

ICAPS 2006
Workshop on Planning under Uncertainty
and Execution Control for Autonomous
Systems

Table of contents
Preface 3

View Planning Algorithms for a Multi-Camera Surveillance System 7
Jun Miura, Noriko Takemura and Takuro Sakiyama

Robust Execution of Contingent, Temporally Flexible Plans 16
Stephen A. Block and Brian C.Williams

Coordinated Plan Management Using Multiagent MDPs 24
David J. Musliner, Edmund H. Durfee, Jianhui Wu, Dmitri A. Dolgov, Robert
P. Goldman and Mark S. Boddy

Compiling Uncertainty Away: Solving Conformant Planning Prob-
lems Using a Classical Planner (Sometimes)

32

Hector Palacios and Hector Geffner

Using Correlation to Compute Better Probability Estimates in Plan
Graphs

39

Daniel Bryce and David E. Smith

Controlability and Makespan Issues with Robot Action Planning and
Execution

47

Daniel Bryce and David E. Smith

Using Planning, Scheduling and Execution for Autonomous Mars
Rover Operations

57

Tara Estlin, Daniel Gaines, Caroline Chouinard, Forest Fisher, Rebecca
Castano, Michele Judd, Benjamin Bornstein, Robert C. Anderson and Issa
Nesnas

Inducing non-deterministic actions behaviour to plan robustly in
probabilistic domains

67

Sergio Jiménez, Fernando Fernández and Daniel Borrajo

Learning Behaviors Models for Robot Execution Control 75
Guillaume Infantes, Felix Ingrand and Malik Ghallab

http://icaps06.icaps-conference.org/

ICAPS 2006
Workshop on Planning under Uncertainty
and Execution Control for Autonomous
Systems

Preface

The variety of autonomous systems is increasing both in industry and academia (AUV,
UGV, UAV, Robots, Space Probes), which addresses a broad range of missions and
duty (space exploration, search and rescue, defense and security). Such systems must
operate with limited human intervention in a changing environment and behave effi-
ciently in spite of mission updates, failure recovery and limited on-board resources.
Recent experiences show that simple planning and execution control techniques may
endanger the system when uncertain information or limited knowledge about the envi-
ronment is available. In order to achieve a consistent or optimized behavior, planning
and execution control problems, addressed separately in the past, have to be solved
in a combined and coordinated way. The environment being partially known by an
autonomous system, plan generation and execution must consider uncertain informa-
tion, biased data, unpredicted or contingent events. Moreover, planning and execution
control have to satisfy different time scales, depending on mission, system and envi-
ronment tempos. Lastly, uncertainty may result from approximations at the planning
level or unexpected events may occur due to a lack of control. Various theoretical and
practical aspects of planning and execution control have been studied so far (Constraint
solving, combinatorial optimization, Markov decision processes, controllable networks,
Petri nets...). However, a broad range of hybrid algorithms, architecture designs and
alternative approaches are explored during the workshop.

We would like to thank members of the Program Commitee who have provided
excellent and very constructive reviews. We are also grateful to the ICAPS conference
and workshop chairs for their help in organizing this workshop.

Organizers

• Christophe Guettier (Sagem Defense and Security, France)

Programme Committee

• Mark Wallace (Monash University - Australia)

• Alessandro Saffiotti (Orebro University - Sweden)

• Russel Knight (Jet Propulsion Lab - USA)

• Nicolas Meuleau (NASA Ames Research Center - USA)

• Abdel-Illah Mouaddib (Universite de Caen - France)

• David Ferguson (Canergie Mellon University - USA)

• Felix Ingrand (LAAS/CNRS, France)

• Patrick Fabiani (ONERA, France)

• Mark Boddy (Adventium Labs - USA)

• Roy Turner (University of Maine, USA)

• Grard Verfaillie (ONERA, France)

• Wheeler Ruml (PARC, USA)

• Neil Yorke-Smith (SRI, USA)

• Christophe Guettier (SAFRAN, France)

View Planning Algorithms for a Multi-Camera Surveillance System

Jun Miura Noriko Takemura Takuro Sakiyama
Department of Mechanical Engineering, Osaka University

Suita, Osaka 565-0871, Japan
{jun,takemura,saki}@cv.mech.eng.osaka-u.ac.jp

Abstract

This paper deals with a view planning of multiple ac-
tive cameras for tracking multiple persons for surveil-
lance purposes. We develop algorithms for dynamically
planning viewing directions of cameras so that the ex-
pected number of tracked persons is maximized, based
on a probabilistic model of person motion. Since a
naive approach to this planning easily causes a com-
binatorial explosion, we adopt a meta-heuristic algo-
rithm, namely, multi-start local search (MLS). We first
develop an MLS-based algorithm that exhibits a com-
parable performance to an exhaustive search-based one
but with a considerably low planning cost. We then
modify the problem so that intermittent observations of
a person are allowed for estimating the person’s mo-
tion continuously. In this modified problem, cameras
are encouraged to frequently change fixation points so
that they can track as various persons as possible. For
this problem, we develop another MLS-based planning
method which searches the space of sequences of fixa-
tion points and uses an effective initial solution gener-
ation. Simulation results show the effectiveness of this
planning method.

Introduction
Visual surveillance is one of the active research areas in
computer vision. Most previous works are concerned with
development of image processing algorithms for detecting
persons or vehicles reliably and/or for analyzing their activi-
ties (Lee, Romano, & Stein 2000; Stauffer & Grimson 2000;
Buxton 2003). This paper focuses another important prob-
lem in surveillance, namely, view planning of cameras.

One way to cover a wide area for surveillance is to use
many fixed cameras whose fields of view collectively cover
the area. This is, however, costly and sometimes difficult
due to installation problems. We therefore take an approach
of using a small number of active cameras; by appropriately
controlling the fixation points of cameras, the whole area, al-
though it cannot be covered at a time, will be covered within
a certain period of time. A key to effective surveillance in
this approach is view planning of cameras.

Ukita and Matsuyama (2003) developed a method of
tracking multiple target by multiple active cameras. Mul-
tiple vision agents, each of which is responsible for control-

ling one camera, dynamically form several agencies (set of
agents) according to the number of targets and their situa-
tions. Karuppiah et al. (2005) proposed a method of dynam-
ically configuring multiple cameras so that a target can be
tracked reliably, using a utility function evaluating the mea-
surement accuracy and the predictability of possible events.
These works deal with tracking of a few persons in a rela-
tively small area.

Horling et al. (2001) dealt with a cooperative vehicle
monitoring by a distributed sensor network. They formu-
late the problem as a resource allocation problem in which
what area to be sensed by each sensor and what informa-
tion should be communicated are determined with consider-
ation of sensor and communication uncertainties. Isler et al.
(2005) developed algorithms for assigning targets to mul-
tiple cameras so that the expected error in the target loca-
tion estimation is minimized. These works treated the case
where the number of cameras is relatively larger than that of
targets.

Jung and Sukhatme (2004) dealt with a coordination of
multiple mobile robots to track multiple targets. They cal-
culate the urgency over the field and use it to distribute the
robots. The evaluation of urgency is based on the current
distribution of targets not on a prediction of future states.

Miura and Shirai (2002) dealt with a multi-camera multi-
person tracking problem in the context of parallelization of
planning and action. They used a heuristic planning algo-
rithm which iteratively refines the assignment of persons
to cameras, formulated as an anytime algorithm (Dean &
Boddy 1988).

Krishna, Hexmoor, and Sogani (2005) developed a view
planning algorithm for a multi-sensor surveillance system.
To avoid a combinatorial explosion, they dynamically prior-
itize the sensors based on their predicted coverage of targets.
Coverage prediction is performed using statistical knowl-
edge of the target distribution; however, they do not predict
the motion of each person independently.

This paper deals with a view planning of multiple ac-
tive cameras for tracking many persons. We first define the
multi-camera multi-person tracking problem (called MCMP
problem). We then describe a model of person motion and a
method of predicting the positional distributions of persons
to be used for estimating the expected number of tracked
persons. Concerning planning algorithms, we first compare

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 7

camera position
on the ceiling

walking person

current field of view

door

Figure 1: MCMP simulator.

two approaches, an exhaustive search-based one and a multi-
start local search-based one, and show that the latter exhibits
a comparable performance to the former with a consider-
ably lower calculation cost. We then introduce a modified
MCMP problem that allows a tracking with intermittent ob-
servations, and present an MLS-based planning method with
an effective initial solution generation. We experimentally
show that this method is better than other ones. We finally
summarize the paper and discuss future works.

Multi-Camera Multi-Person Tracking
Problem

This paper deals with the following MCMP problem. There
are Np persons arbitrarily waking in a room. There are Nc

(� Np) cameras fixed on the ceiling of the room so that no
occlusions between persons occur. Each camera can change
the viewing direction within a predetermined range. A sin-
gle planning process controls the viewing directions of all
cameras. The goal of the whole system is to track as many
persons as possible during a certain period of time. Each
camera is assumed to be able to recognize any person and
measure his/her position/velocity, as long as the person is
inside the field of view of the camera.

We made a simulator for the MCMP problem, as shown in
Fig. 1. In addition to the general problem description men-
tioned above, we use the following detailed settings. The
room is a 50[m]×50[m] square and four cameras are placed
(Nc = 4) in a 2 × 2 array on the ceiling of 10[m] high. The
field of view (FOV) of each camera is assumed to be always
a circle of 10[m] radius; view planning of a camera is thus
equivalent to selecting its fixation point (the center of FOV)
on the floor. Each camera can move the fixation point within
the circle of 10[m] radius centered at the home position right
below the camera. The maximum speed of moving the fix-
ation point is 2.5[m/s]. The whole 2D space is discretized
as a grid with 0.5[m] regular spacing and fixation points of
cameras are limited to grid points; fixation point candidates
thus form a 100×100 grid. The cameras observe and change

t = t1

t = t1+1

t = t1+2

6σm

3σm

(last observed time)

Figure 2: Motion uncertainty model of person.

fixation points at the cycle of 1[s].
The number of persons is 30 (Np = 30) in the four camera

case. Each person basically performs a linear and constant
motion but the velocity and the moving direction change ev-
ery step according to the normal distribution with the vari-
ances 1.5[m2/s2] and 25[deg2], respectively. When a per-
son touches a wall, he/she changes the velocity in a regular
reflection manner.

We additionally use another setting in which the room is a
100[m] × 100[m] square with 120 persons (Np = 120) and
sixteen cameras are placed in a 4 × 4 array (Nc = 16).

Prediction of Future States
Planning algorithms repeatedly determine the fixation points
of all cameras at the next time step (t = 1) based on the
prediction of states of tracked persons for future T time steps
(t = 1 ∼ T).

Motion Modeling of Person
We use a linear motion model for predicting positions of
persons. Concerning the uncertainty in prediction, we use
a simple probabilistic model that the positional uncertainty
of a person is isotropic and represented by the so-called 3σ
portion of the normal distribution with variance σ2

mt, where
t is the time step from the last time at which the person is
observed (see Fig. 2). σ2

m is determined so that the predicted
uncertainty covers the actual uncertainty. We assume that
the position of a person can be predicted if the period of not
observing the person is less than three steps; otherwise, that
person’s positional uncertainty is too large to be used for
planning.

Predicting the Number of Tracked Persons for a
Fixation Point
The objective of planning is to repeatedly determine fixation
points that can maximize the expectation of the number of
tracked persons for a predetermined time duration. From
the motion uncertainty model of person, we can calculate a
set of positional distributions of the persons currently under
consideration at a future time step. On the other hand, for
each fixation point of a camera, its field of view (FOV) is
calculated. The expected number of persons tracked by the

ICAPS 2006

8 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

 0

 25

 50 0

 50 0

 5

 10

X [m]

Y [m] 25

expected number
of tracked persons

Figure 3: An example map of the expected number of
tracked persons.

camera directed to a specific fixation point at a time step
is thus calculated as the summation of the probabilities of
the persons being within the corresponding FOV. Since the
fixation points are on grid points in the room and all cameras
have the same characteristics, we make a 2D grid map of
the expected number of tracked persons and use it for every
camera. This map is generated for each future time step to
be considered. Fig. 3 shows an example map for Np = 30.

The probability that a person is within an FOV is cal-
culated by integrating the person’s positional distribution
within the FOV. Since the FOVs and the distributions are
both circular, we can prepare a look-up table indexed by
the variance of the distribution (which is equivalently the
number of steps during which a person is not in any FOVs)
and the distance between the mean position and the fixation
point.

When FOVs of two or more cameras overlap with each
other, the calculation of the expected number becomes a lit-
tle more complex. The probability that a person is within
any of FOVs is calculated as follows:

• If the positional distribution of the person is completely
within the FOV of at least one camera, the probability is
one.

• If the distribution of the person is completely out of all
FOVs, the probability is zero.

• If only a part of the distribution is within some FOVs, we
classify this case into the following three subcases:

– If that part is included only in one FOV, the probability
is calculated by the table look-up.

– If that part is included in multiple FOVs but not in any
intersection of the FOVs, the probability is the sum of
the probabilities of being included these FOVs (i.e., the
sum of the results of the table look-up).

– If that part is included in the intersection of some of
the FOVs, we need to integrate the probabilities inside
the union of such FOVs; but this calculation is costly
because the simple table look-up cannot be used.

Although the last subcase should be, in principle, treated
differently from the others, we approximate the probability
for the subcase with the one calculated in the same way as

the other cases because we examined many data and found
that the frequency that this subcase happens is about 1%.

Exhaustive Search vs. Multi-Start Local
Search

This section compares two planning methods based on an
exhaustive search with pruning and a multi-start local search
(MLS). The performance of the former will be a benchmark
for evaluating the latter.

Criteria for Evaluating Fixation Points
The primary criterion for selecting fixation points is the ex-
pected number of tracked persons for a certain period of
time. Since several fixation points may have the same ex-
pected number of tracked persons, we use two more criteria
for evaluation.
• The amount of movements of camera. Smaller values are

better. This is for evaluating the smoothness of camera
movements.

• The distance of the fixation point of a camera from its
home position. Smaller values are better. This is for
evaluating the distribution of camera fixation points. If
persons are distributed widely in the room, then this cri-
terion will be more important. In addition, more highly
distributed fixation points are better for (fortunately) cap-
turing currently-untracked persons.

These criteria used in the following order: the expected
number of tracked persons, the amount of camera move-
ments, and the distance from the home position. If two or
more solutions are equivalent in terms of a preceding crite-
rion, the next one is used for ordering the solutions. Ties
under all criteria are broken randomly.

Exhaustive Search with Pruning
A planning method based on exhaustive search is used for
obtaining optimal solutions. There are two parameters for
controlling the search. T is the depth of look-ahead and V is
the number of fixation point candidates to be kept at a depth.
The order of the computation is thus O(V T). The maximum
value of V is given by CNc , where C is the number of all
possible fixation point candidates for a camera and Nc is that
of cameras. When this maximum value is used, the search is
completely exhaustive. Due to a high computation time, we
only tested the following two combinations of parameters:
(T, V) = (1, CNc), (2, 20).

We adopt two techniques for speeding up the planning.
One is the pruning using an upper bound of the expected
number of tracked persons, which is the one calculated un-
der the assumption that any FOV does not overlap with the
others. In examining a combination of fixation points, ev-
ery time the fixation point of a camera is chosen, the up-
per bound of the combination is updated (using the upper
bounds for the unchosen cameras) and compared with the
current-best solution obtained so far. If the current combi-
nation is found to be unpromising, the computation for the
combination is terminated. The upper bound for each cam-
era is easily calculated by referring to the map described
above.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 9

Table 1: Comparison of exhaustive search- and sequential MLS-based methods.
method look-ahead tracking ratio (%) std. dev. (%) calculation time per step (sec.) std. dev. (sec.)

exhaustive T = 1 66.6 3.76 0.23 0.28
exhaustive T = 2 67.5 2.47 143.62 94.0
sequential MLS T = 1 65.3 3.78 0.019 0.0029
sequential MLS T = 2 65.8 3.67 0.028 0.0039
sequential MLS T = 5 67.3 3.53 0.073 0.0044

Another technique is to decompose the problem into a set
of independent subproblems. A group of cameras can be
planned independently with the other cameras as long as
the FOVs of the cameras in the group do not overlap with
those of the other cameras for the period of time under con-
sideration. So we first segment cameras into such indepen-
dent groups, then make a subplan for each group, and finally
merge the subplans into the plan of all cameras.

Multi-Start Local Search
Multi-start local search (MLS) is a commonly-used algo-
rithm for solving large-scale combinatorial problems (Yag-
iura & Ibaraki 2001). In MLS, local search (LS) is re-
peated from a number of initial solutions and the best so-
lution found during the entire search is output.

In our tracking problem, the expected number of persons
roughly continuously changes over the entire space and the
number of local minima is expected to be relatively small
(see Fig. 3). MLS is thus suitable for our problem.

Search Space, Neighborhood and Initial Solution We
consider the space of all combinations of fixation points of
the cameras. The search space at each time step is a sub-
space determined by the movable ranges of the cameras by
that time step. We define the neighborhood of a solution (a
point in the space) as the set of solutions in which the fixa-
tion point of only one camera is different from the solution
by one step in the grid representation of 2D position (so-
called 8 neighbors). The number of neighboring solutions
is thus 8Nc. We randomly generate Ninit initial solutions
within the search space.

Sequential MLS The algorithm for MLS-based planning
(called sequential MLS) is as follows.

1. Choose Ninit initial solution (i.e., set of fixation points
for all cameras) for the next step (t = 1) randomly.

2. For each initial solution, repeat the following for t = 1 ∼
T :

(a) Perform local search for the locally-best solution. We
use the best admissible move strategy, in which the best
solution in the neighbor of the current solution is cho-
sen as the next one.

(b) Randomly generate one initial solution for the next
time step from the locally-best solution, if t < T .

3. Select the first step of the best among Ninit solutions,
which maximizes the expected number of tracked persons
for the duration [1, T]), as the movement for the next step.

. . .

. . .

. . .

t = 0
(current)

t = 1 t = 2 t = T

Ninit

. . .

Figure 4: Search tree of sequential MLS. Each link indicates
a pair of initial solution generation and local search.

Fig. 4 shows the search tree for sequential MLS. We cur-
rently use Ninit = 15, which is empirically determined.

Results

We made 10 sets of simulation data, each of which is com-
posed of 100 step movements of 30 persons. Using these
sets, we compared the exhaustive search-based method with
T = 1, 2 and the sequential MLS-based method with T =
1, 2, 5 for the four-camera setting. We evaluate the methods
in terms of tracking ratio, which is the averaged number of
tracked persons per time step divided by the total number of
persons. Since the sequential MLS is a randomized method,
for each data set, we ran the method 10 times and calculated
the average of the resulting tracking ratios.

Table 1 summarizes the comparison results. The table
shows the average tracking ratio of all the data sets. The
computation time for the exhaustive search-based method
becomes very large even for T = 2 to be used in practical
systems. In addition, the variance of computation time is
larger. Concerning the sequential MLS, as the look-ahead
becomes longer, the performance increases while the com-
putation time increases only approximately linearly. The se-
quential MLS with T = 5 exhibits a comparable perfor-
mance to the exhaustive with T = 2, and spends a very
short computation time, which is short enough to be used
for on-line planning.

These results show that MLS-based methods are suitable
for the MCMP problem.

ICAPS 2006

10 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Tracking with Frequently Changing Fixation
Points

When we visually track many arbitrarily walking persons,
we do not continuously track the same group of persons but
usually take a strategy of changing the fixation point fre-
quently from person to person at various positions. Even if
we do not look at a person for a short period of time, we
can estimate (or interpolate) his/her movement from the in-
termittent observation data1. This strategy can thus increase
the number of tracked persons while keeping a sufficient ac-
curacy in motion estimation. This section applies this strat-
egy to the MCMP problem using MLS.

Evaluation Criterion for Tracking with
Intermittent Observations
We assume that a low-level tracking system is working be-
neath the view planner. Such a system is often devel-
oped based on statistical data integration methods such as
Kalman filter (Koyasu, Miura, & Shirai 2001) or particle fil-
ters (Maskell et al. 2003). These methods use a probabilis-
tic model of state evolution. Such a model usually indicates
that the positional uncertainty of a target increases as time
elapses if no observations are available, and that the target
will eventually be lost if it is not observed for a long time.

This implies that as long as the time period during which a
target is not observed is sufficiently short, the target’s move-
ment can reliably be estimated. In this paper, for simplicity,
we set a threshold and if the non-observation time period
for a target is less than or equal to the threshold, the target
is considered being tracked even for that time period. Cur-
rently, we use two as the threshold. That is, when a person
is observed at time t1 and t2 (t1 < t2) and not observed
at times {t | t1 < t < t2}, the total number of tracking for
the person given at time t2 is t2 − t1 if t2 ≤ t1 + 3 and
one otherwise. We use the evaluation criterion based on this
calculation of the number of tracked persons.

This change of evaluation criterion will alter the behavior
of cameras. Fig.5 shows an illustrative example. There are
two groups of persons on the upper and the lower side of
the space, respectively, and the camera cannot capture both
groups at times t = 1, 2. When we maximize the number of
persons within the FOV of the camera (by the previous eval-
uation criterion), the camera moves like Fig. 5(a) and the
total number of the tracked person is eleven. On the other
hand, if we use the new evaluation criterion, the camera will
move like Fig. 5(b) and the total number of the tracked per-
sons now becomes twelve; the camera tends to move to the
persons that have been out of FOVs for a while.

Search Space and Neighborhood
In the previous MLS-based method (sequential MLS), the
search space is composed of all combination of fixation
points of the cameras at one time step and a set of fixation
points is sequentially determined from the next step to the

1Note that not observations themselves but those for a person
are intermittent; that is, cameras obtain observations at every time
step but targets of observation may be different from time to time.

fixation point

field of view

t = 0 (current)

t = 1
t = 2

person

(a) continuous tracking

(b) intermittent tracking

t = 0 (current)

t = 1
t = 2

Figure 5: Different behaviors for different evaluation crite-
ria.

final step. In the new method, however, fixation positions
cannot be evaluated at one time step but should be evaluated
as a sequence of them. We therefore define the search space
as all combinations of fixation points of the cameras during
the whole time period under consideration.

We define the neighborhood of a solution as the set of so-
lutions in which the fixation point of only one camera at only
one time is different from the solution by one step in the grid
representation of 2D position (again, 8 neighbors). Letting
T be the depth of look-ahead, the number of neighboring
solutions is thus 8NcT . We randomly generate Ninit initial
solutions within the search space.

We also use the best admissible move strategy in this
method.

Generating Initial Solutions

The new MLS-based algorithm searches the space of a se-
quence of sets of fixation points up to the depth limit. This
means that the search space is considerably larger than that
of the previous MLS-based method (sequential MLS) which
determines a set of fixation points for one time step to an-
other. A larger search space usually requires more initial so-
lutions to get satisfactory results in MLS, thus increasing the
computation time. It is possible to use the result of sequen-
tial MLS as an initial solution. Sequential MLS, however,

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 11

(a) persons (red squares) and the
 map of expected number of tracked.

(b) a range of fixation points
 at a time step.

(c) representative points
 for uniformly-divided regions.

(d) selected promising candidate
 points (indicated by blue).

Figure 6: Generating a map of promising fixation points at a time step.

t = 0

t = 1

t = ts = T

t = ts

t = T

t = 0

t = 1

(a) candidate position at time T
 is selected.

(b) candidate position at time ts < T
 is selected.

initial position
candidate position
determined position

initial solution

Figure 7: Generate initial solutions.

tries to generate solutions in which the same group of per-
sons tends to be tracked continuously with relatively smooth
camera movements (as shown in Fig. 5(a)), and may not be
appropriate for generating solutions with frequent changes
of fixation points (as shown in Fig. 5(b)). We thus take an-
other approach in which promising fixation points in space-
time are explicitly enumerated and used for generating initial
solutions.

The steps for generating initial solutions are as follows.
These steps are performed for each camera independently
(i.e., we do not consider the overlap of FOVs at this stage).

1. Generate maps of the expected number of tracked per-
sons, as described above, for the time steps under con-
sideration (t = 1 ∼ T) (see Fig. 6(a) for the map for a
time step).

2. Divide the maps into a set of uniform-sized regions (com-
posed of 5 × 5 grid points) within the movable range of
each camera (see Fig. 6(b)) and select one representa-
tive point within each region which has the maximum ex-
pected number (see Fig.6(c)). The expected number be-
comes the score of the region.

3. Determine the maximum score and set a threshold for
promising fixation points as the α% of the maximum (cur-
rently, α = 90). The representative points of the regions
whose scores are higher than the threshold become a set
of fixation point candidates (see Fig.6(d)).

4. Repeat the following for each camera to select Ninit ini-
tial solutions:
Select one fixation point among the candidates randomly.
Let ts be the time step at which the fixation point is. If
ts = T then the fixation points at t = 1 ∼ T − 1 are
determined by the interpolation. Fig. 7(a) shows such a
case. The horizontal lines in the figure represent a side
view of 2D maps. If ts < T , then the fixation points
at t = 1 ∼ ts − 1 are determined by the interpolation,
and those at t > ts are determined recursively (select one
candidate point at t > ts randomly and so on) (see Fig.
7(b)).

5. Merge Ninit sets of initial solutions for all cameras.

Planning Algorithm
The new planning algorithm performs MLS using the ini-
tial solutions mentioned above. We examined the perfor-
mance of planning for several Ninit’s and decided to use
Ninit = 15. Once the set of fixation point candidates is
generated (Steps 1 to 3 in the above), the rest of the initial
solution generation and the local search are completely par-
allelizable. We thus use a PC cluster system with 15 CPU’s
to speed up the planning. The average computation time for
one time step is about 0.8 [sec].

Experimental Results
This section describes experimental results using the same
data sets as the one used in the previous comparison (i.e., 10
sets of simulation data, each of which is composed of 100
step movements of 30 persons).

Comparison of Methods for Generating Initial
Solutions
We compare the following three methods:

• Explicitly enumerates promising fixation points for gen-
erating initial solutions (proposed method).

• Use the results of the sequential MLS method as initial
solutions.

• Randomly generate initial solutions.

Table 2 summarizes the comparison result. The proposed
method outperforms the others.

ICAPS 2006

12 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Table 3: Comparison of five methods.
Data ID

1 2 3 4 5 6 7 8 9 10 Average

intermittent 73.2 74.1 71.9 71.3 64.7 74.3 67.2 73.8 73.0 77.7 72.1
continuous 72.9 72.8 70.3 67.1 65.0 73.7 66.1 64.8 68.3 75.8 69.7
independent 67.7 69.6 65.2 66.5 56.8 67.5 60.7 63.1 64.0 60.2 64.1
random 46.1 52.0 49.9 47.4 48.5 47.8 48.1 48.2 47.0 46.8 48.2
no planning 45.6 53.2 50.2 41.3 41.9 51.5 47.2 46.8 44.7 46.1 46.9

intermittent
continuous
independent

60

62

64

66

68

70

72

74

0.5 1 1.5 2 2.5 3 3.5 4

Velocity of camera movement

tr
ac

ki
ng

 r
at

io

(a) maximum velocity of camera
movement vs. tracking ratio.

20

30

40

50

60

70

80

90

100

5 6 7 8 9 10 11 12 13

intermittent
continuous
independent

tr
ac

ki
ng

 r
at

io

radius of field of view (FOV)

(b) radius of field of view of cameras vs.
tracking ratio.

60

64

68

72

76

80

10 20 30 40 50 60

tr
ac

ki
ng

 r
at

io

intermittent
continuous
independent

number of persons

(c) maximum number of persons to be
tracked vs. tracking ratio.

Figure 8: Comparison in various problem settings.

Table 2: Comparison of methods of generating initial solu-
tions in terms of tracking ratio.

Method Proposed MLS solution Random
Tracking ratio 72.1% 70.1% 69.1%

Comparison with Other Methods
We here compare the following five methods:

• New MLS-based method for tracking with intermittent
observations (called intermittent).

• Sequential MLS method (called continuous).

• Select fixation point of each camera independently for
tracking with intermittent observations (called indepen-
dent).

• Select fixation points randomly at every time step (called
random).

• Fixed cameras (called no planning).

Table 3 compiles the results. Note that the new evaluation
criterion that allows tracking with intermittent observations
is used for evaluating all methods. The table shows that ran-
dom and no planning produce much worse results. Among
the other three, the intermittent method exhibits the best per-
formance.

We have also compared intermittent and continuous for
another problem setting in which the room is a 100[m] ×
100[m] square with 120 persons (Np = 120) and sixteen

cameras are placed in a 4 × 4 array (Nc = 16). The aver-
aged tracking ratios of intermittent and continuous for 3 data
sets are 72.7% and 68.5%, respectively. The proposed inter-
mittent method again has exhibited the best performance.

Comparison in Various Problem Settings

We then compare the three methods (intermittent, continu-
ous, independent) in various problem settings. In general,
the difference in performance between planning methods is
smaller in easier problems. As the problem becomes harder,
however, only good methods are expected to exhibit a satis-
factory performance. We therefore change several parame-
ters determining the hardness of the problem to examine if
there exists such a tendency.

Fig. 8(a)-(c) show the comparison results for changing the
maximum velocity of the camera fixation point, the radius of
the field of view, and the number of persons, respectively. In
all cases, the intermittent method outperforms the others and
its performance degradation according to the problem being
harder is smaller. These results show the effectiveness of the
proposed intermittent method.

Comparison of Camera Behaviors for Continuous
and Intermittent

Fig. 9 shows a comparison of the movements of a camera
for a set of data. Fig. 9(a) shows the movement generated
by the continuous planning method, while Fig. 9(b) shows
the one generated by the intermittent planning method. Red
circles indicate the fixation points where one or more targets

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 13

start position
(home position)

end position
start position
(home position)

end position

start and end fixation point

fixation point

movement of fixation point

fixation point where a target is observed
after some non-observation period (the
size of the circle indicates the number of
such targets).

(a) continuous tracking (b) intermittent tracking

Figure 9: Camera movements for continuous and intermittent. The start positions are the same actually.

are observed after some non-observation period. The fig-
ure shows that by intermittent planning method, the camera
changes fixation points more frequently and widely in order
to capture as various persons as possible. The total numbers
of tracked persons for the whole time period (i.e., 100 time
steps) for continuous and intermittent planning are 432 and
506, respectively. This also indicates the effectiveness of the
proposed intermittent planning method.

Conclusions and Discussion
This paper has presented methods of view planning for
multi-camera surveillance applications. We have defined a
multi-camera multi-person tracking problem (MCMP prob-
lem), in which the objective of planning is to maximize the
number of tracked persons. We first compared an exhaustive
search-based method and a multi-start local search (MLS)-
based method and have shown that the latter method ex-
hibits a comparable performance to the former with much
less computation time. We then introduced a new evalua-
tion criterion that allows tracking with intermittent observa-
tions thus encouraging frequent changes of fixation points.
For this criterion, we have developed another MLS-based
method that searches the space of combinations of fixa-
tion points of all cameras during the look-ahead. We also
developed a method of generating initial solutions from a
set of promising fixation points in space-time. This MLS-
based method outperforms other methods, especially when
the problem is hard.

Currently, we make several assumptions: no occlusion,
negligible target recognition time, perfect recognition abil-

ity. A future work is to remove these assumptions in order to
consider more realistic situations such as occasional occlu-
sion and recognition failure. Especially, when we remove
the assumption of perfect recognition ability, we need to
model the performance of recognition, which will decrease
as the time for not observing a target increases. We then
need to consider the tradeoff between increasing recogni-
tion performance by observing each target frequently and in-
creasing the number of tracked persons by frequently chang-
ing fixation points.

Another future work is to apply the current method to the
cases where the above assumptions almost hold. An exam-
ple case is the one where cameras are set at high positions
and persons with distinctive colors walk in a simple back-
ground. The proposed method can also be applied to the
case where we analyze very large images from stationary
cameras and need to select a portion of the images to ana-
lyze at each frame due to computation limitation.

References
Buxton, H. 2003. Learning and understanding dynamic
scene activity: A review. Image and Vision Computing
21(1):125–136.

Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. In Proceedings of AAAI-88, 49–54.

Horling, B.; Vincent, R.; Mailler, R.; Shen, J.; Becker, R.;
Rawlins, K.; and Lesser, V. 2001. Distributed sensor net-
work for real time tracking. In Proceedings of the 5th Int.
Conf. on Autonomous Agents, 417–424.

ICAPS 2006

14 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Isler, V.; Khanna, S.; Spletzer, J.; and Taylor, C. 2005. Tar-
get tracking with distributed sensors: The focus of atten-
tion problem. Computer Vision and Image Understanding
100(1–2):225–247.
Jung, B., and Sukhatme, G. 2004. A generalized region-
based approach for multi-target tracking in outdoor envi-
ronments. In Proceedings of the 2004 IEEE Int. Conf. on
Robotics and Automation, 2189–2195.
Karuppiah, D.; Grupen, R.; Hanson, A.; and Riseman, E.
2005. Smart resource reconfiguration by exploiting dy-
namics in perceptual tasks. In Proceedings of the 2005
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
1854–1860.
Koyasu, H.; Miura, J.; and Shirai, Y. 2001. Realtime omni-
directional stereo for obstacle detection and tracking in dy-
namic environments. In Proceedings of the 2001 IEEE/RSJ
Int. Conf. on Intelligent Robots and Sysetms, 31–36.
Krishna, K.; Hexmoor, H.; and Sogani, S. 2005. A t-step
ahead constrained optimal target direction algorithm for a
multi sensor surveillance system. In Proceedings of the
2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems, 1840–1845.
Lee, L.; Romano, R.; and Stein, G. 2000. Monitoring activ-
ities from multiple video streams: Establishing a common
coordinate frame. IEEE Trans. on Pattern Analaysis and
Machine Intelligence 22(8):758–767.
Maskell, S.; Rollason, M.; Gordon, N.; and Salmond, D.
2003. Efficient particle filtering for multiple target tracking
with application to tracking in structured images. Image
and Vision Computing 21(10):931–939.
Miura, J., and Shirai, Y. 2002. Parallel scheduling of
planning and action for realizing an efficient and reactive
robotic system. In Proceedings of the 7th Int. Conf. on
Control, Automation, Robotics and Vision, 246–251.
Stauffer, C., and Grimson, W. 2000. Learning patterns of
activity using real-time tracking. IEEE Trans. on Pattern
Analysis and Machine Intelligence 22(8):747–757.
Ukita, N., and Matsuyama, T. 2003. Real-time coopera-
tive multi-target tracking by communicating active vision
agents. In Proceedings of 6th Int. Conf. on Information
Fusion, 439–446.
Yagiura, M., and Ibaraki, T. 2001. On metaheuristic algo-
rithms for combinatorial optimization problems. Systems
and Computers in Japan 32(3):33–54.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 15

Robust Execution of Contingent, Temporally Flexible Plans ∗

Stephen A. Block and Brian C. Williams
Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology,
Cambridge, MA, 02139, USA

sblock@mit.edu, williams@mit.edu

Abstract

Many applications of autonomous agents require groups to
work in tight coordination. To be dependable, these groups
must plan, carry out and adapt their activities in a way that is
robust to failure and uncertainty. Previous work has produced
contingent plan execution systems that provide robustness
during their execution phase, by dispatching temporally flexi-
ble plans, and during their plan extraction phase, by choosing
between functionally redundant methods. Previous contin-
gent plan execution systems use a centralized architecture in
which a single agent conducts planning for the entire group.
This can result in a communication bottleneck at the time
when plan activities are passed to the other agents for exe-
cution, and state information is returned.

This paper introduces a robust, distributed executive for tem-
porally flexible plans. To execute a plan, the plan is first dis-
tributed over multiple agents, by creating a hierarchical ad-
hoc network and by mapping the plan onto this hierarchy.
Second, the plan is reformulated using a distributed, parallel
algorithm into a form amenable to fast dispatching. Finally,
the plan is dispatched in a distributed fashion.

We then extend the distributed executive to handle contingent
plans. Contingent plans are encoded as Temporal Plan Net-
works (TPNs), which use a non-deterministic choice operator
to compose temporally flexible plan fragments into a nested
hierarchy of contingencies. A temporally consistent plan is
extracted from the TPN using a distributed, parallel algorithm
that exploits the structure of the TPN.

At all stages of the distributed executive, the communication
load is spread over all agents, thus eliminating the commu-
nication bottleneck. In addition, the distributed algorithms
reduce the computational load on each agent and provide op-
portunities for parallel processing, thus increasing efficiency.

Introduction

The ability to coordinate groups of autonomous agents is
key to many real-world tasks, such as a search and rescue
mission, or the construction of a Lunar habitat. Achieving
this ability dependably requires techniques that are robust to
four types of disturbances: temporal uncertainty, execution

∗The plan extraction component of this work was made possi-
ble by the sponsorship of the DARPA NEST program under con-
tract F33615-01-C-1896, and the plan reformulation and dispatch-
ing components by the sponsorship of Boeing contract MIT-BA-
GTA-1

uncertainty, plan failure, and communication latency. We
address the first three types of disturbances by leveraging
prior work on robust plan execution.

Temporal Uncertainty. Temporally flexible plans (Dean
& McDermott 1987) (Muscettola 1994) allow us to model
activities of uncertain duration. Use of these plans allows us
to provide robustness to temporal uncertainty.

Execution Uncertainty. To adapt to uncertainty in ex-
ecution times, while executing the plan in a timely man-
ner, the dispatcher dynamically schedules events. In par-
ticular, we use the methods of (Tsamardinos, Muscettola,
& Morris 1998), which use a least commitment strategy.
Here, scheduling is postponed until execution time, allowing
temporal resources to be assigned as-needed. To minimize
the computation that must be performed on-line at dispatch
time, the plan is first reformulated off-line. This scheme
provides robustness to execution uncertainty, including the
uncertainty in the execution times of other agents.

