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Preface

1. The scope of the workshop

The application of AI technologies in general to computer games and graphical char-
acters is an expanding research field, as witness the growth of regular AAAI Spring
Symposia sessions into the first in a series of international conferences on AI and Inter-
active Digital Media in June 2005, the growth of the conference Intelligent Virtual Agents
(IVA), and the development of sometimes affectively-driven autonomous synthetic char-
acters in projects in Europe, the US and Asia. At the same time, AI is being seen as
a source of commercial edge by Computer Games companies, with expansion in the
range of AI technologies being applied and the introduction of AI-related sessions at
the Games Developers’ Conference, and new tutorials on websites such as Gamasutra.
Games engines have also become a standard tool for groups of AI researchers, with
initiatives such as Gamebots [Kaminka et al 02]helping to make such engines more
versatile and open to researchers in agent architectures.

However so far - with some notable exceptions discussed below - AI planning re-
searchers have not been deeply involved in this work, with two unfortunate outcomes.
One is a tendency for games researchers without specific experience in AI planning to
reinvent wheels or use somewhat outdated approaches. The second is for planning re-
searchers themselves to focus on techniques which are inherently less useful for these
domains and to misunderstand the specific requirements of computer games and syn-
thetic characters.

In this workshop we hope to initiate greater interaction between AI planning research
and the interactive graphical environments used both for games and for more serious
educational and training purposes.

2. What has been done?

The work that has been carried out so far in the use of planning for synthetic char-
acters and in computer games can be divided into a number of different areas. The
first is the sue of planning as an action-selection mechanism for intelligent characters
in interactive graphical environments, not necessarily for games: often for education
and training applications. Pioneering work here was carried out by Gratch [Gratch 00],
whose Emile continuous planner combined AI planning technology with an agent ar-
chitecture in which emotions were used to control the direction of planning, and was
applied in the military training application Mission rehearsal Exercise [Gratch et al 01].
The FearNot! planner [Aylett et al 06] reported on in ther main conference is a develop-
ment of this work, this tome applied to anti-bullying education for children.

Rather than use generative planning, Cavazza [Cavazza et al 01] provided intelligent
graphical characters in a story environment based on friends with already-expanded
plans, in the form of AND-OR trees, which were searched at execution time. These
could produce a variety of narrative events, partly due to random siting of characters
at initialisation, and partly to the ability of the user to remove resources needed by a
character forcing them to replan by searching elsewhere in the tree. Work by Young
[Riedl & Young 04] has applied generative technology not to the action-selection mech-
anisms of intelligent characters, but in the service of the user as a method of authoring
narratives. Here planning is a way of maintaining logical coherence in a wide space of



story possibilities.
Laird is one of the best known proponents of computer games as a testbed for AI

technologies in general [Laird & van Lent 01]. He equipped a games bot with planning
specifically as a way of predicting what a user would do in order to counter it. This use of
a theory of mind - the bot was considering what the user’s plan would be in order to take
advantage of it - can also be thought of as a specialised version fo the counter-planning
used in two-person opponent games. It can also be applied in non-character based
games, and the bridge-bidder of Smith [Smith et al 98] was a particularly successful
example of this.

Finally, commercial games are beginning to move beyond the widespread use of
A*-based motion planning into more general applications of planning technology. The
game F.E.A.R is a good example here, containing a simplified STRIPS-type planner.

3. The role of planning

Two different types of questions are at issue in a workshop such as this. The first
derives from the application areas themselves, and asks what planning can add that
other technologies do not already. A games company might legitimately suggest that
unless AI planning improves gameplay, it is better not included because of the extra
level of risk and complexity it brings.

An interesting question here, already posed of AI technologies in general, is whether
added ’intelligence’ is necessarily a useful thing in a game. More intelligent actions may
improve a game - the example of bridge bidding is appropriate here - but on the other
hand it may not. For example, more intelligent opponents in games based on combat
will not amuse the user if they are impossible to kill as a result. It appears that gameplay
improvement is related to dramatic qualities such a character believability rather than to
intelligence per se. It is hoped that part of the workshop will consider this question in
some detail in relation to specific games.

A second question looks at the problem from the technology side: which of the
technologies associated with AI planning are specifically useful for synthetic characters
and computer games? Again, examining specific games can help to answer this type of
question, but some generic responses do seem clear.

The first is the requirement for interactivity - batch planning of the type practised in
the planning competition does not seem especially appropriate. These are domains in
which interactivity is usually a basic requirement since they are organised around a user
that expects an environment responsive to their actions. Continuous planning, and the
interleaving of planning and execution therefore seem much more relevant than their
current rather low profile in overall research suggests.

Integration is another requirement that is not always well-served by the AI planning
research community. Continuous planning supposes integration with perception and ex-
ecution, but in general AI planning in these domains must also interface to 3D real-time
graphics and to physically-based modelling. In general, planning must sit within a much
larger architecture, for which in the case of characters, goal management, emotional
modelling and personality may be as important as planning competence.

4. The way forward?

At this stage, when only an embryonic group of researchers interested in applying plan-
ning to this domain exists, it seems important to consider both the barriers to developing
this area of research and what needs to be done to remove them.

One barrier that this workshop might hope to start to attack is the lack of knowledge
among planning researchers about the domains themselves. This produces the risk of
working with inaccurate or outdated stereotypes, especially with respect to the computer
games industry, which can change very quickly indeed. It also seems to be true that



combining planning with 3D interactive graphics is inherently inter-disciplinary - with an
understanding of the graphics acting as the execution part of integrated systems rather
essential but usually lacking amongst planning researchers.

A second barrier may lie in the fact that many of the popular research areas of AI
planning technology is not all that useful for these domains in their current form. This
may be one reason for a limited take-up by games practitioners so far. An event such as
this is one rather small step in trying to encourage the development of more applicable
planning technology, as well as to generally educate ourselves on the requirements of
these domains and identify the key problems and tasks for the specific research agenda.

The Planning Competition has served the overall AI planning research community
well for this purpose, but its thrust does not seem very appropriate for planning for
synthetic characters or computer games for the reasons just discussed. Perhaps then
a task for a workshop such as this is also to talk over whether there is a need for
unifying examples or testbeds, for example based on a specific games engine and set
of scenarios.
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Abstract
As  both  the  growing  demand  for  more  immersive  games
continues and a widening of the buying audience increases, there
is  a  growth  in  the  quality  and  quantity  of  research  and
development  in  the  field  of  “believable”  computer  game
characters.  This  believability  is  necessary  for  the  continued
improvement in realism for computer games [Smith et al 2002]
and is a key factor in an ongoing drive by developers who are
creating greater immersive experiences for the gamer with each
new generation of game. The purpose of this paper is to look at
the elements that game developers use to give the agents in their
games, human like qualities.

Introduction
Artificial Intelligence (AI) is a broad term, which for this
paper applies to all work involved in making agents behave
in a  more  challenging and  believable  way. This  is  often
achieved  through an  agent’s  behaviour/actions  appearing
more human-like, thus creating the illusion that the gamer
is playing against a real human player [Saltzman 2000]. 

