position is uniformly distributed in any given state.

The pre-collected data are used to simulate the data collected
by an autonomous two-sensor agent, as it senses within the
mine field. The first simulated mine field is shown in Figure
6.

Clearly, to avoid missing landmines the robot should
search almost everywhere in a given mine field. However,
we hope that the robot can actively decide where to sense as
well as which sensor to use, to minimize the detection cost.
Considering these two requirements together, we assign a
basic path as shown in Figure 4 (dark blue curve with ar-
rows). The basic path defines the lanes as indicated by light
blue in the figure, and the robot is restricted to move along
the lanes by taking actions within the lanes. The basic path
restrains the robot from moving across the lanes, and the
robot defines sectors along each lane as being characterized
by one of the mines/clutter, including clean, while moving
in an overall direction consistent with the arrows in Figure
4. The distance between two neighboring basic paths should
be less than the diameter of a landmine signature.

It is possible that after many measurements in one local
area, the agent still cannot make a declaration. For example,
this can occur if the model we build does not fit the data
in this area, possibly because our model does not include
the current underground target. More measurements do not
help to make a better decision. If this happens, it is better
to say “I do not know” rather than continue sensing or make
a reluctant declaration. We let the robot declare unknown
in this situation, while in the lifelong learning algorithm the
oracle is employed.

In the offline-learning approach the training data are given

Figure 4: Robot navigation path in a mine field. The dark
blue curve is the basic path, which defines the lanes as in-
dicated by light blue. The robot is restricted to move along
the lanes by taking actions within the lanes. The basic path
restrains the robot from moving across the lanes.

in advance, and the training phase and test phase are sepa-
rate. We use Mine Field 1 (Figure 6) as the training data to
learn the model and the policy, and then test our method on
all three mine fields. The training data and test data match
well in that the three mine fields contain almost the same
types of metal mines, plastic mines and clutter. The clut-
ter includes metal clutter (soda can, shell, nail, coin, screw,
lead, rod, and ball bearing) and nonmetal clutter (rock, bag
of wet sand, bag of dry sand, and a CD).
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Figure 5: Detection performance as a function of number of iterations when learning the policy. (a) Number of total sensing
actions. (b) Correct declaration rate.

Table 1: Detection results on three mine fields
Mine Field 1 Mine Field 2 Mine Field 3

Ground truth Number of mines (metal+plastic) 5 (3+2) 7 (4+3) 7 (4+3)
Number of clutter (metal+nonmetal) 21 (18+3) 57 (34+23) 29 (23+6)

Detection result Number of mines missed 1 1 2
Number of mines missed 2 2 2

Model training and policy design
Using Mine Field 1 as the training data set the POMDP
model is built and the policy is learned by PBVI. The num-
ber of sensing actions and the correct declaration rate as a
function of iteration number when determining the policy
are plotted in Figure 5. The correct declaration rate is de-
fined as the ratio of the number of correct declarations rela-
tive to the number of all declarations. Note that the correct
rate is not equivalent to probability of detection since one
landmine could be declared multiple times, and the correct
declaration of clutter or clean is also counted in the correct
rate. However, it does reflect the detection performance by
comparing declaration position and ground truth. From Fig-
ure 5, after 75 iterations and five belief expansion phases,
the PBVI-learned policy becomes stable.

Landmine detection results
The stationary policy from the last subsection is then used
to navigate the robot in three simulated mine fields. The
ground truth and detection results are summarized in Table
1. As an example, the layout of Mine Field 1, the declaration
result and a zoom-in of sensor choices are shown in Figure
6. Note that one target may be declared several times.

Missed landmines are usually caused by one of the fol-
lowing two reasons: the mine has very weak signal in both
EMI and GPP responses, such as a small anti-personnel
mine, which is a low-metal content mine; or the mine is
very close to some large metal clutter, so that the clutters
strong response hides the weak signal of the mine. From
Figure 6(c), we see that the policy selects GPR sensors to
interrogate plastic mines, while it prefers EMI sensors when
metal mines are present. This verifies the policy to some

degree since the EMI sensor is almost useless for detecting
plastic mines, but is good for detecting metal mines. We
also see that on the clean area or at the center of a land-
mine, a declaration is made only based on very few sensing
actions, usually two or three, since it is relatively easy for
the robot to estimate its current states. However, at the edge
of a landmine, where there is an interface between two ob-
jects (the landmine and the clean), the robot usually requires
many Number of total sensing actions sensing actions to
make a declaration. The robot requires, on average, approx-
imately 4500 sensing actions in one mine field; the correct
declaration rate is about 0.87 (see Figure 5). As a compari-
son, if a myopic policy is applied, where the agent considers
only one step ahead to select actions, a total of around 8000
sensing actions are needed, and a correct declaration rate
of 0.82 is achieved. Note that if one senses on every grid
point using both sensors, the total number of measurements
is 2× 8002 = 12800.