Plan Failure. To address plan failure, (Kim, Williams, &
Abramson 2001) introduced a system called Kirk, that per-
forms dynamic execution of temporally flexible plans with
contingencies. These contingent plans are encoded as al-
ternative choices between functionally equivalent sub-plans.
In Kirk, the contingent plans are represented by a Temporal
Plan Network (TPN) (Kim, Williams, & Abramson 2001),
which extends temporally flexible plans with a nested choice
operator. Kirk first extracts a plan from the TPN that is tem-
porally feasible, before executing the plan as above. Use of
contingent plans adds robustness to plan failure.

As a centralized approach, however, Kirk can be brittle to
failures caused by communication latency. Once a plan has
been extracted and reformulated it must be executed and in
the case of a multi-agent plan, this involves multiple agents.
Therefore, we must communicate the primitive activities to
all of the agents that will take part in the execution. This
creates a communication bottleneck at the master agent.

We address this limitation through a distributed version of
Kirk, called D-Kirk, which performs distributed execution
of contingent temporally flexible plans. In the distributed
framework, all agents send and receive messages. This
evens out communication requirements and eliminates the
brittleness to communication bottlenecks. In addition, we
distribute computation between all agents to reduce compu-

ICAPS 2006

16 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

tational complexity and take advantage of parallel process-
ing, thus improving performance relative to the centralized
architecture

D-Kirk consists of the following four phases.

1. Distribute the TPN across the processor network,

2. Select a temporally consistent plan from the TPN.

3. Reformulate the selected plan for efficient dispatching.

4. Dispatch the selected plan, while scheduling dynamically.

This paper begins with a summary of dispatchable execu-
tion. We then present the steps required to execute a tem-
porally flexible plan in a distributed manner. These are the
distribution, reformulation and dispatching algorithms and
correspond to steps 1, 3 and 4 above. Our key innovation is
a set of distributed algorithm that handle limited inter-agent
communication and are robust to all communication delays.

Finally, we extend the work to include contingent plans.
We present a summary of TPNs and of previous work
by (Wehowsky 2003) for dynamically selecting a feasible
plan from a TPN, which corresponds to step 2 above.

Dispatchable Execution

The task of the executive is to robustly execute a temporally
flexible plan. Temporally flexible plans make use of simple
temporal constraints to describe uncertain durations. A sim-
ple temporal constraint [l, u] places a bound t+ − t− ∈ [l, u]
on duration between the start time t− and end time t+ of the
activity or sub-plan to which it is applied.

In all that follows, we discuss temporally flexible plans in
terms of a graph representation, where nodes represent time
events and directed edges represent simple temporal con-
straints. An example temporally flexible plan is shown in
graph form in Fig. 1.

I
[0

,0
] J[0,0]

NM

ActivityD [1,5]

A

[0
,0

]
[0,0]

B

[0,7]

[0,0][0
,0]

[0
,0
] D[0,0]

HG

E F

ActivityA [4,6]

ActivityB [2,5]

[0,0]

C

Figure 1: Example temporally flexible plan

Given a temporally flexible plan to be executed, tradi-
tional execution schemes fix the execution schedule at plan-
ning time, thus removing the temporal flexibility prior to ex-
ecution. This approach leads to two problems. First, the
fixed schedule lacks the flexibility to respond to temporal
uncertainty at execution time, so the plan is prone to fail-
ure. Second, if we generate a very conservative schedule
to increase the likelihood of successful execution, then the
execution becomes sub-optimal in terms of total execution
time.

We overcome this limitation with dispatchable execu-
tion (Muscettola, Morris, & Tsamardinos 1998), where
scheduling is postponed until execution time. At execution
time we have the most information available regarding exe-
cution history, so the dispatcher can schedule activities just-
in-time. This provides robustness to uncertain durations that
lie within the temporally flexible bounds of the plan.

Just-in-time scheduling introduces an added run-time
computation that increases latency in the system’s ability to
respond to disturbances. To minimize the amount of com-
putation that must be conducted in real-time, we use a two-
stage execution strategy. Prior to execution, we use refor-
mulation to compile the plan to a form that allows easy dis-
patching. In particular, we reformulate the plan to a Minimal
Dispatchable Graph (MDG), which requires the minimum
amount of processing at dispatch time. This is followed by
dispatching, when the plan is executed. Dispatching of a
plan in MDG form requires only local propagation of timing
information.

To form the MDG, reformulation identifies the non-
dominated edges in the plan. These are the edges along
which execution information must be propagated at run
time. The most simple reformulation algorithm begins by
forming the All Pairs Shortest Path (APSP) graph. It then
traverses the APSP graph and tests every edge to determine
whether it is non-dominated. However, constructing the en-
tire APSP graph is inefficient, requiring O(N2) time com-
plexity and O(N2) space complexity, where N is the num-
ber of nodes in the plan. Furthermore, searching the APSP
graph for non-dominated edges has O(N3) time complexity,
giving an overall complexity for the simple reformulation al-
gorithm of O(N3) in time and O(N2) in space.

We overcome this problem with fast reformula-
tion (Tsamardinos, Muscettola, & Morris 1998). Fast
reformulation extracts non-dominated edges by a series
of traversals of the graph, without forming the complete
APSP graph. In the worst case, we conduct a traversal
from every node in the plan graph, to test whether the
implicit edge from that node to the node being investigated
is non-dominated. In order for the dominance tests to be
conducted efficiently, we must conduct each traversal in
Reverse Post Order (RPO) for the predecessor graph rooted
at the relevant start node.

We can further reduce complexity by exploiting Rigid
Components (RCs). A rigid component is a set of nodes
whose execution times are fixed relative to each other. Dur-
ing reformulation we can represent each RC by a single
node, thus reducing the effective value of N . The other
nodes in each RC are then added back into the plan once
reformulation is complete. Note that the treatment of RCs in
this way is also required for the dominance tests to function
correctly.

The node representing a given RC is known as the RC
leader, and is the node with minimum Single Source Short-
est Path (SSSP) distance from the start node. In order for
it to represent the RC in the dominance tests, the edges
to all other RC members are re-routed to the leader node.
The member nodes themselves are connected with a doubly
linked chain of edges, in increasing SSSP distance, as shown
in Fig. 2. All other edges are deleted. We connect RC mem-
ber nodes in this way because the doubly linked chain edges
are guaranteed to be part of the MDG, so do not need to be
processed in the dominance tests.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 17

[0,0][1
,1
]

[1
,1
] D[2,2]

HG

E F

ActivityA [1,2]

ActivityB [1,2]

A B

[0,0] [2,2]

[0
,0
]

[1
,1
]

[1
,1
]

D

H

G

E

F

ActivityA [1,2]

ActivityB [1,2]A

B

[0
,0
]

[2
,2
]

C

C

[1
,1
]

(a)

(b)

Figure 2: Rigid Components; (a) Before processing; (b) Af-
ter processing

Plan Distribution

The first step of D-Kirk is to distribute the input plan over
the available processors. A plan is distributed by assigning
to each processor the responsibility for zero or more nodes
of the plan graph, such that each node is assigned to exactly
one processor. During the subsequent steps of D-Kirk, each
processor maintains all data relevant to its assigned nodes.

D-Kirk begins by establishing a hierarchical, ad-hoc com-
munication network, using the leader election algorithm
in (Nagpal & Coore 1998). Given a set of processors with
fixed but unknown communication availabilities, this algo-
rithm forms a hierarchy of processors where communication
is guaranteed between a processor and its leader, neighbor
leaders and followers, as shown in Fig. 3.

p6

p3

p7

p1

p2

p4 p5

leader

neighbor

leader

followers

Figure 3: Example processor hierarchy, showing communi-
cation availability for processor p2

We then use a distribution algorithm (Wehowsky 2003)
to assign nodes to processors in the hierarchy. The tempo-
ral consistency checking performed in the planning phase is
centered around the temporal constraints between nodes of
the plan. Therefore, this algorithm distributes the plan such
that each pair of processors responsible for nodes linked by
a temporal constraint are able to communicate.

The algorithm allows the plan to be distributed down to a
level at which a processor handles only a single node; this
permits D-Kirk to operate on heterogeneous systems that in-
clude computationally impoverished processors.

Reformulation

In D-Kirk we distribute the fast reformulation algorithm be-
tween all nodes, using a message passing scheme. We use
a state machine approach to structure the reformulation al-
gorithm, so each node can track its progress through the
computation. This means that we do not require any ex-
isting synchronization between nodes: the state machine
provides synchronization based solely on the messages re-
ceived. Also, this allows a node to act only on received mes-
sages relevant to the phase of the computation with which it
is currently concerned, while postponing processing of any
messages for future phases that are received early.

As a result, the algorithm is robust to delays in message
delivery and ensures correct operation even when messages
arrive in an order different from that in which they were sent.
This allows reliable operation when guarantees can not be
placed upon the speed of communication channels. Also, the
algorithm provides significant error checking with regard to
the type of message that can be received at a given time.

The algorithm operates on the distance graph correspond-
ing to the input plan. It requires only the communication
channels guaranteed during distribution of the plan. Mes-
sages that must be sent between nodes that are not connected
by known channels are redirected to follow the channels,
with the re-routing handled internally by the algorithm.

Throughout the algorithm, we exploit parallel processing
wherever possible. In the following subsections, we discuss
the approaches used in each section of the distributed refor-
mulation algorithm, and show how efficiency is maximized.

We also present the computational complexity of each
phase of the algorithm, for comparison with the centralized
case. Note that the algorithm is event driven, where an event
is the receipt of a message. The computation to be per-
formed on receipt of each message is simple, so the com-
putational complexity is of the same order as the message
complexity.

We illustrate the operation of the algorithm on the exam-
ple temporally flexible plan shown in Fig. 1. Line numbers
refer to the pseudo-code for the distributed reformulation al-
gorithm shown in Fig. 4.

Rigid Component Processing (lines 1-16)

As mentioned above, for correct operation of the dominance
tests, we must represent each RC by a single node. RC pro-
cessing is therefore the first part of the distributed reformu-
lation algorithm and proceeds as follows.

Form predecessor graph. The predecessor graph is
the graph of shortest paths from the start node to all other
nodes. To form the predecessor graph we use the distributed
Bellman-Ford algorithm (Lynch 1997), algorithm to find
the SSSP distance to each node (line 2). The distributed
Bellman-Ford algorithm requires only local knowledge of
the graph at each node, hence allowing the SSSP calculation
to be performed locally. To ensure that the algorithm con-
verges in time linear in the number of nodes, the Bellman-
Ford algorithm is run synchronously. This algorithm is fully
parallel. Once the SSSP distances have been computed, we
use them to form the predecessor graph (line 3).

ICAPS 2006

18 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

1: Process Rigid Components
2: Compute SSSP distances from phantom node using syn-

chronous distributed Bellman-Ford
3: Form predecessor graph using SSSP distances
4: Perform DFS on predecessor graph and record RPO
5: for Each node in the graph, taken in RPO order do
6: Perform DFS on transposed predecessor graph to ex-

tract members of this RC and their edges
7: Determine member node with minimum SSSP dis-

tance and set as RC leader
8: for Each member node do
9: Form edges for RC doubly linked chain and record

as members of MDG
10: Delete all other edges
11: end for
12: for Each edge do
13: Relocate to RC leader
14: Inform remote node of the relocation
15: end for
16: end for
17: Perform Dominance Tests
18: for Each RC leader do
19: Compute SSSP distances from this node for the

graph of RC leaders using synchronous distributed
Bellman-Ford

20: Form predecessor graph using SSSP distances
21: Perform DFS on predecessor graph and record RPO
22: Begin traversal in RPO
23: for Each node traversed do
24: Use minimum and non-positive data to apply dom-

inance tests
25: if Implicit edge is non-dominated then
26: Record implicit edge as member of MDG
27: end if
28: Update minimum and non-positive data
29: Propagate minimum and non-positive data to suc-

cessors
30: end for
31: Record non-dominated edges as members of MDG
32: end for
33: Initialize Execution Windows
34: Compute SSSP distances from start node using outgoing

non-negative MDG edges using synchronous distributed
Bellman-Ford

35: Record SSSP distances as upper bound of execution
windows

36: Compute SSSP distances from start node using incom-
ing non-positive MDG edges using synchronous dis-
tributed Bellman-Ford

37: Record SSSP distances as lower bound of execution
windows

Figure 4: Distributed Reformulation Algorithm

Note that for the purpose of extracting RCs, we perform
the SSSP calculation from a phantom node, a virtual node
which has edges of zero length to every other node in the
plan. The distance graph corresponding to the example plan
in Fig. 1, with phantom node added, is shown in Fig. 5(a).

The SSSP distances and predecessor graph for the example
plan are shown in Fig. 5(b).

(a)

(b)

(c)

I J

NM
A B

D

HG

E F

C

0
0

0

-1

-1-1

-1

-1-5

-5

-5

-5

Ph

I J

NM
A B

D

HG

E F

C
0

0

0
0

0 0
0 0

0

0 00
0

0

0 0
5

0

0

7

Ph

6

-4

-2

5

-1

0

0 0 0 0

0

0

0

0

0 0

0 0

I J

NM
A B

D

HG

E F

C

Ph

RPO = <Ph,B,J,N,M,I,D,H,F,E,C,G,A>

Figure 5: Reformulation example: (a) Distance graph with
phantom node; (b) SSSP distances and predecessor graph;
(c) RPO

The complexity of this stage is dominated by the SSSP
calculation, which has computational complexity O(Ne),
where e is the number of edges at each node.

Extract reverse post order. The post order is the order
in which nodes are removed from the search queue during
search. We extract the Reverse Post Order (RPO) from a
Depth First Search (DFS) on the predecessor graph (line 4).
Since the RPO is inherently ordered, this part of the algo-
rithm can not be conducted in parallel and is entirely serial.
The computational complexity for each node is O(e).

Note that in the presence of the phantom node, this search
is more complicated than a simple DFS. We simulate a DFS
search from the phantom node by starting a DFS from ev-
ery node that has a zero SSSP distance. The RPO for the
example plan is shown in Fig. 5(c).

A given node must complete its part in forming the pre-
decessor graph before it can take part in RPO extraction, but
we do not require all nodes to have completed the predeces-
sor graph for the RPO extraction to begin. The RPO extrac-
tion process is begun as soon as the start node has completed
its part in forming the predecessor graph, so it occurs con-
currently with formation of the predecessor graph, waiting
for a node to finish its part in forming the predecessor graph
where necessary.

Process rigid components. We determine the members
of each rigid component with a series of DFSs on the trans-
posed predecessor graph. The transposed predecessor graph
for the example plan is shown in Fig. 6(a). We start a DFS
from every node in the graph, with the order determined by
the predecessor graph RPO calculated above (line 5). The
nodes visited in each DFS belong to a single RC.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 19

A B
H

6
-4

-2
5

5

-1

7
0

C E G F D I M NJ

0 0

0

0 0

0

0

0

0

0

0

0

0

0

0 0
0 0

(a)

(b)

I J

NM
A B

D

HG

E F

C

0
0

0

-1

-1-1

-1

-1-5

-5

-5

-5

Figure 6: Reformulation example: (a) Transposed predeces-
sor graph; (b) Plan with RC processing complete

During each DFS, we gather the list of member nodes and
the list of edges belonging to them (line 6). After each DFS
is complete, the relevant start node assigns as RC leader the
member node with the minimum SSSP distance (line 7). It
also sends messages to all members of the RC to instruct
them to form the doubly linked chain of edges that connects
the member nodes (line 9) and to delete all other edges (line
10). If the receiving node is the RC leader, it also adds the
rearranged edges from the other members of the RC (line
13). Finally, the start node sends messages to inform the
nodes at the far end of the RC members’ edges that the edges
have been moved to the RC leader (line 14). The example
plan with RC processing complete is shown in Fig. 6(b).

Within each DFS, processing is performed in parallel:
multiple branches of the tree are searched simultaneously.
However, the DFSs must be strictly ordered relative to each
other for the RC extraction to be successful, so this is done
sequentially.

The complexity of this phase is dominated by the extrac-
tion of the members of the RC and by rearranging edges to
the leader, giving a computational complexity of O(e).

The RC extraction process begins at the first node in the
RPO. By definition, this is the last node to complete the RPO
extraction phase, so RC extraction does not begin until RPO
extraction is complete.

Since in the presence of the phantom node the overall start
node is not necessarily the first in the RPO, the RC process-
ing phase is initiated by a message from the overall start
node to the first node in the RPO.

Dominance Test Traversals (lines 17-32)

The dominance tests determine whether an edge is a member
of the MDG and are applied in a series of graph traversals.
The traversals are conducted on the subset of the plan graph
comprised of RC leaders (line 18). In a traversal started at
node A, the dominance test applied as we traverse node B
determines whether or not the implicit edge AB is a member
of the MDG.

A given node must complete its part in RC processing
before it can begin the dominance test procedure. However,
we do not need all nodes to have completed the RC phase
before we start the dominance tests, so these two phases run

concurrently, waiting for nodes to complete RC processing
where required.

Each traversal must follow the RPO for the predecessor
graph rooted at the start node of the traversal. The procedure
for each traversal is as follows.

Form predecessor graph. We form the predecessor
graph as described above, but we do not use a phantom
node and we ignore any edges to RC non-leaders (lines 19-
20). The computational complexity per traversal remains
O(Ne).

Extract reverse post order. We extract the RPO as de-
scribed above, again not using a phantom node and ignoring
any edges to RC non-leaders (line 21). The computational
complexity per traversal remains O(e).

Traverse and apply dominance tests. We conduct the
traversal in the order given by the RPO (line 22). The traver-
sal begins at the first node in the RPO and by definition, this
is the last node to complete the RPO extraction phase, so the
traversal does not begin until RPO extraction is complete.

At each node in the traversal, we send messages to all pre-
decessor nodes with the values of the following two pieces
of data (lines 28-29).

• minimum : the minimum SSSP distance encountered on
this traversal.

• non-positive : whether a non-positive SSSP distance has
been encountered on this traversal.

When the traversal reaches a node, it uses these pieces of
data to determine whether or not the implicit edge is domi-
nated (line 25). If the edge is not dominated, it is recorded
locally (line 26). The edge is also recorded in a list which
is passed back to the start node of the traversal for recording
there (line 31).

The complexity is dominated by the need to propagate the
data used in the dominance tests to all predecessors, giving
a computational complexity per traversal of O(e).

Once a traversal is complete, the start node of the traversal
uses a message to initiate a traversal from the next node in
the graph. In this way, successive traversals are conducted
serially. The SSSP distances, predecessor graph, RPO and
non-dominated edges for the example plan are shown in
Figs. 7(a), (b) and (c) for the traversals from nodes B, H
and A respectively.

Initialize Execution Windows (lines 33-37)

Once the dominance test traversals are complete, we must
initialize the execution window for each node before dis-
patching. A node can not determine when it has completed
the dominance test phase because we can not easily calcu-
late how many traversals it will be involved in. This is be-
cause, in general, a node is only reachable from a subset
of the nodes in the plan for the purposes of SSSP distance
and RPO calculations. Therefore, when the traversal from
a given node is complete, this node sends a message to in-
form the overall start node that this is the case. Once all
such messages have been received, we know that the domi-
nance test phase is complete and the execution windows can
be calculated.

ICAPS 2006

20 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

0-5 -1

RPO = <B,H,A>

3-4 0

RPO = <H,A,B>

70 5

RPO = <A,B,H>

(c)

(b)

(a)

Figure 7: Reformulation example: SSSP distances, prede-
cessor graph and non-dominated edges for MDG traversals;
(a) From node B; (b) From node H; (c) From node A

Calculate upper bounds. We determine the upper exe-
cution bound on each node with a SSSP calculation from the
start node. We use the distributed Bellman-Ford algorithm
described above, but we do not use the phantom node and
we consider only outgoing non-negative MDG edges (lines
34-35). In the worst case, the number of MDG edges per
node is O(e), so the computational complexity per traversal
is O(Ne).

Calculate lower bounds. We determine the lower exe-
cution bound on each node with a SSSP calculation from
the start node. We use the distributed Bellman-Ford algo-
rithm described above, but again we do not use the phan-
tom node and we consider only incoming non-positive MDG
edges (lines 36-37). Again, the number of MDG edges per
node is O(e), so the computational complexity per traversal
is O(Ne). Since we can not conduct multiple Bellman-Ford
calculations simultaneously, we complete the upper bound
calculations before we begin those for the lower bounds.
The complete MDG and initial execution windows for the
example plan are shown in Fig. 8.

A B
H

C E G F D I M NJ

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0 0
0 0

5

7

-1

-4

[4,5]
[5,7][0,0]

[0,0] [0,0] [0,0] [4,5] [4,5] [4,5] [4,5] [5,7][5,7]

Figure 8: Reformulation example: Complete MDG and ini-
tial execution windows

Complexity

Using the complexities of each stage described above, we
obtain a worst case overall computational complexity of

O(N2e + Ne) for the distributed reformulation algorithm.
Both of these terms are due to the Bellman-Ford SSSP calcu-
lations: approximately N calculations of complexity O(Ne)
used to obtain the predecessor graphs for RC processing and
dominance test traversals, and 2 calculations of complexity
O(Ne) for the execution windows.

In the centralized case, the centralized Bellman-Ford al-
gorithm has complexity O(NE), where E is the total num-
ber of edges in the plan, giving an overall computational
complexity of O(N2E). The improvement due to dis-
tributed processing, therefore, is approximately a factor of
E

e
≈ N .

Dispatching

Once the plan has been reformulated to an MDG, the dis-
patcher executes the activities in real time. We base our dis-
tributed algorithm on the dispatching algorithm of (Muscet-
tola, Morris, & Tsamardinos 1998). We distribute the dis-
patching algorithm over all nodes, using a message passing
scheme.

As with the reformulation algorithm, we use a state ma-
chine approach to provide robustness to delays in message
delivery. This allows the algorithm to function correctly
without requiring any synchronization between processors.

However, synchronization is required for the precisely
timed execution of tasks. For this we assume a synchronous
execution model. In particular, we require that each pro-
cessor has a synchronized clock. The task of achieving this
synchronization is not trivial, but is beyond the scope of this
work. Note however, that approximate synchronization, to
within the delivery time of a single message, is sufficient for
many practical applications.

During dispatching, the processors operate independently,
monitoring incoming messages and their clock to determine
when their nodes’ activities can be executed. The only mes-
sages used are those sent to inform neighbor nodes that a
node has executed. The information carried in these mes-
sages is used to update the lower and upper bounds on a
node’s execution window and to propagate enablement con-
ditions. Line numbers in the following description of the
algorithm refer to the pseudo-code shown in Fig. 9.

First, a node must wait to be enabled (lines 1-4). A node
is enabled when all nodes that must execute before it have
been executed. These nodes are identified as those which are
found at the end of outgoing non-positive MDG edges (line
2). While waiting, the node responds to incoming messages
(line 3).

Once enabled, a node must wait for the current time to
enter its execution window and for all uncontrollable activ-
ities that end at this node to complete (lines 6-14). While
waiting, the node checks that the current time does not ex-
ceed the upper bound of the execution window (line 7), else
the plan execution fails (line 8). Also, the node continues to
respond to incoming messages (line 10).

Once the current time is in the execution window and all
uncontrollable activities have completed, we can execute the
node (lines 15-18). First, we stop any controllable activities
that end at this node (line 16) and then start any activities

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 21

1: Wait For Enablement
2: while All nodes on outgoing non-positive edges have

not executed do
3: Process received EXECUTED messages
4: end while
5: Wait For Timing
6: while No error do
7: if Current time has exceeded upper time bound then
8: Execution failure
9: end if

10: Process received EXECUTED messages
11: if current time is within execution window AND All

uncontrollable end activities are complete then
12: Break
13: end if
14: end while
15: Execute node
16: Stop all controllable end activities
17: Start all start activities
18: Inform neighbor nodes that node has executed

Figure 9: Distributed Dispatching Algorithm

which begin at this node (line 17). Finally, we send mes-
sages to inform neighbor nodes that the node has executed
(line 19).

The number of messages sent by each node is determined
by the number of edges connected to it in the MDG. In the
worst case, this number is O(e).

In the centralized case, the lead node must send messages
to every other node in the plan to instruct them to execute
their activities, giving a peak message complexity of O(E).
Therefore, compared to the centralized case, D-Kirk reduces
the number of messages at dispatch time, when we must op-
erate in real time and are most susceptible to communication
delays.

Furthermore, since the computational complexity is di-
rectly proportional to the number of messages received, D-
Kirk improves this too.

Temporal Plan Networks

In order to encode contingencies, a Temporal Plan Network
(TPN) augments the temporally flexible plan representation
with a choose operator. The choose operator allows us to
specify nested choices in the plan, where each choice is an
alternative sub-plan that performs the same function.

The primitive element of a TPN is an activity[l, u],
which is an executable command whose duration is bounded
by a simple temporal constraint. A simple temporal con-
straint [l, u] places a bound t+ − t− ∈ [l, u] on duration
between the start time t− and end time t+ of the activity
or contingent sub-plan to which it is applied. A TPN is
built from a set of primitive activities and is defined recur-
sively using the choose, parallel and sequence oper-
ators, taken from the Reactive Model-based Programming
Language (RMPL) (Williams et al. 2003). A TPN encodes
all executions of a non-deterministic concurrent, timed pro-
gram, comprised of these operators.

• choose(TPN1, . . . , TPNN) introduces multiple sub-
networks of which only one is to be chosen. A choice
variable is used at the start node to encode the currently
selected subnetwork. A choice variable is active if it falls
within the currently selected portion of the TPN.

• parallel(TPN1, . . . , TPNN) [l, u] introduces multi-
ple subnetworks to be executed concurrently. A simple
temporal constraint is applied to the entire network.

• sequence(TPN1, . . . , TPNN) [l, u] introduces multi-
ple subnetworks which are to be executed sequentially.
A simple temporal constraint is applied to the entire net-
work.

Graph representations of the activity, choose,
parallel and sequence network types are shown in
Fig. 10. Nodes represent time events and directed edges rep-
resent simple temporal constraints. A choice node is shown
as an inscribed circle.

activity

parallel

A

Z

[l,u]

[0,0][0
,0
]

[0
,0
][0,0]

ES

S E

choose

A

Z

[0,0][0
,0
]

[0
,0
] ES [0,0]

sequence

A

[0,0]

[0
,0
]

ES

Z

[0,0]

[0,0]

[l,u]

[l,u]

Figure 10: TPN Constructs

A temporally consistent plan is obtained from the TPN if
and only if a feasible choice assignment is found. See (We-
howsky 2003) for a more precise definition.

Definition 1 A temporally flexible plan is temporally con-
sistent if there exists an assignment of times to each event
such that all temporal constraints are satisfied.

Definition 2 A feasible choice assignment is an assignment
to the choice variables of a TPN such that 1) all active
choice variables are assigned, 2) all inactive choice vari-
ables are unassigned, and 3) the temporally flexible plan
(program execution) corresponding to this assignment is
temporally consistent.

Plan Extraction

The plan extraction phase of D-Kirk consists of two inter-
leaved processes: generation of candidate plans and testing
them for temporal consistency.

The candidate plans correspond to different assignments
to the choice variables at each choice node and are ob-
tained by solving a conditional CSP (Mittal & Falkenhainer
1990). The D-Kirk planning algorithm uses parallel, recur-
sive, depth first search to make these assignments.

Consistency checking is implemented using the dis-
tributed Bellman-Ford SSSP algorithm and is run on the dis-
tance graph corresponding to the portion of the TPN that

ICAPS 2006

22 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

represents the current candidate. Temporal inconsistency is
detected as a negative weight cycle (Dechter, Meiri, & Pearl
1991).

The planning algorithm exploits the hierarchical struc-
ture of the TPN to allow parallel processing. Consistency
checking is interleaved with candidate generation, such that
D-Kirk simultaneously runs multiple instances of the dis-
tributed Bellman-Ford algorithm on isolated subsets of the
TPN. D-Kirk uses a distributed message-passing architec-
ture that employs the following messages for candidate plan
generation.

• findfirst instructs a network to make the initial search
for a consistent set of choice variable assignments. If a
node at level n in the hierarchy receives a findfirst

message, it propagates it to all of its subnetworks at level
n + 1 simultaneously. If each subnetwork finds a con-
sistent assignment, we then check for consistency at level
n.

• findnext is used when a network is consistent inter-
nally, but is inconsistent with other networks. In this case,
D-Kirk uses findnext messages to conduct a system-
atic search for a new consistent assignment, in order to
achieve global consistency. To achieve this, a node at
level n in the hierarchy receiving a findnext message
forwards the message to each subnetwork at level n+1 in
turn. When a new consistent assignment to a subnetwork
is found, we check for consistency at level n. Therefore,
a successful findnext message will cause a change to
the value assigned to a single choice variable, which may
in turn cause other choice variables to become active or
inactive.

• fail indicates that no consistent set of assignments was
found and hence the current set of assignments within the
network is inconsistent.

• ack, short for acknowledge, indicates that a consistent set
of choice variable assignments has been found.

Whenever a node initiates search in its subnetworks, using
findfirst or findnext messages, the relevant processors
search the subnetworks simultaneously. This is the origin of
the parallelism in the algorithm.

The planning phase of D-Kirk offers an improvement in
computational complexity compared to a centralized archi-
tecture. The distributed Bellman-Ford algorithm has time
complexity O(Ne), compared to O(NE) for the centralized
version of the algorithm. Overall, the worst-case computa-
tional complexity of the planning algorithm remains expo-
nential, due to the candidate generation phase.

An example TPN containing a single choice node I is
shown in Fig. 11. The only feasible choice assignment is
the pathway through nodes M and N, and this gives rise to
the temporally consistent plan shown in Fig. 1.

Conclusion

To summarize, this paper introduced D-Kirk, a distributed
executive that performs robust execution of contingent, tem-
porally flexible plans. In particular, D-Kirk operates on
Temporal Plan Networks (TPNs) and distributes both data
and processing across available processors. D-Kirk employs

[0,0][0
,0]

[0
,0
] J[0,0]

NM

K L

ActivityC [4,6]

ActivityD [1,5]

A

[0
,0

]
[0,0]

B

[0,7]

[0,0][0
,0]

[0
,0
] D[0,0]

HG

E F

ActivityA [4,6]

ActivityB [2,5]

[0,0]

C I

Figure 11: Reformulation example: Input TPN

a series of distributed algorithms that first, form a processor
hierarchy and assign TPN subnetworks to each processor;
second, search the TPN for a temporally consistent plan;
third, reformulate the selected plan to a form amenable to
execution and; finally, dispatch the plan. This distributed
approach spreads communication evenly across the proces-
sors, thus eliminating the bottleneck in communication at
dispatch time that is present in a centralized architecture.
Furthermore, the distributed algorithms reduce the computa-
tional load on each processor at all four stages of execution
and allow concurrent processing for increased performance.

References

Dean, T., and McDermott, D. 1987. Temporal database
management. Artificial Intelligence 32:1–55.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.

Kim, P.; Williams, B.; and Abramson, M. 2001. Executing
reactive, model-based programs through graph-based tem-
poral planning. In Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
2001).

Lynch, N. 1997. Distributed Algorithms. Morgan Kauf-
mann.

Mittal, S., and Falkenhainer, B. 1990. Dynamic constraint
satisfaction problems. In Proceedings of the Fifth National
Conference on Artificial Intelligence (AAAI-1990).

Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. In Prin-
ciples of Knowledge Representation and Reasoning, 444–
452.

Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. Morgan Kaufmann.

Nagpal, R., and Coore, D. 1998. An algorithm for group
formation in an amorphous computer. In Proceedings of the
Tenth International Conference on Parallel and Distributed
Systems (PDCS-1988).

Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998. Fast
transformation of temporal plans for efficient execution. In
Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence (AAAI-1998), 254–261.

Wehowsky, A. F. 2003. Safe distributed coordination
of heterogeneous robots through dynamic simple temporal
networks. Master’s thesis, MIT, Cambridge, MA.

Williams, B. C.; Ingham, M.; Chung, S.; and Elliott, P.
2003. Model-based programming of intelligent embedded
systems and robotic explorers. In IEEE Proceedings, Spe-
cial Issue on Embedded Software.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 23

Coordinated Plan Management Using Multiagent MDPs
David J. Musliner

Honeywell Laboratories
david.musliner@honeywell.com

Edmund H. Durfee, Jianhui Wu, Dmitri A. Dolgov
University of Michigan

durfee,jianhuiw,ddolgov@umich.edu

Robert P. Goldman
SIFT, LLC

rpgoldman@sift.info

Mark S. Boddy
Adventium Labs

mark.boddy@adventiumlabs.org

Introduction

For the past several years, we have been developing multi-

agent technology to help humans coordinate their activi-

ties in complex, dynamic environments. In recent work on

the DARPA COORDINATORs program, we have developed

multi-agent Markov-decision process (MDP) techniques for

distributed plan management. The COORDINATORs prob-

lems arrive in distributed form, with different agents getting

local views of their portion of the problem and its relation-

ship to others. Even so, the individual agents’ MDPs that

capture their local planning and scheduling problem can be

too large to enumerate and solve. Furthermore, the COOR-

DINATORs agents must build and execute their plans in real-

time, interacting with a world simulation that makes their

actions have uncertain outcome.

Accordingly, we have developed an embedded agent sys-

tem that negotiates to try to find approximately-optimal dis-

tributed policies within tight time constraints. Our work

draws together and extends ideas in multi-agent Markov de-

cision processes, real-time computing, negotiation, meta-

level control, and distributed constraint optimization. Con-

tributions of our work include “unrolling” techniques for

translating local hierarchical task networks to MDPs, “in-

formed” heuristic search control of the unrolling pro-

cess, and negotiation methods for allocating responsibilities

across cooperating agents and using those allocations to in-

fluence local policy construction.

In the rest of this paper, we describe our approach in

more detail. We begin by summarizing the challenges in dis-

tributed plan management embodied in the COORDINATORs

problem, and the TÆMS representation used to model the

actions and interactions requiring coordination. We then de-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

scribe how we translate the problem represented in TÆMS

into an MDP, and the strategies that we use for finding poli-

cies when the MDP state space exceeds the time and/or

space bounds for our system. After that, we discuss the

challenge of using inter-agent negotiation to coordinate the

agents’ policies. Finally, we point out the limitations of

our initial implementation, and we outline our plan to im-

prove the management of uncertain and unexpected events

by more fully integrating ongoing deliberation and coordi-

nation.

The COORDINATORs Problem

COORDINATORs is a research program funded by DARPA

IPTO to identify, prototype, and evaluate well-founded tech-

nical approaches to scheduling and managing distributed ac-

tivity plans in dynamic environments. As a motivating ex-

ample, consider the following scenario. A hostage has been

taken and might be held in one of two possible locations.

Rescuing the hostage requires that both possible locations

are entered by special forcessimultaneously. As the activi-

ties to move personnel and materiel into place are pursued,

delays can occur, or actions to achieve precursor objectives

might have unexpected results (e.g., failure). COORDINA-

TOR agent systems will be associated with the various hu-

man participants. COORDINATORagents should monitor the

distributed plans and manage them as the situation evolves,

to increase their effectiveness and make them more likely to

succeed.

In general, a set of COORDINATOR agents is meant to

work together to maximize the reward gained by the group

as a whole. In other words, the problem is to compute an

effectivejoint policy for the agent society, in which the ac-

tions taken by one agent can depend on the state of the group

as a whole, not just the local state of that agent. The agents

ICAPS 2006

24 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

are time-pressured: each agent must make timely action de-

cisions during execution. Furthermore, the problem must be

solved in a distributed fashion.

Each agent’s partial model includes the actions that the

agent can execute, which are stochastic, rather than deter-

ministic, and some of the actions its peers can perform. The

model also providespartial information about the rewards

that the society as a whole will receive for reaching various

states. This model is not static: the agent can receive model

updates during execution. Therefore, agents must be able to

manage and reformulate policies reactively.

The problems are formulated as complex hierarchical task

networks, which we translate to MDPs. It is our hypothesis

that MDPs provide the appropriate modeling tool for repre-

senting the COORDINATORs problem, and that each agent

should generate, store, and follow the best policy that its

knowledge and available resources (time, etc.) allow. To ex-

plore this approach, we must develop distributed negotiation

techniques for coordinating the policy-finding activitiesof

the various agents, and we must provide alocalutility model

that will cause the individual agents to (approximately) max-

imize group expected utility by (approximately) maximizing

their local expected utility.

The intractable space of joint multiagent policies means

that our negotiation protocols for collaboratively arriving at

joint policies can explore only a small portion of the joint

policy space. Our approach reduces this full space by pro-

jecting down to an alternative space of joint “commitments”

which bias the agents’ local policy formulation processes.

However, because the MDPs are generally too large to create

and solve within the environment’s time limits, the agents

can only formulate partial and approximate policies.We have

developed single-agent policy-finding techniques that en-

able an agent to flexibly trade off the quality of a policy for

time. At runtime, the agents monitor their changing local

states, and model the changes to each other’s states, tracking

their passage through the MDP state space and taking the

appropriate actions based on their policies.

C-TÆMS

COORDINATORs researchers have jointly defined a common

problem domain representation based on the original TÆMS

language (Horlinget al. 1999). The new language, C-

TÆMS, provides a semantically sound subset of the original

language, representing multi-agent hierarchical tasks with

probabilistic expectations on their outcomes (characterized

by quality, cost, and duration) and complex hard and soft

interactions (Boddyet al. 2005). Unlike other hierarchical

task representations, C-TÆMS emphasizes complex reason-

ing about the utility of tasks, rather than emphasizing inter-

actions between agents and the state of their environment.

C-TÆMS permits a modeler to describe hierarchically-

structured tasks executed by multiple agents. A C-TÆMS

task network has agents and nodes representingtasks(com-

plex actions) andmethods(primitives). Nodes are tempo-

rally extended: they have durations (which may vary prob-

abilistically), and may be constrained by release times (ear-

liest possible starts) and deadlines. At any time, each C-

TÆMS agent can be executing at most one of its methods.