During the early 1980’s agent believability was not needed
in  the  arcade  style  games  being  developed.  Instead
developers  concentrated  on  implementing  only  enough
simple  behaviour  to  enhance  game play.  This  behaviour
was driven by simplistic algorithms many of which were
implemented  to  allow simple  path  planning  such  as  the
ghost’s movement in the  Pac Man game or simple finite
state machines (FSM’s) for controlling agent actions. These
were  traditionally  implemented  in  very  small  game
environments such as single screen or tile based games and
required almost no agent planning of goals but instead were
more akin to scripted behaviour. Later games utilised more
advanced  AI  techniques  such as  A* algorithms [Higgins
2002]  which  are  used  for  agents  path  planning  simply
because  virtual  worlds  have  become  considerably  more
complex. These techniques were implemented with limited
processing resources and without regard for creating agents
that can either exhibit human behaviour or look real.  By
the late 1990’s games such as ‘first person shooter’ (FPS)
style  games  were  becoming  more  popular  and  as  a
consequence of consumer expectations in graphics, sound
and  AI  the  development  became  considerably  more

complex as the requirement for agents that could interact
with each other  and the player increased.  This created a
requirement for agents to be able to both look and behave
more realistically within the very tight constraints of both
developer  technical  skill  and  processor  limitations.  This
was  especially  true  when  more  realistic  agents  meant
implementing  new technologies  such  as  realistic  sensory
systems, planning and more human-like agent physiology.

Agent Appearance
One of the key areas for improved agent believability has
evolved  from  a  rapid  evolution  of  graphic  processing
technologies.  This  has  resulted  in  higher  polygon
throughput and incorporation of new technologies such as
vertex and pixel shaders, capable of giving surfaces a more
“photo realistic look”. Using pixel shaders, developers are
getting  closer  to  giving  agents’  skin  a  human  like
appearance  without  the  need  for  complex  programming.
This reduction in complexity is due to the complementary
programming methods and languages including NVIDIA’s
Cg  [Fernando  et  al  2003]  and  Microsoft’s  High  Level
Shader  Language  (HLSL)  [Fosner  2003].  These  offer
developers  a  more  simplistic  method  of  shader
programming  through  a  “scripting  style”  language  that
allows the graphic artists to implement the technologies as
well  as  the  programmers.  The  increase  in  polygon
throughput  has  itself  led  to  a  greater  dependence  on
packages such as 3D Studio Max 8 [Autodesk 2005a] and
MAYA  7 [Autodesk  2005b],  which  are  used  to  create
models  and  animations  for  cutting  edge  games  such  as
Doom 3 [Id 2004] and Half Life 2 [Valve 2005]

Agent Physiology
With  an  evolving  realism in  the  outward  appearance  of
game  characters  there  has  been  a  growing  amount  of
commercial development in game agent physiology such as
inverse  kinematics  [Scarowicz  2004]  and  “ragdoll”
simulation  [Karma  2005].  Inverse  kinematics  include
techniques  to  allow  more  realistic  limb  movements  in
agents, these have been coupled with graphical techniques
to allow a smoother transition between actions by agents.
“Ragdoll”  is  a  term  for  the  growing  area  of  physics
application to agent physiology such as allowing agents to
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fall and move in a realistic human way.   

Top  selling titles  such as  Half  Life  2 combine  both  the
advances in graphics, physiology and physics modeling to
infuse  game  agents  with  human  like  movements  and
appearances.  Animals  seemingly  jump  at  players  and
agents fall realistically when shot with extreme weapons.
This has provided the gamer with a new level of realism
and a higher level of interaction expected with each new
generation of game.

Agent Decision Making
With  clear  visual  improvements  of  agents,  the  games
industry has also experienced an increase in the allocation
of resources and research being carried out within project
teams. This is supported by evidence from the roundtable
moderator’s  reports  for  the  last  six  years  of  the  game
developer conferences [GDC 1999-2005] that show up to
around 10% CPU usage in 1999 rising to between 15 and
50% for a majority of development teams in 2003.  This
increase parallels the rise of many of the FPS games and
strategy games such as  Microsoft’s Age Of Empires and
Westwood Studios’Command and Conquer Games.

An  area  of  AI  that  has  benefited  from  an  increase  in
development  time  is  agent  path-planning,  as  almost  all
agent goal-based behaviour relies on agents being able to
choose between paths that may lead to the same end goal.
This  area  of  AI allows agents  to  traverse  virtual  worlds
using  techniques  such  as  A*  and  waypoint  navigation
systems  and  have  been  implemented  in  increasing
complexity for many years in some format from Pac Man
to  Doom  3.  These  navigational  systems  have  been
implemented with both cognitive modeling and goal-based
reasoning, giving the agents the ability to navigate around a
virtual world with a purpose, such as the goal of looking
for  food,  as  can  be  demonstrated  with  the  use  of  the
Renderware  AI tool  [Renderware  2005]  or  the  goal  of
collecting weapons to fight against a human opponent. 

Recent AI research has focused in two developing areas,
which  can  be  used  in  conjunction  with  path  planning
techniques to create more believable characters. These are
sensory  input  processing  and  increased  agent  autonomy
through methods such as real-time agent planning [Orkin
2006].

Sensory Input
A growing area of interest in both academia and industry is
in  the  field  of  agent  sensory  systems.  This  has  led  to
methods of providing agents with both the ability to “see”
and  “hear”  items  in  their  environments,  but  a  serious
dilemma exists for its implementation, due to the differing
goals  of  industry  and  academia.  Industry  chooses  to
implement only enough technology to provide an element
of game play due to processing limitations and is thus only
concerned with “emulation and not simulation” [Leonard
2003]  academic research on the other hand tends to focus

in-depth on areas  of  interest.  Remembering that  the vast
majority  of  commercial  AI  implementations  use  “smoke
and mirrors” techniques there is a definite need to be able
to  scale  down  academic  research  findings  so  they  are
applicable within the processing and game play constraints
of projects. 

Current implementations of agent sight and hearing provide
compromises  between tweaking virtual  worlds  so  that  in
some games the scenery broadcasts to the agents as in the
Sims games [Orkin 2002] and/or the sensory input is driven
by either polled or interrupt driven perceptions in order to
limit processing load [Kirby 2002]. Therefore if an agent
needs  to  eat,  then  the  agent  will  actively seek  out  food
using some form of planning, which blends navigation and
either pre-scripted behaviour or real-time decision making.
Whilst  navigating,  polled  perceptions  will  provide
information about the environments to the agent’s sensory
system on a continuous basis, if the agent is stationary and
a player gets within its sensory range then an interrupt drive
perception will feed the information to the agent, this gives
a much less  processor  intensive form of implementation.
This research has led to a greater scope in game play such
as the ability to sneak behind enemies in games such as
Thief [Eidos 2002], which added sophisticated auditory and
visual senses to agents in the game [Leonard 2003].  Half
Life 2 and Thief have agents that can “seemingly” see and
hear  human players  as  they  wander  around  their  virtual
world.  This has meant that for the first time agents can be
made aware of human players based on similar constraints
to those of real human hearing or sight, or at the very least
the  first  steps  in  simulating  these  sensory  systems.  The
usage of sensory systems in recent games such as Far Cry
[UBI 2004] have been used to allow not only elements of
stealth, but the ability to distract agents by throwing rocks
near  them or  sneaking  past  them whilst  their  backs  are
turned. 

Emerging areas of interest are inter-agent communications
as seen in the “walkie talkies” in Far Cry or cries for help
from agents in World of Warcraft [Blizzard 2005] allowing
agents to get support from other agents. Similar techniques
have been used in  Call of Duty [Activision 2003],  when
bullets are fired near enemy agents this causes a change of
behaviour that allows the agent to dive for cover allowing
human controlled game characters to advance forward to
capture areas or attack.