Conclusions
We have addressed the problem of employing ground-
penetrating radar (GPR) and electromagnetic induction
(EMI) sensors placed on a single platform, with the ob-
jective of performing adaptive and autonomous sensing of
landmines. The problem has been formulated in a partially
observable Markov decision process (POMDP) setting, un-
der the assumption that adequate and appropriate data are
available for learning the underlying POMDP models, with
which policy design can be effected. The algorithm has been
tested, with encouraging performance, on measured EMI
and GPR data from simulated mine fields.

The assumption that adequate training data are available
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Figure 6: Ground truth and detection details in Mine Field 1. (a) Ground truth. The red circles are landmines, with ”M” and ”P”
indicating metal mine and plastic mine, respectively; the other symbols represent clutter. Black dots are small metal segments
and the rest are large-sized metal or nonmetal clutter. (b) Declaration result. The blue ”C” means a declaration of ”clean”, the
green ”?” means ”unknown”, and the stars with various colors represent declarations of mines or clutter. Red star: metal mine;
pink star: plastic mine; yellow star: Type-1 clutter; cyan star: Type-2 clutter. (c) Sensor choice in the broken-lined rectangular
area shown in (b). The black square means sensing with EMI sensor and the green circle means GPR sensor. It can be seen that
the policy prefers the GPR sensor for plastic mine (left half in (c)) and the EMI sensor for metal mine (right half in (c)).

is often inappropriate, and therefore in the next phase of
this work we will consider a lifelong-learning algorithm in
which little if any a priori information is assumed with re-
gard to the mines, clutter and soil conditions. The formu-
lation considered for this latter case will be based on the
recently developed MEDUSA algorithm (Jaulmes, Pineau,
& Precup 2005).
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Abstract
Suppose a spatial arrangement of possibly hazardous
regions needs to be speedily and safely traversed, and
there is a dynamic capability of discovering the true
nature of each hazard when in close proximity of it;
the traversal may enter the associated region only if it
is revealed to be nonhazardous. The problem of iden-
tifying an optimal policy for where and when to ex-
ecute disambiguations so as to minimize the expected
length of the traversal can be cast both as a completely
observed Markov decision process (MDP) and a par-
tially observed Markov decision process (POMDP) and
has been proven intractable in many broad settings. In
this manuscript, we adapt the basic strategy of a pol-
icy called the simulated risk disambiguation protocol
of Fishkind et al. (2006) to a different, discretized
setting (a Canadian Traveller Problem with dependent
edge probabilities), and we compare the performance
of this adapted policy against the performance of the
optimal policy—on a class of instances that are small
enough for the optimal policy to be computed. On ran-
dom such instances, the adapted simulated risk disam-
biguation protocol performed nearly as well as the opti-
mal protocol, and used significantly less computational
resources.

Overview
Suppose there is a set of (possibly overlapping) hazard re-
gions Hi ⊆ R2, for i = 1, 2, . . . , N , each region marked
with the probability ρi that Hi is a true hazard (as opposed
to a false hazard), and assume that hazard regions are true
hazards independently of each other. Now, suppose a start-
ing point s and destination point d are given in R2, and the
decision maker’s objective is to traverse a shortest continu-
ous curve from s to d avoiding all true hazards, i.e. the curve
is constrained to (

⋃
i∈I Hi)C , where I ⊆ {1, 2, . . . , N} is

the set of indices of true hazards. While I is unknown to
the decision maker at the outset (in particular, the proba-
bility distribution of I is specified by the marks ρi), when
the curve is on the boundary ∂Hi of any hazard region the
decision maker has the dynamic ability to disambiguate the
region to discover if Hi is a false or true hazard and, accord-
ingly, the curve may or may not proceed through Hi. Each

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

execution of a disambiguation adds a fixed cost c ≥ 0 to
the length of the s-d curve traversed, and it may be useful
to sometimes assume that there are a fixed limit of K ≥ 0
disambiguations that may be performed. How to optimally
perform the disambiguations so as to minimize the expected
length of the traversal is the random disambiguation path
(RDP) problem in (Priebe et al. 2005).