A C-TÆMS model is a discrete stochastic model: meth-

ods have multiple possible outcomes. Outcomes dictate the

duration of the method, itsquality, and itscost. Quality

and cost are unit-less, and there is no fixed scheme for com-

bining them into utilities. For the initial COORDINATORs

experiments, we dispense with cost, so that quality may be

thought of as utility. Methods that violate their temporal

constraints yield zero quality (and are said to havefailed).

Every task in the hierarchy has associated with it a “qual-

ity accumulation function” (QAF) that describes how the

quality of its children are aggregated up the hierarchy. The

QAFs combine both logical constraints on subtask execu-

tion and how quality accumulates. For example, a :MIN

QAF specifies that all subtasks must be executed and must

achieve some non-zero quality in order for the task itself to

achieve quality, and the quality it achieves is equal to the

minimum achieved by its subtasks. The :SYNCSUM QAF

is an even more interesting case. Designed to capture one

form of synchronization across agents, a :SYNCSUM task

achieves quality that is the sum of all of its subtasks that

start at the same time the earliest subtask starts. Any sub-

tasks that start later cannot contribute quality to the parent

task.

Traditional planning languages model interactions be-

tween agents and the state of their environment through pre-

conditions and postconditions. In contrast, C-TÆMS does

not model environmental state change at all: the only thing

that changes state is the task network. Without a notion of

environment state, in C-TÆMS task interactions are mod-

eled by “non-local effect” (NLE) links indicating inter-node

relationships such as enablement, disablement, facilitation,

and hindrance. Complicating matters significantly is the fact

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 25

that these NLEs may have associated delays. We will dis-

cuss the implications of all of these in terms of developing

Markov models of the COORDINATORs problem shortly.

Figure 1 illustrates a simple version of the two-agent

hostage-rescue problem described earlier. The whole dia-

gram shows a global “objective” view of the problem, cap-

turing primitive methods that can be executed by different

agents (A and B). The agents in a COORDINATORs prob-

lem arenot given this view. Instead, each is given a (typi-

cally) incomplete “subjective” view corresponding to what

that individual agent would be aware of in the overall prob-

lem. The subjective view specifies a subset of the overall C-

TÆMS problem, corresponding to the parts of the problem

that the local agent can directly contribute to (e.g., a method

the agent can execute or can enable for another agent) or that

the local agent is directly affected by (e.g., a task that another

agent can execute to enable one of the local agent’s tasks).

In Figure 1, the unshaded boxes indicate the subjective view

of agent-A, who can perform the primitive methods Move-

into-Position-A and Engage-A. The “enable” link indicates

a non-local effect dictating that the Move-into-Position-A

method must be completed successfully before the agent

can begin the Engage-A method. The diagram also illus-

trates that methods may have stochastic expected outcomes;

for example, agent-B’s Move-into-Position-B method has a

40% chance of taking 25 time units and a 60% chance of

taking 35 time units. The :SYNCSUM QAF on the Engage

task encourages the agents to perform their subtasks starting

at the same time (to retain the element of surprise).

Execution environment

COORDINATORs agent designs are evaluated in a real-time

simulation environment. When agents first wake up in the

simulation they are given their local, subjective view prob-

lem description and an initial schedule of activities. The

initial schedule captures the notion that the agents already

have some nominal plan of what they should do. One of the

prime objectives of COORDINATORs is to manage responses

to uncertain outcomes and task model changes.

During evaluation, the agents send commands to the sim-

ulator specifying what methods they want to initiate, and

the simulator randomly determines duration and outcome

quality according to the distributions in the objective C-

TÆMS model. In order to achieve the best results, agents

will need to adapt their courses of action to the simulated

events. Agents can use a combination of precomputation

(policy generation) and reaction to adapt their plans. How-

ever, the simulated environment won’t wait for the agents to

replan; each simulated time tick is tied firmly to wall-clock

time.

In addition to the stochastic outcomes that are modeled in

C-TÆMS, the simulator can inject unmodeled events. Such

unmodeled events can include adding nodes to the C-TÆMS

network, removing nodes, or modifying duration/quality

distributions for existing nodes. Agents must manage their

plans at runtime to account for these changes, and they must

also contend with the fact that only a subset of the agents

may be aware of the unexpected change.

Multiagent MDPs for distributed plan
management

Given a (fixed) C-TÆMS task network and the fact that

method outcomes are stochastic, we frame the problem as

building a policy that dictates how each agent in the net-

work chooses methods at every point in time. In earlier

work on TÆMS, the objective was to find a satisfactory bal-

ance among some combination of quality, cost, and dura-

tion (Wagner, Garvey, & Lesser 1998). In C-TÆMS, by

contrast, the problem is simply to find a policy that maxi-

mizes the network’s expected quality (utility).

Markov Decision Processes

We assume that the reader has a grasp of the basic defini-

tions of Markov Decision Processes; we recommend Puter-

man’s text (Puterman 1994) for more specifics. Briefly, an

MDP is akin to a finite state machine, except that transitions

are probabilistic, rather than deterministic or nondetermin-

istic. Agents may also receive reward (which may be either

positive or negative) for entering some states. Typically,this

reward is additive over any trajectory through the state space

(some adjustments are needed in the case of MDPs of infi-

nite duration). The solution to an MDP is apolicy — an

assignment of action choice to every state in the MDP —

that maximizesexpected utility. MDPs’ advantages are that

they offer a sound theoretical basis for decision-making and

action under uncertainty, and that there are relatively simple,

polynomial algorithms for finding optimal policies.1

An agent’s C-TÆMS task model may be thought of as

specifying afinite-horizonMDP. The problems are finite-

horizon because C-TÆMS problems have finite duration,

with no looping or method retries. However, the MDP tends

1But polynomial in the (often large) size of the state space!

ICAPS 2006

26 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

:SYNCSUM
:SUM

Quality: (20 1.0)

Duration: (25 0.4

35 0.6)

Quality: (20 1.0)

Duration: (35 1.0)

Move-into-Position-A

Accomplish-Mission

Engage-A

:MAX

enables

Move-into-Position Engage

Engage-BMove-into-Position-B

enables

Figure 1: A simple C-TÆMS task network for two agents, illustrating some of the representation features. Some details have
been omitted for brevity.

to be quite large for even modest-sized C-TÆMS problems

because of the branching factor associated with uncertain

outcomes, and because of the temporal component of the

problem. Multi-agent C-TÆMS MDPs are even worse.

The COORDINATORs problem differs from most prob-

lems treated as MDPs in two important ways. First, the

problem is inherently distributed and multi-agent, so that

in the objective view, multiple actions can be executed si-

multaneously. For this reason, if one were to formulate a

centralized COORDINATORs problem directly as an MDP,

the action space would have to be a tuple of assignments of

actions to each agent. As one would expect, this causes an

explosion in the state space of the problem. A second dif-

ference is that the actions in the COORDINATORs domain

are temporally extended, rather than atomic. Such “dura-

tive” actions can be accommodated, but only at the cost of

a further explosion in the state space. Other aspects of the

COORDINATORs problem make its MDP formulation tricky

and increase the state space even more. For example, the

delays associated with NLEs such as “enables” links require

the MDP state to hold some execution outcome history.

Unrolling TÆMS task nets

We translate C-TÆMS task networks by “unrolling” them

into MDPs that make explicit the state space implicit in the

task net. For any agent, the C-TÆMS task network defines

a possible state space and transition function. A C-TÆMS

agent’s state may be defined as a tuple:〈t, M〉, wheret is

the current time, andM is a vector of method outcomes. If

M is the set of methods a TÆMS agent can execute, we can

assign toM an arbitrary numbering,1...n for n = |M|.

ThenM is a set of tuples,〈i, σ(i), δ(i), q(i)〉: the index of

the method, its start time, duration, and quality. This infor-

mation is sufficient (but not always all necessary) to give a

state space that has the Markov property. The C-TÆMS task

network, with its duration and quality distributions, defines

a transition function. For example, if an agent executes a

methodi starting at timet, yielding a durationδ(i) and a

qualityq(i), that is a state transition as follows:

〈t, M〉 → 〈t + δ(i), M ∪ {〈i, t, δ(i), q(i)〉}〉

Our techniques “unroll” the state space for the MDP from

its initial state (〈0, ∅〉) forward.2 From the initial state, the

algorithms identify every possible method that could be ex-

ecuted, and for each method every possible combination of

duration-and-quality outcomes, generating a new state for

each of these possible method-duration-quality outcomes.

Each state is then further expanded into each possible suc-

cessor state, and so on. For states where no methods can

apply, a “wait-method” is generated that leads to a later

state where some non-wait method has been enabled (or

the scenario has ended). The unrolling process ends at leaf

states whose time index is the end of scenario. The code

for performing this unrolling was adapted from previous

state-space unrollers developed at SIFT for applications in

optimal cockpit task allocation (Miller, Goldman, & Funk

2003).

There are a number of complexities in performing this

unrolling. For example, the set of enabled methods is a

complex function of the current state, influenced by tem-

poral constraints, NLEs, etc. Our unroller tries to eliminate

2Note that we can just as easily start unrollingin medias res, by
starting from a state in which the agent has already executedsome
actions.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 27

dominated action choices without enumerating the resulting

states. For example, once one task under a :MIN QAF has

failed (gotten zero quality) then none of the :MIN node’s re-

maining children should ever be tried, because they cannot

increase the :MIN node’s quality.3

Furthermore, we can exploit the structure of the C-TÆMS

task model, and its QAFs, to collapse together states that

are equivalent with respect to future action choice and fi-

nal quality. These techniques, and especially the equivalent-

state folding, give exponential reductions in state space size.

Informed Unrolling

Since full enumeration of even single-agent C-TÆMS

MDPs is impractical (the state space is too large), we have

developed a technique for heuristic enumeration of a sub-

space of the full MDP. Ourinformed unroller(IU) algorithm

prioritizes the queue of states waiting to be unrolled based

on an estimate of the likelihood that the state would be en-

countered when executing the optimal policy from the ini-

tial state. The intent is to guide the unrolling algorithm to

explore the most-probable states first. Because the proba-

bility of reaching a state is dependent on the policy, the IU

intersperses policy-formulation (using the Bellman backup

algorithm) with unrolling. However, the quality of a state

at the edge of the partially-unrolled state space is generally

difficult to assess, since quality often only accrues at the end

of the entire execution trace (i.e., the domains include de-

layed reward). Thus, we have developed a suite of alterna-

tive heuristics for estimating intermediate state quality.

We have experimented with several different heuristic

functions to evaluate edge states and guide the informed

unroller. Currently the most consistent performance is

achieved by a heuristic that emphasizes unrolling the high-

est (estimated) probability states first. However, computing

the heuristic function and sorting the openlist is an expen-

sive operation. Therefore we constrain the openlist sorting

activity in two ways. First, the sorting only occurs when

the size of the openlist doubles,4 and second, once the sort-

ing function takes more than a certain maximum allocated

time (e.g., one second), it is never performed again. This

has the net effect of sorting the openlist more often early in

the search, when focus is particularly important, and less of-

3Actually, if a child node can enable some other local or non-
local method it may still have utility. This sort of effect makes it
quite challenging to accurately assess dominance.

4This threshold could, of course, be tailored.

10
0

10
1

10
2

10
3

10
4

10
5

0

2

4

6

8

10

12

14

time (seconds)

ex
pe

ct
ed

 q
ua

lit
y

test1−AGENT1 (informed−unroller)
test1−AGENT1 (pure−kauai)
test1−AGENT2 (informed−unroller)
test1−AGENT2 (pure−kauai)
test1−AGENT3 (informed−unroller)
test1−AGENT3 (pure−kauai)

Figure 2: The Informed Unroller can find near-optimal
policies much faster than building the complete
MDP.

ten or never as the space is unrolled farther and probability

information becomes both less discriminatory (because the

probability mass is distributed over a very large set of reach-

able edge nodes) and focus becomes less critical (because

the agent will refine its model on the fly).

The informed unroller work is at an early stage, but early

results from the evaluation against a complete solution are

promising. For example, in Figure 2 we show a compari-

son of the performance of the informed unroller against the

complete unrolling process. In these small test problems,

the informed unroller is able to find a high-quality policy

quickly and to return increasingly effective policies given

more time. This allows the IU-agent to flexibly trade off the

quality and timeliness of its policies. The current versionof

the IU does not support repeated, incremental unrolling of

the state space during execution. However, we are actively

working to build a new version, and integrate it into our CO-

ORDINATORs agent.

Related Techniques

The IU approach is related to the “approximate dynamic pro-

gramming” algorithms discussed in the control theory and

operations research literature (Bertsekas 2005). These ap-

proaches derive approximate solutions to MDP-type prob-

lems by estimating, in various ways, the “cost to go” in leaf

nodes of a limited-horizon portion of the full state space.

While our exploration of the literature is not yet complete,

ICAPS 2006

28 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

initially we believe that a key difference in our IU ap-

proach is the notion of time-dependent horizon control and

unrolling-guidance (vs. just estimation of leaf-node reward

for policy derivation).

The IU method is also somewhat similar to

LAO* (Hansen & Zilberstein 2001), which uses knowledge

of the initial state(s) and heuristics to generate a state

subspace from which the optimal policy can be provably

derived. Our technique differs in substantial ways. The IU

executes online, and might lack enough time to enumerate

such a state subspace even if it knew exactly which states

to include. The IU is an anytime algorithm, unlike LAO*,

which runs offline. For this reason, the IU makes no claims

about policy optimality; indeed, it is not even guaranteed

to generate a closed policy. LAO* trims the state space by

using an admissible heuristic. No such heuristic is available

to the IU because estimating the final quality of a C-TÆMS

network, given the various QAFs, is so difficult. However,

because the IU is an online algorithm, it can be re-employed

periodically during execution, so the policy created can be

iteratively tailored to better fit the circumstances.

Coordination

When we consider multiple COORDINATOR agents, the

problem expands to finding an optimaljoint policy. This

problem is challenging because:

• The number of possible local policies for agents is in gen-

eral very large, so the product space of joint policies to

search through can be astronomical.

• The size and distribution of the problem makes reasoning

about the global behavior of the system impossible.

To address these practical limitations on solving the prob-

lem of finding optimal joint policies, our coordination ap-

proach is designed to take advantage of three assumptions:

• Inter-agent effects are well-defined and visible to individ-

ual agents through their subjective views.

• The agents are given reasonableinitial schedules.

• The sum of the local expected qualities of the agents is

a sufficient approximation of the global expected quality

for the problem with respect to guiding search toward im-

proved joint policies.

Our coordination method exploits the first assumption by

mining an agent’s local subjective view to detect the pos-

sible “coordination opportunities.” For example, if one of

agent-A’s methods enables a method for agent-B, that rep-

resents a coordination opportunity. Given these discrete op-

portunities, we can reduce the overall problem from an enor-

mous search over the space of joint policies to a merely huge

search over the space of alternative commitments on coordi-

nation opportunities.

We exploit the second assumption by extracting default

initial coordination decisions from the nominal initial sched-

ule of activities. After ensuring that the agents have coher-

ent and consistent expectations about those commitments,

they can then search for approximately-optimal local poli-

cies where the commitments for their coordination opportu-

nities are enforced, as described later.

The third assumption will enable negotiating agents to

compare different sets of commitments. For an individual

agent, a commitment set is preferred to another if it enables

the creation of a local policy that has a higher expected re-

ward. A group of agents will prefer a particular combination

of local commitment sets if the sum of the expected quali-

ties of their resulting local policies is higher. Note that some

agents in the group might have lower expected qualities, but

if these are more than compensated by the expected quality

gains of other agents then the combination of local commit-

ment sets is considered superior.

There are several ways in which these assumptions and

our solution approach (coordination over commitments)

may result in sub-optimal behavior. For example, the actual

optimal policy set may not adhere to a static set of commit-

ments: e.g., to behave optimally, agents may have to adjust

which enablements they will accomplish depending on how

prior methods execute. To mitigate this weakness, we plan

to have our agents deliberating and negotiating continually,

so that they can manage and adapt their commitment set and

policies on the fly as methods execute.

Perhaps worse, the third assumption may be violated: an

agent’s subjective view may not give an accurate estimate

of global quality. This problem arises because of the non-

monotonic and non-additive effects of different QAFs. For

example, suppose three agents have methods under a com-

mon :SYNCSUM parent, and in the initial schedule, two of

them have agreed to execute their methods at time 10, while

the third agent has decided not to execute his method. Now,

suppose the third agent realizes it can execute its method

at time 7. If it chooses to do so, its local C-TÆMS model

may indicate that this change can produce increased local

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 29

quality and therefore looks like a good idea. But if the

other agents do not adjust their plans, then their methods

running at time 10 will be rendered useless (failed, due to

the :SYNCSUM semantics emulating the lack of surprise).

Thus the third agent may inadvertently reduce the overall

team quality by pursuing its local goals without proper con-

sideration of global effects in the task model. This exam-

ple is fairly easy to recognize, but in general such effects

can propagate across multiple NLE links, making them very

hard to recognize and manage. Further study is required

to determine how badly this assumption affects the perfor-

mance of our COORDINATOR agent societies in widely var-

ied problems.

Initial Commitments

The agents begin their coordination by identifying their po-

tential interactions (coordination opportunities) and initial-

izing their planned responses (commitments) to those inter-

actions. Each agent does this based on its subjective view of

the problem and on its corresponding initial schedule.

The subjective view includes information on the agent’s

own tasks, as well as some limited information on the tasks

of other agents with which the agent may need to coordi-

nate. Specifically, the agent will know about the existence,

though not the details, of other agents’ tasks that are con-

nected to local tasks throughnon-local effects, for example

tasks that another agent must execute before some local task

can start. Several types ofcoordination opportunitiesare

extracted from the agent’s subjective view:

• NLE coordination opportunities are indicated by NLEs

across multiple agents’ tasks.

• Synchronizationcoordination opportunities are indicated

by :SYNCSUM tasks in the subjective view.

• Redundant Taskcoordination opportunities are indicated

by tasks that are visible to other agents, indicating that

they too have children under that node. Depending on the

QAF, such shared tasks may indicate that only one agent

should execute methods below the task.

Initial Commitments

The initial schedule is used to infer a set of provisional com-

mitments to the coordination opportunities. For example, if

agent-A has a methodMA that enables agent-B’s method

MB, then both agents recognize an NLE coordination op-

portunity. Each agent inspects its initial schedule to see

which methods are initially scheduled. For example, agent-

A may find that its initial schedule suggests executingMA at

time 3, with an anticipated finish at time 9, and agent-B’s ini-

tial schedule may suggest executingMB at time 11. Agent-

A would form a tentative commitment to finishMA before

9, and agent-B would form a tentative commitment expect-

ing its enablement before time 11. Note that the agents’ ini-

tial schedules may have flaws or poorly-aligned methods, so

these initial commitments may not be entirely consistent.

Distributed Constraint Satisfaction

In our problem formulation, negotiation can be viewed as

a search over the space of compatible commitments that

agents make to their coordination opportunities, seeking a

set of commitments that satisfactorily achieves high global

expected quality (as estimated by the sum of local expected

qualities). The search begins with the initial set of commit-

ments, and then tries to improve on this initial set (or some

previous improvement of that set) to increase the compati-

bility and/or quality of the commitments.

Our agents begin by ensuring compatibility among the

commitments, essentially treating the problem as a dis-

tributed constraint satisfaction problem (DCSP). For exam-

ple, an agent acting as the source for an enablement NLE

should be committed to completing the enabling task be-

fore the target agent expects to begin the enabled task. If

their locally-generated commitments do not satisfy this con-

straint, then the agents need to resolve the inconsistency.

As a simple first step, our agents exchange their initial

commitments with the relevant partner agents and, in a one-

shot computation, modify the commitments to ensure con-

sistency. Since each agent applies the same process to the

same information to establish consistency, each agent in-

volved in a coordination opportunity will arrive at the same

resolution to any inconsistency. Note that, even within this

simple protocol, there are several possible approaches. For

example, if agents disagree on the time an enablement will

occur, the agreed-upon time could be the earlier time, later

time, or some intermediate value.

Enforcing Commitments

Given a consistent set of commitments, we need a method

to enforcethose commitments in the agents’ policy-finding

process. One approach would be to re-write the task model

so that the MDP unroller does not even consider the pos-

sibility of violating the commitment. This approach is too

ICAPS 2006

30 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

restrictive because it would not permit the agents to reason

flexibly about off-nominal method outcomes. In some sit-

uations it may be a rational decision tonot satisfy a given

commitment. Therefore, rather than rigidly enforce commit-

ments, we strongly bias the policies generated by the MDP

solver towards the committed behaviors. This can be done

by providing an extra reward for states in which a given com-

mitment is satisfied and an extra penalty for states in which it

can be determined that the commitment will not be satisfied.

We also add local “proxy methods” modeling the execution

of other agents’ tasks.

We simplify the negotiation process to reduce the com-

plexity of enforcement. For example, the execution of tasks

by other agents is currently modeled deterministically: the

commitment agreement includes a single time by which the

task is to be executed. A more expressive representation

would accommodate completion time distributions.

Conclusion and Future Directions

Our agents are in the early stages of their design evolution,

having “played the game” in simulation for only a short

while, during which time the simulation environment itself

has also evolved. In their current form, the agents recog-

nize coordination opportunities, derive initial commitments

from the initial schedule, communicate to ensure consis-

tency among commitments, and then unroll the resulting

local MDP until their first method’s release time arrives.

They then execute their MDP policy whenever possible. If

the MDP unrolling expands the entire reachable state space,

they should remain “on-policy” and perform according to

the MDP’s predictions unless there is an unmodeled failure

or new task arrival. More often, the unrolling is incom-

plete and the agents can “fall off-policy” when the simu-

lated world state reaches an unexpanded part of the MDP

state space. At that point, the agents begin executing one

of two simple reactive scheduling algorithms (one driven off

the initial schedule, one based on a one-step lookahead).

Initial performance results indicate that, given a modest

amount of time to unroll their MDPs (e.g., twenty seconds),

the agents can explore tens of thousands of MDP states

and sometimes dramatically outperform the simple reactive

schemes alone. However, there is clearly room for major

improvement, and the simple reactive approaches likewise

sometimes dramatically outperform our initial IU system.

As our system evolves to fulfill its full design, we will con-

duct more detailed experimentation and analysis.

We believe that we now have a strong foundation for prin-

cipled future work on coordinated plan and schedule man-

agement in uncertain domains. We have many additional

features to develop, including incremental and continuous

MDP unrolling (so the agents continue to think about the

problem as they are executing their existing policy) and im-

proved negotiation that will lead to more dramatic changes

in the initial schedule and inter-agent commitments.

Acknowledgments
This material is based upon work supported by the

DARPA/IPTO COORDINATORs program and the Air Force

Research Laboratory under Contract No. FA8750–05–C–

0030. Any opinions, findings and conclusions, or recom-

mendations expressed in this material are those of the au-

thors and do not necessarily reflect the views of DARPA,

the U.S. Government, or the Air Force Research Laboratory.

References

Bertsekas, D. P. 2005. Dynamic programming and subop-

timal control: A survey from ADP to MPC. InProc. Conf.

on Decision and Control.

Boddy, M.; Horling, B.; Phelps, J.; Goldman, R. P.; and

Vincent, R. 2005. C-TÆMS language specification. Un-

published; available from this paper’s authors.

Hansen, E. A., and Zilberstein, S. 2001. LAO: a heuristic

search algorithm that finds solutions with loops.Artificial

Intelligence129(1-2):35–62.

Horling, B.; Lesser, V.; Vincent, R.; Wagner, T.; Raja, A.;

Zhang, S.; Decker, K.; and Garvey, A. 1999. The TAEMS

white paper. Technical report, University of Massachus-

setts, Amherst, Computer Science Department.

Miller, C. A.; Goldman, R. P.; and Funk, H. B. 2003.

A Markov decision process approach to human/machine

function allocation in optionally piloted vehicles. InPro-

ceedings of FORUM 59, the Annual Meeting of the Ameri-

can Helicopter Society.

Puterman, M. 1994.Markov Decision Processes: Discrete

Stochastic Dynamic Programming. John Wiley & Sons.

Wagner, T. A.; Garvey, A. J.; and Lesser, V. R. 1998. Cri-

teria Directed Task Scheduling.Journal for Approximate

Reasoning19:91–118.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 31

Compiling Uncertainty Away: Solving Conformant Planning Problems
Using a Classical Planner (Sometimes)

Héctor Palacios
Departamento de Tecnologı́a

Universitat Pompeu Fabra
08003 Barcelona, SPAIN

hector.palacios@upf.edu

Héctor Geffner
Departamento de Tecnologı́a

ICREA & Universitat Pompeu Fabra
08003 Barcelona, SPAIN

hector.geffner@upf.edu

Abstract
Even under polynomial restrictions on plan length, confor-
mant planning remains a very hard computational problem as
plan verification itself can take exponential time. This heavy
price cannot be avoided in general although in many cases
conformant plans are verifiable efficiently by means of sim-
ple forms of disjunctive inference. This raises the question
of whether it is possible to identify and use such forms of
inference for developing an efficient but incomplete planner
capable of solving non-trivial problems quickly. In this work,
we show that this is possible by mapping conformant into
classical problems that are then solved by an off-the-shelf
classical planner. The formulation is sound as the classical
plans obtained are all conformant, but it is incomplete as the
inverse relation does not always hold. The translation accom-
modates ‘reasoning by cases’ by means of an ‘split-protect-
and-merge’ strategy; namely, atoms L/Xi that represent con-
ditional beliefs ‘if Xi then L’ are introduced in the classical
encoding that are combined by suitable actions when certain
invariants are verified. Empirical results over a wide variety
of problems illustrate the power of the approach.

Introduction
Conformant planning is a form of planning where a goal is
to be achieved when the initial situation is not fully known
and actions may have non-deterministic effects (Goldman
& Boddy 1996). Conformant planning is computationally
harder than classical planning, as even under polynomial
restrictions on plan length, plan verification remains hard
(Haslum & Jonsson 1999; Baral, Kreinovich, & Trejo 2000;
Turner 2002; Rintanten 2004). This additional complexity
cannot be avoided in general, although often conformant
plan verification can be done efficiently by means of sim-
ple forms of disjunctive inference.

For example, simple rules suffice to show that a robot that
systematically scans a grid, collecting the objects in each of
the cells, will pick up all the objects in the grid, regardless
of their original locations. Or similarly, that a robot that
moves n times to the right in an empty grid of size n, will
necessarily end up in the rightmost column.

This raises the question of whether it is possible to iden-
tify and use such forms of inference for developing an effi-
cient but incomplete conformant planner capable of solving

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

non-trivial problems and scaling up as well as the best clas-
sical planners. In this work, we show that this is possible
by formulating a suitable translation of conformant prob-
lems into classical problems which are then solved by an
off-the-shelf classical planner. The translation is sound as
the classical plans are all conformant, but it is incomplete as
the converse does not always hold. The translation scheme
accommodates ‘reasoning by cases’ by means of a ‘split-
protect-and-merge’ strategy; namely, atoms L/Xi that rep-
resent conditional beliefs ‘if Xi then L’ are introduced in the
classical encoding that are then combined by suitable actions
when certain invariants in the plan are verified.

As an illustration, assuming that there is a pickup(l)
action with precondition at(l) and effect ‘if at(o, l) then
hold(o)’ with at(o, l) unknown, the translation introduces
an effect of the form ‘if true then hold(o)/at(o, l)’ whose
consequent is an atom hold(o)/at(o, l) that stands for
the conditional belief ‘if at(o, l) is true, then hold(o) is
true’. Then any classical plan that achieves the atoms
hold(o)/at(o, l) for each one of the possible locations l of
o, and which preserves certain invariants (like that the ‘hid-
den’ locations do not change), can be shown to be a valid
conformant plan for achieving hold(o).

Actually, by formulating the underlying principles for this
type of reasoning and generalizing it in accordance with a
clear semantics, we will see that many other patterns of in-
ference fall into place. For example, if in this same exam-
ple we add ‘push’ actions that move objects from a cell to
a neighboring cell (for each one of the possible directions),
and at the same time, restrict the pick up actions to particu-
lar cells only (like corners or centers), then the classical en-
coding would produce valid conformant plans where enough
pushes are done so that all objects are forced into such cells
regardless of their original location, from which they are
then collected. While several effective but incomplete for-
mulations of conformant planning have been formulated be-
fore (some of which handle sensing as well; see (Baral &
Son 1997; Petrick & Bacchus 2002)), none, as far as we
know, can represent these types of plans.

The explicit representation of conditional beliefs in the
form of ‘tagged’ atoms like hold(o)/at(o, l) has some re-
semblance to the use of observation and contingency labels
in (Peot & Smith 1992; Pryor & Collins 1996), although the
use of such tags is different.

ICAPS 2006

32 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

In this paper, we will look first at some proposals that
tradeoff expressivity for efficiency, present then the pro-
posed translation scheme, look at some empirical results,
and discuss finally current limitations.

Taming Complexity
The problem of conformant planning can be formulated as
a deterministic search problem in belief space, where a se-
quence of actions that map a given initial belief state bel0
into a target set of beliefs is sought. A belief state bel rep-
resents the set of states s that are deemed possible, and ac-
tions a, whether deterministic or not, deterministically map
one belief state bel into another, denoted as bela (Bonet &
Geffner 2000). Since the number of belief states is expo-
nential in the number of states, it is clear that the search for
conformant plans takes place in a space that is exponentially
larger than the search for classical plans. Indeed, while un-
der polynomial length restrictions, classical plan existence
is NP-Complete (Bylander 1994), under the same conditions
conformant plan existence is harder, ΣP

2 (Turner 2002). This
is because plan verification is ‘easy’ in the classical setting
but ‘hard’ in the conformant one, as the verification requires
to evaluate the plan for every initial state and transition.

This difference in complexity explains why it is still very
easy to come up with simple and small conformant prob-
lems that no general domain-independent planner can solve,
while the same is no longer true for classical planners. The
main motivation of this work is to narrow this gap by de-
veloping an approach that targets ‘simple’ conformant prob-
lems effectively. The approach will not be complete but it
will provide solutions to non-trivial problems, where it will
scale up as well as classical planners do.

One way to trade off completeness for efficiency in con-
formant planning results from approximating belief states or
transitions. For example, the 0-approximation introduced in
(Baral & Son 1997) represents belief states bel by means of
two sets: the set of literals that are true in bel, and the set of
literals that are false in bel. Variables which do not appear
in either set are unknown. In this representation, checking
whether an action a is applicable in bel, computing the next
belief state bela, and verifying polynomial length plans are
all polynomial time operations. Roughly, a fluent literal L
makes it into bela iff a) action a has some conditional effect
C → L such that all literals in C are in bel, or b) L is in
bel and for all conditional effects C ′ → ¬L of action a, the
complement of some literal L′ ∈ C ′ is in bel.

Conformant planning under the 0-approximation is thus
no more complex, theoretically, than classical planning. The
problem however is that the 0-approximation is strongly in-
complete, as it does not capture any non-trivial form of dis-
junctive inference. For example, given a disjunction p ∨ q
and an action a that maps either p or q into r, the seman-
tics will not validate a as a conformant plan for r. Indeed,
disjunctions that are not tautologies are thrown away. The
0-semantics does capture, on the other hand, situations in
which the information that is missing is not relevant. For
example, if there are actions that can make a variable p true
or false, then uncertainty in the initial state of p would not

hurt. Classical planners, on the other hand, cannot handle
such situations.

Another sound but incomplete approach to planning with
incomplete information is advanced in (Petrick & Bacchus
2002) where belief states bel are represented by more com-
plex formulas which may include disjunctions. Yet in order
to make belief updates efficient several approximations are
introduced, and in particular, while existing disjunctions can
be carried from one belief to the next and can be simplified,
no new disjunctions are added. This too imposes a serious
limitation in the type of problems that can be handled.

Expressivity, however, is not the only problem; efficiency
or control is the other. Indeed, it is not enough to introduce
restrictions that under polynomial length constraints bring
the complexity of conformant planning to that of classical
planning or SAT; the control knowledge needed for solv-
ing the resulting problem must be made available as well.
The approach in (Petrick & Bacchus 2002) leave this prob-
lem largely unaddressed relying on a blind search over com-
pact belief representations and efficient update rules. Recent
elaborations of the 0-approximation in (Son, Tu, & M. Gel-
fond 2005) rely in turn on a fixed heuristic function that
counts the number of goals achieved, which applies well to
some problems but not to others. In this work, we aim to
address both problems, expressivity and control, by account-
ing for certain forms of disjunctive reasoning in a translation
scheme that maps conformant problems into classical prob-
lems that can be handled efficiently.

Basic Translation
The translation scheme maps a conformant planning prob-
lems P into a classical planning problems K(P). We de-
scribe the contents of K(P) in three parts, starting with the
basic core K0(P).

We assume that P is given by tuples of the form
〈F,O, I, G〉 where F stands for the fluent symbols in the
problem, O stands for a set of actions a, I is a set of clauses
over F defining the initial situation, and G is a set of literals
over F defining the goal. In addition, every action a has a
precondition given by a set of fluent literals, and a set of con-
ditional effects C → L where C is a set of fluent literals and
L is a literal. We assume that actions are all deterministic
and hence that all uncertainty lies in the initial situation.

We will usually refer to the conditional effects C → L
of an action a as the rules associated with a, and sometimes
write them as a : C → L. Also, we use the expression
C ∧ X → L to refer to rules with literal X in their bodies.
In both cases, C may be empty. Last, when L is a literal, we
take ¬L to denote the complement of L.

Definition 1 (Core Translation) The core translation maps
the conformant problem P into the classical problem
K0(P) = 〈F ′, O′, I ′, G′〉 where

• F ′ = {KL, K¬L | L ∈ F}
• I ′ = {KL,¬K¬L | L ∈ I}∪ {¬KL′,¬K¬L′ | L′ 6∈ I}
• G′ = {KL | L ∈ G}
• O′ = O but with each literal precondition L for a ∈ O

replaced by KL, and each conditional effect a : C → L
replaced by a : KC → KL and a : ¬K¬C → ¬K¬L.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 33

For any literal L in P , KL denotes its ‘epistemic’ coun-
terpart in K0(P) whose meaning is that L is known. We
write KC for C = L1 ∧ L2 . . . as an abbreviation for
KL1 ∧ KL2 . . ., and ¬K¬C for ¬K¬L1 ∧ ¬K¬L21
L ∈ I (L 6∈ I) means that literal L is (not) a unit clause in
I .

The intuition behind the translation is simple: first, com-
plementary literals L and ¬L whose status is not known in
the initial situation in P are ‘negated’, by mapping them into
the negated K-literals ¬KL and ¬K¬L that are jointly con-
sistent and can only appear in the body of conditions leading
to other negated K-literals only. This mapping removes all
uncertainty from K0(P). In addition, to ensure soundness,
each conditional effect a : C → L in P maps, not only
into the ‘supporting’ rule a : KC → KL but also into the
‘cancellation’ rule a : ¬K¬C → ¬K¬L that guarantees
that literal K¬L is deleted (prevented to persist) when ac-
tion a is applied except when C is known to be false. The
soundness of the translation can be then expressed as:

Theorem 2 (Soundness K0(P)) If π is a plan that solves
the classical planning problem K0(P), then π is a plan that
solves the conformant planning problem P .

This can be proved through the following lemma that for-
mally captures the meaning of K-literals:

Lemma 3 (Meaning K-literals) If π is a plan that yields
the literal KL in K0(P), then π is a plan that yields the
literal L with certainty in P .

A plan π here is an applicable action sequence, and π yields
a formula if the formula is necessarily true upon completion
of the plan. The reader can verify that this translation is
in agreement with the 0-approximation semantics (Baral &
Son 1997):

Theorem 4 (Equivalence K0(P) and 0-Approximation)
π solves the classical planning problem K0(P) iff it solves
the conformant planning problem P according to the
0-Approximation.

This correspondence is not surprising as both formulations
throw away the disjunctive information, and restrict the valid
plans to those that render the missing information irrele-
vant. Also, the states sk

0 , sk
1 , . . . generated by the action

sequence π = a0, a1, . . . over the classical encoding K0(P)
encode precisely the literals that are known according to the
0-approximation; namely, L is known at time t according to
the 0-approximation iff the literal KL is true in sk

t .

As an illustration, given a conformant problem P with
I = {p, r} (i.e., nothing else is known; there is no CWA),
and actions a and b with effects a : p → q, a : r → ¬s,
and b : q → s, the plan {a, b} is valid for achieving q and
s according to both K0(P) and the 0-approximation, while
the singleton sequence {a} is not valid according to either.
At the same time, if the initial situation is changed to I =

1Taking ¬K¬C as an abbreviation for ¬K¬L1 ∧ ¬K¬L2

when C = L1 ∧ L2 means that we take C to be known as false
only when one of the literals in C is known to be false. In modal
logics, this is correct but not required; C may be known to be false
even when no literal in C is; see (Fagin et al. 1995).

{p ∨ q}, neither approach would sanction that plan {a} for
q, even if it is a valid conformant plan. For this, some ability
to reason with disjunctions is needed.

Case Analysis over Single Actions
We will make the formulation stronger by accounting for
certain disjunctive inferences in the translation. This will re-
sult into more actions and conditional effects added to K(P)
which is initially set to K0(P).

Consider an action a that in a given context C ′ can force
a literal L to make the transition from false to true, while
preventing the opposite transition. In such a context C ′, even
if L is unknown, a can be used to make L true. This type of
inference is captured in the translation as follows:
Rule 2 (Action Compilation) If P contains a rule a : C ∧
¬L → L, and the rules for the same action a with ¬L in the
head are Ci → ¬L, i = 1, . . . , n for n ≥ 0, then add to
K(P) the rules KC ∧K¬L1 ∧ · · · ∧K¬Ln → KL where
Li is a literal in Ci.
This is a modular translation rule in which the context C ′

above is the formula C∧¬L1∧· · ·∧¬Ln, for any combina-
tion of literals Li chosen as to preempt the rules Ci → ¬L
associated with the same action a that can clobber L. All
the literals in C ′ are preceded by K’s as they refer to literals
in K(P) that ensure that the condition holds with certainty.
This translation remains polynomial as long as the number
of rules a : Ci → L associated with the same action a and
literal L and the number of literals in the conditions Ci re-
main both bounded, which is normally the case (in the exist-
ing benchmarks indeed both numbers are pretty small, one
or two at most).