With  the  implementation  of  agent  sensory  systems  has
come a greater use of data storage for the sensory input for
agents.  These storage systems are linked to agent decision
making through back-end  management systems and have
created  a  new area  of  research  in  fast  data  access  and
storage  mechanisms  such  as  spatial  data  structures
[Reynolds 2000]. These new systems and technologies are
crucial  to  real  time  considerations  in  modern  computer
games.
Implementations of senses such as touch and smell though
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not presently adding much to the game play are beginning
to appear as in the use of smell for agents in  Half Life 2
which  allows  agents  in  the  game  to  “sense”  a  player
through an artificial olfactory system.

Decision Making
As mentioned previously, decision making has focused on
mainly goal based reasoning and path planning. This allows
agents,  such  as  those  seen  in  Unreal  Tournament  2004
[Atari 2004] to work co-operatively or adversarial with or
against  the  player.  Agents are  given goals,  such as  “kill
gamer”,  supplemented  with  inter-agent  communication
frameworks that provides co-operative team play with other
agents or the gamer. 

Agent decision making traditionally focuses on the use of
finite  state  machines  (FSM)  which  are  based  on
deterministic programming i.e. if-then production rules that
are  commonly used  for  controlling  agents’  behaviour  in
games [Carlisle 2002]. 

An example is 

“IF player in view AND gun loaded then FIRE”

The limitations of FSM’s for computer games is that they
rely  on  conditional  true or  false variables  resulting  in
actions that are predictable and could be perceived as being
limited. To enhance FSM’s the Boolean variables can be
replaced with fuzzy variables that have a much larger range
of values. This allows for a more complex set of actions i.e.

“IF  player  in  sensory  range  AND  gun  has  enough
bullets THEN fire weapon ELSE look for ammunition”

which would mean that an agent might not fire the gun if
they do not have enough bullets to kill the player, thus they
might  go  instead  to  retrieve  ammunition.  This  allows
developers to expand agent goal options by using linguistic
rules to define behaviour in conjunction with tiered goal
systems  involving  primary  and  sub  goals  to  allow  a
breaking down of  complex tasks  [Waverren  2001].  This
tiered approach to tasks enhances the behaviour options of
agents to offer them choices depending on the primary task
set. A difficulty with giving agents sub tasks is that if the
agent’s option path is highly varied, then a situation may
arise  where  conflicting  goals  will  need  to  be  carefully
managed to avoid a gridlocked agent response.

Making more adversarial players is not the only way that
AI  has  been  improved.  Games  such  as  Creatures
[CyberLife  1996]  blend  techniques  such  as  neural
networks, and aspects of biochemistry to create agents with
unique behaviours  that  can interact  and  mutate  into  new
agents with unique behaviours [Stern 1999].

Many developers have serious concerns about agents that
could  try  and  move beyond the  constraints  of  the  game
architecture  if  they  exhibited  unpredictable  behaviour.
Therefore  developers  rely  on  a  more  scripted-behaviour

approach to avoid any kind of adverse emergent behaviour.
Another  concern  of  games  developers  is  that  there  are
serious concerns with AI adversely affecting game play due
to both the processor time required and the speed of the
response. This may be due to the software waiting for the
next  agent  action  or  simply  overly  complex  AI  that
interrupts the player’s immersion. In some cases this has
led  to  developer’s  reducing agent capabilities  such as  in
Ultima Online [Stern 1999]. Techniques to decrease system
load  and  responses  times  for  complex  AI  include  AI
handlers running as separate threads and/or using level of
detail  AI  architectures  dependant  on  situation  and
processing availability [Woodcock 2003]. 

Agent Emotions
Commercial implementations of intelligent agents continue
to provide a reasonable challenge to the gamer, but most
games still lack any implementation of agent emotion’s and
thus  agents  can  appear  devoid  of  emotion,  which  could
appear to the gamer that the agent is lifeless and shallow.
Agents in commercial games currently cannot get annoyed
by failed goals, show satisfaction for a kill against a tough
enemy, or run away in fear. 

Some  developer’s  script  facial  animations  to  appear  on
agents’ faces at intervals, to give the gamer the illusion of
agent emotion i.e. when a player is killed by an agent the
facial  emotions  might  show  a  smile.   The  game  Halo
[Bungie 2003] featured simple finite state machines for the
emotions surprise, anger and awe and upon activation of a
particular state the agent would flee in terror,  go berserk
and attack,  or  retreat  into  a  defensive  position,  this  was
complemented with suitable facial animations.

Conclusions
Recent games featuring large-scale environments such as
World of Warcraft have virtual worlds filled with hundreds
of agents and millions of gamers across multiple servers.
The  agents in  these worlds  need to  appear  to  behave as
realistically as possible to provide a satisfactory degree of
immersion to the gamer and therefore are programmed with
some  awareness  of  their  environments  and  a  level  of
autonomy.   These  agents  seemingly  make  decisions  on
goals given to them by the developer and thus appear to act
in  a  similar  way  to  a  real  player.  Some  games  even
implement “planning models” such as in  F.E.A.R [Orkin
2006] to allow agents to choose options in real-time, based
on their goals. 

Currently  agents  can  be  equipped  with  sophisticated
sensory systems such as sight and sound (hearing) and are
able  to  traverse  virtual  worlds.  They  can  plan,  choose
between  options  to  complete  goals  and  thus  create  the
illusion  of  autonomy.  The  impact  on  the  developer  for
implementing  these  new  technologies  is  the  increased
processing  and  resource  implications  for  this  new
generation of games. This has meant that developers have
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been forced to look at ways of optimising games in such a
way as to maintain a consistent  game experience for  the
user  whilst  creating  ever  evolving  virtual  agents  for  the
gamer  to  interact  with.  In  part  this  has  been  achieved
through  a  greater  use  of  more  intelligent  environments,
some  of  which  can  broadcast  information  about  useful
items in “view” to the agents, such as those found in the
Sims games. 
This  evolving  of  both  environmental  design  and  AI
architectures is necessary for the continued development of
more sophisticated behavioural models for agents, in order
that  these agents are  able to  affect  and interact  with the
player and their environments [Todd, P et al 1997]. These
optimisation  techniques  along  with  a  growth  in  visual
improvements of agents is currently leading developers to
look at other areas of improving agent believability. One
area of interest is in the use of human emotion modeling.

If  agents  can  be  developed  with  more  sophisticated
cognitive and goal architectures then it is feasible that they
could  exhibit  a  level  of  emotions  such  as  the  universal
emotions [Damasio 1999], fear, happiness, sadness, anger,
surprise and disgust. These emotions could be linked to the
agents’ goal structure [Johnson-Laird 1989]:

 Happiness  that  a  goal  has  been  achieved  or
progress made.

 Sadness if a goal not completed or loss of a goal.
 Anger if goal challenged or failed because of an

external entity
 Disgust if a goal is violated.
 Anxiety if a goal or the goal of self-preservation is

threatened by a future event.
Plus 

 Fear if an immediate goal is in danger or the goal
of self- preservation is immediately threatened.

 Surprise – unexpected successful completion of a
goal.

This  may  initially  be  limited  to  both  a  blend  of  facial
[Ekman 2004],  physical i.e. posture, voice and emotional
state  storage,  but  could  subsequently  be  expanded  to
actually affect primary goals and the choosing of sub goals
that might best satisfy any emotional needs. This could be
the agent experiencing rage at a player killing his comrade
and  then  choosing  to  punish  the  player  by  killing  his
teammate rather than the player. This of course would open
up the possibility that an agent may become unpredictable,
but would certainly offer the gamer a much more human
like opponent. 
Looking ahead  there  are  several  hurdles  to  overcome in
implementing agent emotions amongst which are: 

1. Constraining agents to virtual world architectures
thus their cognitive model and domain knowledge
would need to be carefully developed which might
require extensive resources and time.