The RDP problem is a minor modification of the Stochas-
tic Obstacle Scene Problem (SOSP) of (Papadimitriou &
Yannakakis 1991), who also describe a discrete version of
SOSP that they call the Canadian Traveller Problem (CTP).
In CTP, the goal is to minimize the expected traversal length
from a starting vertex to a destination vertex in a finite graph
whose edges are marked with their respective probabilities
of being traversable, and every edge’s actual status can be
dynamically discovered only when encountered. Papadim-
itriou and Yannakakis prove the intractability of several vari-
ants of SOSP and CTP. (For more on CTP see (Bar-Noy &
Schieber 1991)).

CTP is also a special case of the Stochastic Short-
est Paths with Recourse (SPR) problem of (Andreatta &
Romeo 1988), who present a stochastic dynamic program-
ming formulation for SPR and note its intractability. (Poly-
chronopoulos & Tsitsiklis 1996) also present a stochastic
dynamic programming formulation for SPR and they prove
the intractability of several variants. (Provan 2003) proves
that SPR is intractable even if the underlying graph is di-
rected and acyclic.

In (Fishkind et al. 2006), we proposed a class of policies,
called simulated risk disambiguation protocols, for RDP. In
this manuscript, we adapt that basic approach for use on
a discretized version of RDP which, in effect, is a Cana-
dian Traveller Problem with dependent arc probabilities. We
compare the performance of our adapted policy to the per-
formance of the optimal policy, which we can obtain exactly
for relatively small—but nontrivial—instances.

The rest of this manuscript is organized as follows. We
next describe a discretization of RDP and mention how it
can be cast as a partially or completely observable Markov
decision process. Then we adapt the simulated risk disam-
biguation protocol for use in the discrete setting. Finally,
we compare the performance of the adapted simulated risk
disambiguation protocol against the optimal policy obtained
by a standard implementation of value iteration algorithm on
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the Markov decision process formulation.

A Discrete Version of RDP
Because of its continuous setting, the simulated risk disam-
biguation protocol in (Fishkind et al. 2006) is not compa-
rable to the existing heuristics for CTP and SPR, nor are
optimal policies readily computable for all but the most triv-
ial instances. With this in mind, we adapt the simulated risk
random disambiguation protocol in (Fishkind et al. 2006)
to a related, discrete setting in which the protocol adapta-
tion’s performance may be compared to the optimal policy
for relatively small but nontrivial instances.

The discretization of RDP we will consider here is, for
simplicity and convenience, a subgraph of the integer lat-
tice Z2. Specifically, it is the graph G whose vertices are
all of the pairs of integers x, y such that 1 ≤ x ≤ xmax
and 1 ≤ y ≤ ymax, where xmax and ymax are given integers.
There are edges between all pairs of vertices of the form x, y
and x + 1, y, and there are edges between all pairs of ver-
tices of the form x, y and x, y + 1. The hazard regions Hi,
for i = 1, 2, . . . , N , are open discs in R2. (See Figure 1 and
Figure 2.) One vertex in G is designated as the starting point
s, another vertex in G is designated as the destination point
d, and the decision maker is to walk from s to d in G, only
traversing edges that do not intersect any true hazards. If
an edge intersects any ambiguous hazard region, then a dis-
ambiguation of the hazard region may be performed from
either of the edge’s endpoints that is outside of the hazard
region. As before, the goal is to develop a policy for tra-
versing and performing disambiguations that minimizes the
expected length of the traversal. We call our problem dis-
crete RDP (DRDP).

Markov Decision Process Formulation of
DRDP

We next describe how the DRDP problem can be modelled
as a partially or completely observable Markov decision
process, in a manner similar to that which is done in (Blei &
Kaelbling 1999).

An information vector I ∈ {“a”,“t”,“f”}N keeps track
of the decision maker’s current knowledge of the hazard re-
gions’ status; specifically, for all i = 1, 2, . . . , N , the ith
entry of I is “a”, “t”, or “f” according as Hi is currently am-
biguous, true, or a false hazard. Let V denote the set of end-
points of edges in G that intersect any boundary of any haz-
ard region; in particular, these are the vertices of G at which
the decision maker may execute disambiguations. Now, the
set of states is (V × {“a”,“t”,“f”}N )

⋃
{s, d}, which repre-

sent possible locations on the lattice at which the decision
maker may be at a particular moment in time, coupled with
the possible information vectors that may describe the deci-
sion maker’s knowledge at that moment. The set of actions
is the set of ordered pairs (v, i) such that vertex v ∈ V is the
endpoint of an edge which intersects ∂Hi; this pair repre-
sents where the next disambiguation is to occur, and which
hazard region will be disambiguated.