It is not difficult to show that this translation rule pre-
serves soundness. A key characteristic of the rule and others
to be introduced below is that they make use of the condi-
tional effects a : C ∧X → L in the problem P for deriving
L with certainty when the body C ∧X is not fully known.

In an example like ‘empty room’, where a robot moves
in an empty square grid and literals Xi are used to represent
the column location of the robot, this translation ensures that
literal K¬X1 is obtained right after a single ‘move right’ ac-
tion (namely, that the robot cannot be in the leftmost column
then), and similarly, that K¬X2 is obtained after two con-
secutive right moves, etc. If the grid is nxn, the resulting
classical theory yields K¬Xi for i < n after n − 1 steps,
although it does not yield KXn (being in the rightmost col-
umn). For this, the disjunction expressing the possible col-
umn positions, namely X1∨X2∨· · ·∨Xn, needs to be taken
into account as well. We address this next.

Case Analysis over Action Sequences
We extend the translation further so that the disjunctions in
P are taken into account in a form that is similar to the Dis-
junction Elimination inference rule used in Logic (Barwise
& Etchemendy 1991):

If X1 ∨ · · · ∨Xn, X1 ⊃ L, . . . , and Xn ⊃ L then L (1)
For this, we create new atoms in K(P), written L/Xi, that
aim to capture the conditional beliefs Xi ⊃ L. Then, the re-
sulting classical encoding will be such that once these atoms

ICAPS 2006

34 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

are ‘achieved’ for each i = 1, . . . , n, and when they are suit-
ably ‘protected’, the literal L will be made ‘achievable’ by
an extra ‘dummy’ action with conditional effect similar to
(1).

As already mentioned, the atoms L/Xi will stand for the
conditional belief ‘if Xi then L’. In principle, any rule a :
C ∧Xi → L in P with Xi uncertain can be used to produce
a rule a : KC → L/Xi in K(P), meaning that if KC is
known and a is applied, then if Xi was true, L will become
true. However, we want L/Xi to mean exactly that ‘right
after the action a, if Xi is true, then L is true’, and for this,
some additional care is needed. Indeed, if a contains also
rules a : Ck → Xi that can make Xi true, it may be possible
that L and Xi are false at time t when a is applied, and that
L remains false but Xi becomes true, and then that ‘if Xi

at t, then L at t + 1’ is true, but ‘if Xi at t + 1, then L at
t + 1’ is false. In order to rule out this situation we define
the corresponding translation rule as follows:

Rule 3 (Split) For each rule a : C∧Xi → L in P where Xi

is a literal that appears in a disjunction X : X1∨X2∨· · ·∨
Xn, if a : Ck → Xi, k = 1, . . . ,m for m ≥ 0 are the rules
in P for the same action a with Xi in the head, then add to
K(P) the atoms L/Xj , j = 1, . . . , n, all initialized to false,
and the rules a : KC∧K¬L1∧· · ·∧K¬Lm → L/Xi where
Lk is a literal in Ck.

The combinations of the conditional beliefs represented by
the atoms L/Xi is achieved by means of extra actions added
to the classical encoding K(P) that generalize (1) slightly,
allowing some of the cases Xi to be disproved:2

Rule 4 (Merge) For each disjunction X : X1 ∨ · · ·Xn and
atom L in P such that L/Xi is an atom in K(P), add to
K(P) a new action aX,L with conditional effect

(L/X1∨K¬X1)∧· · ·∧(L/Xn∨K¬Xn)∧FLAGX,L → L

where FLAGX,L is a boolean initialized to true. If L = Xi

for some i ∈ [1, n], remove the conjunct (L/Xi ∨ K¬Xi)
from the rule body.

A key distinction from Logic is that the disjunction X1 ∨
· · · ∨ Xn and the conditional beliefs ‘if Xi then L’ repre-
sented by the atoms L/Xi need all be preserved until they
are combined together to yield L. This is the purpose of the
boolean FLAGX,L that is initially set to true, but which is
deleted when an action is done in a context where it is not
possible to prove that 1) L is preserved (if true), 2) the dis-
junction X ∨ L is preserved (the disjunction X is initially
true but it is actually sufficient to preserve the weaker dis-
junction X ∨ L), and 3) the conditional beliefs represented
by the atoms L/Xi achieved are preserved. This is accom-
plished by extending K(P) with the following cancellation
rules:

Rule 5 (Protect) If there is a boolean flag FLAGX,L in
K(P) for X : X1 ∨ · · · ∨ Xn, then for each action a:
1) if a : C → ¬L in P , add to K(P) the rule a :
¬K¬C → ¬FLAGX,L, 2) if a : C → ¬Xi in P and

2When using the classical plans obtained from K(P) as con-
formant plans in P , such ‘dummy’ actions must are removed.

neither a : C → Xk nor a : C → L in P for Xi and Xk in
X , add to K(P) the rule a : ¬K¬C → ¬FLAGX,L, and
3) if a : C → Xk for Xk in X , then add to K(P) the rule
a : ¬K¬C ∧ L/Xk → ¬FLAGX,L.

These rules, as we will see, yield expressivity without sac-
rificing efficiency, as they manage to accommodate non-
trivial forms of disjunctive inference in a classical theory
without having to carry disjunctive information explicitly
in the belief state: disjunctive information is represented in
terms of the conditional atoms L/Xi and the invariants that
are enforced in the encoding.

Theorem 5 (Soundness K(P)) Any plan that achieves the
literal KL in K(P) is a plan that achieves L in the confor-
mant problem P .

The key element in the proof is the following lemma that
captures the meaning of the L/Xi atoms:

Lemma 6 (L/Xi Atoms) Any plan that yields L/Xi while
preserving FLAGX,L in K(P) is a plan that achieves the
conditional Xi ⊃ L in P .

A proof sketch goes as follows. Let us assume that L/Xi,
which is initially false, is made true at time t by an action
a in the plan. We need to prove that if FLAGX,L remains
true in K(P) until time t′ ≥ t, then the conditional Xi ⊃ L
remains true until t′ in P , which we write as Xi(t′) ⊃ L(t′).
From the argument above, if L/Xi became true in K(P) at
time t, so does the conditional Xi(t) ⊃ L(t) in P . From
this, Xi(t′) ⊃ L(t′) follows if we can show both Xi(t′) ⊃
Xi(t) and L(t) ⊃ L(t′). The latter is true because the rules
in K(P) ensure that if a rule a′ : C ′ → ¬L gets triggered
by the plan in P , the rule a′ : ¬K¬C ′ → ¬FLAGX,L

will be triggered by the plan in K(P). Similarly, the former
is true because the rules in K(P) ensure that if a rule a′ :
C ′ → Xi is triggered by the plan in P when L/Xi is true
in K(P), then the rule a′ : ¬K¬C ′ ∧ L/Xi → FLAGX,L

will be triggered in K(P). In either case, FLAGX,L would
be deleted, so if it is not, Xi(t′) ⊃ Xi(t) and L(t) ⊃ L(t′)
must hold, and since Xi(t) ⊃ L(t) holds, so must Xi(t′) ⊃
L(t′).

As an illustration, given an object to be collected from
an unknown location in a grid with two cells A and B
using the actions pick(X), push(X, Y), and go(X, Y),
where X and Y are cells, and the three actions have as
a precondition that the agent is at X , and the first two
have the expected effects conditional on the location of
the object, it follows that if the agent is initially at A,
the plan π1 = {pick(A), go(A,B), pick(B)} is valid in
K(P) and so is π2 = {push(A,B), go(A,B), pick(B)},
but π3 = {pick(A), go(A,B), push(B,A)} is invalid.
If at(Obj, A) ∨ at(Obj, B) is the disjunction X , and L
is hold(Obj), then π1 results from achieving the atoms
hold(Obj)/at(Obj, A) and hold(B)/at(Obj, B), π2 from
achieving K¬at(Obj, A) and hold(B)/at(Obj, B), while
π3 achieves hold(Obj)/at(Obj, A) and K¬at(Obj, B)
but clobbers the protection flag FLAGX,L as the rule
push(B,A) : at(Obj, B) → at(Obj, A) in P , yields the
rule push(B,A) : ¬K¬at(Obj, B) ∧ L/at(Obj, A) →

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 35

P K(P)
Problem #Actions #Atoms #Effects Translation time #Actions #Atoms #Effects

Bomb-100-60 6060 320 24120 1.35 6260 1041 79560
Cube-11-Ctr 6 33 120 0.036 72 226 1152
Sqr-64-Ctr 4 128 504 0.31 260 893 4796
Grid-4-5 174 155 444 5.65 183 351 1244
Safe-100 100 101 100 0.11 101 304 804

Logistics-4-10-10 3320 610 6640 3.52 3370 1321 13880

Table 1: Data concerning the translation of some conformant problems P into classical encodings K(P). The sizes refer to the
grounded versions, and all times are in seconds and they include grounding time.

¬FLAGX,L in K(P) which gets triggered by the action
sequence π3.

Experimental Results
We have implemented the translation scheme into a program
cf2cs that takes a conformant planning problem P as in-
put an outputs a classical problem K(P). In the experiments
below, this problem is fed into the FF v2.3 classical planner
(Hoffmann & Nebel 2001). We refer to the resulting confor-
mant planner as cf2cs(ff). The experiments were tested
on a Intel/Linux machine running at 2.80GHz with 2Gb, and
were cutoff when they took more than 30 minutes or 800Mb
of memory.

We report results on two classes of instances: existing
benchmarks and some domains of our own. In both cases,
we compare the results (times and plan lengths) with those
obtained by running Conformant FF, an state-of-the-art con-
formant planner (Brafman & Hoffmann 2004).3 We could
have used other recent classical and conformant planners,
but as a reference, this should do. We want to show that our
approach solves a wide variety of non-trivial problems with-
out any ‘help’ in the encoding or control, scaling up as well
as the best classical planners.

Encodings are important. For example, it is com-
mon to see a problem like Bomb-in-the-Toilet solved
by having the action dump(pkg) with conditional
effect dump(pkg) → disarmed(pkg) and goals
disarmed(pkg1), . . . , disarmed(pkgn). Such encod-
ings however are not natural (the bomb should be disarmed
not the packages) and change the problem significantly.
This is indeed the whole idea of our approach that auto-
matically re-codes conformant into classical problems. For
the existing benchmarks we thus use the actual encodings
from the Conformant FF repository, the other encodings
will be made available from us. These encodings cannot
be solved by either the basic K0(P) translation or the
0-approximation.

Table 1 shows data concerning the translation of a num-
ber of problems from various sources, used and explained
in (Brafman & Hoffmann 2004). Bomb-x-y refers to the
Bomb-in-the-toilet problem with x packages, y toilets, and
clogging. Cube-n-Ctr refers to the problem of reaching the
center of a cube of size n3 from a completely unknown lo-
cation. Square-n-Ctr is similar but involves only n2 possi-

3Conformant FF uses the overall architecture of FF but not the
actual planner; see (Brafman & Hoffmann 2004) for details.

ble locations. Logistics-i-j-k, Grid-n and Safe-n are from
(Brafman & Hoffmann 2004).

The table provides information about the size of the origi-
nal (ground) conformant problems P , the resulting classical
problems K(P), as well as the time taken in the translation.
This last figure is less than a second in most problems, but
grows up to a few seconds in some. The mapping is linear
in |P | and can be further optimized (grounding the problem
P is currently taking most of the time).

Table 2 shows the plan times and lengths obtained by
cf2cs(ff) vs. Conformant FF over various benchmarks,
where it can be seen that cf2cs(ff) scales up much bet-
ter, solving problems like Sqr-240-Ctr and Cube-75-Ctr that
are well beyond the reach of current complete or incomplete
conformant planners (with the exception of (Cimatti, Roveri,
& Bertoli 2004) that reports very good number on many of
these domains).

Among the existing benchmarks, not included in the table,
there are three domains, Sorting-Nets, (Incomplete) Blocks,
and Ring, which in their standard encodings, cannot be han-
dled by the proposed translation scheme; namely, in none of
these encodings P the planner finds a classical plan in K(P)
even though P has conformant solutions. In Blocks, for ex-
ample, this is because of the presence of conditional effects
a : C∧Xi∧Yj → L whose bodies involve disjuncts Xi and
Yj from different disjunctions. The translation scheme can
be adapted to deal with such cases, even though such exten-
sions would not render the scheme complete either (see the
discussion below).

Finally, Table 3 shows plan times and lengths for a family
of grid problems that we devised: Retrieve is about retriev-
ing objects whose locations are unknown; Dispose is about
retrieving such objects and placing them in a trash can at a
given, known location; Push is a variation of Retrieve when
there is also a push action that can move objects; and Push-
to is a further variation where the retrieve action is appli-
cable only at two known corners of the grid, and therefore,
objects need to be pushed into those locations. Problem P-
n-m stands for problem P over grid of size n and m objects.
Once again the Table shows a different scaling behavior be-
tween cf2cs(ff) and Conformant FF except in Push-To,
the reason being that the resulting classical encoding K(P)
of that domain has many dead-ends that are not detected by
the heuristic used in FF. This problem could be solved in
principle by refining the FF heuristic or the translation, and
we would like to explore both alternatives in the future.

ICAPS 2006

36 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

cf2cs(ff) CFF
Problem Time Length Time Length
Bomb-50-50 2.13 50 0.2 50
Bomb-100-1 0.84 199 96.2 199
Bomb-100-60 9.64 140 23.53 140
Cube-7-Ctr 0.02 24 38.2 39
Cube-9-Ctr 0.05 33 —- —-
Cube-11-Ctr 0.09 42 —- —-
Cube-75-Ctr 484 330 —- —-
Sqr-8-Ctr 0.03 22 140.5 50
Sqr-12-Ctr 0.04 32 —- —-
Sqr-64-Ctr 9.66 188 —- —-
Sqr-120-Ctr 59.44 356 —- —-
Sqr-240-Ctr 858 716 —- —-
Grid-4-4 0.06 25 0.11 25
Grid-4-5 0.05 30 0.14 30
Safe-30 0.01 30 6.6 30
Safe-70 0.08 70 561.8 70
Safe-100 0.28 100 —- —-
Logistics-3-10-10 4.42 109 11.15 108
Logistics-4-10-10 5.91 125 11.74 121

Table 2: Plan times and lengths obtained by a classical plan-
ner (FF) over K(P) translation (cf2cs(ff)) in relation to
Conformant FF for various conformant problems P . Times
in seconds. The symbol ‘—-’ means cutoff exceeded (30
mins or 800Mb)

cf2cs(ff) CFF
Problem Time Length Time Length
Retrieve-4-1 0.02 41 0.04 33
Retrieve-4-2 0.08 75 0.23 49
Retrieve-4-3 0.17 91 0.8 65
Retrieve-8-1 1.18 220 204.68 210
Retrieve-8-2 3.13 291 —- —-
Retrieve-8-3 132.49 415 —- —-
Retrieve-12-1 —- —- —- —-
Dispose-4-1 0.02 37 0.12 39
Dispose-4-2 0.05 54 0.47 56
Dispose-4-3 0.09 71 1.49 73
Dispose-8-1 1.83 265 361 227
Dispose-8-2 2.87 280 —- —-
Dispose-8-3 6.87 367 —- —-
Dispose-12-1 —- —- —- —-
Push-4-1 0.07 41 0.09 33
Push-4-2 0.24 75 0.41 49
Push-4-3 0.53 91 1.23 65
Push-8-1 3.29 220 —- —-
Push-8-2 12.89 291 —- —-
Push-8-3 —- —- —- —-
Push-to-3-1 0.32 21 0.03 29
Push-to-4-1 —- —- 0.48 46
Push-to-4-2 —- —- 5.01 77
Push-to-4-3 —- —- 228.84 114

Table 3: Plan times and lengths obtained by a classical plan-
ner (FF) over K(P) translation (cf2cs(ff)) in relation
to Conformant FF for various problems P . Times in sec-
onds. The symbol ‘—-’ means cutoff exceeded (30 mins or
800Mb).

Discussion
We have introduced a translation scheme that enables a wide
class of conformant planning problems to be solved by an
off-the-shelf classical planner. The translation accounts for
a limited form of ‘reasoning by cases’ by means of an ‘split-
protect-and-merge’ strategy; namely, atoms L/Xi that rep-
resent conditional beliefs ‘if Xi then L’ are introduced, and
when certain invariants are verified, they are combined. Em-
pirical results over a variety of problems illustrate the power
of the approach.

The simplicity of the translation and the semantics cap-
tured by the theorems not only enable us to prove the sound-
ness of the approach, but as importantly, to delimit its scope.
In relation to natural deduction systems in the style of Ficht
(Barwise & Etchemendy 1991), the type of disjunctive rea-
soning accounted for in the translation is limited in two
ways. First, while disjunctions X1 ∨ · · · ∨Xn in P are used
to create sub-derivations by making assumptions of the form
Xi, these sub-derivations are not nested, and therefore, dis-
junctions are not combined. Second, the sub-derivations that
arise when making the assumptions Xi are very limited; in
particular, the atoms L/Xi can only be used for proving L
and nothing else. The translation captures plans that can be
verified by reasoning with ‘one disjunction’ at a time. Verifi-
cation that involve reasoning that combines all disjunctions
is intractable, yet verifications that use a bounded number
of disjunctions N at a time are tractable, and could be ac-
commodated in a polynomial translation scheme as the one
proposed (although it may not be effective for large N).

Acknowledgements
We thank Joerg Hoffmann for making CFF and the source of
FF available, and for the encoding of the problems. Thanks
also to Malte Helmert for providing the Fast-Downward
planner and useful discussion. We also thank A. Frangi and
A. Sanz for the use of the Hermes Computing Resource at
the Aragon Inst. of Engr. Research (I3A), U. of Zaragoza.
H. Geffner is partially supported by grant TIN2005-09312-
C03-03 from MEC/Spain.

References
Baral, C., and Son, T. C. 1997. Approximate reasoning about
actions in presence of sensing and incomplete information. In
Proc. ILPS 1997, 387–401.
Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Computational
complexity of planning and approximate planning in the presence
of incompleteness. Artificial Intelligence 122(1-2):241–267.
Barwise, J., and Etchemendy, J. 1991. The Language of First-
Order Logic. CSLI, Stanford.
Bonet, B., and Geffner, H. 2000. Planning with incomplete infor-
mation as heuristic search in belief space. In Proc. of AIPS-2000,
52–61. AAAI Press.
Brafman, R., and Hoffmann, J. 2004. Conformant planning via
heuristic forward search: A new approach. In Proc. ICAPS-04.
Bylander, T. 1994. The computational complexity of STRIPS
planning. Artificial Intelligence 69:165–204.
Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformant plan-
ning via symbolic model checking and heuristic search. Artificial
Intelligence 159:127–206.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 37

Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995. Reasoning
about Knowledge. MIT Press.
Goldman, R. P., and Boddy, M. S. 1996. Expressive planning and
explicit knowledge. In Proc. AIPS-1996.
Haslum, P., and Jonsson, P. 1999. Some results on the complexity
of planning with incomplete information. In Proc. ECP-99, Lect.
Notes in AI Vol 1809, 308–318. Springer.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research 14:253–302.
Peot, M., and Smith, D. E. 1992. Conditional nonlinear planning.
In Hendler, J., ed., Proc. 1st Int. Conf. on AI Planning Systems,
189–197.
Petrick, R., and Bacchus, F. 2002. A knowledge-based approach
to planning with incomplete information and sensing. In Proc.
AIPS’02, 212–221.
Pryor, L., and Collins, G. 1996. Planning for contingencies: A
decision-based approach. Journal of AI Research 4:287–339.
Rintanten, J. 2004. Complexity of planning with partial observ-
ability. In Proc. ICAPS-2004, 345–354.
Son, T. C.; Tu, P. H.; and M. Gelfond, A. M. 2005. Conformant
planning for domains with constraints-a new approach. In Proc.
AAAI-05, 1211–1216.
Turner, H. 2002. Polynomial-length planning spans the polyno-
mial hierarchy. In JELIA ’02: Proc. of the European Conference
on Logics in AI, 111–124. Springer-Verlag.

ICAPS 2006

38 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Using Correlation to Compute Better Probability Estimates in Plan Graphs

Daniel Bryce David E. Smith
Dept. of Computer Science & Eng. Intelligent Systems Division

Arizona State University NASA Ames Research Center
Tempe Arizona 85287–5406 Moffet Field, CA 94035–1000

dan.bryce@asu.edu de2smith@email.arc.nasa.gov

Abstract

Plan graphs are commonly used in planning to help compute
heuristic “distance” estimates between states and goals. A
few authors have also attempted to use plan graphs in proba-
bilistic planning to compute estimates of the probability that
propositions can be achieved and actions can be performed.
This is done by propagating probability information forward
through the plan graph from the initial conditions through
each possible action to the action effects, and hence to the
propositions at the next layer of the plan graph. The prob-
lem with these calculations is that they make very strong in-
dependence assumptions - in particular, they usually assume
that the preconditions for each action are independent of each
other. This can lead to gross overestimates in probability
when the plans for those preconditions interfere with each
other. It can also lead to gross underestimates of probabil-
ity when there is synergy between the plans for two or more
preconditions.
In this paper we introduce a notion of the binary correlation
between two propositions and actions within a plan graph,
show how to propagate this information within a plan graph,
and show how this improves probability estimates for plan-
ning. This notion of correlation can be thought of as a contin-
uous generalization of the notion of mutual exclusion (mutex)
often used in plan graphs. At one extreme (correlation= 0)
two propositions or actions are completely mutex. With cor-
relation= 1, two propositions or actions are independent, and
with correlation> 1, two propositions or actions are syner-
gistic. Intermediate values can and do occur indicating differ-
ent degrees to which propositions and action interfere or are
synergistic. We compare this approach with another recent
approach by Bryce that computes probability estimates using
Monte Carlo simulation of possible worlds in plan graphs.

Introduction
Plan graphs are commonly used in planning to help compute
heuristic “distance” estimates between states and goals. A
few authors have also attempted to use plan graphs in proba-
bilistic planning to compute estimates of the probability that
propositions can be achieved and actions can be performed.
This information can then be used to help guide a proba-
bilistic planner towards the most effective actions for max-
imizing probability or for achieving the goals with a given
probability threshold.

Typically, probability information is given for the propo-
sitions in the initial state and is propagated forward through

the plan graph, in a manner similar to the propagation of cost
and resource estimates in classical planning. The probability
of being able to perform an action is taken to be the prob-
ability that its preconditions can be achieved, which is usu-
ally approximated as the product of the probabilities of the
preconditions. The probability of a particular action effect
is taken as the product of the action probability and proba-
bility of the effect given the action. Finally, the probability
of achieving a proposition at the next layer is then taken to
be either the sum or maximum of the probabilities for the
different effects matching that proposition. As an example,
consider the plan graph layer shown in Figure 1 where we
have two actionsa andb each with two preconditions and
two unconditional effects. Suppose that the probabilities for
the propositionsp, q, andr are.8, .5, and.4 as shown in the
diagram. The probability that actiona is possible would then
be the probability of the conjunctionp ∧ q which would be
.8(.5) = .4. Similarly, the probability for actionb would be
.5(.4) = .2. Actiona produces effecte with certainty (prob-
ability 1), soe simply inherits the probability of.4 from a.
Similarly, actionb produces effectg with probability .5, so
the probability ofg can be calculated as.2(.5) = .1. The
calculation for the effectf is a bit harder because both ac-
tionsa andb can producef , and we could in fact develop a
plan that uses them both to increase the chances off . Using
a alone, the probability off is .4(.5) = .2, and usingb alone
the probability is.2(1) = .2, so the probability off using
both actions is.2 + .2− .2(.2) = .36.

a

p

q

r

b

e

f

g

.8

.5

.4

.4

.2

1
.4

.5

.5

1

.1

.36

Figure 1: A plan graph layer with simple probability calcu-
lations made using the independence assumption.

1

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 39

The problem with these simple estimates is that they as-
sume independence between all pairs of propositions and all
pairs of actions in the plan graph. This is frequently a very
bad assumption. If two propositions are produced by the
same action (e.g.e andf), they are not independent of each
other, and computing the probability of the conjunction by
taking the product of the individual probabilities can result
in a significant underestimate. Conversely, if two proposi-
tions are mutually exclusive, then the probability of achiev-
ing them both is zero, and the product of their probabilities
will be a significant overestimate. In our example, we first
assumed that the propositionsp, q andr were independent
of each other when computing the probabilities of actions
a and b. Even if this is so, we then proceeded to assume
that actionsa andb were independent, when computing the
probability of effectf . Clearly this is wrong, sincea andb
share a precondition.

One obvious way to improve the estimation process
would be to propagate and use mutual exclusion informa-
tion, and assign a probability of zero to actions with mutex
preconditions at a given level. However, this only helps with
the extreme case where propositions or actions are mutex.
It does not help with cases of synergy, or with cases where
propositions are not strictly mutex, but it is much “harder”
(less probable) to achieve them both.

To attempt to address this problem, we introduce a more
general notion which we call “correlation”1 to capture both
positive and negative interactions between pairs of propo-
sitions, pairs of actions, and pairs of action effects. In the
section that follows, we first give a formal definition of our
notion of correlation. We then show how to compute and
use correlation information within a plan graph to get bet-
ter probability estimates. Finally we show some preliminary
results, and compare this technique with another recent tech-
nique developed by Bryce, Kambhampati, & Smith (2006b).

Definitions and Representation
Action Representation
Similar to the representation used in (Bryce, Kambhampati,
& Smith 2006b) an actiona is taken to have:

• an enabling precondition, Pre(a)

• a set of probabilistically weighted outcomes,Φi(a)

The enabling precondition Pre(a) is a conjunction of liter-
als, just as for an action in probabilistic PDDL (PPDDL)
(Youneset al. 2005; Younes & Littman 2004) or an ordi-
nary classical action in PDDL (McDermott 1998). Each out-
comeΦi(a) has a weightwi(a) giving the probability that
the outcome is realized, andΦi(a) consists of a conjunction
of conditional effectsφij(a) of the form:

ρij → εij

where bothρij and εij are conjunctions of literals. Of
course,ρij may be empty, in which caseεij is an uncondi-
tional effect. This representation of effects follows the 1ND

1Not to be confused with the traditional statistical notion of cor-
relation.

normal form presented in (Rintanen 2003).2

Correlation

Formally, we define the correlation between two proposi-
tions, two actions, or two effectsx andy as:

C(x, y) ≡ Pr(x ∧ y)
Pr(x) Pr(y)

(1)

which by Bayes Rule can also be seen as:

=
Pr(x|y)
Pr(x)

=
Pr(y|x)
Pr(y)

Correlation is a continuous quantity that can range from zero
to plus infinity. Essentially, it measures how much more or
less probable it is that we can establishx andy together as
opposed to if we could establish them independently. It has
the following characteristics:

C(x, y) = 0 if x andy are mutex
= 1 if x andy are independent
= 1

Pr(x) = 1
Pr(y) if x andy are completely

correlated3

More generally,0 < C(x, y) < 1 means that there is some
interference between the best plans for achievingx andy
so it is harder (less probable) to achieve them both than
to achieve them independently. Similarly,1 < C(x, y) <
1/ Pr(x) means that there is some amount of synergy be-
tween plans for achievingx and y, so it is easier (more
probable) to achieve them both than to achieve them inde-
pendently.

Instead of computing and keeping mutex information in
the plan graph, we will compute correlation information be-
tween all pairs of propositions and all pairs of actions at
each level. It is worthwhile noting that for a pair of propo-
sitions or actionsx and y we could instead choose to di-
rectly store the probabilityPr(x ∧ y), or either of the two
conditional probabilitiesPr(x|y) or Pr(y|x) instead of the
correlationC(x, y). This is because these quantities are es-
sentially equivalent - from our definition of correlation and
Bayes Rule any of these quantities can be computed from
any other. We have chosen to introduce the notion of corre-
lation and store this quantity because:

1. it is symmetric, unlike the conditional values.

2. we only need to store it for cases where it is not one - i.e.
the propositions/actions are not independent.

3. it can be easily interpreted and understood in terms of the
intuitive concepts of mutex, independence, and synergy.

2The representation in PPDDL (Youneset al. 2005; Younes &
Littman 2004) is a bit more general since it allows arbitrary nesting
of conditional effects and probabilistic outcomes. We have chosen
to use the 1ND normal form here because it is a bit easier to work
with, and PPDDL can be expanded into this form.

3x cannot occur withouty, and vice versa, which means that
their probabilities must be the same.

2

ICAPS 2006

40 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Computing Probability and Correlation
To compute probability and correlation information in a plan
graph, we begin at the initial state (level 0) and propagate
information forward through the plan graph to subsequent
levels (just as with construction and propagation in ordinary
classical plan graphs). In the subsections that follow, we
give the details of how to do this beginning with the initial
proposition layer and working forward to actions, then ef-
fects, and finally to the next proposition layer.4

Computing Action Probabilities
Suppose that we have the probabilities and correlation infor-
mation for propositions at a given level of the plan graph.
How do we use this information to compute probabilities
and correlation information for the subsequent action layer?
First consider an individual actiona with preconditions
{x1, . . . , xn}. The probability that the action can be ex-
ecuted is the probability that all the preconditions can be
achieved:

Pr(a) = Pr(x1 ∧ . . . ∧ xn)
= Pr(x1) Pr(x2|x1) . . .Pr(xn|x1 . . . xn−1) (2)

If the propositionsxi are all independent this is just the
usual product of the individual probabilities of the precondi-
tions. However, if they are not independent then we need the
conditional probabilities,Pr(xi|x1 . . . xi−1). Since we have
pairwise correlation information we can readily compute the
first of these terms:

Pr(x2|x1) = C(x1, x2) Pr(x2)

However, to compute the higher order terms (i.e.i > 2) we
must make an approximation. Applying Bayes Rule we get:

Pr(xi|x1 . . . xi−1) =
Pr(x1 ∧ . . . ∧ xi−1|xi) Pr(xi)

Pr(x1 ∧ . . . ∧ xi−1)

If we make the assumption thatx1 . . . xi−1 are independent
for purposes of this computation we get:

Pr(xi|x1 . . . xi−1) =
Pr(x1|xi) . . .Pr(xi−1|xi) Pr(xi)

Pr(x1) . . .Pr(xi−1)

Applying our analogue of Bayes Rule againi− 1 times, we
get:

Pr(xi|x1 . . . xi−1) =
Pr(xi|x1)
Pr(xi)

· · · Pr(xi|xi−1)
Pr(xi)

Pr(xi)

= Pr(xi)C(xi, x1) . . . C(xi|xi−1)

= Pr(xi)
∏

j=1...i−1

C(xi, xj) (3)

Returning to the calculation of:

Pr(a) = Pr(x1 ∧ . . . ∧ xn)
= Pr(x1) Pr(x2|x1) . . .Pr(xn|x1 . . . xn − 1)

4Because we are dealing with actions that have conditional ef-
fects, we will be distinguishing between effects in a plan graph,
and the subsequent literal or proposition layer, as is done in
IPP (Koehleret al. 1997) and (Bryce, Kambhampati, & Smith
2006a; 2006b).

if we plug in the above expression for thePr(xi|x1 . . . xi−1)
we get

Pr(a) = Pr(x1 ∧ . . . ∧ xn)

=
∏

i=1...n

Pr(xi)
∏

j=1...i−1

C(xi, xj)

 (4)

Several properties of this approximation are worth noting:

1. the above expression is easy to compute and does not de-
pend on the order of the propositions.

2. If the xi are independent, theC(xi, xj) are 1 and the
above simplifies to the product of the individual proba-
bilities.

3. If any xi andxj are mutex thenC(xi, xj) = 0 and the
above expression becomes zero. If theC(xi, xj) are pos-
itive but less than one then the probability of the conjunc-
tion is less than the product of the probabilities of the in-
dividual elements.

4. If theC(xi, xj) are greater than one, there is synergy be-
tween the conjuncts. The probability of the conjunction
is greater than the product of the probabilities of the in-
dividual conjuncts, but less than or equal to the minimum
of those probabilities.

While these properties are certainly desirable, and match
our intuitions, it is reasonable to ask how good the approxi-
mation in Equation 4 is in other cases. As it turns out, for a
conjunction withn terms, Equation 4 turns out to be exact if
only aboutn of the possiblen2 C(xi, xj) are not equal to 1.
More precisely:

Theorem 1 Consider the undirected graph consisting of a
node for each conjunctxi, and an edge betweenxi andxj

wheneverxi and xj are not independent (C(xi, xj) is not
equal to 1). If this graph has no cycles, then Equation 4 is
exact.

As an example, consider the simple case of:

Pr(a ∧ b ∧ c) = Pr(a) Pr(b|a) Pr(c|ba)
Our graph consists of the three nodesa, b andc, and zero to
three edges depending on theC ’s. If b andc are independent,
there are only two edges in the graph, and no cycle, so the
theorem states that Equation 4 is exact. To see this, withb
andc independent the above expansion becomes:

Pr(a ∧ b ∧ c) = Pr(a) Pr(b|a) Pr(c|a)
= Pr(a) Pr(b)C(a, b) Pr(c)C(a, c)

Which is the approximation in Equation 4, sinceC(b, c) = 1
More generally, the proof of this theorem relies on the fact

that a graph without cycles can be represented as a tree:

Proof: Suppose we have a conjunctionx1 ∧ . . . ∧ xn that
obeys the conditions of the theorem. Since the graph has no
cycles, it can be arranged as a tree. Without loss of gener-
ality, assume the conjuncts are in the same order as a depth
first traversal of that tree.

In general, we know that:

Pr(x1 ∧ . . . ∧ xn) =
∏

i=1,...,n

Pr(xi|x1 . . . xi−1)

3

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 41

But since the conjuncts are ordered according to a depth first
traversal of the tree, each conjunctxi has only one predeces-
sorxj = xpar(i) (its parent in the tree) for whichC(xi, xj)
is not one. As a result,:

Pr(xi|x1 . . . xi−1) = Pr(xi|xpar(i))
= Pr(xi)C(xi|xpar(i))

This means that:

Pr(x1 ∧ . . . ∧ xn) =
∏

i=1,...,n

Pr(xi)C(xi, xpar(i))

But sinceC(xi, xj) = 1 for all j < i andj 6= par(i) there
is no harm in adding these terms and we get:

Pr(a) = Pr(x1 ∧ . . . ∧ xn)

=
∏

i=1...n

Pr(xi)
∏

j=1...i−1

C(xi, xj)

which is Equation 4.

Computing Correlation Between Actions
As with propositions, the probability that we can execute
two actions,a andb, may be more or less than the product
of their individual probabilities. If the actions are mutually
exclusive (in the classical sense) then the probability that we
can execute them both is zero. Otherwise, it is the probabil-
ity that we can establish the union of the preconditions for
the two actions.

Pr(a ∧ b) = 0 if a andb are mutex
= Pr (

∧
(Pre(a) ∪ Pre(b))) otherwise

Using Equation 4 we can compute the probability of the con-
junctionPr (

∧
(Pre(a) ∪ Pre(b))). By our definition of cor-

relation, Equation 1, we can then compute the correlation
between two actionsa andb.

As an example, consider the plan graph in Figure 1 again.

Pr(a ∧ b) = Pr
(∧

(Pre(a) ∪ Pre(b))
)

= Pr(p ∧ q ∧ r)
= Pr(p) Pr(q) Pr(r)C(p, q)C(q, r)C(p, r)
= .8(.5)(.4) = .16

assuming that the correlations are all one. The correlation
betweena andb is therefore:

C(a, b) =
Pr(a ∧ b)

Pr(a) Pr(b)
=

.16
.4(.2)

= 2

Computing Effect Probabilities and Correlation
Given the tools we have developed so far, it is relatively
straightforward to compute the probability of an individual
action effect. LetΦi be an outcome of actiona with weight
wi, and letφij = ρij → εij be a conditional effect inΦi.
If the effect is unconditional – that is the antecedentρij is
empty – then:

Pr(εij) = wi Pr(a)
However, if the antecedentρij is not empty, there is the pos-
sibility of interaction (positive or negative) between the pre-
conditions ofa and the antecedentρij . As a result, to do the

computation right we have to compute the probability of the
conjunction of the preconditions and the antecedent:

Pr(εij) = wi Pr
(∧

(Pre(a) ∪ ρij)
)

For convenience, we will refer to the weightwi associated
with an effectεij asw(εij). We will also refer to the union
of the action preconditions and the antecedentρij for an ef-
fectεij as simply theconditionof εij and denote it Cnd(εij).
For an effectε, the above expression then becomes simply:

Pr(ε) = w(ε) Pr
(∧

Cnd(ε))
)

As with actions, we can compute the probability of the con-
junction of Cnd(ε) using the approximation in Equation 4.

We can also compute the correlation between two differ-
ent effects just as we did with actions. For two effects,e and
f we have:

Pr(e ∧ f) = w(e)w(f) Pr
(∧

(Cnd(e) ∪ Cnd(f))
)

(5)

As before, the probability of the conjunction of Cnd(e) ∪
Cnd(f) using the approximation in Equation 4. By our def-
inition of correlation, Equation 1, we can then compute the
correlation between the two effectse andf .