2. Limitations due to the current state of the art  in
agent decision making that may not be advanced
enough for the realization of complex emotional
architectures.

3. A  possible  side  effect  of  adding  ‘human  like’
emotions  to  agents  is  that  this  unpredictability
could  be  hard  to  replicate  for  testing  and
potentially memory and processor intensive.

4. The  defining  of  a  suitable  emotion  architecture
that can adequately model human emotion within
the constraints of developer resources and current
state of the art in AI games technologies.
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Planning for an AI based virtual agents game∗
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Abstract

Computer games have become a big software industry.
From the early days of the use of AI to solve classical
games, such as chess or checkers, we are now seeing an
intensive use of graphics to attract gamers. Currently,
AI in games, normally refers to either the designing
the behaviour of stock AI agents, like Bots (automated
player characters), or refers to custom AI agents such
as Non-Player Characters (NPCs). We present here our
on-going work on building a game, AI-live, that is ori-
ented towards the intensive use of AI controlled Bots.
The game borrows the idea from the popular The sims,
but with a strong focus on building characters based on
different AI techniques. More particularly, we present
the work on applying planning techniques for building
one such agent.

Introduction
Games has always been a challenging domain for test-
ing AI techniques. In the beginning of AI the focus was
on classical games, such as chess (Newell, Simon, &
Shaw 1972) or checkers (Samuel 1963). The type of AI-
based techniques that were used for solving these games
were mainly search and, sometimes, machine learning.
Then, in the 80’s and 90’s the work on these classi-
cal games continued by intensive use of faster machines
with more memory, such as the work on Deep Blue (Hsu
et al. 1990) or chinook (Schaeffer et al. 1996). Re-
cently, video games have produced a renewed inter-
est from the AI community on applying its techniques
into games. They normally refer to automated play-
ers (Bots), either opponents or teammates, and NPCs.
Bots are agents that act as if controlled by a human

∗This work has been partially supported by the Spanish
MCyT under project TIC2002-04146-C05-05, MEC project
TIN2005-08945-C06-05, and CAM-UC3M project UC3M-
INF-05-016.

†The use of planning for this domain appeared in the dis-
cussions carried out within the Artificial Intelligence Stan-
dards Committee of the International Game Developers As-
sociation, Working Group on Goal Oriented Planning. We
would like to thank its members.
Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

player. They are stock AI characters that will follow
designed behaviours. Non-Player Characters are any
artificial agent that is not a player, like Monsters that
act only as an enemy to all players. A notable exam-
ple of AI in games is the project called FEAR, which
stands for Flexible Embodied Animat aRchitecture.1
This is a framework for creating AI controlled systems
for synthetic characters. The project includes reusable
AI components, a portable framework, and interfaces
to realtime 3D games. A similar system is Arianne, al-
though it is not designed specifically for AI.2 Arianne
is a multiplayer online engine to develop turn based
and real time games providing a simple way of creat-
ing the game server rules and game clients. There have
also been several tasks in games that have been solved
using a variety of AI techniques. Examples are produc-
tion systems for quake (van Lent et al. 1999), planning
for bridge (Smith, Nau, & Throop 1998) or Real Time
Strategy games (Chung, Buro, & Shaeffer 2005) and
in Full Spectrum Command,3 or genetic approaches in
Blondie24 (Fogel 2001) (see (Rabin 2002) for some re-
ported work). Perhaps, the most used technique has
been different versions of the A∗ algorithm for path-
planning purposes.

The idea inspiring AI-live has been the commercial
game The sims4 and how it could be generalised and
modularised so that AI clients could be designed to play
a game together with humans. Our goal is to build an
architecture similar to the one proposed in (Buro & Fur-
tak 2004) for Real Time Strategy games. Each AI client
is developed as an architecture using one AI technique.
So far, we have built a rule-based AI client and a plan-
ner one in AI-live. However, it could be augmented to
incorporate any other planner or AI technique. Further-
more, all agents can interact, leading to a more complex
system that integrates social and psychological models
in order to obtain believable emergent behaviours, as
the work by Silverman (Pelechano et al. 2005).

1http://sourceforge.net/projects/fear
2https://sourceforge.net/projects/arianne
3http://www.ict.usc.edu/content/view/56/108
4http://en.wikipedia.org/wiki/The Sims
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AI-live architecture
AI-live is a client/server application running over
TCP/IP. It works similarly to modern online games
such as Ragnarok Online,5 World of Warcraft6 or Guild
Wars7, where various users connect to a central server
to play in a shared world , with a key difference: in
our case, human clients share the game with AI con-
trolled characters using a variety of AI-oriented tech-
niques, playing in the same world. At this point in
development, a basic universe has been implemented
consisting of a simple room with objects to pick up,
together with two different AI clients and a graphics
renderer. Figure 1 shows a high level view of the archi-
tecture.

Figure 1: High level view of AI-live architecture.

The server holds the state of the universe, which is
divided in separate stages or realms where clients play.
Each stage is made of objects in a cell-based 3D space.
These objects are instances of classes from an ontology
that is shared among all clients. In the future, clients
will be able to travel from one stage to another, as play-
ers do in online games.

AI clients connect to the server to control an actor
object in a specific stage each, while GUI clients connect
to the server to open a window and display a graphi-
cal representation of a particular stage. In the future,
GUI-based clients will allow human players to play and
interact with AI clients.

The greyed application modules in Figure 1 are re-
sponsible for communication between both ends. All
these modules are written in C. The server intelligence
is done using the clips tool for building knowledge-
based systems.

After the server is initialised, it listens for incoming
connections and runs a round-robin loop over the list
of connected clients (we will define in the future asyn-
chronous behaviour):

• Each AI client receives the clips state corresponding
to its stage from the AI server and gets a turn with
unlimited time to decide on what to do. All other
5http://en.wikipedia.org/wiki/Ragnarok Online
6http://www.worldofwarcraft.com
7http://www.guildwars.com/

AI clients are paused as this happens. When the AI
client is done, the server receives an action, which is
passed to the AI engine and executed.

• Clients get all their turns during the game in strict
order of connection.

• All GUI clients receive the clips state corresponding
to their stages from the AI servers in every turn the
server executes, together with each AI client.

Clients connect to the server using a simple bi-
nary network protocol with little overhead, and at
this stage of the project, they synchronise with the
server simply by waiting for incoming data. Currently,
there are two AI clients implemented, using clips and
ipss (Rodŕıguez-Moreno et al. 2004) (an integrated
planner and scheduler based on prodigy (Veloso et al.
1995)) respectively, as well as a 2D GUI client.

Given that we would like AI-live to grow in the fu-
ture and in order to be flexible, we have defined an on-
tology that is shared by all modules, that is described in
the next subsection. Next subsections describe in more
detail the ontology, the server and the clips clients,
while next section describes the ipss clients.

The ontology
Figure 2 shows AI-live class model. All objects in AI-
live universe are instances of one of these classes. A
set of basic physical properties define all entities, and
actors add personality properties and relationships with
other entities (actors or not).

The main classes in the ontology are:

• Stage : it represents the different stages where the
game can take place.

• Entity : abstract class to represent any possible en-
tity in the stage. An stage is a collection of entities.
There are four entity subclasses:

– Actor : it represents game actors together with
their personality and emotions. Now, we are not
reasoning about this type of knowledge, but we
would like to focus on it in the next future.

– Wall : it represents walls that cannot be traversed.
– Object : it represents any general object.
– ContentCapability : it represents objects with

capacity properties as a Container or an Actor .