The reward for any appropriate action at any particular
state is the negative of the shortest path distance (avoiding

all ambiguous and true hazards indicated by the information
vector of the state) between the vertex identified in the state
and the vertex identified in the action; also subtract the dis-
ambiguation cost c if the vertex identified in the action is not
d. The destination d is an absorbative state for which there is
a one-time and very large reward for entering. Given a state
and action, the state transitioned into is the vertex identified
in the action and the information vector of the previous state,
updated to indicate that the hazard Hi identified in the action
is true or false with respective probabilities ρi and 1− ρi.

The above set of states, actions, rewards, and transition
distributions comprise a Markov decision process with K
stages (or N stages if there is no limit K on the number of
allowed disambiguations). In the rest of this paper, we will
compute optimal policies in this formulation using the stan-
dard stochastic dynamic programming technique of value it-
eration for relatively small but nontrivial instances. Let p∗

denote the s, d-curve traversed by the optimal policy; since
the trajectory under the optimal policy is still random, p∗

is an (s, d)-walk-valued random variable, and we denote its
expected length E(p∗).

Also, DRDP may be cast as a partially observed Markov
decision process by trimming the set of information vectors
to be just {“t”,“f”}N , and by folding the ambiguity of haz-
ards into ambiguity of the information vector, hence the par-
tial observability of the state.

Adapting the Simulated Risk Disambiguation
Protocol

We next introduce the adaptation of the simulated risk dis-
ambiguation protocol. In our framework, the traversal never
enters hazard regions while they are still ambiguous or are
known to be true hazards. The paradigm of the simulated
risk disambiguation protocol is—for the sole purpose of de-
ciding where to disambiguate next—to temporarily pretend
(simulate) that the ambiguous hazards are riskily traversable.

Under this simulation of risk, for any s, d walk W , the
Euclidean length of W , `E(W ), is the number of edges
in W (since each edge in our lattice clearly has Euclidean
length 1). The risk length of W is defined as

`R(W ) := − log
∏

Hi:Hi∩W 6=∅

(1− ρi).

This negative logarithm of the probability that W is permis-
sibly traversable is a measure of the risk in traversing W—if
you were willing to take on risk. An undesirability function
is any function g : R≥0 × R≥0 → R which is monoton-
ically nondecreasing in its arguments; that is to say, for all
r1, r2, t1, t2 ∈ R≥0 such that r1 ≤ r2 and t1 ≤ t2, it holds
that g(r1, t1) ≤ g(r2, t2). The number g(`E(W ), `R(W ))
is thought of as a measure of the undesirability of W in the
sense that, if you were required to traverse from s to d in G
under the simulation of risk and without a disambiguation
capability, you would select the walk

φg := arg min
s,d walks W

g(`E(W ), `R(W )).

The adapted simulated risk disambiguation protocol as-
sociated with g would have the decision maker traverse φg
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from s until its first ambiguous edge, say, e is encountered at,
say, vertex v, and say e intersects region Hi. At this point
(since we may not take on risk in actuality) disambiguate
the hazard region Hi and repeat this whole procedure us-
ing v as the new s, and then either removing Hi or setting
ρi := 1 according as Hi was just discovered to be a false
or true hazard. (If at some point the limit K on the num-
ber of disambiguations has been reached, then the shortest
unambiguously permissible path is then taken to d.)

The simplest undesirability functions are the linear ones,
where g(r, t) := r + α · t for some given constant α > 0.
To find φg in this particular case, we just need to find a de-
terministic shortest s, d path in G (via Dijkstra’s algorithm,
say) where each edge in G is weighted1 with

w(e) := 1−α · 1
2

N∑
i=1

#comp(e\Hi) ·1e∩Hi 6=∅ · log(1−ρi),

where 1 is the indicator function (taking value 1 or 0 accord-
ing as its subscripted expression is true or false) and comp(·)
is the number of connected components of its argument. See
illustration in Figure 1 with N = 4. Corresponding edge
weights are shown in Table 1.

Figure 1: Illustration with N = 4

Edge Edge weight
e1 1− α log(1− ρ1)
e2 1
e3 1− α(1/2)(log(1− ρ2) + log(1− ρ3))
e4 1− α(1/2)(log(1− ρ3) + 2 log(1− ρ4))

Table 1: Weights of edges in Figure 1

For a fixed α > 0, denote by pα the s, d walk traversed un-
der the adapted simulated risk disambiguation protocol; pα

is an s, d-walk-valued random variable, since its realization
depends on the outcomes of the dictated disambiguations.
We will denote by Epα the expected length of this walk.

1We are assuming s and d are not inside any hazard region, and
that φg never revisits a hazard region.

Computational Experiments
In this section, we evaluate the performance of the the
adapted simulated risk disambiguation protocols against the
optimal policy, the latter obtained by a standard implemen-
tation of value iteration algorithm on the Markov decision
process model described previously.