As an example, consider the two unconditional effectse
and g from Figure 1. Since both these effects are uncon-
ditional, Cnd(e) and Cnd(g) are just the preconditions ofa
andb respectively. As a result:

Pr(e ∧ g) = w(e)w(g) Pr
(∧

(Cnd(e) ∪ Cnd(g))
)

= w(e)w(g) Pr(p ∧ q ∧ r)
= 1(.5)(.8)(.5)(.4)
= .08

sincep, q andr were assumed to be independent. Using this,
we get:

C(e, g) =
Pr(e ∧ g)

Pr(e) Pr(g)
=

.08
.4(.1)

= 2

Note that Equation 5 forPr(e ∧ f) applies whether the
effectse andf are from the same or different actions. In
the case where they are effects of the same action, there will
be overlap of the action preconditions between Cnd(e) and
Cnd(f). However, the antecedents of the conditional effects
may be quite different, and there can be interaction (positive
or negative) between literals in those antecedents, which will
be captured by the probability calculation in Equation 5.

Computing Proposition Probabilities
Computing the probability for a proposition is complicated
by the fact that there may be many actions with effects that
produce the proposition, and we are not limited to using only
one such action or effect. For example, if two action effects
e andf both produce propositionp with probability .5, then
we may be able to increase our chances of achievingp by
performing both of them. However, whether or not this is
a good idea depends upon the correlation between the two
effects. If the effects are independent or synergistic, then
it is advantageous. If the two effects are completely mu-
tex (C(e, f) = 0), then it is not a good idea. If there is

4

ICAPS 2006

42 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

some degree of mutual exclusion between the actions (i.e.
0 < C(e, f) < 1) then the decision depends on the specific
probability and correlation numbers.

Suppose we choose a particular set of effectsE =
{e1, . . . , ek} that produce a particular propositionp. Intu-
itively, it would seem that the probability that one of these
effects would yieldp is:

Pr(e1 ∨ . . . ∨ ek)

Unfortunately, this isn’t quite right. By choosing a particular
set of effects to try to achievep, we are committing to (try-
ing to) establish the conditions for all of those effects, which
means establishing both the action preconditions and the an-
tecedents of each of the conditional effects. There may be
interaction between those conditions (positive or negative)
that increases or decreases our chances for each of the ef-
fects. The above expression essentially assumes that all of
the effects are independent of each other.

In this case, the correct expression forPr(p) using a set
of effectsE is both complicated and difficult to compute.
Essentially we have to consider the probability table of all
possible assignments to the conditions for the effectsE, and
multiply the probability of each assignment by the probabil-
ity that the effects enabled by that assignment will produce
p. LetT (E) be the set of all possible2|Cnd(E)| truth assign-
ments to the conditions in Cnd(E). Formally we get:

Pr(pE) =
∑

τ∈T (E)

Pr(τ) Pr(p|τ) (6)

wherePr(pE) refers to the probability ofp given that we are
using the effectsE to achievep.

As an example, consider the calculation of the probability
for the propositionf in Figure 1 assuming that we are using
both the effects from actiona and actionb. The set of condi-
tions for these (unconditional) effects is just the union of the
preconditions fora andb which is{p, q, r}. There are eight
possible truth assignments to this set, but only three of them
permit at least one of the actions:

p ∧ q ∧ ¬r permitsa but notb

¬p ∧ q ∧ r permitsb but nota

p ∧ q ∧ r permits botha andb

The probabilities for these truth assignments are:

Pr(p ∧ q ∧ ¬r) = .8(.5)(.6) = .24
Pr(¬p ∧ q ∧ r) = .2(.5)(.4) = .04

Pr(p ∧ q ∧ r) = .8(.5)(.4) = .16

The probability forg using both actions is therefore:

Pr(g) = .24(.5) + .04(1) + .16(.5 + 1− .5(1)) = .32

This calculation was fairly simple because we were only
dealing with three propositionsp, q and r and they were
independent. More generally, however, an expression like
Pr(p ∧ q ∧ ¬r) is problematic whenr is not independent of
the other two propositions, since we do not have correlation
information for the negated proposition. There are a number
of approximations that one can use to compute such proba-
bilities. For our purposes, we assume that two propositions

are independent if correlation information is not available.
Thus, in this case we make the assumption that:

Pr(p ∧ q ∧ ¬r) = Pr(p ∧ q) Pr(¬r)

We now return to the problem of computing the proba-
bility for a propositionp. In theory we could consider each
possible subsetE′ of effectsE that match the propositionp
and compute the maximum:

max
E′⊆E

Pr(pE′) (7)

and use Equation 6 to expand and computePr(pE′). Un-
fortunately, when there are many effects that can produce a
proposition this maximization is likely to be quite expensive,
because 1) we would need to consider all possible subsets of
the set of effects, and 2) in Equation 6 we would have to
consider all possible truth assignments to the conditions for
each set of effects. As a result, some approximation is in
order. One possibility is a greedy approach that adds effects
one at a time, as long as they still increase the probability.
More precisely:

1. LetE be the set of effects matchingp

2. letE0 be the empty set of effects, letP0 = 0
3. lete be an effect inE not already inEi−1, and letP ∗ =

Pr(pe∪Ei−1). If

e maximizesP ∗

and
P ∗ > Pi−1

then set
Ei = e ∪ Ei−1

Pi = P ∗

Using this procedure the final setPi will be a lower bound
on:

max
E′⊆E

Pr(pE′)

Even this approximation is somewhat expensive to com-
pute, because it requires repeated computation ofPr(pE′)
at each stage using equation 6. A different approximation
that avoids much of this computation is to construct all max-
imal subsetsE′ of the effects inE such that there is no pair
of effectse andf in E′ with C(e, f) < 1 (no interference).
We then compute or estimatePr(pE′) for each such subset
and choose the maximum. This approximation has the ad-
vantage that we must only calculatePr(pE′) for a relatively
small number of sets.

Computing Correlation Between Propositions
Finally, we consider the probability for a pair of proposi-
tionsp andq which will allow us to compute the correlation
between the propositions. As with a single proposition, this
calculation is complicated because we want to find the best
possible set of effects for establishing the conjunction. If we
let E be the set of effects matching propositionp, andF be
the set of effects matching propositionq, then what we are
after is:

Pr(p ∧ q) = max
E′⊆E

F ′⊆F

Pr(pE′ ∧ qF ′)

5

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 43

In order to computePr(pE′ ∧ qF ′ we must again resort to
considering all possible truth assignments for the union of
the conditions forE′ andF ′ as we did in Equation 6:

Pr(pE′ ∧ qF ′) =
∑

τ∈T (E′∪F ′)

Pr(τ) Pr(p ∧ q|τ) (8)

Of course this would also be costly to compute, since it
involves computing a complex expression for all subsets of
effects inE andF . To approximate this, we could use either
the greedy strategy developed in the previous section, or the
strategy of finding maximal non-interfering effect subsets.

GivenPr(p∧q) and the individual probabilitiesPr(p) and
Pr(q) we can computeC(p, q) trivially from the definition
in Equation 1.

Results
We have developed a preliminary implementation of the
technique presented above. Correlation and probability in-
formation is computed using the above methods. This in-
formation is then used to guide construction of a relaxed
plan, which is used to guide a heuristic search planner in
a manner similar to that described in (Bryce, Kambham-
pati, & Smith 2006b). The planner is implemented in C and
uses several existing technologies. It employs the PPDDL
parser (Younes & Littman 2004) for input, and the IPP plan-
ning graph construction code (Koehleret al. 1997). Be-
cause the implementation and debugging is still not com-
plete, we have so far only tested the ideas on the small do-
mains Sandcastle-67 and Slippery gripper. Figures 2 and 3
show some early results for time, plan length, and node ex-
pansion for the sandcastle-67 and slippery Gripper domains
respectively. The plots compare 4 different planners:

• CPlan (Hyafil & Bacchus 2004)

• McLug-16 (Bryce, Kambhampati, & Smith 2006b), a re-
cent planner that uses Monte Carlo Simulation on plan
graphs

• pr-rp, relaxed plan construction using simple plan graph
probability information computed using independence as-
sumptions

• corr-rp, relaxed plan construction using probability and
correlation information.

The other two entries (pr-rp-mx and corr-rp-mx) represent
variants that are not fully debugged and should therefore be
regarded as suspect.

Generally, performance of the four methods is similar on
these simple domains. Plans are somewhat longer for pr-
rp and corr-rp because the objective for these planners is to
maximize probability rather than minimize the number of
actions. There is some indication that corr-rp is showing
less growth in time and number of node expansions as the
probability threshold becomes high, but additional experi-
ments are needed to confirm this and examine this behavior
more closely.

Discussion and Conclusions
We have introduced a continuous generalization of the no-
tion of mutex, which we callcorrelation. We showed how

such a notion could be used to improve the computation of
probability estimates within a plan graph. Our implementa-
tion of this technique is still preliminary and it is much too
early to draw any significant conclusions about the practi-
cality or efficacy of these computations for problems of any
size. In addition to finishing our implementation and doing
more significant testing, there are a number of issues that we
wish to explore:

Correlation vs Relaxed Plans The approach of keeping
correlation information is different from the method of us-
ing a relaxed plan to estimate probability in an important
way: relaxed plans are constructed greedily, so a relaxed
plan to achievep ∧ q would normally choose the best way
to achievep and the best way to achieveq independently.
This will not always lead to the best plan for achieving the
conjunction. Correlation information can be used to guide
(relaxed) plan selection and would presumably give better
relaxed plans. This is the approach we have taken in our pre-
liminary implementation. Of course there is always a trade-
off between heuristic quality and computation time, and this
is something we intend to investigate further.

Admissibility Although probability estimates computed
using correlation information should be more informative,
they are not admissible. The primary reason for this is that
keeping only binary correlation information, and approxi-
mating the probability of a conjunction using only binary
correlation information can both underestimate and overesti-
mate the probability of the conjunction. Note, however, that
the usual approach of estimating probability by assuming in-
dependence is also not admissible for the same reason. Sim-
ilarly, relaxed plans do not provide an admissible heuristic -
they can underestimate probability because the relaxed plan
may not take full advantage of synergy between actions in
the domain. It is possible to construct an admissible heuris-
tic for probability by taking:

• the probability of a conjunction to be the minimum prob-
ability of the conjuncts,

• the probability of a proposition as the sum of all the prob-
abilities of the producing effects.

However, this heuristic is very weak and not likely to be
very effective. It is not yet clear whether we can construct a
stronger admissible heuristic using correlation.

Correlation in the Initial State The mechanism we have
described easily admits the use of correlation information
between propositions in the initial state. That information
would be treated in the same was as at any other level in
the plan graph. Thus, if the initial state hasPr(p ∧ q) =
.5 and Pr(¬p ∧ ¬q) = .5 we could represent this as
Pr(p) = Pr(q) = Pr(¬p) = Pr(¬q) = .5 andC(p, q) =
C(¬p,¬q) = .5

.5.5 = 2. The limitation of this approach is
that binary correlation can only approximate joint probabil-
ity information for conjunctions larger than two.

6

ICAPS 2006

44 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

0.01

0.1

1

10

100

1000

.995.99.98.97.96.95.94.93

(CPplan)
(McLUG-16)

(pr-rp)
(corr-rp)

(pr-rp-mx)
(corr-rp-mx)

10

.995.99.98.97.96.95.94.93

(CPplan)
(McLUG-16)

(pr-rp)
(corr-rp)

(pr-rp-mx)
(corr-rp-mx)

75

50

40

30

20

10
.995.99.98.97.96.95.94.93

(McLUG-16)
(pr-rp)

(corr-rp)
(pr-rp-mx)

(corr-rp-mx)

Figure 2:Run times (s), Plan lengths, and Expanded Nodes vs. probability threshold for sandcastle-67

0.01

0.1

1

10

100

1000

1.999.995.99

(CPplan)
(16)

(pr-rp)
(corr-rp)

(pr-rp-mx)
(corr-rp-mx)

10

1.999.995.99

(CPplan)
(16)

(pr-rp)
(corr-rp)

(pr-rp-mx)
(corr-rp-mx)

10

100

1000

1.999.995.99

(16)
(pr-rp)

(corr-rp)
(pr-rp-mx)

(corr-rp-mx)

Figure 3:Run times (s), Plan lengths, and Expanded Nodes vs. probability threshold for slippery gripper

Bayesian Networks There are a number of similarities be-
tween techniques we have used here, and methods used in
Bayesian Networks. We speculate that the calculation of
probability information for individual actions and pairs of
actions could be modeled using a simple Bayes net with
nodes for the preconditions and actions, arcs between the
preconditions and corresponding actions and arcs between
pairs of preconditions that are dependent (correlation not
equal to one). These later arcs would be labeled with the
conditional probability corresponding to the correlation. It
would be necessary to structure the network carefully to
avoid cycles among the preconditions. The more complex
calculations for propositions would require influence dia-
grams with choice nodes for each of the establishing effects.
There doesn’t seem to be any particular advantage to doing
this, however. Solution of this influence diagram would re-
quire investigating all possible sets of the decisions, which
corresponds to the unwieldy maximization over all subsets
of establishing effects.

Cost Computation in Classical Planning The idea that
we have explored here – a continuous generalized of mutex
– is not strictly limited to probabilistic planning. A similar
notion of the “interference” between two proposiitons or two
actions could be used in classical planning to improve plan
graph estimates of cost or resource usage. To do this we
could define “interference” as:

I(x, y) = Cost(x ∧ y)− (Cost(x) + Cost(y))
= Cost(y|x)− Cost(y)
= Cost(x|y)− Cost(x)

Positive interference means that there is conflict between
two propositions, actions or effects, and that it is more ex-
pensive to achieve the conjunction than to achieve them sep-
arately. Interference of plus infinity corresponds to mutex.
Negative interference corresponds to synergy between the
propositions, meaning that achieving them together is easier
than achieving them independently. Interference of zero cor-
responds to independence. Essentially, this can be seen as
the logarithm of the definition for correlation given in Equa-
tion 1.

The computation of interference for actions, effects and
propositions is very similar to what we have described
above. The primary difference is that computations for
propositions are significantly simpler because there is no
need to maximize over all subsets of possible effects that
give rise to a proposition. Although we have worked out the
equations and propagation rules for this notion of interfer-
ence, we have not yet implemented or tested this idea. We
intend to investigate this in the near future.

Acknowledgements Thanks to Ronen Brafman, Nicolas
Meuleau, Martha Pollack and Sailesh Ramakrishnan, and
Rao Kamhampati for discussions on this subject and on early
versions of these ideas. This work has been supported by the
NASA IS-NRA program.

References
Bonet, B., and Geffner, H. 2005. mGPT: A probabilis-
tic planner based on heuristic search.Journal of Artificial
Intelligence Research24:933–944.

Bryce, D.; Kambhampati, S.; and Smith, D. 2006a. Plan-

7

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 45

ning graph heuristics for belief space search.JAIR. (To
appear).
Bryce, D.; Kambhampati, S.; and Smith, D. 2006b. Se-
quential monte carlo in probabilistic planning reachability
heuristics. InProceedings of ICAPS’06.
Hyafil, N., and Bacchus, F. 2004. Utilizing structured
representations and CSPs in conformant probabilistic plan-
ning. InProceedings of ECAI’04.
Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y.
1997. Extending planning graphs to an adl subset. InPro-
ceedings of ECP’97.
McDermott, D. 1998. PDDL-the planning domain
definition language. Technical report, Available at:
www.cs.yale.edu/homes/dvm.
Rintanen, J. 2003. Expressive equivalence of formalisms
for planning with sensing. InProceedings of ICAPS’03.
Younes, H., and Littman, M. 2004. PPDDL1.0: An ex-
tension to PDDL for expressing planning domains with
probabilistic effects. Technical report, CMU-CS-04-167,
Carnegie Mellon University.
Younes, H.; Littman, M.; Weissman, D.; and Asmuth, J.
2005. The first probabilistic track of the International Plan-
ning Competition. Journal of Artificial Intelligence Re-
search24:851–887.

8

ICAPS 2006

46 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Controlability and Makespan Issues with Robot Action Planning and Execution

Matthieu Gallien and Félix Ingrand
LAAS-CNRS∗

7, Avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
{matthieu.gallien,felix}@laas.fr

Abstract
In recent years, there has been an increasing interest in getting
planners to “execute” their plans in the real world. Among
them, the temporal “partial order causal link” planner IxTeT
has been endowed with a temporal executive, and has been
successfully tested on an ATRV robot. Yet new problems
arises from the fact that the plan are now being executed.
In domains such as robot planning, many tasks have an un-
certain duration (a move in a partially unknown environment
takes an uncertain amount of time). The current solution is
to use an interval constraint to represent the possible duration
in a Simple Temporal Network. By doing this, the planner
or the executive are allowed to reduce the possible durations
by propagating other constraints. Hence, this reduction may
lead to a plan execution failure. This problem, known as the
“controllability” problem, as been addressed by a number of
people. For example, the 3DC+ algorithm has been proposed
to provide dynamic controllability. Yet to our knowledge,
no implementation has been made showing the advantage of
such approach. This paper presents the results we got using
3DC+ in IxTeT.
Having now a temporal planner which now “complies” with
non controllable temporal constraints, we addressed a second
problem which arises at execution time. IxTeT being a least
commitment planner, the system does not try to minimize
the makespan. In fact, the default heuristic is tuned more to
spread the actions over the given horizon (to minimize con-
flict) than to finish the job at the earliest. We implemented a
new heuristic which keeps the least commitment strategy yet
minimizing the makespan of the plan. This heuristic gives
good statistical results on the model we use for our explo-
ration rover type problem.
We have tested these two recent modifications on the robot,
but also using a very accurate rover simulator. We present real
results and simulated one which show the improvement over
the previous version/heuristic. We also proposed a solution to
a drawback identified during these tests.

Introduction
Nowadays, many robotic applications need autonomous de-
cisional capabilities. Among them, some make intensive use
of planning. Yet, planning is an activity which algorithmic
complexity is often incompatible with the reactivity require-
ment of an exploration rover. On the opposite, one can use

∗Part of this work has been funded by a grant from the ESF
(European Social Fund)

an automaton or a simple decisional rule. But, these ap-
proaches are not capable to make a forward search to avoid
possible conflicts during execution. The main difference is
that planning is a proactive method contrary to the more re-
active approach of the automaton or decisional rules.

During the past years some planners have proven their
ability to handle complex situations required by autonomous
systems. Some of these systems (e.g. RAXPS [Jonsson et al.
2000], CASPER [Chien et al. 2005]) have been deployed.
Reasoning about time is necessary to adress these planning
problems. The planner must be able to take into account
strict deadline, temporal windows for some tasks, durative
actions, and durative goals.

Many temporal formalisms were developed in the past
years1. The STN2 formalism is often used. The requests
on these networks are solved very efficiently by polynomial
algorithms. Nowadays, an extension to uncertain constraints
has been studied and polynomial algorithms have been pro-
posed.

Actual robotic space exploration mission are very expen-
sive, with a high requirement for quality scientific returns.
During the MER mission, the use of MapGen [Ai-Chang et
al. 2003] has allowed a 25% increase of such return [Ra-
jan 2004]. In an autonomous planner, optimization can be
made in two ways: finding directly a good plan or searching
several plans to find the better one. Due to limited computa-
tional capacity, the second approach is often unreasonable.
So we have to modify the planner to search for high quality
solutions.

The IxTeT planner3 [Ghallab & Laruelle 1994] was devel-
oped to handle robotic planning problems. It was extended
to handle complex resources [Laborie & Ghallab 1995], con-
tinuous constraints and constraints between both atemporal
and temporal variables [Trinquart & Ghallab 2001]. Fur-
ther work [Lemai 2004] added a temporal executive to Ix-
TeT. The resources management has been extended to han-
dle continuous resources usage [Lemai & Ingrand 2004].

New issues were raised while experimenting with IxTeT

1Originally IxTeT was a temporal formalism [Ghallab &
Mounir-Alaoui 1989] used to check consistency other qualitative
temporal relations.

2STN: Simple Temporal Network
3IxTeT is a system used for chronicle recognition, planning and

temporal execution.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 47

new executive. Many plans failed because the executive or
the planner reduced the allowed duration of some tasks. In
fact, most of the tasks (move, communication , image com-
pression, etc) have uncertain durations. So we decided to
implement an existing temporal formalism with explicit un-
certainties (STNU). The planner produces temporal contin-
gent plans, i.e. plans that do not fail because of a reduction
of an uncertain duration.

Another issue is that while executing the plan, the robot
often remains inactive. In fact, the plans produced with a
least commitment heuristic may contain unjustified wait pe-
riods. Though, they may be necessary to adapt the plan dur-
ing execution, they reduce the performance of the overall
system. This raises a need for plans with a shorter makespan.
We solve this problem by modifying the planning heuristic.

These new contributions must be validated by experimen-
tal returns. So, we integrated IxTeT and a procedural exec-
utive (OpenPRS) to a simulated rover controlling architec-
ture. This simulator allows to make accurate comparisons
between the modified versions and the old one.

During the analysis of the results, we identify a drawback
of the plan repair mechanism. We propose a solution to it by
modifying the way the plan are repaired. This is an ongoing
work and some preliminary results are shown.

This paper is organized as follows. The first and second
sections describe the IxTeT planner and the embodied exec-
utive. The third one describes the validation scenario and the
last section describes the experimental results. The fourth
introduces a work on improving the plan repair method. We
conclude the paper with a discussion and future works.

The IxTeT Planner
Plan-space Search
IxTeT is a temporal constraint-based causal link planner. It
uses CSP techniques4 to maintain the consistency of the plan
constraints. In particular, the planner is using a Simple Tem-
poral Network [Dechter, Meiri, & Pearl 1991] for the tem-
poral constraint.

The underlying representation of the plan is state variables
ranging over finite and real valued domains. These plans
use chronicles [Ghallab, Nau, & Traverso 2004] to describe
the world, its evolution and the planning problem. The ex-
plicit representation of the time permits to have temporally
extended goals, durative actions and rendez-vous or visibil-
ity windows.

Definition 1 A temporal assertion on a state variable v is
either an event or a persistence condition on v.

• An event, denoted x@t : (v1, v2), specifies an instanta-
neous change of the value of x from v1 to v at time t, with
v1 6= v2.

• A persistence condition, denoted x@[t1, t2) : v, specifies
that the value of x persists as being equal to v over the
interval [t1, t2).

In any temporal assertion, v, v1 and v2 can be defined by
atemporal variables. t, t1 and t2 are temporal variables.

4Constraint Satisfaction Problem [Mackworth 1977] (CSP)

Definition 2 A chronicle for a set of state variables
v1, v2, ..., vn is a pair Φ = (F,C), where F is a set of tem-
poral assertions about the state variables v1, v2, ..., vn and
C is a set of constraints on variables used in the chronicle.

Definition 3 A plan P(S, Φ, G, CA, F, T) is described by
the state variables contained in S. Φ is a chronicle describ-
ing all the temporal assertions of the plan. F is the set of
defaults in the plan. CA ⊂ Φ contains temporal assertions
on variable of S describing the predicted evolution of con-
tingent attributes. The goals are in G ⊂ Φ, they are tempo-
ral persistences on state variables of S. T is the set of tasks
in the plan.

The planner begins with a plan describing the initial sit-
uation, the initial goals of the problem and the known pre-
dicted evolutions of contingent attributes such as visibility
windows. The search is performed until the plan contains no
default. These defaults are temporal assertions unexplained
in the current plan5, conflicts between two temporal asser-
tions or possible resource conflicts. At each search step, a
default is chosen. One of the resolvants of this default is
then applied.

The search toward a solution is performed using a dy-
namic abstraction hierarchy [Garcia & Laborie 1995] on the
attributes of the planning domain. The hierarchy provides
a dynamic ordering on the resolution of the defaults in the
plan. This ordering can dramatically improve the speed of
the planner.

The heuristic computes a cost for each resolver of each
default. Then, it chooses the next default to solve ρ using
an opportunistic strategy. A default is prefered if it has less
resolvants than the other and if it is easier for the planner
to choose one among them. The cheapest resolvant is then
chosen. The choice is considered as easier for example if
one resolvant cost is 0.1 and the other cost is 0.9. We have
a better confidence in the automated choice if the difference
between costs is high.

1
Opp(ρ)

=
∑

r ∈ resolvant(ρ)

1
1 + cost(r)− costmin(resolvant(ρ))

Theoretically the commitment of one resolvant is com-
puted by estimating the number of completely instantiated
reachable solution plans removed by the resolvant r. In fact,
estimation were developed. A complete description of the
cost functions can be found in [Lemai 2004].

We have implemented a new version of the heuristic with
two modified costs. The first considers one single ordering
resolvant. The second evaluates the cost of one persistence
condition on a state variable.

1. Without the ordering constraint (t1 < t2), t1 can be in-
stantiated any time before or after t2 with respect to the
other temporal constraints. The cost of the resolvant de-
pends on the number of possible instantiation of t1 after
t2 removed by the constraint.

5A temporal assertion is not explained by a plan if it is not an
initial condition or if no causal link establishes the assertion.

ICAPS 2006

48 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

c(ti, tj) is the temporal minimum constraint between ti
and tj . dmin(c(ti, tj)), respectively dmax(c(ti, tj)) is the
minimum, respectively maximum duration of the con-
straint c(ti, tj).

old_cost(t1 < t2) =
dmax(c(t1, t2) ∩ [−∞, 0])

dmax(c(t1, t2))

Plan Start Plan End

t2 Old Lower Bound

t2 New Expected Lower Bound

t2 Upper Bound

Cost

Figure 1: How the new heuristic evaluates the cost of an
ordering constraint.

The new heuristic measures the earliness of the resolvant
from the point of view of one timepoint. We choose the
point of view of t2

6 (see Fig.1). The new expected lower
bound of t2 is its old lower bound if the lower bound of
t1 is lower than the one of t2. In the other case, it is the
lower bound of t1.

If dmin(c(tplan_start, t1)) < dmin(c(tplan_start, t2)) then

new_cost(t1 < t2) =
dmin(c(tplan_start, t2))

dmin(c(tplan_start, tplan_end))

else

new_cost(t1 < t2) =
dmin(c(tplan_start, t1))

dmin(c(tplan_start, tplan_end))

2. A causal link resolvant is the conjunction of an ordering
constraint, an equality constraint between the values of
the two connected temporal assertions. The cost of such
resolvants is the sum of the cost of each elementary con-
straints and of a cost depending on the duration of the
value persistence.
The old cost of the temporal persistence is the ratio of
the minimum duration of the persistence by the minimum
duration of the plan.
The new cost is the sum of the equality constraints and of
the cost of persistence. The temporal cost is ignored even
if the constraint is necessary. This allows the heuristic to
order the causal links only by their respective durations.
We modified the cost of the persistence. The new cost is
the ratio of the maximum duration of the persistence by
the maximum duration of the plan. By using the maxi-
mum duration, possible negative effects are better repre-
sented.
6Tests have been made with t1 without significant differences.

Underlying CSPs
Definition 4 A CSP [Mackworth 1977] Γ = (V,D,C) is
defined by V = {vi | i = 1, ..., n} the set of all variables,
D = {di | i = 1, ..., n} the set of variable domains. Finally,
C = {ci | i = 1, ..., p} is the set of constraints on variables
contained in V .

IxTeT uses classical CSPs algorithms for managing con-
straints on atemporal variables. It uses an STN for managing
all the temporal constraints, and a general arc-consistency
filtering algorithm [Mackworth & Freuder 1985] for manag-
ing symbolic and numeric constraints.

In some cases, we want to link the effects of a task to its
duration. For example, if the consumption of a resource de-
pends on the duration of the task, you need a mixed con-
straint between temporal and atemporal variables. IxTeT
features a mechanism [Trinquart & Ghallab 2001] to propa-
gate these constraints.

For example, let t be a task beginning at tstart and ending
at tend. t is a navigation of expected duration d, speed s and
length l. The mixed constraint c0 = {d = (tend − tstart)}
and the constraint c1 = {d ∗ s = l} link the duration of the
task to the length of the trajectory.

Definition 5 An STN [Dechter, Meiri, & Pearl 1991] Θ =
(V,D,C) is a restricted form of CSP. V = {v1, ..., vn} is
the set of variables. D = {di | ∀i di = R} is the set of the
variable domains. C is the set of constraints on variables of
V . The constraints are all of the form: lb ≤ vi − vj ≤ ub
which is equivalent to vi − vj ∈ [lb, ub]

On the STN, IxTeT uses a path consistency algorithm like
PC-2 [Mackworth & Freuder 1985] that is able to compute
the minimal network of an STN (thus removing all values
not belonging to a solution). The time complexity is O(n3)
for the complete algorithm and an incremental one7 is only
in O(n2). During planning, the planner uses the incremental
algorithm. During a nominal execution, the same algorithm
is used to propagate instantiation of actions start and end
timepoints. If a temporal failure invalidates some tempo-
ral constraints, a relaxation is done by removing the failed
constraints and by repropagating all the remaining variables
using the complete algorithm.

It is possible to use a fast algorithm [Muscettola, Mor-
ris, & Tsamardinos 1998] for STN execution. It is based on
the property of dispatchability. However it is much efficient
than using an O(n2) algorithm, we cannot use it because
the propagation of mixed constraints needs a complete algo-
rithm.

Simple Temporal Network with Uncertainties
Definition 6 An STNU [Vidal & Fargier 1999] Θ =
(V,D,Cclb, Cctg) with V the set of variables, D the set of
domains. These definitions are the same than the STN ones.
The set Cclb is all the controllable constraints equivalent to
STN constraints. Cctg is a set of contingent constraints of
the form lb ≤ vi− vj ≤ ub. The duration of this constraints
can only be observed.

7If only one constraint of the STN is restricted, the incremental
algorithm can be used.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 49

The introduction of a new type of constraint changes the
consistency notion inherited from the STN. Three main lev-
els of controllability have been defined [Vidal & Fargier
1999]. Schematically, an STNU is weakly controllable if
the execution controller needs to know all the contingent
durations before executing the plan. An STNU is strongly
controllable if the execution controller instantiates the con-
trollable timepoint at the same time whatever the observed
contingent durations are. Finally, an STNU is dynamically
controllable if the execution controller must take decisions
knowing only the past observations and timepoint instantia-
tions. Finally an STNU is pseudo-controllable if it is con-
tingent and no contingent durations are squeezed [Morris,
Muscettola, & Vidal 2001].

The two possible choices are dynamic or strong control-
lability. The two possible properties can be checked in poly-
nomial time. The first one is more flexible and may have
a lower makespan8. The second one has a lower complex-
ity during execution. This controllability is more restrictive
than the dynamic one, fewer STNUs are strongly control-
lable. We decided to experiment the dynamic controllability
due to these advantages.

[x, y]

[u, v][p, q]

A B

C

<B, t>

[u, v][p, q]

A C

D

Figure 2: Basic constraint triangles analyzed by 3DC+. The
left triangle is used when searching for new necessary con-
straints. The right one is checked during the propagation of
a new ternary constraint called a “wait”.

The algorithm 3DC+ [Morris, Muscettola, & Vidal 2001]
checks if an STNU is dynamically controllable. It is poly-
nomial in time, computes the minimal graph and the most
flexible one. It is complete and correct. It allows to produce
plans and to safely execute them.

The algorithm performs several cycle of checking on tri-
angles containing at least one contingent constraint. On each
triangle (see Fig.2), a test is performed in order to identify
the possible necessary constraints to enforced dynamic con-
trollability. Four cases exist:

• In the case where C necessary follows B, nothing new is
needed.

• In the case where C necessary precedes B, a new con-
straint on AC is needed : (C −A) in [y − v, x− u].

• In the other cases C and B are unordered. If y − x ≤ v
then we must add the constraint (C −A) in [y − v,+∞[.

• Otherwise, a new type of constraint called “wait" is
needed: < B, y − v >. It means that before executing

8If all the contingent durations are equal to their upper bound,
dynamic controllability may be as efficient as the strong one. Oth-
erwise, dynamic controllability is more time efficient.

C you must wait y − v after the execution of A or the
observation of B.

At the start of each cycle, the APSPG9 is computed. Then,
the new necessary constraints are added. After the analyzis
of all triangles, the algorithm propagates all the waits to
ensure they will never break during execution. The termi-
nation condition is reached if the network is not pseudo-
controllable or if no new constraint has been added.

We have made two little improvements to this algorithm.
The first concerns the fact that we want to incrementally
maintain an STNU dynamically controllable during plan-
ning. Before the planning adds a new constraint to the net-
work, our algorithm removes all existing waits. This is due
to the fact that some of them are no more necessary due to
the new constraint. More work is needed to find a better
removal criterion.

The original algorithm performs several complete propa-
gation with a complexity of 0(n3) in order to test the prop-
erty of pseudo-controllability. We have replace this by main-
taining always the network pseudo-controllable by incre-
mentally propagating all addition of STN constraints during
enforcement of dynamic controllability. If we suppose that
k constraints are added during a cycle, the complexity is in
O(kn2). Experimentally, we observed that k is rather con-
stant. Yet the maximum bound of k is in O(n2).

Autonomous Mission Execution
Temporal Plan Execution
During execution, IxTeT controls the beginning, ending and
interruption of tasks running onboard the rover, by sending
commands to the robot. The executive begins with an initial
plan produced by the planner.

Definition 7 A timepoint t is executable if all timepoints ti
that must precede t have been executed and if the temporal
constraints between t and the ti are such that the instantia-
tion of t at time u is possible.

IxTeT executes the plan following a cycle. If a new event
is received, it updates the plan. After that, if needed, a plan
repair process occurs. At the end, it converts the executable
timepoints into commands and updates the plan accordingly.
The cycle has an expected maximal duration denoted µ.

Definition 8 An execution task t(tstart, tend, T, P) starts at
the timepoint tstart, ends at timepoint tend and contains a
set P of temporal propositions on state and resource vari-
ables. T may contain internal timepoints used to describe
temporal propositions of P .

For simplicity, the executive only considers the start time-
point tstart and the end timepoint tend of tasks.

Definition 9 A task t(tstart, tend, T, P) is supported by the
plan P(S, G, CA, F, T, C) if no temporal proposition P of
the tasks is contained in F .

9APSPG: is the All Pairs Shortest Path Graph of the STNU. If
one contingent duration is squeezed, then the STNU is not pseudo-
controllable and thus not dynamically controllable. Our implemen-
tation uses a PC-2 algorithm [Mackworth & Freuder 1985] with a
complexity of O(n3).

ICAPS 2006

50 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Typically, the system starts a task t(tstart, tend, T, P) as
soon as possible if its first timepoint tstart is executable and
the actual plan supports its execution.

Definition 10 A plan P(S, G, CA, F, T, C) is valid if all
running tasks ti(tistart, t

i
end, T

i, P i) are supported by P .

The system only interrupts tasks that can be preempted.
Other tasks report their termination by sending a message
summarizing the exact result of their execution.

In general, the system decides to interrupt a task
t(tstart, tend, T, P) when the current time u > tend or if
the plan is no more valid. If the task is controllable and the
plan still remains valid, the decision will be made at:

early time: uearly ≥ tlbend if the task is an early preemptive
one.

late time: ulate = tub
end − µ if the task is a late preemptive

one.

The executive has to check the validity of the task reports
considering the current plan. If the task has modified the
level of resources, the executive checks for possible future
conflicts. If the report is not nominal, it is considered as a
task failure report.

Unexpected Events During Execution of a Mission
The system may receive messages of new goals to satisfy,
changes of resource capacity or task failures.

IxTeT integrates these messages into its current plan. Dur-
ing this insertion, it partially invalidates the current plan
by removing some causal links and some temporal con-
straints. If the new plan is not valid, execution is imme-
diately aborted. Otherwise it always tries to make local plan
repair in order to restore the plan correctness.

The plan repair search is similar to the plan search. Ex-
cept for the new time variables those are inserted after the
end of the current cycle. Currently this plan repair process
does not remove any constraints on the plan and by exten-
sion any tasks. IxTeT only allows a part of the maximal
cycle duration to be allocated to plan repair process. It is
defined before executing the mission.

IxTeT interleaves the planning process with perception of
new events and new decisions. During this search, the sys-
tem has to always keep a valid plan for integrating the re-
ports or to take the decisions.

The plan repair process keeps information about which
plans are valid in the search tree. Thanks to that, if the time
limit is reached, it extracts the last valid plan for the other
parts of the cycle. If an event is received or if a decision is
taken, a new search tree is started with the current plan as its
root, otherwise the search continues. This process implies
that the search cannot backtrack to choices made in prece-
dent repair cycles.

The plan repair process can fails in two cases. The first is
when there is no correct plan in all the search space. The sec-
ond case is when a time failure occurs before finding a new
plan. These time failures correspond to the impossibility to
instantiate a temporal variable corresponding to the begin-
ning of an action, or a goal. These failures occur when the

current plan repair process does not yet find a plan support-
ing the task. If the plan repair process fails, all the running
actions are interrupted and a complete replanning is done.

When a complete replanning is needed, the system builds
a new initial plan containing the current state and the remain-
ing predicted evolution of contingent state variables. The
remaining goals are kept.

During the search, at each step of the planning process
IxTeT verifies that enough time remains for executing the
plan. This is done by adding to the plan a temporal variable
corresponding to the end of the replanning. All new inserted
tasks are constrained to occur after this temporal variable.
If the upper bound of the special variable is lower than the
actual time minus a constant time needed to initialize the
executive, the search is stopped.

When a replanning fails, the system abandons one goal.
The goals are ranked according to a fixed priority value. The
goal or one of the goals with the fewer priority is suppressed.
A new replanning attempt is made until a solution plan is
found. The abandonned goals are reinserted before any new
complete replanning, and if their temporal constraints are
still valid. A goal is retried only one time.

The Experimental System
The Simulated Architecture
IxTeT runs on the robot Dala (see Fig.3) and on a simulator
of this robot. The simulator allows us to perform accurate
tests of the different IxTeT strategies presented in the paper.
The environment and the initial conditions are exactly the
same.

We use the LAAS architecture [Alami et al. 1998] (see
Fig.3). The basic functions of the robot are encapsulated in
software modules generated with GenoM. Normally, these
basic modules are then run onboard a robot. The simulator
is describded in [Joyeux et al. 2005].