• Cell : it represents the atomic space portions inside
a stage.

• Relationship : it represents relationships among
actors and objects.

• ClientAction : each action supported in the
game has an associated class. So far, they are
MoveAction , PickUpAction , PutDownAction
and AddClient .
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Figure 2: AI-live ontology.

The server
The server is the central part of the game. It holds the
state of the game with all of its defined stages and ob-
jects. It is in charge of maintaining a list of connected
clients to serve states to and receive actions from in a
round-robin basis. These actions are verified and exe-
cuted against the state, producing a new state for the
next client. The server is written in C language embed-
ding the clips production system to control the state,
verify and execute rules.

When a client of any kind connects to the server
(which is listening for incoming connections), both
parts will identify. On success, the server will add the
client to the loop. In this loop, all AI clients get one
turn in strict order of connection, while GUI clients re-
ceive a copy of the state in every turn, but they do not
send an action.

The actions currently supported by AI-live are:

• Move an actor from one position to another

• Pick up an object as requested by an actor

• Put down an object as requested by an actor

To execute these actions, the clips code in the server
has a series of rules, that check for validity of the re-
quested operations and alter the state. As the state
changes, clients actions change.

The clips client
The clips client is an AI-live client implemented using
the clips tool for building knowledge-based systems.
We have integrated clips with the rest of client code
that handles, as in the case of the ipss client, all net-
working operations. At this stage of the project, each
clips client playing the game will have to pick up as
many objects as possible, considering its actor maxi-
mum capacity. As in the case of the ipss clients, set-
ting up the goals of the AI characters is, perhaps, one of
the most interesting parts of the project that we would
like to work on. Given that ipss is a backward chaining
planner and clips works in forward mode, there will be
differences in how goals will be defined and pursued in
both types of clients. In the case of clips clients, they
can afford having a more reactive behaviour, while ipss
clients will have to be goal oriented (in its simplest con-
figuration). We are also considering adding other plan-
ners that might have a different behaviour, introducing
new ways of looking at this problem.

To decide on which action to run, the clips client will
use the stage received from the server as state, matching
every object and property (such as class, position, size,
angle, weight, bulk...) with conditions of rules.

The gui client
The first graphical client for AI-live is a conventional
2D sprite-based renderer named CREND. It is modelled
after successful 2D engines still in use by some of today
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video-games, and is written from scratch in pure C,
using the portable SDL low-level multimedia framework
for graphics.

CREND connects to an AI-live server and obtains
the state for a stage as an AI client would, but it does
not send any action. Instead, it draws a graphical rep-
resentation of the stage in a window where users can see
what is happening in the server. Objects are drawn in a
particular parallel perspective derived from traditional
2D scrolling, and used by most 2D role-playing games
such as Tales of Phantasia.

The ipss client
The ipss client is the one that uses planning technology
for deciding at each step which action is best to execute.
It uses the ipss system that integrates planning and
scheduling (Rodŕıguez-Moreno et al. 2004). One can
use any other planner for implementing this planning
step, though there some features of ipss that have been
useful for building these clients (some of them will be
described later). The client is divided in two modules:

• Main module: its tasks are to connect to the server,
deal with the network, and invoke the AI module.
This module is in charge of the low-level network-
ing, receiving each state and interacting with the AI
module to obtain an action, which is then forwarded
to the server. It is written in C. The client can be
configured with the following parameters: the server
address and port; the stage the client is to play in;
and the controlled actor profile.

• AI module: its main task is to decide the actor ac-
tions. The planning tool chosen for this task is the
domain-independent planner ipss. It is used to find
a plan for the AI-live domain and problem supplied
by the main module. The main module receives the
state with all the objects for the current stage from
the server and parses it, translating it into ipss de-
scription language (quite similar to pddl2.1 (Fox &
Long 2002)). The parsed state and goals form the
input problem to the planner. The client domain is
defined as a set of operators designed to be counter-
parts of the set of implemented actions the server can
execute. At this stage of the project, the AI-live ac-
tions are supported as operators: move, pick-up and
put-down. These two last operators use the individ-
ual capacity constrains of characters. Then, ipss pro-
vides a potential plan to achieve the goals from the
current state, and outputs only the first operator in
the plan. This operator is translated back to AI-live
actions scheme, and returned to the server.

Now, we will comment on two specific issues that
have to be considered for applying planning to game
playing in general and how we have solved them within
AI-live: how goals are generated, and how to solve
efficiently the problem of selecting paths to go from one
place to another in a given map, how to integrate path
planning with task planning.

The first issue concerns selecting a goal to work on.
Currently, AI-live selects to maximize the number of
objects taken by the actor, so goals consist on having
the actor the objects that are in the room. Traditional
approaches to planning assume that goals are given as
input to the planners. However, we believe that, from
a planning perspective, setting up the goal of an actor
in this type of domains is precisely one of the key chal-
lenges of using AI planning here. Therefore, we want
to study different types of goals generation schemes for
this type of games. A related problem is the over-
subscription in planning that occurs when agents do
not have enough resources to achieve all of their goals.
This requires finding plans that satisfy only a subset of
them (van den Briel, Sánchez, & Kambhampati 2004).

The second issue relates to the use of grids/maps in
planning domains (that appear in most games), as it
is the case of AI-live. For many planners, reasoning
about how to go from one place to another can easily
make planning intractable, as it is the case of ipss. This
is specially true if we want to optimize the cost of the
path to go from one place to another according to a
quality measure. There are many articles in AI games
about applying heuristics to path planning. However,
planning domains pose the added problem of path plan-
ning integration with the operator definitions. For ex-
ample, to define an action for moving a synthetic char-
acter is necessary to know how the character can move
in the world. We have used two approaches. The first
approach, which is based on a careful manual knowl-
edge engineering of the domain, exploits one of ipss
main features: the support for user-defined heuristics,
to efficiently guide the search. These domain-dependent
heuristics are defined as control rules (if-then struc-
tures), that help the planner taking directions, check-
ing adjacency, and deciding on a position for an ac-
tor to pick up an object from the stage. Figure 3
shows an example of one of these rules for selecting
bindings for the move operator. Suppose that the cur-
rent planner goal is to have an actor on a goal-cell
(the one that has an object which the actor wants to
pick up, with coordinates (x,y) ). If the actor is cur-
rently at another cell, this rule selects the best adjacent
cell to the goal-cell , origin-cell (coordinates
(x1,y1) ), to which the actor should move first. This
decision is needed given that ipss is a backward chain-
ing planner. The meta-predicate (adjacent-p x y
x1 y1) is true if position (x,y) is adjacent to position
(x1,y1) . The meta-predicate (best-cell-p x y
x1 y1 x2 y2) is true if (x1,y1) is the best adjacent
position for reaching (x,y) starting from (x2,y2)
(where the actor is). Repeated use of this control rule
guides the actor within the map directly from its initial
position to the goal cell.