For all of the experiments in this Section, the lattice used
is xmax = 40 by ymax = 20, with s = (20, 20) and
d = (20, 1). Each hazard region is a disc with radius 5.5
units, and the disc’s centers are sampled from a uniform dis-
tribution on the pairs of integers in [7, 34]× [7, 14]; in partic-
ular, this ensures that there is always a permissible path from
s to d. Probabilities ρi of the hazard regions being true are
sampled from a uniform distribution on [0, 1]. The cost of
disambiguation is taken here as c = 1.5. The environment
is illustrated in Figure 2 with N = 7, K = 1.

For the instance shown in Figure 2, the adapted simu-
lated risk disambiguation protocol using α = 1 calls for
traversing to (20, 15), at which point the hazard region H4

centered at (19, 9) is disambiguated. In case the hazard
turns out to be false, the decision maker traverses directly
to the destination at a total cost of 20.5. Otherwise, the
decision maker traverses to the destination avoiding all the
hazard regions, at a total cost of 50.5. (Both walks are il-
lustrated in black on Figure 2.) Here, we had ρ4 = .2230
thus, in particular, the expected length of the s, d-traversal is
(1 − .2230)(20.5) + (.2230)(50.5) = 27.19. This protocol
turns out to be the overall optimal policy.

Figure 2: An experimental realization with N = 7,K = 1

Similar to what was done in (Fishkind et al. 2006), values
of α minimizing Epα are computed numerically by evaluat-
ing Epα for a mesh of values of α—starting at α = 1, in-
crementing α successively by 5 units until α is large enough
that no disambiguations are performed. We will now denote
p̂∗ := pα∗ , where α∗ is the value of α minimizing Epα.

Table 2 compares Ep̂∗ (the expected length of the best
adapted simulated risk disambiguation protocol) to Ep∗ (the
expected length of the overall optimal policy) for 50 experi-
ment realizations under each N,K combination listed. The
second column shows the percentage of simulations where
Ep̂∗ = Ep∗, in which case the family of adapted simulated
risk disambiguation protocols contains the overall optimal
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policy. The next column shows the percentage of the sim-
ulations where the optimal policy was to perform no dis-
ambiguations. The next column shows the mean of the rel-
ative errors Ep̂∗−Ep∗

Ep∗ for the 50 experiment realizations in
each N , K.

% where % where p∗ mean relative VI exec.
Ep̂∗ = Ep∗ didn’t disambig. errors Ep̂∗−Ep∗

Ep∗ time

K = 1 :
N = 4 86 28 .0097 12 sec
N = 5 86 30 .0076 15 sec
N = 6 72 22 .0103 20 sec
N = 7 66 22 .0114 33 sec
N = 8 66 36 .0159 48 sec
K = 2 :
N = 4 78 30 .0058 4 min
N = 5 66 22 .0065 6 min

Table 2: Comparison of p̂∗ to p∗; for K = 1, N = 4 the
overall optimal policy was indeed an adapted simulated risk
disambiguation protocol in 86% of the experiments.

As Table 2 indicates, solutions found by the simulated
risk protocol are quite comparable to the optimal solutions.
Among all the simulations we performed, the simulated risk
protocol found the optimal solution 74.3% of the time and
the mean relative error of these simulations was .0096.

The last column in Table 2 shows the execution time for a
single instance of the value iteration algorithm used to iden-
tify an overall optimal policy and to compute Ep∗, on a 3.5
gigahertz personal computer with 1 gigabyte memory. We
observed that value iteration required significant computa-
tional resources even for small instances. In fact, value itera-
tion execution time was over an hour for N = 7,K = 3 and
for N = 10,K = 1, value iteration did not run at all due to
insufficient memory. This was in sharp contrast to the iden-
tification of p̂∗ and the computation of Ep̂∗, which took a
negligible amount of time in all of these experiments. Com-
puting Ep̂∗ continued to take a negligible amount of time for
much, much larger values of N and K.

Summary and Conclusions
In this manuscript, we adapted the simulated risk disam-
biguation protocol from the RDP setting to the discrete RDP
setting, which is essentially a Canadian Traveller Problem
with dependent edge probabilities. We cast the problem as
a Markov decision process and, via value iteration, obtained
optimal policies for relatively small but nontrivial instances.
Against these optimal policies, we compared the perfor-
mance of adapted simulated risk disambiguation protocols
and discovered that much of the time the adapted risk simu-
lation disambiguation protocols were indeed optimal and, in
general, compared very favorably. Furthermore, negligible
computing time was needed—compared to that expended on
the computation of the optimal policy.
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