In the top of the simulated functional layer, there is Open-
PRS [Ingrand et al. 1996]. It is used for actions monitoring
and refining of the high level tasks into low level commands.

Evaluation Scenario
The main goal of the scenario is to evaluate the new modi-
fication of IxTeT. A typical mission is defined as part of the
evaluation scenario. The mission is then instantiated with
different parameters to test the stability of the results.

Typical Mission This is an exploration rover like mission.
The robot must acquire scientific data from several places.
During its mission, it has to communicate with an orbiter
during visibility windows. It has to be at a specific location
at the end of the mission (for example back at its starting
point).

For the need of the demonstration, we add a con-
straint on the motion of the cameras10 (i.e. the
MOVE_PAN_TILT_UNIT task, see Fig.7) to heat the mo-
tors before using them. The power constraints are such that
heating is compatible with motion of the robot.

10On the robot, the cameras are mounted on a pan and tilt unit.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 51

Figure 3: The LAAS architecture used for controlling the
DALA mobile robot.

In the contingent plan model, the heating is allowed to be
during a ground navigation. For the controllable model, the
heating is made incompatible with the robot motions. This
unnecessary constraint is added because the planner starts
task as soon as possible. By doing this, it will start the “move
cameras" task at a date whose propagation will squeezed the
possible durations of the robot move (see Fig.4). This may
induces an execution failure. The use of 3DC+ removes the
need for the new constraint by adding a “wait".

Different Configurations Tested
IxTeT now features two different planning heuristics and
two different time management systems. This defines four
IxTeT instantiations.

Four different worlds have been defined. The first one has
no obstacles. The second and the third ones each contain
three obstacles. The last world contains all the obstacles in
worlds two and three.

We have tested some goals configurations and some tem-
poral window specifications. The values have been chosen
randomly. One specific set of goals has also been generated
considering a specific test case.

The MOVE task

The MOVE_PAN_TILT_UNIT task

The end of the heating

[15, 40]

[16, 20]

[10, 12]

]3, +oo[

Contingent duration

Controllable duration

Precedence link

The MOVE task

The MOVE_PAN_TILT_UNIT task

The end of the heating

[15.01, 15.01]

[16, 20]

[12, 12]

[3.01, 3.01]

Contingent duration

Controllable duration

Precedence link

Figure 4: STN resulting of the insertion of a MOVE and a
MOVE_PAN_TILT_UNIT tasks in a plan. The top one is
before execution. The bottom one shows how the possible
duration of the MOVE can be squeezed without using an
STNU and 3DC+.

Results
The makespan:

1. The new heuristic has negative effect only with STN.
Effectively the plans are too constrained for taking ad-
vantage of the plan adaptation capacity of the execu-
tive. The executive has difficulty to achieve the com-
munication during the visibility windows. The com-
munication are modeled to take between 18 s and 25 s.
The effective duration was about 21 s. The execution
often reduces the possible duration of the communica-
tion to less than 21 s, leading to a failure of the task.

2. If we compare the two STNU configurations, the
heuristic is very robust to the world or the goal con-
figurations. Yet it is not a big difference, in a particular
test, it was about 10% better. We discuss in the next
paragraph a reason of inefficiency of plan repair which
may explains this result.

3. If we compare the two configurations using the new
heuristic, the STNU has bad results and is longer than
the STN. This is due to two reasons. The first is that
the planner produces longer plan with 3DC+ because it

ICAPS 2006

52 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Figure 5: Typical initial plan of the robot during our experiment using an STNU as time formalism and using the makespan
minimizing heuristic.

cannot squeeze of task durations at execution time and
so produces less constrained plans. The second reasons
is that plans with 3DC+ are often repaired while plans
without cannot be repaired and are canceled. Currently
the plan repair process produces plans with a bad qual-
ity including useless tasks. So these plans are ineffec-
tive. We discuss this problem latter.

The robustness We have compare the results from each fla-
vor of the system. The use of the new heuristic against an
STN gives very bad results. In most case, plans failed be-
cause the task duration were too squeezed by propagation.
If we compare the STN and the STNU for each heuris-
tics, we have less plan failures. In general all goals are
achieved by the STNU configurations. The STN config-
urations can fail in some world and can success in other
worlds. Clearly the system is less reliable.

Planning duration and other time measures The plan-
ning time is really similar on little problem (≤ 5 scientific
goals). There is no significant difference using one
heuristic or the other. In our tests, the problems are
always easy due to needed flexibility (in order to have
time for new goals). So this heuristic is not tested on
hard problem. Yet, the usage of a complex world repre-
sentation (numeric domains and actions effect depending
of the duration of the task) makes harder to prove that a
planning problem has no solution even if we use the old
one.
The use of 3DC+ implies a higher temporal complexity
at each planning and execution step. But contrary to the
worst case, with a good implementation of the algorithm,
the added cost is acceptable. During execution, the instan-
tiation of a task start or stop takes 0.001 s with an STN and
no more than 0.01 s with an STNU. The duration of plan

repair steps are about 3 times higher with an STNU. This
results shows that the cost of 3DC+ is compatible with its
usage on an autonomous robot.

Prospectives and Current Work
We identify a drawback of the current plan repair process of
IxTeT during our test. Sometimes, a repaired plan contains
unnecessary tasks or not optimal tasks. For example, during
our tests, we add new picture goals. The planner produces a
plan resulting in two-way navigation from a new goal loca-
tion and an existing waypoint. This may lead to a very low
quality plan.

This situation arises when a new unsatisfied goal is added
directly or during plan repair. This unsatisfied goal must not
yet be an establisher of any temporal assertion in the plan.
This goal must be on a state variables which has to take at
least three different values (e.g. the position of the robot).

During the plan repair process, the planner establishes the
new goal. If this goal is satisfied after any temporal assertion
in the original plan, all is good. In the other case, the planner
must insert tasks to reestablished the precedent values of the
state variables. These tasks may be unnecessary, or their
insertions impossible. The fig.8 illustrates the problem with
a navigation.

A basic solution
We describe this work using an exemple run. It is a mission
with initially 5 picture goals and 2 communication goals.
The initial plan is found in 1.7 s. It contains 22 tasks, 90
atemporal variables and 75 temporal variables. One picture
goal is added during the first communication.

The problem illustrated in the fig.8 comes from a limited
relaxation of the plan before the plan repair process. The

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 53

Figure 6: Typical initial plan of the robot during our experiment using an STNU and the commitment minimizing heuristic.

hold(PTU_POS():FORWARD,(st,et));
event(ROBOT_STATUS():(MOVING,STILL),et);
hold(ROBOT_STATUS():MOVING,(st,et));
event(ROBOT_STATUS():(STILL,MOVING),st);
event(ROBOT_POS():(IDLE_POS,?endL),et);
hold(ROBOT_POS():IDLE_POS,(st,et));
event(ROBOT_POS():(?initL,IDLE_POS),st);
?initL,?endL in LOCATIONS;

task MOVE(?initL,?endL)(st,et){
variable ?duration;
variable ?di,?du,?dist;

distance(?initL,?endL,?di);
distance_uncertainty(?du);
?dist = ?di * ?du;
speed(?s);
?dist = ?s * ?duration;
contingent ?duration = et − st;

}latePreemptive

hold(ROBOT_STATUS():STILL,(end_heat, st));

task MOVE_PTU(?initL,?endL)(st,et){

?initL,?endL in PTU_POSITIONS;
timepoint end_heat;

event(PTU_STATUS():(COLD, HEAT),st);
hold(PTU_STATUS():HEAT,(st,end_heat));
event(PTU_STATUS():(HEAT,MOVING),end_heat);
hold(PTU_STATUS():MOVING,(end_heat,et));
event(PTU_STATUS():(MOVING,COLD),et);

hold(PTU_INIT():TRUE,(st,et));

}latePreemptive

contingent (et − st) in [16,20];
(end_heat − st) in [10,12];

hold(PTU_POS():?initL,(st,end_heat));
event(PTU_POS():(?initL,PTU_POS_IDLE),end_heat);
hold(PTU_POS():PTU_POS_IDLE,(end_heat,et));
event(PTU_POS():(PTU_POS_IDLE,?endL),et);

Figure 7: An example of move and camera orientation (the cameras are mounted on a pan&tilt unit).

solution described in the precedent sections of this paper,
removes only causal links. A planner like IxTeT, adds con-
straints on variables to make causal links valid. If these con-
straints remains, the plan repair produces a suboptimal solu-
tion. The solution is to remove the constraints at the same
time than the link.

We integrated the algorithms describded in [Surynek &
Barták 2004; Barták & Surynek 2005]. We adapt the first
one to continuous domains and use it to manage the filtering
in the atemporal CSP. This permits to remove the atemporal
constraints supporting a causal link.

The temporal constraints are not removed because the re-
sult is not satisfying. The main reason is that the planner
introduces many more temporal constraints for solving con-
flicts between two temporal assertions than for justifying
causal links. Relaxing only the constraints associated with
causal links does not significantly relax the plan contrary to
atemporal constraints.

We made another modification to the precedent algorithm.
The executive selects all the causal links that may prevent
the planner from finding a solution. It removes from this set
the causal links that were added to justify a task. Precisely,
during planning, the planner adds tasks to justify unestab-
lished temporal assertions. The new task is then linked to
the temporal assertion by a causal link. The final set is about

41 causal links in our exemple run.
We have try our solution using the simulator and the re-

paired plan is similar to the one illustrated on fig.9. The
time needed for remove constraints is negligeable: 0.02 s
for 21 constraints. The planner finds a solution containing
only necessary tasks or navigations. The duration of plan
repair is approximatively 1.2 s for a plan with five picture
goals plus a new one. The needed relaxation of the mixed
constraints11 takes about 1.5 s. This is longer than a com-
plete replanning but keep a plan more stable and allows to
execute valid part of the plan.

This solution is yet limited to simple cases where actions
partial order allows the planner to find a new solution. In the
next part we discuss a solution to this problem.

A future work
Actually, we store the constraints associated to causal links.
We are able to produce better plans using plan repair. We
lack the capacity to change the order between tasks. In a
typical mission, communications are made during fixed tem-
poral windows while navigations are free. If we want the

11A mixed constraint is relaxed by removing both the temporal
constraint and the atemporal one. This leads to a complete propa-
gation of the STN.

ICAPS 2006

54 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

LOC 1

LOC 2

LOC 3

LOC 4

LOC 5

LOC INITIALE

LOC 1

LOC 2

LOC 3

LOC 4

LOC 5

LOC INITIALE

NEW GOAL

Figure 8: Initial plan (at top) and repaired plan after a new
goal inserted (at bottom).

LOC 1

LOC 2

LOC 3

LOC 4

LOC 5

LOC INITIALE

NEW GOAL

Figure 9: Expected plan after a plan repair

plan repair process to be complete, we must be able to move
navigations around communications.

This may be done by storing which constraints have been
inserted to solve conflict between temporal assertions. The
information is associated with each involved assertions. If
a plan repair process is needed, the executive removes only
the constraints associated to temporal assertions of not yet
executed tasks.

Conclusion
We have describe a temporal planner and executive whose
plan execution raises new issues.

The first one is to deal with uncontrollable durations. We
use a temporal framework with explicit uncertainties.

The second one is the bad quality of the plans when com-
pared with a time optimal plan. We modify the search con-
trol of the planner to find better plans by modifying the plan-
ning heuristic.

A simulation architecture is used to evaluate the two so-

lutions. An evaluation scenario is described and used to ac-
quire results.

During the test, the heuristic has shown a good robustness.
Yet, an identified drawback limits the performance of this
work. A solution using the plan repair ability of IxTeT is
briefly describded in the last part of the paper.

The integration of an STNU shows that it is usable on a
rover, contrary to the worst time complexity of O(n5) [Mor-
ris & Muscettola 2005]12, with n the number of temporal
variables. It shows a better robustness of the execution of
the mission. If one goal is achievable, with 3DC+, it is exe-
cuted.

But clearly, 3DC+ algorithm lacks the capacity to han-
dle dynamic STNU. Some work have been made in this
way [Stedl & Williams 2005]. Yet to our knowledge, more
work is needed to handle constraint removals.

References
Ai-Chang, M.; Bresina, J.; Charest, L.; Jónsson, A.; Hsu,
J.; Kanefsky, B.; Maldague, P.; Morris, P.; Rajan, K.; and
Yglesias, J. 2003. Mapgen: Mixed initiative planning and
scheduling for the mars 03 mer mission. In Proceedings of
iSAIRAS.
Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and In-
grand, F. 1998. An architecture for autonomy. Interna-
tional Journal of Robotics Research, Special Issue on Inte-
grated Architectures for Robot Control and Programming
17(4):315–337.
Barták, R., and Surynek, P. 2005. An Improved Algo-
rithm for Maintaining Arc Consistency in Dynamic Con-
straint Satisfaction Problems. In International Florida AI
Research Society Conference.
Chien, S.; Tran, D.; Rabideau, G.; Cichy, B.; Davies, A.;
Sherwood, R.; Castano, R.; Mandl, D.; Frye, S.; Trout,
B.; D’Agostino, J.; Shulman, S.; and Boyer, D. 2005.
The autonomous sciencecraft on earth observing one. In
i-SAIRAS-2005.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal Con-
straint Network. Artificial Intelligence 49(1-3):61–95.
Garcia, F., and Laborie, P. 1995. Hierarchisation of the
search space in temporal planning. In EWP.
Ghallab, M., and Laruelle, H. 1994. Representation and
Control in Ixtet, a Temporal Planner. In AIPS, 61–67.
Ghallab, M., and Mounir-Alaoui, A. 1989. Managing
Efficiently Temporal Relations Through Indexed Spanning
Trees. In IJCAI.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning : Theory and Practice. Morgan Kaufmann.
Ingrand, F.; Chatila, R.; Alami, R.; and Robert, F. 1996.
PRS: A High Level Supervision and Control Language for
Autonomous Mobile Robots. In IEEE International Con-
ference on Robotics and Automation.
Jonsson, A. K.; Morris, P. H.; Muscettola, N.; Rajan, K.;
and Smith, B. D. 2000. Planning in Interplanetary Space:

12It is a slightly modified version of 3DC+ with a cutoff mecha-
nism.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 55

Theory and Practice. In Artificial Intelligence Planning
Systems, 177–186.
Joyeux, S.; Lampe, A.; Alami, R.; and Lacroix, S. 2005.
Simulation in the LAAS Architecture. In ICRA Workshop
on Interoperable and Reusable Systems in Robotics.
Laborie, P., and Ghallab, M. 1995. Planning with sharable
resource constraints. In IJCAI.
Lemai, S., and Ingrand, F. 2004. Interleaving temporal
planning and execution in robotics domains. In AAAI.
Lemai, S. 2004. IxTeT-eXeC : planning, plan repair and ex-
ecution control with time and resource management. Ph.D.
Dissertation, LAAS-CNRS and Institut National Polytech-
nique de Toulouse, France.
Mackworth, A. K., and Freuder, E. C. 1985. The Complex-
ity of Some Polynomial Newtork Consistency Algorithms
for Constraint Satisfaction Problems. Artificial Intelligence
25(1):65–74.
Mackworth, A. 1977. Consistency in networks of relations.
Artificial Intelligence 8:99–118.
Morris, P. H., and Muscettola, N. 2005. Temporal Dynamic
Controllability Revisited. In AAAI.
Morris, P. H.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In IJCAI.
Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. In Prin-
ciples of Knowledge Representation and Reasoning.
Rajan, K. 2004. Invited talk: Mapgen. In IWPSS 2004,
4th International Workshop on Planning and Scheduling
for Space, June 23 - 25.
Stedl, J., and Williams, B. 2005. A fast incremental dy-
namic controllability algorithm. In ICAPS Workshop on
Plan Execution: A Reality Check.
Surynek, P., and Barták, S. 2004. A New Algorithm for
Maintaining Arc Consistency After Constraint Retraction.
In Principles and Practice of Constraint Programming.
Trinquart, R., and Ghallab, M. 2001. An extended func-
tional representation in temporal planning : towards con-
tinuous change. In ECP.
Vidal, T., and Fargier, H. 1999. Handling contingency in
temporal constraint networks: from consistency to control-
labilities. JETAI 11(1):23–45.

ICAPS 2006

56 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Using Planning, Scheduling and Execution
for Autonomous Mars Rover Operations

Tara Estlin, Daniel Gaines, Caroline Chouinard, Forest Fisher, Rebecca Castano,

Michele Judd, Benjamin Bornstein, Robert C. Anderson and Issa Nesnas

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA 91109
{firstname.lastname}@jpl.nasa.gov

Abstract
With each new rover mission to Mars, rovers are traveling
significantly longer distances. This distance increase raises
not only the opportunities for science data collection, but
also amplifies the amount of environment and rover state
uncertainty that must be handled in rover operations. This
paper describes how planning, scheduling and execution
techniques can be used onboard a rover to autonomously
generate and execute rover activities and in particular to
handle new science opportunities that have been identified
dynamically. We also discuss some of the particular
challenges we face in supporting autonomous rover
decision-making. These include interaction with rover
navigation and path-planning software and handling large
amounts of uncertainty in state and resource estimations.
Finally, we describe our experiences in testing this work
using several Mars rover prototypes in a realistic
environment.

Introduction
NASA has demonstrated that mobile robotic craft are a
viable and extremely useful option for exploring the
surface of other planets. The 2003 Mars Exploration
Rovers (MER) have traveled across thousands of meters of
terrain and gathered large amounts of valuable scientific
data that is being used to answer many questions about the
Martian environment. Future missions are being planned to
send additional robotic explorers to Mars as well as to the
moon and outer planets.
 High-level decision making for these efforts, including
for the MER Mission and the 1997 Mars Pathfinder
mission, is performed on Earth through a predominantly
manual, time-consuming process. For MER, a ground-
based AI planning and scheduling tool (Ai-Chang, 2004) is
used to support science plan evaluation, however, a large

Compilation copyright © 2006, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

team of engineers is still required to perform a number of
manual steps in order to generate a daily command
sequence and uplink it to the rovers.
 One significant problem with this approach to rover
operations is that it can result in frequent underutilization
of the robotic assets. Typically, command sequences are
generated using conservative estimates on their time and
resource requirements (e.g., overestimate time to drive to a
new location to ensure that rover arrives by end of day). If
the rover performs nominally or better than predicted, then
the overestimates result in significant idle time for the
rover, time in which the rover could be acquiring
additional observations or sleeping to conserve energy.
 If activities take longer to execute than expected then
they will be aborted and future activities will be dropped.
This can result in higher priority science observations not
being performed because earlier observations ran long.
Finally, new science opportunities can only be identified
after scientists on the ground have been able to review
downlinked data. This approach means many opportunities
may not be realized, since once identified on Earth, the
rover may have already traveled far past the object of
interest. Further, not all image data can be downloaded
thus some interesting terrain features may be completely
missed. This case becomes even more prominent as rovers
perform longer traverses (e.g., the MER rovers have driven
more than 100 meters in a day).
 A primary objective of our work is to use onboard
planning, scheduling, and execution techniques to increase
utilization of rover resources by enabling the rover to
appropriately respond to unexpected problems and to take
advantage of unanticipated opportunities. The Closed-
Loop Execution and Recovery (CLEaR) system (Fisher,
2002; Estlin, 2005) is intended to run with little
communication with ground. It accepts science and
engineering goals and creates a rover command sequence
(or plan) that respects relevant constraints, while achieving
as many goals as possible. The system executes the
produced plan by dispatching commands to the rover’s
low-level control software and monitoring relevant state

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 57

information to identify potential problems or opportunities.
If problems or new opportunities are detected, the system
is designed to handle such situations by using re-planning
techniques to add, move, or delete plan activities. Through
this work, we have also identified a number of challenges
for an onboard planning and execution system to not only
produce valid plans, but also promote robust and efficient
rover behavior. These challenges include properly
interacting with the appropriate rover navigation software,
handling uncertainty in state and resource estimations, as
well as handling dynamic events, such as new science
opportunities.
 For the past several years, we have spent significant
time testing the CLEaR system on several different rovers
in the JPL Mars Yard. We will discuss our scenario
designs for this testing and give an overview of the results
including a discussion of how the system handled major
scenario elements. Our main objectives for testing include
simulating situations that might arise in future rover
missions, (such as the Mars Science Laboratory or MSL
mission, planned for launch in 2009), providing feedback
on our approach, and identifying future directions that
should be investigated. In the following section we outline
some key challenges that we have identified for onboard
decision-making software. Next, we present our current
system approach and explain how this system fits into a
larger rover architecture and other supporting software that
contributed to our testing. We then describe several Mars
rover scenarios, which were used to test our system on
rover hardware, and describe how our system performed
during that testing.

Challenges for Onboard Decision Making
Autonomous rovers have the potential for increasing
science return by reducing rover idle time, reducing the
need for entering safe-mode, and dynamically handling
opportunistic science events without required
communication to Earth. New missions are being designed
that will require rovers to support more autonomous
endeavors such as long-range traversals, complex science
experiments, and longer mission duration. However,
autonomy software designers face a number of challenges
in providing software to support these types of operations.
In this paper, we consider a few key challenges for using
planning, scheduling and execution techniques to provide
onboard decision-making capabilities.
 To generate and/or modify its own command sequence
for carrying out a set of science goals, the onboard
planning and execution software will need to reason about
a rich model of resource and temporal constraints. For
example, it will need to predict power consumption of
variable duration activities such as downlinks and
traverses, keep track of available power levels, and ensure
that generated plans do not exceed power limitations.
When resources are over-taxed, the rover should be
capable of making science/resource trade-offs in an effort
to produce the highest science return. The rover will also

require execution and monitoring capabilities to carry out
the generated plan on the rover platform. An execution
system must be capable of commanding the control
software, collecting state updates from sensors, monitoring
plan behavior, and smoothly handling activity failures or
unexpected events.
 Over the course of a mission, the rover will be asked to
perform a variety of science operations. The number and
scope of these operations are typically limited by the rover
onboard resources (e.g., power, memory, lifetime of
hardware). Thus, science operations may have varying
priorities that indicate their overall mission value. Onboard
planning and execution software must reason about these
priorities and handle newly identified science opportunities
(which may be identified through onboard data analysis
software) in a dynamic and efficient manner. For instance,
the value of newly identified science observations must be
weighed against current resource availability and other
scheduled activities.
 Sequence generation for rover surface missions also
raises a number of interesting challenges regarding spatial
reasoning capabilities. One of the dominating
characteristics of rover operations is traverses to
designated waypoints and science targets. This element is
especially important in future missions that intend to
explore large geographic areas. Onboard planning and
execution software needs to coordinate with several levels
of rover navigation software to generate an efficient and
achievable rover plan. This coordination will likely include
querying a path planner for route information, using
position estimates to track rover progress, and correctly
modifying the plan when navigation and obstacle
avoidance software cause the rover to move off the
predicted route.
 Another predominant challenge in developing onboard
autonomy software is dealing with the inherent uncertainty
in predicting rover navigation and science operations. The
difficulty is compounded by the tight resource and time
constraints that a rover typically faces. At the resource and
temporal level, the estimation of items such as power,
memory and even activity duration can be highly
uncertain. Rover missions are directed at exploring
unknown planetary terrains. Requirements for traversing
these new terrains are hard to predict. For instance, it is
unknown what type of sand consistency a rover will be
traversing, which can dramatically affect the required
duration and power for a traverse. Similarly, the duration
and resource requirements for science operations can vary
as well. These variations could be simple, such as a lower
than expected image compression ratio, or more complex,
such as a drilling operation taking more power and time
than originally estimated.
 Furthermore, at the state level, since rovers lack an
absolute positioning system, the uncertainty in the estimate
of the rover pose grows with the distance traversed. This
growing uncertainty creates a constant source of error in
the knowledge of rover pose. The Sojourner rover used
dead-reckoning and a single z-axis gyroscope to estimate

ICAPS 2006

58 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

rover position, which produced a position error of roughly
5-10% of distance traveled and an average heading drift of
13 degrees per day of traverse (Mishkin, et al., 1999). The
MER rovers use more sophisticated techniques to provide
position estimation, including a 3-axis gyro and visual
odometry. However, these rovers still accrue significant
position estimation error and on the ground localization
software is often used to recalculate position. Since a large
part of a rover schedule consists of rover moves to
different locations, the onboard autonomy software must
use estimations of position to predict the duration and
resource requirements of different operations. If these
predications are inaccurate, the autonomy software must
be able to continuously modify the schedule to handle the
uncertainty in the knowledge of actual rover position.

Planning, Scheduling, and Execution for
Rover Operations

To address the issues outlined in the previous section, we
have developed a system for high-level decision-making
capabilities for future Mars rovers. The overall system
framework and data flow is shown in Figure 1. This paper
primarily focuses on the planning, scheduling and
execution element of this framework, which provides
autonomous rover command-sequencing capabilities.
Other components will only be briefly described, but are
further detailed in related publications.

CLEaR System
In this framework, planning, scheduling, and execution
techniques are applied to provide rover-plan generation,
execution, and monitoring, and the continuous
modification of that plan based on changing operating
context and goal information. These capabilities are
provided by the CLEaR (Closed-Loop Execution and
Recovery) system. CLEaR was developed to pursue a tight
integration of planning and execution capabilities. To
provide these capabilities, CLEaR closely integrates the
CASPER (Continuous Activity Scheduling, Planning,
Execution and Re-planning) continuous planner and the
TDL (Task Description Language) executive system,
which are described further below.
 In our system framework, CLEaR handles the following
functionality:

• Creating an initial plan based on an input set of goals
• Maintaining resource, temporal and other rover

operability constraints
• Executing a plan by interacting with basic rover

control functionality, such as navigation, pose
estimation, locomotion and stereo vision

• Monitoring plan execution to ensure plan objectives
are met

• Dynamically modifying the current plan based on plan
activity, state and resource updates

• Performing plan optimization to reason about soft
constraints and goal priorities

Novelty Target
Signature

Optimize Repair

Execution

Rock
Detection

Visual
TextureShapeAlbedo

Vision Locomotion

Path
Planning Navigation Estimation

…

Control / Functional Layer

Planning / Scheduling / Execution

Rock
Sampling

Data Analysis

Feature Extraction

CommandsRock Features

Data

Science
Alerts

State/Resource
Updates

Science
Goals

Figure 1: Onboard intelligent decision-making system framework. This framework shows how different decision-
making capabilities interact. This paper focuses on the planning, scheduling and execution element of this framework.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 59

• Handling newly identified science goals (called
science alerts) that are generated through onboard
data analysis

Planning in CLEaR is provided by the CASPER
continuous planning system (Chien, et al., 2000). Based on
an input set of science goals and the rover’s current state,
CASPER generates a sequence of activities that satisfies
the goals while obeying relevant resource, state and
temporal constraints, as well as additional flight rules.
Plans are produced using an iterative repair algorithm that
classifies conflicts and resolves them individually by
performing one or more plan modifications. CASPER also
monitors current rover state and the execution status of
plan activities. As this information is acquired, CASPER
updates future-plan projections. This update may cause
new conflicts and/or opportunities to arise, requiring the
planner to re-plan in order to accommodate the unexpected
events. An example of a rover plan displayed in the
CASPER GUI is shown in Figure 2.
 The executive functionality in CLEaR is performed by
the TDL executive system (Simmons and Apfelbaum,
1998). TDL was designed to perform task-level control
for a robotic system and to mediate between a planning
system and low-level robot control software. It expands
abstract tasks into lower-level commands, executes the
commands, and monitors their execution. It also provides
direct support for exception handling and fine-grained
synchronization of subtasks. In CLEaR, TDL also handles

relaying appropriate activity and state data to CASPER, so
that CASPER can adjust its plan accordingly. TDL is
implemented as an extension of C++ that simplifies the
development of robot control programs by including
explicit syntactic support for task-level control capabilities.
It uses a construct called a task tree to describe the tree
structure that is produced when tasks are broken down into
lower-level commands.
 One of CLEaR’s primary objectives is to provide a
tightly coupled approach to coordinating goal-driven and
event-driven behavior. Many past approaches have
followed a three-level architecture style where the
planning and executive processes are treated as black box
systems. This is in contrast to how CLEaR enables the
planner and executive to interact with each other and more
effectively share the responsibility for decision making. In
part this is managed through shared plan information and
continual updates of state being made available to both the
planner and executive. CLEaR also provides heuristic
support for deciding when certain plan conflicts should be
handled by the planner vs. the executive. For instance if a
rover gets off track during a traverse, the reaction of the
planner and executive need to be coordinated. If the
executive believes it can resolve the navigation delay
within the planned time constraints it will manage the plan
changes. However, once the executive identifies that the
repair will require more time or resources than allotted by
the planner, it will then fail the task, which will result in
the planner using its global perspective to fix the problem.

Plan
Activities

(traverse, image)

State
Timelines

(rover position)

Resource
Timelines

(power, memory)

Time & Date
(time advances

left to right)

Plan
Activities

(traverse, image)

State
Timelines

(rover position)

Resource
Timelines

(power, memory)

Time & Date
(time advances

left to right)

Figure 2: Sample rover plan displayed in planner GUI. Plan activities are shown in upper portion of window, where
bars represent the start and end time of each activity. State and resource timelines are shown in bottom portion of the
screen and show the effects of the plan as time progresses. Time is depicted as advancing from left to right.

ICAPS 2006

60 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

 Currently, CLEaR has a separate planner and executive
and thus does share similarities to other three-layer
architecture approaches. However, as compared to these
approaches where planning is typically done in a batch
fashion and takes on the order of minutes to hours, this
integration uses a continuous planning approach, where
plans are updated and repaired in a matter of seconds. This
enables CLEaR to use planning techniques at a finer
timescale for tracking the progress of plan execution,
quickly identifying potential problems in future parts of
the plan, and responding accordingly. As we expect minor
portions of the plan to change frequently, we use a
lightweight plan runner to dispatch activities to the
executive a few seconds before the task’s scheduled start
time. This approach differs from the more common batch
approach of turning the entire plan over to the executive
for execution. Executive techniques are then used in
reactive situations or at times where procedural reasoning
is preferred (e.g., using a looping construct to represent the
act of trying to grasp a rock, which may need to be
repeated several times).
 Another way that CLEaR differs from previous
approaches is in how the delegation between the planner
and the executive is managed. We have primarily taken a
planning centric approach to this management. The
planner handles the decision of when an activity should be
sent to the executive as well as when to perform re-
planning. Once the planner has mapped a planning activity
to an executive task for execution, control over that one
task is given to the executive. The executive may then
perform further task expansions as a result of updates
and/or exception handling. The executive also provides
task completion status back to the planner by either
marking an activity as completed or failed. A task is
marked as completed when the executive decides the task
has met its objective, or marked as failed if the executive
concludes that relevant constraints cannot (or even might
not) be met. The re-planning process is driven by applying
and propagating updates to the plan, and then taking
corrective actions to address any conflicts or opportunities
that may arise. Re-planning can also be performed
synchronously with any already executing task.

Problem Recovery
Due to the uncertainty of science and especially drive
operations, a number of things can go wrong in the
currently executing rover plan. Recovering from problems
or other plan failures was the first general area to which we
applied the CLEaR system. One type of plan problem this
system addresses is over-subscription of resources (such as
power, memory) or time. A number of elements can
contribute to this problem, including terrain variability,
rover hardware degradation and data compression
inconsistencies. If plan activities end up taking additional
resources or time during execution, the onboard system
must ensure that critical activities that occur later in the
plan will still be able to correctly execute. To handle these
situations, CLEaR continually tracks the state of the plan

including activity completion times and resource usage. If
problems (or conflicts) are introduced into the plan based
on recent state data, CLEaR can move or delete activities
to accommodate the changes. For example, if more power
is used on a drive than expected, the system may need to
delete several low priority science goals to ensure that
enough power will be available for an end of day
communication with Earth.
 Another problem that CLEaR addresses is when
obstacles in the terrain require plan changes to successfully
visit goal targets. CLEaR currently employs a set of TSP
heuristics to order science target visits in an optimal
fashion. However terrain information may be incomplete
when an initial plan is generated. During a rover mission,
images from the rover navigation cameras can be used to
build navigation and obstacles maps, however obstacles
can be missed due to poor stereo or obstructions in the
rover’s sight path. If during plan execution, CLEaR
determines that the drive to a particular target is running
significantly behind schedule, it may re-evaluate the
current target ordering to determine if a new, more optimal
ordering can be found or if targets need to be deleted. This
re-evaluation can also use any new terrain map
information that may have been gathered from the rover’s
current position.

Science Alerts
To handle opportunistic science, we extended CLEaR to
recognize and respond to science alerts, which are new
science opportunities detected by onboard science-data
analysis software. For example, if a rock is detected in
navigation imagery that has a previously unseen texture or
shape, a science alert may be generated to take additional
measurements of that rock. Currently, science alerts can
have different levels of reaction from the CLEaR system.
The most basic reaction is to adjust the rover plan so that
the rover holds at the current position and the flagged data
is sent back to Earth for further analysis at the next
communication opportunity. The next level of reaction is
to collect additional data at the current site before
transmitting back to Earth. Further steps include having the
rover alter its path to get closer to objects of interest before
taking additional measurements. These operations would
provide new data that could not be obtained through
analysis of the original image.

Plan Optimization
To reason about goal priorities and other soft constraints
we used the CASPER optimization framework to
continually search for a higher quality plan. User-defined
preferences are used to compute plan quality based on how
well the a plan satisfies these preferences. Optimization
proceeds similarly to iterative repair. For each preference,
an optimization heuristic generates modifications that
could potentially improve the plan score. A modification is
then selected and applied to the plan. After a set number of

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 61

iterations, the plan with the best score is selected to replace
the current plan.
 One key area where plan optimization was used was to
take advantage of extra time or resources in the schedule.
Since traverse times and rover resource usage are difficult
to predict, it is often the case that a rover operation takes
less time or power than expected. For instance, a traverse
could take much less time than expected due to a benign
terrain. For these cases, the optimization framework was
used to dynamically add additional science goals to the
plan that could not be fit in the original plan due to time
and resource constraints. This capability enables the
scenario where scientists on the ground specify a number
of prioritized science goals, but not all of them may be
achievable due to limited rover resources. However, some
goals may be fit into the plan as time progresses due to
resource usage being lower than predicted.
 CLEaR also uses the optimization framework to decide
how to respond to science alerts. Because it may not be
possible to accommodate all alerts, a science alert is
represented as an optional goal, which indicates its
achievement is not mandatory but may improve the plan’s
optimization score if included in the plan. Before
attempting to handle a science alert, CASPER protects the
current plan by saving a copy before optimization. If the
quality has not increased after a certain time limit, the
previous plan is restored. If CASPER can handle a new
science alert (e.g., by adding additional science
measurements) without causing other negative affects,
such as resource over-subscriptions or the deletion of
ground-specified science goals, then the new plan that
accommodates the science alert is used.
 We created a set of plan modification functions that are
invoked when the optimizer attempts to satisfy a science
alert. How the plan is modified depends on the type of
alert that is considered. When a science alert is received
that requires holding at the current position until data is
communicated with earth (called a stop and call home
alert), the planner alters the plan to remove any non-
engineering critical activities and wait for the next
communication opportunity. If activities are currently
executing, the planner requests the executive component of
CLEaR to abort them. If activities are scheduled in the
future, the planner deletes them and resolves any
inconsistencies created by these deletions.
 To handle a science alert that requests additional
measurements (called a data sample request alert), the
planner must generate a plan that achieves the new goals
without deleting existing activities or causing conflicts that
cannot be resolved (e.g., scheduling more activities than
can be executed in a certain time window). To handle a
data sample request, the planner must be able to add a new
science observation and a new move command to correctly
place the rover in position to take the observation.

Science Data Analysis

The Feature Extraction and Data Analysis modules, shown
in Figure 1, are responsible for onboard science alert
generation. Together with the planning and scheduling
component, these capabilities comprise the OASIS
onboard science system (Castano, et al., 2006). OASIS
enables the rover to perform onboard analysis of collected
science data and to trigger science alerts if interesting
science opportunities are detected. For instance, if a rover
is performing a long traverse, OASIS can analyze
navigation images as they are taken to search for
interesting rocks or other terrain features that the rover is
passing.
 As shown in Figure 1, new science data is first
processed by the Feature Extraction component. Currently,
we have focused on analyzing rocks (and other terrain
data) within image data, but plan to expand to other types
of data, such as spectrometer measurements. Images are
broken down by first locating individual rocks, and
second, by extracting a set of rock properties (or features)
from each identified rock. Extracted rock properties (e.g.,
shape, albedo, visual texture) are then passed to the Data
Analysis component of the system. This component
consists of different prioritization algorithms, which
analyze the data by searching for items such as rocks with
features that match pre-known signatures of interest
(identified by scientists on Earth), or novel rocks (i.e.,
outliers) that have not been seen in past traverses. If the
analysis component detects new science opportunities of
significant interest, it will generate a science alert that is
sent to the planner.

CLARAty Robotic Architecture
The planning, scheduling, and execution component is also
integrated with the Coupled Layered Architecture for
Robotic Autonomy (CLARAty) (Nesnas, et al., 2006).
CLARAty was developed at JPL to simplify the
integration and testing of different robotic technology
software on multiple hardware platforms and it provides a
large range of basic robotic functionality. Through
CLARAty, the CLEaR system has been tested with several
JPL rover platforms, including Rocky 7, Rocky 8, and
FIDO, which are shown in Figure 3.
 To run realistic scenarios with rover hardware, a number
of supporting pieces of software were used. These
components were provided through CLARAty and could
run on the relevant JPL rover platforms. This software
includes the Morphin navigation system (Urmson, et al.,
2003), which enables the rover to avoid obstacles and
navigate to specified waypoints, a position estimation
algorithm, which integrates IMU (Inertial Measuring Unit)
measurements with wheel odometry to estimate rover
position and attitude (roll, pitch and heading), and other
software that provide mobility and stereo processing.