This approach for solving the path-planning problem
within the task planning requires to define by hand the
appropriate control rules. Obviously, this depends on
the user that defines the right knowledge. The sec-
ond approach integrates the task planner (ipss) and a
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(control-rule select-cell-for-MOVE
(if (and (current-goal (cell-inCell <goal-cell> <actor_id>))

(current-operator move)
(true-in-state (cell-x <goal-cell> <x>))
(true-in-state (cell-y <goal-cell> <y>))
(true-in-state (cell-x <origin-cell> <x1>))
(true-in-state (cell-y <origin-cell> <y1>))
(adjacent-p <x> <y> <x1> <y1>)
(true-in-state (cell-inCell <actor-cell> <actor_id>))
(true-in-state (cell-x <actor-cell> <x2>))
(true-in-state (cell-y <actor-cell> <y2>))
(best-cell-p <x> <y> <x1> <y1> <x2> <y2>)
(or (true-in-state (cell-occupied <origin-cell> false))

(true-in-state (cell-inCell <origin-cell> <actor_id>)))))
(then select bindings ((<cell_id> . <origin-cell>))))

Figure 3: Example of a hand crafted control rule for selecting bindings for the move operator.

path planner (a standard implementation of the A∗ al-
gorithm), by interleaving their execution following the
ideas in (Fox & Long 2001). When ipss needs to find a
path during the search for the task planning solution,
it calls the path planner. If there is a path between the
current position of the actor and the goal position, the
path planner returns a solution (together with all its as-
sociated quality metrics), that can use that information
while solving the problem.

In relation to the integration of task and path plan-
ning, ipss has two useful features:

• Functions can be called within the definition of vari-
ables on operators. If we want to know whether there
is a solution and its quality between two nodes of
a path-planning problem, we can define a variable
distance in the preconditions of the move operator
whose value is the result of calling the path planner
function.

• Different cost metrics can be defined at each opera-
tor. In this paper, we are mainly interested in the
distance quality metric, but both planners (task and
path planners) can also use other quality metrics, and
obtain good solutions according to them.

For describing the overall planning problem we need
two separate files. A problem file for the task plan-
ner, in which we have abstracted the information on
the map/path graph, and a problem file for the path
planner with information about the map/path graph.
Nodes of the path graph will also appear in the task
planner problem file so that there is a connection be-
tween these two processes. In the next subsections we
describe this process in more detail.

Path planner
The input to the path planner is a path-planning prob-
lem composed of an initial node, a final node, a quality
metric, and a graph. In order to automatically specify

the graph for each problem given to the ipss client, we
extract it from the problem definition. Given that we
wanted the approach to be as domain independent as
possible, for each domain we only need to specify the
problem predicates from which the system will create
the graph nodes and the predicates from which the sys-
tem will create the graph arcs. Each arc can have a
set of quality metrics defined. In our experiments, we
have only used one: distance. But in other applica-
tions, such as planning tourist visits in the samap ar-
chitecture (Arias, Sebastiá, & Borrajo 2005), we have
used others such as price (cost of the transportation
method), utility (a subjective value that can represent
user/agent preferences such as I prefer to use the bus
when possible), distance, and time. Then, when call-
ing the path planner we can specify the cost metric to
be minimized.8 The output of the path planner is a
list of move actions in the form of: initial node, final
node, and the values of the cost metrics for that arc
(distance).

Given that the task planner can call the path-planner
for solving the same path planning problem many times
during the search (due to symmetries in the task plan-
ning search tree), the path-planner provides a caching
mechanism. Every solution for the path planning prob-
lems is stored the first time. Then, in case of solving the
same path planning problem is needed, it retrieves the
previous solution. This assumes that the graph does
not change between two calls to the path-planner. In
case it can change, such as domains in which agents
can act on the arcs, the nodes, or their quality metric
features, then the caching mechanism will not be use-
ful. For instance, if the actor leaves objects in the floor
when building a plan, it creates obstacles in the graph.
Therefore, a previous solution to go from one place to
another in a previous call of the path planner can be

8In the case of maximizing cost metrics, such as utility,
we can always convert them to minimization problems.
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made invalid.
This approach can be applied to many other domains,

such as driverlog, sokoban, . . . . The driverlog
domain, for instance, has a graph for drivers and a
graph for trucks. So, our implementation of the path
planner admits a set of graphs to be defined. Then, for
each domain operator, the appropriate path-planning
problem file will be selected.

Task planner
ipss uses a backward search to solve planning problems.
The types of decisions that it makes during search are:
goal to work on, operator name that can achieve the
selected goal, bindings for that operator, and decide
whether to continue subgoaling or execute an applicable
operator. In order to integrate it with the path planner,
we redefined the move operator as specified in Figure 4.

Variables appear between brackets. The preconds
section defines first the variables that are used in the
operator, as well as the operator preconditions. The ef-
fects section defines other variables that are used only
in the effects, as well as the postconditions. Finally,
the cost section defines new variables only used for the
costs computation, and the operator costs depending on
the quality metric used by the task planner when solv-
ing a specific problem. In this case, we have defined one
quality metric: steps (distance). The gen-from-pred
function accesses the current state to provide values for
variables. For instance, the room (stage) where the ac-
tor currently is, or the position it is on.

The connection with the path planner is done
through the path-planning-distance function
whose input parameters are the initial node and end
node, that will also appear in the path-planner graph
description. It returns false in case of no solution, or
a numeric value with the total distance to go from the
initial node to the final node. This value is assigned to
the <steps> variable.

Conclusions

We have presented the first steps of building AI-live, a
game inspired in the popular game The sims. We have
defined and built an architecture based on a server and
three types of clients: a rule-based one, a planning-
based one, and a gui. From a planning perspective, we
have defined and provided initial solutions to two plan-
ning problems related to this type of domains: goal se-
lection and integration with path-planning. Both prob-
lems are common to the application of planning tech-
nology to many games.

Currently, we are dealing with a simplified domain
in terms of actions covered, though we have defined the
architecture to be easily augmented with many more ac-
tions. So, we are using an ontology that can cope with
the knowledge needed for many of the potential new
actions. For instance, in the next future, AI-live is ex-
pected to shift towards the social relationships among
actors and the reasoning about psychological aspects,

that have already been considered in the ontology. We
also want to change our 2D cell-based world represen-
tation to a full 3D with dynamic physical objects.
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(OPERATOR move
(params <actor_id> <cell_id> <destination_cell_id>)
(preconds

((<actor_id> ACTOR)
(<stage_id> (and STAGE (gen-from-pred (stage-entities <stage_id> <actor_id>))))
(<cell_id> (and CELL (gen-from-pred (cell-inCell <cell_id> <actor_id>))))
(<destination_cell_id> (and CELL (diff <cell_id> <destination_cell_id>)))
(<steps> (and STEPS (path-planning-distance <cell_id> <destination_cell_id> <steps>)))
(<xx> (and COORDINATE (gen-from-pred (cell-x <destination_cell_id> <xx>))))
(<yy> (and COORDINATE (gen-from-pred (cell-y <destination_cell_id> <yy>))))
(<x> (and COORDINATE (gen-from-pred (cell-x <cell_id> <x>))))
(<y> (and COORDINATE (gen-from-pred (cell-y <cell_id> <y>)))))

(and (cell-inCell <cell_id> <actor_id>)
(cell-occupied <destination_cell_id> false)))

(effects ()
((del (cell-inCell <cell_id> <actor_id>))

(del (cell-occupied <destination_cell_id> false))
(del (cell-occupied <cell_id> true))
(del (actor-x <actor_id> <x>))
(del (actor-y <actor_id> <y>))
(add (cell-inCell <destination_cell_id> <actor_id>))
(add (cell-occupied <destination_cell_id> true))
(add (cell-occupied <cell_id> false))
(add (actor-x <actor_id> <xx>))
(add (actor-y <actor_id> <yy>))))

(costs ()
((steps <steps>))))

Figure 4: Example of the move operator for the AI-live domain in the ipss language.
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Abstract 
This paper describes a foundation for an interface to allow 
non-technical human authors to collaborate with an 
automated planning system to design interactive narrative.  
Drawing from research in advisable and mixed-initiative 
planning, a domain metatheory is presented that allows for 
qualitative elaborations of narrative domains. The authors 
describe a graphical user interface that exploits this 
metatheory to specify authorial preferences.  Specific 
constructs related to interactive narrative are considered to 
demonstrate how the preferences of the human author may 
be used to define and control the possible user experiences 
of an interactive narrative.   