ICAPS 2006

62 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

System Testing
To evaluate our system we have performed a large number
of tests both in simulation and using rover hardware in the
JPL Mars Yard. These tests covered a wide range of
scenarios that included the handling of multiple, prioritized
science targets, limited time and resources, opportunistic
science events, resource usage uncertainty causing under
or over-subscriptions of power and memory, large
variations in traverse time, and unexpected obstacles
blocking the rover’s path.
 Our testing scenarios typically consisted of a random
number of science targets specified at certain locations. A
map was used that would represent a sample mission-site
location where data would be gathered using multiple
instruments at a number of locations. Figure 4 shows a
sample scenario that was run as part of these tests. This
particular map is of the JPL Mars Yard. The pre-specified
science targets (shown in Figure 4 as the larger circles)
represented targets that would be communicated by
scientists on Earth. These targets were typically prioritized
and for most scenarios, constraints on time, power or
memory would limit the number of science targets that
could be handled. A large focus of these tests was to
improve system robustness and flexibility in a realistic
environment. Towards that goal we used a variety of target
locations and consistently selected new science targets
and/or new science target combinations that had not been
previously tested.
 A primary scenario element was dynamically
identifying and handling opportunistic science events. For
these tests, we concentrated on finding rocks with a
particular target signature, which was described through
specifying a target rock albedo level and shape. If rocks
were identified in hazard camera imagery that had a certain
interest score, then a science alert was created and sent to
the planner. Science alerts would typically come in during
rover traverses to new locations, but it was also possible
for them to come in while the rover was at a science target
location due to a small lag caused by image processing
time. If a science alert was detected, the planner attempted
to modify the plan so an additional image of the rock of
interest would be acquired. A sample image that was taken
in response to a science alert for a rock with low albedo
(i.e., light colored) is shown in Figure 5.

 Other important scenario elements included adding or
deleting ground-specified science targets based on
resource under or over-subscriptions. For instance, in some
tests, the rover covered distances more quickly than
expected and the planner was able to add in additional
science targets that could not be fit into the original plan.
Conversely, in other tests, the rover used more power than
expected during traverses or science activities, which often
caused a power over-subscription, where enough power
was not being preserved for later plan activities. The
planner resolved this situation by deleting some lower
priority science targets. Unexpected energy drops during a
traverse could also be handled by the executive, which
detects the shortfall and stops the current traverse if there
is not enough energy to complete it. In all cases, the
planning and execution system attempts to preserve as
many high priority science targets as possible while still
adhering to required resource and state constraints.

Testing in Simulation
Since testing with rover hardware can be an expensive and
time-intensive process, we ran a large number of tests in
simulation using a relatively simple simulator. This
simulator could execute rover sequence commands and
simulate their effects at a coarse level of granularity. For
instance the simulator handled items such as rover position
changes and energy usage over straight-line movements,
but did not simulate obstacle avoidance or rover
kinematics. Another capability that was used in simulation
was triggering multiple science alerts at pre-set or random
times. This capability helped in evaluating the planner’s
capacity to correctly handle different opportunistic science
scenarios.
 To easily run and evaluate large numbers of tests, we
also invested in a testing infrastructure, which allowed
tests to be run offline and statistics automatically gathered,
including information such as number of plan conflicts
found and resolved, plan generation and re-planning time,
number of goals satisfied, overall plan traverse distance
and plan optimization scores. This testing infrastructure
also enabled the automatic creation of mpeg movies that
showed plan changes using snapshots of a plan
visualization tool. This tool showed the results of plan
generation and execution on an overhead map of the

Figure 3: Rocky 8 rover (left), FIDO rover (middle), Rocky 7 rover (right)

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 63

world, and could be used for both simulated and hardware
testing. An example plan snapshot displayed by this tool is
shown in Figure 4. Planning and execution results were
evaluated by examining gathered statistics and by viewing
created mpegs to flag incorrect or non-optimal behavior.

Testing with Rover Hardware
In addition to testing in simulation, a large number of tests
were run in the JPL Mars Yard (shown in Figure 6) using
different rover hardware platforms. For the past several
years the FIDO rover (shown in Figure 3) was used for the
majority of tests. FIDO is an advanced technology
prototype rover similar to the Mars Exploration Rover
(MER). FIDO’s mobility sub-system consists of a six-
wheel rocker-bogie suspension capable of traversing over
obstacles up to 30 cm in height. All demonstrated software
has been designed to run onboard the rover, however
during testing, only functional-level CLARAty modules,
such as navigation and vision, and the OASIS rockfinding
software were run onboard FIDO. Other modules,
including the planning and execution module and the
analysis module, were run on offboard workstations that
communicated with the rovers using wireless ethernet,
since a port of these components to the onboard operating
system (VxWorks) was not complete.
 Tests in the Mars Yard typically consisted of 20-50
meter runs over a 100 square meter area with many
obstacles that cause deviations in the rover’s path. Science
measurements using rover hardware were always images,

since other instruments were not readily available (e.g.,
spectrometer). However different types of measurements
were included when testing in simulation.
 Testing in simulation and with real hardware provided
important steps in the evaluation of our system. Many
bugs were caught early through simulated testing, but
others did not surface until significant runs had been
performed on rover hardware. Furthermore, running with
hardware often allowed a perspective that was difficult to
attain through simulated testing. For example, the accuracy
of rover turns towards new science opportunities was
much easier to judge when running with hardware.

Related Work
A number of planning and executive systems have been
successfully used for robotic applications and have
similarities to the approach we describe in this paper.
Most of these approaches have used some combination of
planning and execution, however they differ in not only
the behavior of these individual components, but also in
how these systems interface with each other and with other
system modules.
 The Autonomous Sciencecraft Experiment (ASE)
(Chien, et al., 2005) has demonstrated the capability of
planning and data analysis systems to autonomously
coordinate behavior of the EO-1 Earth orbiting satellite.
ASE can also detect and respond to new science events,
however it uses very different detection and analysis
algorithms. The Remote Agent Experiment (RAX)
(Jonsson, et al., 2000) was flown on the NASA Deep Space
One (DS1) mission. It demonstrated the ability of an AI
planning, execution and diagnosis system to respond to
high-level spacecraft goals by generating and executing
plans onboard the spacecraft. However, RAX did not
incorporate data analysis to identify new science targets

Figure 5: Sample image that was taken in response to
a science alert for a rock of low albedo using the JPL
FIDO rover.

Figure 4: Sample plan shown in the Grid Visualization
Tool (GriViT). Green lines show the planned path of the
rover; blue lines shown the real path; and pink lines show
the path that is currently executing.

ICAPS 2006

64 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

and used a batch approach to planning. Furthermore, since
RAX and ASE were applied to spacecraft, neither handle
issues associated with the uncertainty of surface
navigation.
 Another approach directed towards rover command
generation uses a Contingent Planner/Scheduler (CPS) that
was developed to schedule rover-scientific operations
using a Contingent Rover Language (CRL) (Bresina, et al.,
1999). CRL allows both temporal flexibility and
contingency branches in rover command sequences.
Contingent sequences are produced by the CPS planner
and then are interpreted by an executive, which executes
the final plan by choosing sequence branches based on
current rover conditions. In this approach, only the
executive is onboard the rover; planning is intended to be a
ground-based operation. Since only a limited number of
contingencies can be anticipated, our approach provides
more onboard flexibility to new situations. In the CRL
approach, if a situation occurs onboard for which there is
not a pre-planned contingency, the rover must be halted to
wait for communication with ground.
 Other similar approaches include Atlantis (Gat 1991),
3T (Bonasso, et al., 1997), and a robotic control
architecture developed at the LAAS-CNRS lab (Alami, et
al., 1998), which uses the IxTeT planner. These
approaches all use a deliberative planner and an executive
(or sequencing component) on top of a set of reactive
controllers. These approaches have distinctly separate
planning and execution techniques, have not closely
interacted with navigation software used for rover
missions, and are not integrated with onboard analysis
system for dynamically identifying new goals.

Future Work

In future work, we plan to extend our capabilities for
opportunistic science handling to include adding

observations for different types of science instruments and
performing close-contact measurements for high priority
alerts. We also will extend our system to handle the
characterization of larger terrain features and areas that
have been identified as important science targets. For
instance, our system would handle science operations
failing in different fashions such as an unsuccessful data
acquisition (e.g., an over-exposed or miss-targeted image
frame or an unsuccessful grasping of a rock).

Conclusions

This paper discussed a number of challenges for using
planning, scheduling and execution techniques to provide
autonomous rover capabilities for future NASA missions.
We described our approach for using an onboard decision-
making system and explained how it provides capabilities
for sequence generation, execution, monitoring, re-
planning, sequence optimization, and opportunistic science
handling. Through a series of tests in simulation and on
rover platforms, we have demonstrated our system’s
ability to robustly respond to unexpected problems and
take advantage of unforeseen opportunities, thus achieving
higher utilization of rover resources.

Acknowledgements
This work was performed by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration.

Figure 6: The JPL Mars Yard with terrain of various difficulties.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 65

References

Ai-Chang, M., Bresina, J., Charest, L., Chase, A., Cheng-
jung Hsu, J., Jonsson, A., Kanefsky, B., Morris, P., Rajan,
K., Yglesias, J., Chafin, B., Dias, W., and Maldague, P.
2004. MAPGEN: Mixed-Initiative Planning and
Scheduling for the Mars Exploration Rover Mission. IEEE
Intelligent Systems. 19:1, pp. 8-12.

Alami, R., Chautila, R., Fleury, S., Ghallab, M., and
Ingrand, F. 1998. An Architecture for Autonomy.
International Journal of Robotics Research, 17(4).

Bonasso, R., Firby, R., Gat, E., Kortenkamp, D., Miller,
D., and Slack, M. 1997. Experiences with an Architecture
for Intelligent, Reactive Agents. Journal of Experimental
and Theoretical Artificial Intelligence Research, 9(1).

Bresina, J., Golden, K., Smith, D., and Washington, R.
1999. Increased Flexibility and Robustness of Mars
Rovers. Proceedings of the International Symposium, on
AI, Robotics and Automation for Space, Noordwijk, The
Netherlands.

Castano, R., Estlin, T., Gaines, D., Castano, A., Chouinard,
C., Bornstein, B., Anderson, R.C., Chien, S., Fukanaga, A.,
and Judd, M. 2006. Opportunistic Rover Science: Finding
and Reacting to Rocks, Clouds and Dust Devils.
Proceedings of the 2006 IEEE Aerospace Conference. Big
Sky, Montana.

Chien, S., Knight, R., Stechert, A., Sherwood, R., and
Rabideau, G. 2000. Using Iterative Repair to Improve the
Responsiveness of Planning and Scheduling. Proceedings
of the Fifth International Conference on Artificial
Intelligence Planning and Scheduling, Breckenridge, CO.

Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau,
G., Castano, R., Davies, A., Mandi, D., Frye, S., Trout, B.,
Shulman, S., Boyer, D. 2005. Using Autonomy Flight
Software To Improve Science Return on Earth Observing
One. Journal of Aerospace Computing, Information, and
Comm-unication.

Estlin, T., Gaines, D., Chouinard, C., Fisher, F., Castano,
R., Judd, M., Anderson, R., and Nesnas, I. 2005. Enabling
Autonomous Rover Science through Dynamic Planning
and Scheduling Proceedings of the 2005 IEEE Aerospace
Conference, Big Sky, Montana.

Fisher, F., Estlin, T., Gaines, D., Schaffer, S., Chouinard, C.,
Knight, R. 2002. CLEaR: Closed Loop Execution and
Recovery – A Framework for Unified Planning and
Execution. Technology and Science IND News Issue 16, pg.
15-20.

Gat, E., 1991. Integrating planning and reacting in a
heterogeneous asynchronous architecture for mobile
robots. SIGART Bulletin 2, 70-74.

Jonsson, A., Morris, P., Muscettola, N., Rajan, K., and
Smith, B. 2000. Planning in Interplanetary Space: Theory
and Practice. Proceedings of the Fifth International
Conference on Artificial Intelligence Planning Systems,
Breckenridge.

Mishkin, A., Morrison, J., Nguyen, T., Stone, H., Cooper,
B., Wilcox, B. 1998. Experiences with Operations and
Autonomy of the Mars Pathfinder Microrover.
Proceedings of the 1998 IEEE Aerospace Conference,
Aspen, Colorado.

Nesnas, I.A., Simmons, R., Gaines, D., Kunz, C., Diaz-
Calderon, A., Estlin, T., Madison, R., Guineau, J.,
McHenry, M., Shu, I, and Apfelbaum, D. 2006. CLARAty:
Challenges and Steps Toward Reusable Robotic Software,
International Journal of Advanced Robotic Systems.

Simmons, R. and Apfelbaum, D. 1998. A Task Description
Language for Robot Control. Proceedings of the Intelligent
Robots and Systems Conference, Vancouver, CA.

Urmson, C., Simmons, R., and Nesnas, I. 2003. A Generic
Framework for Robotic Navigation. Proceedings of the
IEEE Aerospace Conference, Big Sky, Montana.

ICAPS 2006

66 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Inducing non-deterministic actions behaviour to plan robustly
in probabilistic domains

Sergio Jiménez, Fernando Ferńandez and Daniel Borrajo
Departamento de Inforḿatica

Universidad Carlos III de Madrid
Avda. de la Universidad, 30. Leganés (Madrid). Spain

sjimenez@inf.uc3m.es, ffernand@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract

In the probabilistic track of the last International Plan-
ning Competition two main approaches were used,
Markov Decision Processes (Boutilier, Dean, & Hanks
1998) and decision-theoretic planning (Blythe 1999).
Both approaches use a domain representation with an
explicit definition of the probabilities of the actions ef-
fects. But when planning in realistic domains, most of
the times, the non deterministic effects and the prob-
abilities associated to them are unknown or hard to be
obtained accurately. In this paper we present the LUCK
architecture (Learning Uncertainty information as Con-
trol Knowledge). This architecture plans to solve prob-
lems in probabilistic domains using an initial determin-
istic domain representation. Then, it learns information
about the success and the failure of the actions applying
Inductive Logic Programming Techniques. And, finally,
it uses this information to generate better plans (in terms
of robustness) in the future.

Introduction
In this paper we present the LUCK architecture. This archi-
tecture solves problems in probabilistic domains planning
from a deterministic representation of the domain and learn-
ing knowledge about the reasons that cause the execution of
actions to be a success or a failure. This knowledge is trans-
lated into Control Knowledge so that the planner can reason
about the uncertainty of the plans. The main two contribu-
tions of this paper are:

• Our system does not reason explicitly about a probabilis-
tic description of the domain in the searching process.
The knowledge related to the uncertainty of the world is
modelled through Control Knowledge, which is separated
from the domain model. So, in the search tree, there is no
probabilistic knowledge.

• The probabilistic information of the domain is represented
as Control Knowledge. This Control Knowledge is gen-
erated automatically from the experience using Induc-
tive Learning Programming Techniques. Specifically we
use the ALEPH system that induces theories that explain
when an action will succeed or fail according to the cur-
rent state.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In the last International Planning Competition (IPC41)
practically all the planners that took part in the probabilis-
tic track were solving MDPS based on planners. Among
these planners there were only one using machine learning
techniques to deal with probabilistic domains. This planner
implements the ideas explained in (Fern, Yoon, & Givan
2004) to find policies specifying what action to take given
a goal and a current state. And in the whole competition
only the Probapop system, a conformant probabilistic plan-
ner (Onder, Whelan, & Li 2004), generates plans instead of
policies given a probabilistic planning problem.

Another different approach to plan in non determinis-
tic domain is planning based on a model checking ap-
proach (Kabanza, Barbeau, & St.-Denis 1997). This kind of
systems is able to deal with complex goals as they use tem-
poral model logic to describe them and don’t need to know
the probabilities of the effects of the actions. But they need a
non-deterministic description of the domain, and again they
try to find policies specifying what action to take given a
goal and a current state.

These kinds of policies cannot easily be communicated
to humans and typically is a difficult task to transfer this
knowledge to other similar problems. In our approach, we
don’t learn policies but explanations of the causes that lie
behind the success or failure of the actions. So the domain
designer can get feedback information about the world dy-
namics from the execution of plans.

This fact also motivates the work (Cocoraet al. 2006).
In this paper is described how to generate Relational Markov
Decision Processes (RMDPS) (Kersting, Otterlo, & Raedt
2004) and how to learn policies for these RMDPS using re-
lational decision trees which are relational declarative rep-
resentations of the policies. But this work is not precisely
comparable with ours as it starts from a set of example plans,
whereas our system starts from a deterministic domain de-
scription of the world.

There is previous work by Karen Haigh (Haigh & Veloso
1998) very related to ours, in which Control Knowledge is
learned from the experience of executing actions to improve
the planning process. In her work, the attributes that af-
fect the execution of actions are known “a priori”. In our
work, we do not know “a priori” which attributes from the

1http://ipc.icaps-conference.org/

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 67

state are relevant with respect to the execution of actions.
Reinforcement Learning approaches (Kaelbling, Littman, &
More 1996) can also be considered as related work as they
also repeat cycles of planning, acting and learning. How-
ever, since our approach is based on deliberative planning, it
is able to reason with a richer representation of the domain.
Thus, we can solve more flexibly problems with different
goals and infinite number of potential states.

Instead of learning policies to achieve particular goals,
Kaelbling et al. proposed to learn plan operators. In (Pasula,
Zettlemoyer, & Kaelbling 2004) and in (Zettlemoyer, Pa-
sula, & Kaelbling 2005), they described how to learn com-
pletely the actions model from examples. Our approach is
different, since we initially have a deterministic representa-
tion of the domain and we only want to learn when the exe-
cution of an action is going to succeed or fail. From a plan-
ning point of view we believe that designing and maintain-
ing a deterministic domain is a simpler task for the users. So,
separation of domain knowledge from probabilistic knowl-
edge can benefit in the process of generating applications,
since declarative Control Knowledge can also be accessed.

The rest of the paper is organized as follows: first, we
present the general architecture of the system and the plan-
ning, execution and learning processes. Next, we describe
the experiments carried out to evaluate the architecture, and
finally we discuss some conclusions.

The planning, acting and learning cycle
LUCK is an architecture that integrates planning, execution
and learning. Figure 1 shows a high level view of its ar-
chitecture. When LUCK faces a planning problem, it first
proposes a plan to solve it, and then tries to execute the plan
actions one by one. While LUCK executes actions it ob-
serves the results of these executions. When the execution
of an action is a failure, LUCK plans to obtain a new plan
that solves the problem from this current state. LUCK con-
siders the execution of an action a failure when the new state
resulting from the execution of this action is different from
the state expected, according to its deterministic representa-
tion of the domain.

Initially, LUCK proposes plans to solve the first problem
only taking into account the deterministic description of the
domain. And, as it starts to observe the results of executing
the actions in the real world, it will generate Control Knowl-
edge that will guide it towards solutions that consider the
uncertainty in the domain.

Planning
For the planning task we have used the non-linear back-
ward chaining plannerIPSS(Rodrguez-Morenoet al. 2004),
based onPRODIGY4.0 (Velosoet al. 1995). The inputs to
the planner are the usual ones in planning (domain theory
and problem definition), plus declarative Control Knowl-
edge, described as a set of Control Rules. The output of the
planner, as we have used it in this paper, is a totally-ordered
plan. The Control Rules act as domain dependent heuristics.
They are one of the main reasons why we have used this
planner, given that they provide a declarative representation
of Control Knowledge.

The IPSS planning-reasoning cycle involves as ’decision
points’: choose a goal from the set of pending goals and
subgoals; choose an operator to achieve the selected goal;
choose the bindings to instantiate the chosen operator; and
apply an instantiated operator whose preconditions are sat-
isfied or continue subgoaling on another unsolved goal. The
default decisions at all these decision points can be directed
by Control Rules in order to guide the planner. In our ap-
proach, initially, the planner is executed without any Control
Rules.

Figure 2: Example of aIPSSplanner search tree.

Figure 2 shows a search tree where all the bindings de-
cisions has been directed to prefer the Robot1. This tree
belongs to the search process of the plannerIPSSsolving a
problem consisting on reaching the goalson(B, A) and
on(A,table) from a initial state described by the predi-
cateson(A, B) andon(B,table) .

Actions execution
We simulate the execution of the actions in the non deter-
ministic world. We use the simulator provided by the proba-
bilistic track of the last International Planning Competition,
IPC42, to evaluate probabilistic planners.

Figure 3: High level view of the simulator module.

2http://ipc.icaps-conference.org/

ICAPS 2006

68 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Figure 1: High level view of the LUCK planning-execution-learning architecture.

This simulator usesPPDDL1.0 (Younes & Littman 2004)
to describe the world we want to simulate. This language
allows us to describe actions with probabilistic and condi-
tional effects. The simulator maintains a representation of
the current state and updates it when an action is executed.
Figure 3 shows the inputs and outputs of the simulator.

Learning from execution episodes
LUCK uses ILP (Inductive Learning Programming) tech-
niques to analyze the data it obtains from executing actions.
The examples used by the inductive learning techniques
are tuples of the form:(action, result, state) ,
whereaction is the name of the executed action;result
is the result of the action execution, that issuccess or
failure , considering an action execution to be a failure
when the new state caused by this action is different from
the expected one according to the deterministic representa-
tion of the domain; andstate is the current state when the
action was executed. Figure 4 shows an execution step in a
probabilistic blocksworld.

Figure 4: LUCK considers the execution of the action
pick-up-block-from(Robot1, B, A) a failure.

For every different action of the domain, LUCK main-
tains the examples of success and failures of execution.

From these examples, LUCK induces two different kinds
of theories: theories about why the actions succeed and the-
ories about why the actions fail.

To induce these theories, we use ALEPH3 (A Learning
Engine for Proposing Hypotheses). The ALEPH system is
based on the Stephen Muggleton’s ideas of inverse entail-
ment (Muggleton 1995). This system proposes hypothesis,
PROLOG programs, that cover a set of examples described
using first order predicates. It can deal with noisy data (Dze-
roski & Bratko 1992). And, it also can take as input PROLOG
programs describing background knowledge that assists the
induction process.

ALEPH receives three inputs:

• The Background Knowledge, which contains PROLOG
clauses that encode information relevant to the domain.
In our case, which are the types of the planning domain
(blocks, robots, ...), which are the predicates that describe
the examples (on, clear, ...), and which is the target con-
cept to be learned (success-put-down-block-on, failure-
put-down-block-on, ...).
It also contains PROLOGclauses that encode the informa-
tion obtained from the executions of actions, which are
the learning examples. Figure 5 shows a learning exam-
ple associated to the actionpick-up-block-from for
the state1 represented in Figure 4.

• The positive examples, that is a set of ground facts rep-
resenting the positive learning examples of the concept to
be learned.

• The negative examples which is a set of ground facts rep-
resenting the negative learning examples of the concept to
be learned.

The ground facts from the positive and negative examples
have all the same appearance. They are PROLOG facts of the
form

3http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 69

type-of-object(robot1,robot).
type-of-object(blockA,block).
type-of-object(blockB,block).
true-in-state-dirty(example1,robot1)
true-in-state-on-top-of(example1,blockB,blockA).
true-in-state-on-top-of(example1,blockA,table).

Figure 5: A learning example for the operator
pick-up-block-from .

target-concept (example-id, parameters).

Wheretarget-concept is the concept to be learned,
example-id is a number to link the positive example to
the associated leaning example, andparameters are the
arguments of the operator. So, a ground fact from the posi-
tive or negative examples could be:

success-pick-up-block-from(example14,robot2,block4,table)

The output of ALEPH is a theory, a set of PROLOG
clauses, that tries to cover as many positive learning exam-
ples as possible, covering the less number possible of nega-
tive examples . In LUCK this output represents a set of rules
that will try to explain when an action succeeds and when it
fails.

[Rule 1]
[Pos cover = 5 Neg cover = 27]
failure-pick-up-block-from(A,B,C,D) :-

true-in-state-dirty(A,B).

Figure 6: Rule induced by AELPH to learn the concept of
failure for the operatorpick-up-block-from

These induced rules are composed of:

1. The number of positive and negative examples that the
rules covers. That gives us an estimation of the rule cred-
ibility.

2. The head of the rule, that is target concept.

3. The body of the rule, predicates that describe when the
target concept is true.

As an example, Figure 6 shows a rule that is part
of a theory induced by ALEPH associated to the ac-
tion pick-up-block-from to learn the concept of
failure .

This rule means that when LUCK tries topick-up a
block using adirty robot-arm from thetable it is
going to fail in about 15% of the times.

15% ' Positives/(Positives + Negatives)

For each operator in the domain two sets of rules like the
one in Figure 6 are generated: one set to explain the concept
of success and other set to explain the concept of failure.
Finally, LUCK is ready to use this information induced from
the experience to tell the planner how to generate plans that
consider the uncertainty.

Using the learned experience
LUCK uses the induced theories described in the previous
section to automatically generate Control Rules that guide
the planner in the decision points of the search tree. The
if-part of the Control Rules is composed of the set of condi-
tions that have to be satisfied in a given node of the search
tree in order to fire that Control Rule. These conditions refer
to aspects of the planner search process, such as what the
current state is, in what goal the planner is working on, or
what operator can achieve the current goal. Thethen-partof
the rules describes what decision the planner should make in
a ’decision point’.

(control-rule prefer-bindings-pick-up-block-from
(IF
(and
(current-operator pick-up-block-from)
(generate-best-binding-pick-up-block-from<best-binding>)))

(THEN prefer bindings<best-binding>))

Figure 7: Example of control rule.

For the time being LUCK only generates Control Rules
to guide the planner in decision points for choosing bind-
ings. It generates automatically a Control Rule for every
operator in the domain to choose the best bindings for that
operator. Figure 7 shows an example of one of these Control
Rules automatically generated by LUCK for the operator
pick-up-block-from .

All these Control Rules have the same structure. They
have two metapredicates:

• (current-operator op) . To fire the rule only when
the current operator in the search tree isop .

• (generate-best-binding-op <best-binding>) .
This metapredicate acts as a generator and it sets
the variable <best-binding> to the best bind-
ings for the current operator. The COMMONL ISP
code of this metapredicete is automatically gener-
ated taking into account the theories induced by
ALEPHḞigure 8 shows the pseudocode of the metapred-
icate generate-best-binding for the operator
pick-up-block-from .

generate-best-binding-pick-up-block-from (best-binding)
best-binding: The best bindings for the operator
B← generate-possible-bindings(pick-up-block-from);
P← Initialize-bindings-probabilities();
RS← get-success-rules(pick-up-block-from);
RF← get-failure-rules(pick-up-block-from);
For each possible bindingbi in B

Whenbi matches a success rulersj ,
increase probability of choosingbi with reliability of rsj

Whenbi matches a failure rulerfj ,
decrease probability of choosingbi with reliability of rfj

best-binding← choose-best-binding(B,P);
Return best-binding;

Figure 8: generate-best-binding pseudocode

ICAPS 2006

70 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

First, the metapredicate generates all the possible bind-
ings for the operator. Second, it associates a probability
value to every possible binding. This probability is initially
zero for all possible bindings. Then, it selects a binding, and
tests if a success rule can be fired with it. If so, it increases
the probability of choosing it considering the reliability of
the rule. We are currently studying different ways of updat-
ing it. The initial method we are considering is just adding
previous probability with the rules reliability. However, we
will explore using no-regret techniques in order to update it.
Then, it tests if a failure rule can be fired with this binding.
If so, it decreases the probability of choosing the binding.
This is done for all the possible bindings. And, finally, the
function returns the best binding according to these proba-
bilities.

Currently this function returns always the binding with
the greater probability value. We are planning to use roulette
mechanisms in the near future for selecting the best bind-
ing. But at this point we can consider using different ex-
ploration/exploitation strategies or even algorithms that also
take into account the risk of executing actions.

Experimental Results
We have carried out experiments to evaluate the behaviour of
the architecture using a modified version of the blocksworld
domain from the probabilistic track of the IPC4. We have
introduced three modifications:
• There are two robot arms (instead of one) to

handle the blocks. Therefore, the operators
pick-up-block-from and put-down-bock-on
have another extra argument indicating the robot that
carries out the action.

• There is a new predicate, indicating when a robot arm is
dirty.

• When a robot is dirty, actions are going to fail 25% of the
times. Obviously, the planner does not know it. It will
have to learn it by executing actions.

The learned theories
In this version of the blocksworld domain LUCK has tried
to solve ten5-blocksproblems generated with the random
problem generator provided by the probabilistic track of the
IPC4. Then, it has generated theories about the success
and failure of actions. Figure 9 shows the learned theories
by LUCK for the operatorspick-up-block-from and
put-down-block-on .
• Rule 1 means to LUCK that attempts topick-up a

blockC from another blockDsucceeds 92% of the times.

• Rule 2 means to LUCK that attempts topick-up a
block C from another blockD with a dirty robotB fails
15% of the times.

• Rule 3 means to LUCK that attempts toput-down a
block C that is holded by the robotB on another blockD
succeeds 87% of the times.

• Rule 4 means to LUCK that attempts toput-down a
blockCon another blockDwith a dirty robotB fails 25%
of the times.

Induced Rules forpick-up-block-from

Success Rules
[Rule 1]
[Pos cover = 58 Neg cover = 5]
success-pick-up-block-from(A,B,C,D) :-

true-in-state-on-top-of(A,C,D).
Failure Rules
[Rule 2]
[Pos cover = 5 Neg cover = 27]
failure-pick-up-block-from(A,B,C,D) :-

true-in-state-dirty(A,B).

Induced Rules forput-down-block-on

Success Rules
[Rule 3]
[Pos cover = 42 Neg cover = 6]
success-put-down-block-on(A,B,C,D) :-

true-in-state-holding(A,B,C).
Failure Rules
[Rule 4]
[Pos cover = 6 Neg cover = 18]
failure-put-down-block-on(A,B,C,D) :-

true-in-state-dirty(A,B).

Figure 9: Learned theories for the operators
pick-up-block-from andput-down-block-on .

For every operator two theories are automatically gener-
ated. A first one describing why an action succeeds and a
second one describing when an action fails. In this example
all the induced theories have just one rule.

As is done in our current work the estimation of the prob-
ability of the rules is not perfect, we explain how we plan to
improve this estimation in the conclusions section. For ex-
ample the induced probability forRule 2 should be 25%
instead of 15%. When the amount of problems solved by
LUCK is bigger, these values will be more accurate. For
Rule 1 andRule 3 these values depend on the number
of times that these actions are tried with a dirty robot.

The point is that the estimation is not perfect but has in-
formation about why the execution of an action fails or suc-
ceeds. What allows LUCK to generate Control Knowledge
to guide the planning module.

Measuring the quality improvement

To evaluate the worth of the learned theories we have solved
a set of twenty-five8-blocksproblems generated with the
random problem generator provided by the probabilistic
track of the IPC4. We have made LUCK to solve this
twenty-five problem set with and without the acquired Con-
trol Knowledge described in the previous section. And we
have measure two different magnitudes:

1. The length of the plan executed to solve a problem.

2. The number of failed actions. That is the number of re-
planning process.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 71

As the success or failure of the actions is non determinis-
tic, to obtain reliable values we have solved 15 times every
problem and we have extracted the average values. Table 1
shows the obtained experimental results.

In all the problems, except in problem 12 and in problem
19, the number of failed actions is less or equal planning
with the induced Control Knowledge than planning without
it. In problem 12 and in problem 19 these values are practi-
cally the same (they differ just a little because we are testing
in a probabilistic domain). So we can state that planning us-
ing the induced Control Knowledge makes LUCK finding
more robust plans.

As the plans found using the Control Knowledge are more
robust, less replanning process has been needed so the length
of the executed plans is also shorter or equal than planning
without the induced Control Knowledge.

And also, as the induced Control Knowledge acts as
heuristics to the LUCK planning module, it makes LUCK
to find solution in problems that couldn’t be solved before
within a time bound of 30 seconds (problem2, problem8,
problem15, problem17, problem24).

Planning Time

To evaluate how the use of the Control Knowledge affects to
the planning process we have measured the time that takes
the planner to solve the twenty-five problem set. We have
solved 15 times every problem and we have extract the aver-
age values. Table 2 shows the obtained experimental results.

Problem Time Time using CK
Problem1 0.37 0.68
Problem2 Unsolved 0.7
Problem3 0.28 0.61
Problem4 0.77 0.39
Problem5 0.21 0.42
Problem6 2.31 0.53
Problem7 0.73 0.38
Problem8 Unsolved 3.66
Problem9 0.42 1.72
Problem10 2.59 1.5
Problem11 0.36 1.59
Problem12 0.16 0.52
Problem13 0.4 0.46
Problem14 0.36 1.15
Problem15 Unsolved 2.96
Problem16 0.79 2.37
Problem17 Unsolved 1.8
Problem18 0.25 0.95
Problem19 0.78 1.33
Problem20 0.47 0.88
Problem21 0.36 2.1
Problem22 0.81 1.57
Problem23 0.2 1.7
Problem24 Unsolved 2.04
Problem25 1.61 2.705

Table 2: Experimental planning times for a set of twenty-
five
8-blocksproblems.

On one hand when planning with the Control Knowledge
solutions are more robust, less actions fail and less replan-
ning processes are needed so it takes less time to solve a
problem. But on the other hand when the number of failures
is practically the same planning with and without the Control
Knowledge, the time that takes LUCK to solve a problem is
a little bit bigger using Control Knowledge. Because plan-
ning using Control Knowledge implies making some extra
computations in the planner search process that cost time.

Conclusions
In this paper, we present the LUCK architecture for acting
in domains with uncertainty. The LUCK system acquires
automatically information about the behaviour of the actions
and acts according to plans that are obtained using this in-
formation.

Initially LUCK only needs a deterministic description of
the action model since it handles the uncertainty learning
declarative control rules that modify its default determinis-
tic behaviour. We have designed this approach basically for
three main reasons:

1. Defining a probabilistic domain for realistic problems is
not an easy task. Usually the non deterministic effects of
the actions and the probabilities associated to them are un-
known or difficult to predict. Our approach automatically
learns information that deals with this kind of uncertanity.

2. Leaning completely a domain theory without any kind of
bias for a realistic problem is also a hard task (Pasula,
Zettlemoyer, & Kaelbling 2004).

3. The induced declarative Control Rules give information
understandable for a human about the causes that lie be-
hind the success or failure of the actions

Experimental results reflects that LUCK is able to learn
the reasons that causes the success and failure of the ac-
tions of a simple probabilistic domain. This information is
kept separated from the action theory, represented as Con-
trol Knowledge and it is used to generate Control Rules that
guide successfully the planning process towards solutions of
a better quality.

In this paper the quality of the plans has been interpreted
as the robustness of its actions. And the final goal lie in
finding solutions to problems using the most robust actions
in the minimum amount of steps. As it is done in the IPC4.
So the learning process has been focused on the concepts
of the failure or success of actions execution. An interest-
ing extension for future efforts is working in domains where
some other attribute of the actions has to be learned. For ex-
ample, the time that takes an action to finish its execution or
the cost of executing an action in a given domain.

Our current work lie in using symbolic statistical tech-
niques to estimate the probabilities of the induced rules
in an accurately way. Precisely we are working with the
programming language for symbolic-statistical modelling
PRISM4. PRISM perform a Maximum Likelihood estima-
tion of the program parameters from incomplete data by

4http://sato-www.cs.titech.ac.jp/prism/

ICAPS 2006

72 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Problem Failures Failures using CK Plan Length Plan Length using CK
Problem1 1 1 40 40
Problem2 Unsolved 1 Unsolved 38
Problem3 1 1 30 30
Problem4 7.35 1 27.85 16
Problem5 1 1 24 24
Problem6 14.42 1 60.28 30
Problem7 5.71 1 28.75 20
Problem8 Unsolved 1 Unsolved 118
Problem9 1 1 46 46
Problem10 14.5 1 61.57 34
Problem11 1 1 38 38
Problem12 1.35 1.42 12.92 13
Problem13 4.24 1 13 10
Problem14 1 1 36 36
Problem15 Unsolved 1.71 Unsolved 72.71
Problem16 1 1 76 76
Problem17 Unsolved 1 Unsolved 52
Problem18 1 1 20 20
Problem19 1.85 2.07 29.71 29.85
Problem20 4.28 1 16.78 14
Problem21 1 1 40 40
Problem22 6 1 28.92 20
Problem23 1 1 22 22
Problem24 Unsolved 1 Unsolved 32
Problem25 6 2.07 45.5 36.64

Table 1: Experimental plan quality measures for a set of twenty-five8-blocksproblems.

the Expectation-Maximization algorithm (Sato & Kameya
2001).

At the same time we are also working in how we can use
the information learned from the experience not only to help
the LUCK planner module choosing the correct bindings
but also choosing the correct goals. Therefore, improving
the quality of the solutions.

As the IPSS planner is not a fast planner, in the near future
we plan to study how Control Knowledge can be learned to
guide the search process of more efficient planners such as
the heuristic planner FF (Hoffmann 2001) and thus compare
our system to thestate-of-the-art plannersthat take part in
the probabilistic track of the International Planning Compe-
tition.

Acknowledgements

This work has been partially supported by the Spanish MEC
project TIN2005-08945-C06-05 and regional CAM-UC3M
project UC3M-INF-05-016.

References
Blythe, J. 1999. Decision-theoretic planning.AI Magazine,
Summer.

Boutilier, C.; Dean, T.; and Hanks, S. 1998. Planning un-
der uncertainty: structural assumptions and computational
leverage.Journal of Artificial Intelligence Research.

Cocora, A.; Kersting, K.; Plagemann, C.; Burgard, W.; and
Raedt, L. D. 2006. Learning relational navigation policies.
Kunstliche Intelligenz.

Dzeroski, and Bratko, I. 1992. Handling noise in in-
ductive logic programming.Workshop on Inductive Logic
Programming, ICOT-TM-1182, Inst. for New Gen Comput
Technology, Japan.

Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-
specific control knowledge from random walks (draft).
Proceedings of the International Conference in Autom-
mated Planning and Scheduling.

Haigh, K. Z., and Veloso, M. M. 1998. Planning, execution
and learning in a robotic agent.AIPS120–127.

Hoffmann, J. 2001. Ff:the fast forward planning system.
AI Magazine, 22(3)57–62.

Kabanza, F.; Barbeau, M.; and St.-Denis, R. 1997. Plan-
ning control rules for reactive agents.Artificial Intelligence
95(1):67–11.

Kaelbling, L. P.; Littman, M.; and More, A. 1996. Rein-
forcement learning: A survey.Journal of Artificial Intelli-
gence Research.

Kersting, K.; Otterlo, M. V.; and Raedt, L. D. 2004. Bell-
man goes relational. InIn Proceedings of the Twenty-First
International Conference on Machine Learning (ICML-
04).

Muggleton, S. 1995. Inverse entailment and Progol.New

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 73

Generation Computing, Special issue on Inductive Logic
Programming13(3-4):245–286.
Onder, N.; Whelan, G. C.; and Li, L. 2004. Probapop:
Probabilistic partial-order planning.Proceedings of the
International Conference in Autommated Planning and
Scheduling.
Pasula, H.; Zettlemoyer, L.; and Kaelbling, L. 2004. Learn-
ing probabilistic relational planning rules.Proceedings
of the Fourteenth International Conference on Automated
Planning and Scheduling.
Rodrguez-Moreno, M. D.; Borrajo, D.; Cesta, A.; and
Meziat, D. 2004. An ai tool for scheduling satellite nomi-
nal operations.AI Magazine.
Sato, T., and Kameya, Y. 2001. Parameter learning of
logic programs for symbolicstatistical modeling.Journal
of Artificial Intelligence Research391–454.
Veloso, M.; Carbonell, J.; Prez, A.; Borrajo, D.; Fink, E.;
and Blythe, J. 1995. Integrating planning and learning:
The PRODIGY architecture.Journal of Experimental and
Theoretical AI7:81–120.
Younes, H. L. S., and Littman, M. L. 2004. Ppddl1.0:
An extension to pddl for expressing planning domains with
probabilistic effects. Technical Report CMU-CS-04-167,
School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania.
Zettlemoyer, L.; Pasula, H.; and Kaelbling, L. 2005. Learn-
ing planning rules in noisy stochastic worlds.Proceedings
of the Twentieth National Conference on Artificial Intelli-
gence (AAAI-05).

ICAPS 2006

74 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

Learning Behaviors Models for Robot Execution Control

Guillaume Infantes and Félix Ingrand and Malik Ghallab
LAAS-CNRS

7, Avenue du Colonel Roche, 31077 Toulouse Cedex 4, France
{infantes,felix,malik}@laas.fr

Abstract

Robust execution of robotic tasks is a difficult problem. In
many situations, these tasks involve complex behaviors com-
bining different functionalities (e.g. perception, localization,
motion planning and motion execution). These behaviors are
often programmed with a strong focus on the robustness of
the behavior itself, not on the definition of a “high level”
model to be used by a task planner and an execution con-
troller. We propose to learn behaviors models as structured
stochastic processes: Dynamic Bayesian Network. Indeed,
the DBN formalism allows us to learn and control behaviors
with controllable parameters. We experimented our approach
on a real robot, where we learned over a large number of
runs the model of a complex navigation task using a modified
version of Expectation Maximization for DBN. The result-
ing DBN is then used to control the robot navigation behav-
ior and we show that for some given objectives (e.g. avoid
failure, optimize speed), the learned DBN driven controller
performs much better (we have one order of magnitude less
failure) than the programmed controller. We also show a way
to achieve efficient incremental learning of the DBN. We be-
lieve that the proposed approach remains generic and can be
used to learn complex behaviors other than navigation and for
other autonomous systems.

Introduction and Motivations
Tasks execution on autonomous robots is a very complex
process: exploration rovers are expected to plan and prop-
erly execute their science observation missions; museum
guide robots have to robustly execute their tour plans for vis-
itors interested in a given subject; service robots must plan
and execute daily activities for the elderly people they assist
etc. The building blocks of these plans, i.e. the tasks and
actions, can be quite complex. We refer to them as behav-
iors. These behaviors usually have an intrinsic complexity
(e.g. navigation for a museum guide robot involve localiza-
tion, perception, motion planning, etc.). Moreover, often no
explicit model exists of how it performs in various environ-
ments. Last, even if a deterministic model of these behavior
exists, it may not be appropriate to handle the intrinsic non-
determinism of the environment and of the behavior execu-
tion outcomes. As a result, one as to cope with a planning
problem where one must plan actions execution with poor
model, or even, in some situation, with no model at all.

Some approaches [Amir 2005] try to model actions de-
terministically, and apply a probabilistic bias afterward.
This kind of approach may not be relevant for intrinsically
stochastic systems, which are more common in real-world
domain. Bayesian Networks [Pearl 1988] give to the authors
of [Dearden & Demiris 2005] the ability to model the actions
and predict the effects of a manipulation task of a robot. But
while this kind of model captures the stochastic nature of the
system, it does not take into account its long-term dynamics.

Systems may be modeled as a Hidden Markov Model
(HMM) [Rabiner 1989]. In these models, the internal
state is hidden to the observer, who can only see the ob-
servation, that represent effects of the system on the en-
vironment. These stochastic models have proved quite
adapted in domains such as speech recognition [Rabiner
1989], modeling human activity [Bobick & Davis 2001;
Liao, Fox, & Kautz 2004; Osentoski, Manfredi, & Mahade-
van 2004], facial expression recognition [Cohen et al. 2003],
gesture recognition [Nam & Wohn 1996; Wilson & Bo-
bick 1999; 2001], probabilistic plan recognition [Bui 2003;
Bui, Venkatesh, & West 2002] and learning topological and
metric maps [Koenig & Simmons 1996b; 1996a]. In [Fox et
al. 2006], the authors present an approach to models robot
actions using HMM. Indeed, the resulting HMM actions can
be used to recognize or to plan the modeled actions.

Yet, this representation does not allow the finer control of
the action execution. An aspect of complex actions we want
to address is that some of these activities may be control-
lable. Finding the proper parameter values with respect to
the current environment and goal can be quite a challenge if
again no model of the underlying action is available. Hence
we would like to learn action models rich enough to allow
us to use them to perform any of recognition, planning, con-
trol or supervision of the action. We propose to learn action
models as highly structured stochastic processes: Dynamic
Bayesian Network (DBN) [Dean & Kanazawa 1990].

We detail how such a model can be obtained from a num-
ber of real-world runs. We then show how it can be used
to control the action itself while executing. We also sketch
how this could be embedded in a more general controller
able to supervise the action execution (to avoid failure) and
to decide when the model has to be refined for new situations
arising. The paper is organized as follow. The next section
presents a complex robot behavior to model and to adapt.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 75

We then present how we can learn such a structured stochas-
tic model. The following section presents how we can use
the learned model, followed by a section on results obtained
on a real robot (i.e. the learning phase as well as controlling
the robot using the learned model). We then conclude the
paper with a discussion on the current work as well as some
perspectives we are currently pursuing.

Modeling and Adapting Robot Behavior
To conduct our experiments, we modeled a robotic nav-
igation task, based on ND1 reactive obstacle avoidance
[Minguez, Osuna, & Montano 2004]. A schematic view of
this navigation modality can be seen on figure 1(a). The
laser range finder gives a set of points representing obsta-
cles in front of the robot. This points are used to build a
local map around the robot by the aspect module. ND uses
the current position of the robot to compute the local goal
in the robot’s coordinate system. Then with this local goal
and the map around the robot, it computes a speed reference
that tends to move the robot towards the goal position while
avoiding obstacles. This modality is used on our B21R robot
(figure 1(b)).

2D_POINTS

ASPECT

LOCAL MAP

POSITION

SPEED_REFERENCE

ND

GOAL

MODULE

DATA TYPE

ODOMETRY

SEGMENT−BASED
LOCALIZATION

LASER RANGE
FINDER

(a) ND-based navigation modality (b) Platform

Figure 1: The RWI B21R modified to be a museum guide
robot [Clodic et al. 2005]

Structure of a Navigation Task
A navigation controller can be seen as a “black box” taking
a relative goal position and some data about the environment
as inputs and giving as output a speed reference for the robot
to execute. We can model this by having an internal hidden
state of the robot, with hidden variables. The control param-
eters of the navigation are observable and have an influence
on the internal state. It changes the environment, because
it is measured through the sensors of the robot: if the robot
goes into a dead-end, the environment will seem very clut-
tered. The general structure can be seen on figure 2.

Choosing the variables is highly dependent on the pro-
cess to model. The control parameters are given by the nav-
igation controller, but we must choose wisely environment

1Note that despite the fact that ND was partially developed at
our lab (over a number of year), it is so intrinsically complex, and
so “difficult” to tune, that no model exists which could help us
supervise, control and plan its execution.

Figure 2: Abstract DBN structure for a navigation task

variables that represent important parameters for decisions
made by the control process. In our reactive navigation task,
the cluttering of the environment is to be taken into account,
so is the closest obstacle, which has much influence on the
future sight of the robot. On the other hand, we avoid in-
cluding the position of the robot, so that the model can be
used in places different than the one where the learning was
performed.

The effects of the navigation task we need to recognize
are the fail and success states, but we also aim at control-
ling more precisely the behavior in a qualitative way: some
behaviors are successful, but not optimal. We also include
as many variables as we can that could give us a hint on the
internal state, for the learning process to be more effective.
Finally, we could also model resource usage.

Instantiation
For our navigation task, the control parameters are: the two
size growing parameters of the robot: one surface repre-
sents the robot (where obstacles are totally forbidden); and
a larger security area where there should be as few obstacles
as possible; the maximum linear and angular speeds al-
lowed; a linearity factor between the two speeds given by
the motion generator controller.2

The environment variables chosen are: the cluttering of
the environment, defined as a weighted sum of distances to
nearest obstacles around the robot; the angle of the near-
est obstacle; the distance to the nearest obstacle and the
global number of segments in the scene.

The output observable variables are: the current linear
and angular speeds of the robot; its current linear and an-
gular accelerations; the variation of the distance to the
goal (estimated as an euclidean distance); the number of
possibles ways to go (valleys) built by ND; the achieved
ratio of the mission; the current strategy chosen by ND;
the general state in begin, end, fail, normal; the human ad-

2The linear and angular speeds are mutually constrained by a
polynomial function that influences the type of trajectory produced.

ICAPS 2006

76 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

equation of the behavior3.
All the variables are discretized (into clusters from 3 to 6

values). The number of different potentially possible obser-
vations is more than 15× 109. This indicates that even with
a very large number of runs, all possible observations will
never be seen, leading to many non-informative transition
probabilities into the DBN. We will show later how to deal
with such a sparse DBN for decision making.

DBN Learning
To learn a DBN, we use an adaptation of the classical
Expectation-Maximization (EM) algorithm defined for Hid-
den Markov Models [Rabiner 1989]. The adaptations to
make this algorithm tractable for DBN are not straightfor-
ward: we need to maintain an approximated “belief state”,
i.e. a probabilistic hypothesis over the possible assignment
of the values of the variables because they are strongly corre-
lated. We choose to approximate this belief state as a particle
filter, with a variable number of particles.

Expectation Maximization Algorithm
A DBN λ is defined by a set of variables (hidden or observ-
able), a set of possible values for each variable, and a set
of probabilistic causal links between the variables [Dean &
Kanazawa 1990]. An evidence O is as a sequence of ob-
servations (i.e. instantiations of all observable variables of
λ).

A good model λ with respect to O gives a high P (O|λ)
(likelihood of the evidence). In the DBN framework, λ may
be adapted to the evidence either by modifying its structure
or the probabilities attached to the causal links in a given
structure. The EM algorithm can deal with hidden variables,
but not with structure of the model.

In the HMM case, EM first compute probabilities of be-
ing in every hidden state, then every transition probability
and every probability of seeing each observation from each
hidden state, this for every time step. This is often referred
as the Expectation step. For a DBN, the hidden state be-
comes an instantiation of the corresponding variables, and
so does an observation. The state has to be approximated
as a belief state, i.e. a set of weighted hypotheses over all
possible instances. Furthermore, the observable variables
are not decoupled from the hidden ones, so we compute an
observation probability not only from hidden variables, but
from the whole belief state. Then we can update the transi-
tion probabilities to maximize P (O|λ). Then we go again
into Expectation and Maximization steps. This algorithm is
proved to reach a local maximum of P (O|λ).

Definitions
Let qi with i ∈ [1..N] be the N variables of the DBN.

Each variable qi can take the values Sij
, and V a(i) =

{Sij
} is the set of Vi different possible values for the vari-

able qi. Thus we have Vi = card(V a(i)).

3Some behaviors leads to success, but may be considered as too
aggressive for humans around the robot, or on the contrary too shy,
and thus to slow. Its value has to be given by the operator during
the learning phase.

For a DBN, we can consider a transition not from a value
for the hidden state variable to another one like in HMMs,
but from a set of parent variables to only one. We note Pa(i)
the set of possible instantiations of the causal parents of the
variable qi, and qPa(i) the parents of the variable qi. So one
instantiation is:

σi = (Si0j0
, Si1j1

...Sikjk
) ∈ Pa(i)

with {qi0 , qi1 , ..., qin
} = qPa(i) are the parents of qi.

A transition probability will then be:

a(σi, ij) = P (qPa(i) = σi, qi = Sij
)

with σi ∈ Pa(i), and Sij
the jth value that can take the

variable qi.
We denote qit the value taken by variable qi at time t and

Ot the observation made at time step t, so we define the
probability of seeing Ot knowing qit = Sij

:

bij
(Ot) = P (Ot|qit = Sij

)

and the probability of seeing Ot knowing qit = Sij
and

Pa(i) = σi at time step t:

bij ,σi
(Ot) = P (Ot|qPa(i)t = σi, qit = Sij

)

We also define the probability of the variable qi having
the value Sij

at time step t, knowing the whole observation
sequence O = (O1...OT), and the model λ:

γt(ij) = P (qit = Sij
|O, λ)

In the same way, the probability of a transition occurring
at time t is:

ξt(σi, ij) = P (qPa(i)t = σi, qit = Sij
)

The difficulty for the Expectation step is to compute ef-
ficiently all γt and ξt. This is done using the recursive
Forward-Backward algorithm.

Forward Backward Algorithm
The Forward Backward algorithm lets us compute the de-
sired probabilities by using a message passing scheme,
where the two messages are the probabilities of having vari-
able qi taking one of its possible values Sij

knowing respec-
tively the beginning of the observation sequence O1, .., Ot

and the end of it Ot+1, .., OT .

Forward Message The forward message for one variable
is defined as the probability of reaching value Sij

of variable
qi at time t and seeing the start of the observation sequence
O1...Ot :

αt(ij) = P (O1..Ot, qit = Sij
|λ)

We need to propagate recursively this value over t. But
as the transitions are from a set of variables to a standalone
variable, we have to define the same forward message for an
instantiation of variables:

αt(σi) = P (O1, ..., Ot, σi|λ)

And we compute these values as:

αt(σi) = [
∏

ij∈σi

αt(ij)]Bt(σi)

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 77

The coefficient Bt(σi) (which implicitly depends on the
history of observations O1...Ot) is a weight over the dif-
ferent belief states. It is necessary because all σi have not
the same probability (the components of σi are strongly cor-
related). To do exact inferences, we should compute this
Bt(σi) taking the whole history into account, which would
lead to an exponential complexity in t. We chose to ap-
proximate this calculus by maintaining a particle filter which
gives us an approximation of the current belief state of the
process (see [Koller & Fratkina 1998] to have an overview
of techniques to approximate the belief state). This belief
state gives us a relative weight of the possible instantiations
of variables.

Now we simply have (as in HMMs):

αt(ij) =
∑

σi∈Pa(i)

αt(σi)a(σi, ij)bij ,σi
(Ot)

So we can compute recursively αt(ij) for every variables
for every time step, starting from the parents at time 1 and
propagating the message.

Backward Message The backward message is the prob-
ability of seeing the end of the observation sequence
Ot+1...OT knowing the value Sij

of the variable qt at time
t:

βt(ij) = P (Ot+1..OT |qit = Sij
, λ)

To compute this value, we have to look at every child of
variable qi, but we do not have any information about the
other parents of these children. Thus we can not take hy-
pothesis on the different instantiations of the parents hence
we choose to take an average.

Let Ch(i) be the children of variable qi. For each child qk

of qi, we build the set of σk where σk ∈ Pa(k) and ij ∈ σk.
Then we compute the probability of seeing the observa-

tion at time t and we multiply it by the probability of seeing
the observations after time t. This is:

bkl,σk
(Ot)βt(kl)

We weight afterwards this probability by the probability
of having qk = Skl

from qi = Sij
:

a(σk, kl)bkl,σk
(Ot)βt(kl)

where σk ∈ Pa(k) and ij ∈ σk.
Then we compute the average over all possible instantia-

tions and all possible Skl
. We obtain:

Ft(k, ij) =
∑

σk ∈ Pa(k)
ij ∈ σk

∑
l∈V a(k)

a(σk, kl)bkl,σk
(Ot)βt(kl)

Vk.Ck

where Ck = card({σk ∈ Pa(k), ij ∈ σk})
Finally, βt(ij) is the sum over every child of qi with qi =

Sij
of this average, which gives:

βt(ij) =
∑

k∈Ch(i)

Ft(k, ij)

Maximization
Now we can compute ξt(σi, ij) as:

ξt(σi, ij) =
αt(σi)a(σi, ij)bij ,σi

(Ot)βt(ij)
P (O|λ)

So we obtain the new transition probability as:

ā(σi, ij) =
∑

t ξt(σi, ij)
K

where K is a normalizing factor.
This step computes a new model λ′, and we have

P (O|λ′) > P (O|λ). So P (O|λ) is maximized by this step.
With the new model, we can now go again for an Expecta-
tion step, which will lead to different α, β and ξ and then
update the model again. This process converges to a local
maximum of P (O|λ).

Notes on Implementation
The main difficulty on implementing this algorithm is that α
and β values tend exponentially fast to zero with t. For Hid-
den Markov Models, a scaling process has been proposed
[Rabiner 1989] to solve this issue. In the DBN case, we
need to extend this scaling process to multiple variables.
We chose to use a scaling factor for each Sij

of variable
qi and not for each qi, which seems fine because for every
j, all P (qi = Sij

) have not necessarily the same magni-
tude. The scaling is applied after every α and β computa-
tion, because underflow may occur inside a time step. For
the same reason, P (O|λ) may exceed the precision range of
any machine; thus we do not consider this probability, but
log[P (O|λ)]. This is called the log-likelihood of the obser-
vation.

Underflow may also occur while computing ā(σi, ij), de-
pending on the precision used for the calculus, and having
some of these transitions probabilities artificially stuck to
zero prevents the algorithm to converge.

Choosing a good representation for the belief state is crit-
ical for the algorithm to behave correctly. A flat representa-
tion over the variables would lose all the correlations among
them, being a very bad approximation. On the other side,
maintaining an exact belief state implies keeping all corre-
lations over the time, and thus would be exponentially com-
plex over the length of the evidence [Boyen & Koller 1998].
Approximating the belief state with a particle filter seems
to be a good trade-off. But while the size of the hypothe-
sis state is very large, we chose to have a variable number
of particles, because the probability of seeing the observa-
tions knowing the belief state might become very low. We
maintain this probability by creating more particles (from
the most probable ones) until this probability reaches its ini-
tial value.

Structure Learning
The EM algorithm updates only the transitions probabili-
ties, without changing the structure of the DBN. An algo-
rithm has been proposed [Friedman 1998] to add inside the
loop some structural changes. The main issue is to evalu-
ate the new model efficiently knowing the current one. Fur-
thermore, this algorithm acts only as a local search into the

ICAPS 2006

78 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

structure space, so the optimal structure may not be reached.
The GES algorithm [Chickering 2002] has been proposed to
find an optimal structure of a Bayesian network. However,
this technique relies upon sufficient statistical knowledge of
the process, which is not our case due to the very large size
of the observation space. In our case, the global structure is
known. In order to decrease the size of the DBN and speed
up the learning process, we plan to use these techniques only
on the hidden variables of the process (and on the links to-
ward the observable variables),. For now, we use the struc-
ture described in section Results.

Incremental Learning
An open issue for learning stochastic models is the possibil-
ity to add knowledge into a previously learned model. This
is difficult because the learning phase is a local search, and
the algorithm must take into account all observations with
the same weight.

We propose the following algorithm: we first learn λ1

upon a training sequence (O1..Oi). Then we learn λ2 over
(Oj ..On), taking λ1 as a start point for the local search
of λ2

4. When its done, we simply sum λ1 and λ2. For
this merging to work, it must be applied after each iteration
of EM, i.e. the merged DBN must be used for Maximiza-
tion and not only for Expectation. We think this is because
the role of the hidden variables may be changed otherwise,
loosing the “meaning” of them. If the merging is done only
between the different phases, the newly learned DBN opti-
mizes itself only in the space of the current trunk of obser-
vations and goes somewhat “too far” from the previous one.
In this case, the sum of the two DBNs does not reflect the
reality of the space of the sum of the observations. This will
be investigated in future work.

Adaptation of the Behavior
One possible use of the model presented in section is to find
optimal values for the ND motion generator controller, de-
pending on the environment. ND is usually used with a fixed
set of parameters, that are not optimal in every situation. We
aim at having a fine-grained adaption of the parameters of
the controller, modeled as a DBN, to optimize the naviga-
tion itself.

We need to introduce utilities into some of our variables
with respect to an optimality criterion. We need to give high
rewards to variable values that will lead to a desired behavior
and penalties to values that will lead to a bad one. Typically,
we need to avoid the fail value of the general state variable,
while we want to reach the end value.

We also introduce a secondary criterion on the human ad-
equation of the navigation behavior. Between two success-
ful behaviors, we prefer a behavior where the normal value
of the human adequation appears often, and try to avoid
the aggressive and shy values of this variable. All these util-
ities will be given as scalar values, so we need to give greater

4Note that λ1 was learned from a random starting point. Thus
the next phases of the learning should be better than the first, be-
cause the start point is not random, but somewhat represents a part
of the dynamic of the system.

values to the general state variable, and smaller ones to the
secondary criterion, to avoid the case where the robot could
collect reward by having a proper behavior with respect to
humans, yet fail, thinking it is better to be gentle than to
achieve its task.

A general scheme of a DBN-based behavior adapter can
be seen on figure 3.

Figure 3: General scheme of a behavior adapter

Decision
In this application, the temporal aspect is primordial. The
command process works at a frequency of 2.5 Hertz. The
behavior adapter has a frequency of 1.66 Hz to collect the
observations, but we do not need it to change the parameters
at such a high frequency. Typically the parameters changes
should occur at most at 0.5 Hertz, or less. Otherwise, the
system could demonstrate a very unstable behavior.

So the problem we face is quite different from a classi-
cal Dynamic Decision Network [Zhang, Qi, & Poole 1994]
resolution, where a decision is taken after each observation,
and the result is a decision tree which associates to each ob-
servation sequence an optimal decision sequence. Further-
more, the branching factor for a decision tree would be too
high. We need a radically different strategy: we consider
that when we take a decision, it will remain the same for a
given amount of time. So we independently evaluate every
decision towards a given horizon, and choose the best one.

The DBN we build includes a model of the evolution of
the environment, thus we can accurately predict what will
happen in the future. Starting from a belief state for the cur-
rent time step (i.e. a probabilistic hypothesis on the current
state of the system, including hidden variables), we can infer
from the DBN the future belief states for each set of param-
eters and deduce the corresponding utilities.

The belief state is represented as a particle filter, each par-
ticle represents a weighted hypothesis on the values of the
variables. When inferring the particles over time, we can
compute the expected utility by simply summing utilities
encountered by particles. This can be done for a few steps
forward (which leads to imprecise expectations), or until all
particles reach a final state (defined by the end and fail val-
ues of general state). The size of the estimation of the belief
state (i.e. the number of particles used) is therefore a criti-
cal bottleneck for real-time decision making; to solve this

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 79

issue, we sample the belief state to focus only on the few
most probable hypothesis.

Meta Decision
We introduce a confidence factor in every transition prob-
ability. This confidence factor is the number of updates
of a transition probability during the learning phase. This
helps us to differentiate an equiprobability due to a never
seen transition into the data set from an informative one.
When inferring particles to predict expected utilities of the
decisions, we also collect the confidence factors of the tran-
sitions the particles used. If a particle comes with a high
confidence factor, this means that this particle re-played in
a learned set, whereas if the confidence factor is low, the
particle went through never learned transitions. Thus the de-
cision has to be taken in a two dimensional space: utility ×
confidence. If we prefer to take a decision with high confi-
dence, this will lead to re-play a previously learned obser-
vation, and the robot will preferably exploit its model. On
the contrary, if we choose a decision with a low confidence
factor, this will lead go through never learned transitions of
our model, making the robot more “exploratory” of its ca-
pabilities, with a higher risk of failure. We encounter here
the classic learning agent “exploration versus exploitation”
trade-off, in an original fashion.

Results
Navigation Behavior Learning
The model management is implemented into a real-world
robotic architecture [Alami et al. 2000], on a B21R robot.
The monitoring of raw data is done at a frequency of 2.5
Hertz. The scalar raw data are clustered using k-means clus-
tering [Kanungo et al. 2002] in order to obtain a few clus-
ters.

The a priori adjacency structure of the graph is the follow-
ing:

• in the same time step, every environment variable is
linked to every hidden variable, every hidden variable is
connected to every other hidden one, and finally every
hidden variable is connect to every post-control observ-
able variable;

• from step t to step t + 1, every environment variable is
linked to itself, every control variable is linked to every
hidden variable, and every hidden variable is connected
to itself.

We did about 120 navigations of the robot into different
environments, choosing randomly the control parameters at
random frequencies; for a totalizing a few hundred meters
of motion into cluttered environments, with people around
the robot. The operator was asked to give the value of the
human adequation (into good, aggressive, and shy). He
also has a fail button to stop navigations before dangerous
failure like collisions. A failure case was automatically de-
tected when the robot did not move during a given amount of
time. The number of observations collected is about 7,000.
Yet, it does not cover the total observation space at all. The
learning of the DBN takes several minutes per iteration of

Expectation-Maximization. The learned DBN stabilizes af-
ter less than 10 iterations. As EM is a local search, we
use a “conservative” DBN as a starting point, meaning that
with this DBN the probability that the variables change their
value is low (about 10%).

To evaluate the quality of the learned DBN, we learn the
DBN on all observations but one, and try to predict this ob-
servation. This is done by inferring a particle filter on the
DBN, choosing the most probable observation in this parti-
cle filter, and comparing this predicted observation to the ac-
tual one. The global observation is seldom exactly the same,
but is generally very close, that means that in most cases the
particle filter predicts well most of the observable variables.
An overview of recognition results is shown on table 4. We
can notice that the recognition results are significantly better
than a random prediction. Furthermore, if some aspects of
the internal mechanisms of ND have not been well modeled
(as the strategy choice, or number of valleys build) because
of the lack of the environment variables that uses ND “for
real”, the general behavior and the human adequation are
well predicted. And these are the variables we use in partic-
ular for control.

variable random guess dbn
cluttering 33.3 87.3

angle of obstacle 25.0 86.4
dist. to obstacle 25.0 88.5

segments 33.3 81.6
valleys 33.3 79.9

v 33.3 90.8
w 25.0 79.0
dv 33.3 91.9
dw 33.3 92.2

∆ dist. to goal 33.3 77.8
% mission 33.3 97.1

srtategy 20.0 84.8
general 25.0 96.4

adequation 33.3 92.5
average 29.0 87.6

Figure 4: Table of well-guessed one-step predictions (%)

Using more hidden variables gives better results, mean-
ing that 2 hidden variables with an arity of 2 is not enough.
But using more hidden variables makes the learning process
much longer because of the “complete” structure we use.
Here we consider 49 causal links, while with 3 variables it
comes up to 73. We intend to decrease this amount of links
using structure learning in future work.

Control
The decision level of the behavior adapter was implemented
using OpenPRS [Ingrand et al. 1996]. The current belief
state is maintained along the navigation, and when a choice
is to be made, it is sampled in order to limit the size of the
particle filter for prediction.

In our control experiments, the choices were made at a
fixed period of 2 seconds, changing reactive obstacle avoid-

ICAPS 2006

80 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

ance parameters dynamically during navigation, without
stopping the robot motion. Therefore, the navigation be-
haves better than with default static hand-tuned parameters
usually used on this robot, and much better than with ran-
dom parameters. Typically, during the learning phase with
random parameters, 1 run out of 3 ends on a failure state due
to collisions or to blocked situations, while with the behav-
ior adapter, the failures happen only once out of 10 experi-
ments. This happens while using a parameter set never tried
during the learning phase5. Also, in the learning phase, we
label as good the parameters producing very high accelera-
tions when the robots enters an open area. We give rewards
to this value for decision making, and this behavior is clearly
noticeable in these experiments, while it is not with the de-
fault hand-tuned parameters. This gives us quicker naviga-
tion for open areas than with default parameters. The aver-
age speedup of the navigation will be quantified in a future
work.

Collecting observations can be made in the same time
than active behavior adapting; the next step is to decide
when the robot should use computed behavior or behaviors
that extend the variety of the set of collected observations.

Incremental Learning
To evaluate the incremental learning algorithm, we learned
a DBN in five phases as explained in section Incremental
Learning. Each phase uses 20% of the total observation. On
figure 5, the phases are numbered on the X-axis. The Y-axis
represents the log-likelihood obtained. The upper line shows
the log-likelihood obtained with a single phase of learning
(upon all observations). While the summed DBN does not
behaves as well as the one learned in a single phase, the
difference is very small.

-120000

-110000

-100000

-90000

-80000

-70000

-60000

-50000

-40000

 0 20 40 60 80 100

lo
g-

lik
el

ih
oo

d

percentage of seen observation

single learning
incremental learning

incremental without summing every step

Figure 5: Incremental learning likelihoods

Conclusion and Discussion
We have presented an innovative approach to learn DBN
models of complex robot behaviors. In our context, where

5This is due to a confidence factor allowing learning more than
using the model.

we want to learn a model where controllable variables re-
main observable, DBNs are preferable to HMMs. We de-
veloped a modified version of EM for DBN. We presented
our behavior controller, and how it can be used to learn the
model and then use it online. The approach has been imple-
mented and successfully tested on a robotic platform. We
showed that, for a fairly complex navigation task, we were
able to learn a model which, when used to dynamically set
the controllable parameters (according to given objectives),
performs much better than the default set, or a random set.

This work is closely related to [Liao, Fox, & Kautz 2004],
where the authors tries to model human activities with hier-
archical DBN. Our approach tries to deal with more vari-
ables, and with sparse data sets. Furthermore, we propose
a direct way to use our model not only for diagnosis, but
to control the process itself. In [Oates, Schmill, & Cohen
2000], the authors learn to recognize robotic behaviors that
fits with human judgment, but the emphasis is more on “how
to built variables that make a intuitive sense” than on use
of this kind of model. The proposed use is a more classi-
cal planning approach [Schmill, Oates, & Cohen 2000]. We
propose an efficient way for mixing learning and decisions
making. Our approach is in the same spirit than [Belker,
Beetz, & Cremers 2002], where the authors model the sys-
tem as neural nets or with tree induction, then take deci-
sion based on a MDP, for robotic autonomous navigation.
We propose a more integrated approach, where the decision-
taking mechanism is much closer from the model itself. Fur-
thermore, it allows taking into account hidden variables, i.e.
a more complex structure of the model itself. We propose a
way to build a model using more features than the one pro-
posed. In [Stulp & Beetz 2005] the authors present an orig-
inal way of optimizing tasks execution. High-level tasks are
built with a number of parameters that must be optimized for
smooth execution. Performance models are learned for the
parameter sets as tree rules, but much of the work is hand-
made. Our approach is automated, and the models we build
are more expressive (while harshly human-readable), due to
the presence of hidden variables. Furthermore, the models
we built are fully probabilistic, while this is not the case in
this work. Both approaches show very high computational
cost when different complex tasks have to be mixed.

In the long run, we keep in mind that these learned behav-
iors should not only be used to control the robot execution
(to avoid failure and to optimize the execution), but can also
be taken into account by a high level planner able to choose
among a set of such behaviors.

Despite our application to a navigation task of a museum
guide robot, we believe that the approach remains applicable
to other behaviors and could be used for other autonomous
systems.

References
Alami, R.; Chatila, R.; Fleury, S.; Herrb, M.; Ingrand, F.;
Khatib, M.; Morisset, B.; Moutarlier, P.; and Simon, T.
2000. Around the lab in 40 days... In Proceedings of ICRA.
Amir, E. 2005. Learning partially observable deterministic
action models. In Proceedings of IJCAI.

ICAPS 2006

Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems 81

Belker, T.; Beetz, M.; and Cremers, A. 2002. Learning ac-
tion models for the improved execution of navigation plans.
Robotics and Autonomous Systems 38(3-4):137–148.
Bobick, A., and Davis, J. 2001. The Recognition of Human
Movement using Temporal Templates. IEEE Transaction
on Pattern Analysis and Machine Intelligence 23(3):257–
267.
Boyen, X., and Koller, D. 1998. Tractable inference for
complex stochastic processes. In Proceedings of UAI.
Bui, H.; Venkatesh, S.; and West, G. 2002. Policy Recog-
nition in the Abstract hidden Markov model. Journal of AI
Research 17:451–499.
Bui, H. 2003. A General Model for Online Probabilistic
Plan Recognition. In Proceedings of IJCAI.
Chickering, D. 2002. Optimal structure identification with
greedy search. Journal of Machine Learning Research
3:507–554.
Clodic, A.; Fleury, S.; Alami, R.; Herrb, M.; and Chatila,
R. 2005. Supervision and interaction. In Proceedings
ICAR, 725–732.
Cohen, I.; Sebe, N.; Chen, L.; Garg, A.; and Huang,
T. S. 2003. Facial Expression Recognition from Video Se-
qences: Temporal and Static Modelling. Computer Vision
and Image Understanding: Special Issue on Face Recog-
nition 91:160–187.
Dean, T., and Kanazawa, K. 1990. A model for reason-
ing about persistence and causation. Computational Intel-
ligence 5(3):142–150.
Dearden, A., and Demiris, Y. 2005. Learning forward mod-
els for robots. In Proceedings of IJCAI.
Fox, M.; Ghallab, M.; Infantes, G.; and Long, D. 2006.
Robot introspection through learned hidden markov mod-
els. Artificial Intelligence 170(2):59–113.
Friedman, N. 1998. The bayesian structural EM algorithm.
In Proceedings of UAI.
Ingrand, F.; Chatila, R.; Alami, R.; and Robert, F. 1996.
PRS: A High Level Supervision and Control Language for
Autonomous Mobile Robots. In Proceedings of ICRA.
Kanungo, T.; Mount, D.; Netanyahu, N.; Piatko, C.; Sil-
verman, R.; and Wu, A. 2002. An efficient k-means
clustering algorithm: analysis and implementation. IEEE
Transactions on Pattern Analysis and Machine Intelligence
24(7):881–892.
Koenig, S., and Simmons, R. G. 1996a. Passive Distance
Learning for Robot Navigation. In Proceedings of Interna-
tional Conference on Machine Learning (ICML).
Koenig, S., and Simmons, R. G. 1996b. Unsupervised
Learning of Probabilistic Models for Robot Navigation. In
Proceedings of ICRA.
Koller, D., and Fratkina, R. 1998. Using learning for
approximation in stochastic processes. In Proceedings of
ICML.
Liao, L.; Fox, D.; and Kautz, H. 2004. Learning and Infer-
ring Transportation Routines. In Proceedings of AAAI.

Minguez, J.; Osuna, J.; and Montano, L. 2004. A ”Divide
and Conquer” Strategy based on Situations to achieve Re-
active Collision Avoidance in Troublesome Scenarios. In
Proceedings of ICRA.
Nam, Y., and Wohn, K. 1996. Recognition of Space-Time
Hand Gestures using Hidden Markov Models. In ACM
Symposium on Virtual Reality Software and Technology,
51–58.
Oates, T.; Schmill, M. D.; and Cohen, P. R. 2000. A
method for clustering the experiences of a mobile robot
that accords with human judgements. In Proceedings of
IJCAI.
Osentoski, S.; Manfredi, V.; and Mahadevan, S. 2004.
Learning Hierarchical Models of Activity. In Proceed-
ings of IEEE/RSJ International Conference on Intelligent
Robots and Systems.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems : Networks of Plausible Inference. Morgan Kauf-
mann.
Rabiner, L. R. 1989. A Tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition. Pro-
ceedings of the IEEE 77(2):257–286.
Schmill, M. D.; Oates, T.; and Cohen, P. R. 2000. Learn-
ing planning operators in real-world, partially observable
environments. In Proceedings of ICAPS.
Stulp, F., and Beetz, M. 2005. Optimized execution of
action chains using learned performance models of abstract
actions. In Proceedings of IJCAI.
Wilson, A., and Bobick, A. 1999. Parametric Hid-
den Markov Models for Gesture Recognition. IEEE
Transaction on Pattern Analysis and Machine Intelligence
21(9):884–900.
Wilson, A., and Bobick, A. 2001. Hidden Markov Models
for Modeling and Recognizing Gesture Under Variation.
International Journal of Pattern Recognition and Artificial
Intelligence 15(1):123–160.
Zhang, N.; Qi, R.; and Poole, D. 1994. A computational
theory of decision networks. International Journal of Ap-
proximate Reasoning 11(2):83–158.

ICAPS 2006

82 Workshop on Planning under Uncertainty and Execution Control for Autonomous Systems

	Página 9
	Página 10
	Página 11
	Página 12