Introduction 
 
“Interactive narrative” describes the stories that develop 
within virtual worlds in which human users interact with 
one or more computer controlled agents. The most well 
known examples of interactive narrative are computer 
games, but also included are intelligent tutoring systems, 
embodied conversational agents, virtual environments, and 
training simulators. A persistent challenge for such systems 
is the narrative paradox: “how to reconcile the needs of the 
user who is now potentially a participant rather than a 
spectator with the idea of narrative coherence.” (Aylett 
2000). 
 
Few systems attempt to reconcile these goals dynamically 
at run-time.  Those favoring strong plot coherence often 
restrict the depth of the computer-controlled characters, 
and/or the human user’s available palette of interactions 
with these characters, reducing character believability.  
Systems with interesting and believable characters often 
lack any automated mechanism to coerce these ‘emergent’ 
bots to meaningfully contribute to a story.  Although many 
useful and commercially successful systems have been 
built with these limitations, none has yet fully met the goal 
of Hamlet on the Holodeck (Murray 1998, Cavazza et. al, 
2000). 
 

One approach for the balancing of these competing goals is 
the Mimesis system (Riedl, Saretto, and Young 2003).  
Their algorithm generates plans for actions of story world 
characters based on hierarchical task decompositions and 
discrete causal requirements.   Although Mimesis 
simultaneously solves for plot coherence and character 
believability, the authors acknowledge (Riedl and Young 
2004) that a primary limitation is the lack of a search space 
heuristic that would allow the system to judge the relative 
“goodness” of one plan over another.   In other words, 
there is no mechanism to ensure that particular narrative 
qualities such as “suspense”, “surprise” or  “romance” will 
be produced in resulting plans. 
 
One might attempt to define a generalized heuristic 
function in terms of universally accepted narrative ideals, 
but most planners lack a sufficiently powerful model to 
make associations between such generalized ideals and the 
semantics of a specific problem domain and plan space.  
Also, no set of heuristics has yet been identified that 
guarantees “good” narrative even when applied by skilled 
and motivated humans.  As author Somerset Maugham 
quipped, “There are three rules for writing the novel.  
Unfortunately, no one knows what they are”. 
 
An alternative approach is to involve the human author in 
defining heuristic functions for each interactive narrative 
based on that author’s preferences of setting and plot.   For 
the system to capture these preferences and report them to 
the planner, it must have an integrated understanding of the 
definitions of actions and entities in the problem domain 
(the setting) and the effects that the constraints on those 
actions have in defining the topology of the plan space 
(plot experiences).   A reasonable approach for gaining that 
understanding is to keep the author “in the loop” 
throughout the plan construction process.  This paper 
describes the foundations for the design of such a 
collaborative authoring environment for interactive 
narrative.  The first stage of this environment is being 
implemented as part of the Zócalo system of planning 
services at North Carolina State University (NCSU).  
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Planning For Interactive Narrative 
 
Planning for interactive narrative offers special challenges 
and opportunities.  Even in systems that do not attempt the 
dynamic generation of narrative structure, it is difficult to 
maintain clear knowledge or control of what can happen at 
run-time. Two examples from a sub-genre of narrative, 
massively multiplayer online games, illustrate this point.  
An early such game (1985) was Lucasfilm’s Habitat.  One 
of the first game-wide campaigns planned inside Habitat 
was a treasure hunt called the ”D’nalsi Island Adventure”.  
Habitat designers Morningstar and Farmer recall: 

 It took us hours to design, weeks to build (including a 
100-region island), and days to coordinate the actors 
involved. It was designed much like the puzzles in an 
adventure game. We thought it would occupy our 
players for days. In fact, the puzzle was solved in 
about 8 hours by a person who had figured out the 
critical clue in the first 15 minutes. Many of the 
players hadn’t even had a chance to get into the game. 
The result was that one person had had a wonderful 
experience, dozens of others were left bewildered, and 
a huge investment in design and setup time had been 
consumed in an eyeblink. (Benedikt 1990) 

 
This lack of predictability was not simply an artifact of the 
times.   In January of 2006, Jeff Kaplan, a lead designer of 
World of Warcraft (the most popular on-line game to date 
at the time of the article with 5.5 million subscribers) was 
interviewed by the New York Times.  In the interview he 
was asked how long it would take until the top boss in one 
realm of the game (Ahn’Qiraj) would be defeated: 

My estimates are in the one-to-two-month range, but 
my expectation is that it could happen today. I've 
learned that as soon as something is in the game, you 
have to expect that it's going to be beaten. (Shiesel, 
2006) 

 
In essence, the designers of this type of interactive 
narrative have given up on predicting the run-time 
possibilities of their work.  Instead, these Game-Masters 
(Louchart and Aylett 2003) are kept busy developing the 
next episodic installment of narrative while tweaking its 
predecessor to accommodate the unforeseen actions of 
users. 
 
Despite the difficulty of constructing shrink-wrapped 
games that solve the narrative paradox, designers continue 
to make the attempt.  Marc Laidlaw, lead designer of the 
commercially successful, narrative-rich game Half Life 2 
for Valve Entertainment, asserted the importance of plot in 
at the Austin Game Writer’s Conference in late 2005: 

Game designers should be in love with plot.  It’s the 
engine of the story.  It’s the core tech, that little 

mathematical nub that everyone can point at and make 
the subject of proofs and axioms and corollaries.  
None of these technical considerations serve us very 
well when we start arguing about meaning, but if you 
get plot right, then meaning inevitably follows. 

 I like to talk about plot because it can be directly 
implemented in a game.  Plot is the sum of cause and 
effect.  Whether the cause is something in the player’s 
control, or something the designers force upon the 
player, it’s measurable.  It can map directly to 
gameplay decisions, and lead to an outcome or 
outcomes that are equally tangible. 

A thorough discussion of plot gives you everything 
you need to build your story, and your game. 
(Laidlaw 2005) 

 
Automated planning manages “the sum of cause and 
effect” that defines plot.   Beyond its desirability to a few 
risk-takers in the game industry, ensuring that a coherent 
narrative achieves particular goals is an important 
requirement for educational and training applications.  The 
task for planning systems in interactive narrative reaches 
well beyond finding a single complete and consistent plan.  
Authors are interested in understanding how unplanned 
user actions may affect story goals.  This in turn raises 
issues about the variability of narrative experiences that are 
possible with each construction and how those possibilities 
shift as authors make changes.   Compared to other plan 
authors, those building interactive narrative are probably 
more likely to work with the planner to make incremental 
refinements to the planning problem through multiple 
iterations.   

Including Domain Knowledge in Planning  
Traditional automated planners are not designed 
specifically to facilitate iterative collaboration with the 
plan author.  Research into collaborative planning 
methodologies has generally been referred to as advisable 
or mixed-initiative planning.  Advisable planning (Myers 
1996b) attempts to shape the behavior of the planner by 
adding additional information to the definition of the 
planning problem prior to invocation of the planners. 
Mixed-initiative planners allow for the iterative and 
incremental construction of the plan with both the user and 
the planner capable of proposing or initiating requests to 
change aspects of the problem or solution.  Thus, advisable 
planning is effectively a special case of mixed-initiative 
planning where the initiative is first taken by the human, 
then by the planning system.   “Configurable” planning 
(Nau 2005) is the combination of domain-independent 
planning engines with higher-level abstractions like 
hierarchical task networks that capture and exploit domain 
knowledge.   Each of these research threads has application 
toward collaborative planning of interactive narrative. 
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Interactive Narrative as a Planning Domain  
Much of the motivation for configurable planners is based 
on the gulf between the real world and restrictive 
experimental domains descended from “blocks world. 
Where Nau’s “configurable” planners represent an 
architectural middle ground, interactive narrative 
represents a domain of similarly intermediate complexity 
between the “blocks world” and the real world.   
 
Because interactive narrative takes place in a virtual world, 
its domains are both fully knowable and fully malleable. 
An advantage for planning research is that these domains 
may be amended or contracted to suit the requirements of 
the planning problem. In fact, the plan author may be 
responsible not only for the domain representation, but also 
may be involved in the construction of the domain itself. 
As interactive narrative planning is a component within 
this larger creative process, there are possibilities and 
requirements for experimentation and exploration than are 
not found working with real world domains. This affords 
researchers the freedom to investigate intricate 
relationships between the domain, its representation, the 
planning problem and the resulting plan spaces.  
Integrating these concepts into an authoring tool can 
benefit both the interactive narrative and the planning 
research communities.   
 

Mixed-Initiative Planning Research  
Mixed-initiative techniques have long been associated with 
several prominent planning research projects. Ferguson 
and Allen (1998) have studied extensively aspects of 
mixed-initiative in their TRIPS and TRAINS projects In 
their estimation ”far more attention needs to be paid to the 
gap between the abilities of automated reasoners and the 
needs of human decision makers (Allen and Ferguson 
2002).  The systems Allen and Ferguson have built rely on 
human-computer interfaces based on natural human dialog. 
Their focus is on building a dialog system intermediary 
between the human plan author and group of back-end 
agents. A key challenge they have addressed is the 
mapping of individual communicative utterances of the 
user to the most appropriate plan editing action. They bias 
this intention recognition toward those candidates 
suggested by recency and those that will minimize plan 
churn. Another challenge they have addressed is the 
resolution of ambiguities about the scope of an intended 
change. Is the requested change to be performed on the 
problem goal or the proposed solution? Is the solution to be 
modified, extended or rejected? To perform these types of 
reasoning, the authors employ a collaborative interaction 
model compatible with the SharedPlans formalism of 
Grosz and Kraus (1996) and realized as an inter-agent 
communication protocol. The application of Allen and 
Ferguson’s work to interactive narrative is limited by two 
factors.  First, they rely on a domain representation 

assumed to be complete and accurate, where these are very 
much in flux during the authoring process of interactive 
narrative.  Second, much of their focus is on the 
interpretation of spoken natural language statements about 
plans and plan goals in order to make the appropriate 
changes to the plans, where interactive narrative inputs are 
likely to be text with formally constrained syntax and 
semantics. A key contribution of their work that can help 
interactive narrative is modeling the problem solving state 
at multiple levels of abstraction, from a high-level 
hierarchy of objectives, to a compact summary of a class of 
possible concrete solutions, to the intermediate world states 
of particular solutions (Ferguson and Allen 2002). 
 
Rich and Sidner (1998) also leverage discourse 
interpretation and SharedPlans in COLLAGEN. 
COLLAGEN, like TRIPS and TRAINS, is a few steps 
beyond the immediate challenges of authoring interactive 
narrative. COLLAGEN constrains search through a 
detailed model of interaction history. This includes 
intentional structure (partial SharedPlans), linguistic 
structure (hierarchical groupings of actions into segments), 
and attentional structure (a ”focus stack” of segments). 
This model is used to generate context-dependent natural 
language formulations from which the user may choose. 
Rich and Sidner believe that, in contrast to the weakly 
structured interaction histories in most interactive systems, 
the interaction history in COLLAGEN “reflects the user’s 
problem solving process”. This idea of the system asserting 
informed choices of actions to the plan author could be 
used to guide the authors of interactive narrative toward 
decisions that have the best utility relative to their goals. 
 
Tate, Dalton, Levine (1998) introduced the <I-N-OVA> 
Model (for Issues, Nodes, Orderings / Variables / 
Auxiliary) abstraction to allow for “plans to be 
manipulated and used separately from the environments in 
which they are generated.” In Tate’s system, the user and 
planning system work to refine the sets of constraints 
under which the planner must operate. Amant, et. al., 
(2001) have built mixed initiative interfaces for plan 
visualization and navigation.  Blythe, et. al. (2001) have 
investigated representing plan structures in ways 
interpretable by humans as business processes. These 
systems focus on mapping plan representations to natural 
language correlates within the domain. 
 

Advisable Planning  
The idea of an advisable problem solving system goes back 
as far as John McCarthy’s proposed “Advice Taker”  
program (McCarthy 1959).  McCarthy’s first example 
problem for a ‘program with common sense’ was a 
planning problem. Advice continued to have a prominent 
role in research into automating common sense including 
projects such as Cyc (Lenat 1995). Meanwhile, as the field 
of automated planning developed specialized knowledge 
representations and reasoning methods it became separated 
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from McCarthy’s more general strain of commonsense 
reasoning work. However, Myers and her colleagues 
(Myers 1996b), have recently investigated the application 
of user-supplied advice within the context of modern 
planning techniques. Myers’ advisable planner employs a 
model where abstract advice specifications provided by the 
user are compiled into a language of constraints common 
to traditional planning algorithms. Myers distinguishes 
between three ”idioms” of advice. Task advice identifies 
the goals and actions to be included in solution. Strategic 
Advice recommends how goals and actions are to be 
accomplished relative to parameter values. “Evaluational” 
Advice puts constraints on some metric defined for the 
overall plan (e.g., resource usage, execution time or 
solution quality). 
 
In Myers’ work, the advice an author gives the planner is 
grounded in a domain metatheory, an abstract 
representation independent of underlying planning 
technologies. A domain metatheory is intended to enhance 
user directability of the planning process, aid in the 
generation of qualitatively different plans, and aid plan 
summarization.  Myers (2000a) proposes a model built on 
three constructs: roles, features, and measures. Roles 
describe the function of an object within an operator, 
features are attributes that differentiate operators, and 
measures are partial orderings of features with respect to 
some criterion. 
 
For example, the feature “Air” might be associated with 
the operator “AirMail(loc1, loc2, item)” while the feature 
“Land” might be associated with “BicycleMessage(loc1, 
loc2, item)”. Related features may be grouped into feature 
categories, e.g., Transport-Media could be a category 
containing both Air and Land. 
 
A measure is an ordering (possibly partial) of features 
within a feature category. For example, the measure 
AFFORDABILITY might be defined over feature 
category Transport-Media as to rank Land higher than 
Air, where the measure COMFORT might be defined 
over feature category Transport-Media as to rank Air 
over Land.  A role-fill specifies explicit object instances or 
constraints over a set of instances relative to a given 
operator role. 
 
Measures may be extended to describe object instances 
within the domain through the assignment of measure 
values. For example, if the measure AFFORDABILITY 
has measure values defined as (Cheap, Moderate, 
Expensive) the object instance Lear Jet would have the 
AFFORDABILITY measure value Expensive while the 
object instance Subway would have the 
AFFORDABILITY measure value Cheap. 
 
Strategic advice is specified through the metatheoretic 
elements of Activities, Roles, Role-Fills and Measures, 
which in turn are simpler and closer to the natural 

cognitive models employed by human experts than the 
lower level planning constructs of goals, operators, 
variables and bindings. Strategic advice consists of 
prescriptions and restrictions of roles, fillers (a.k.a. role-
fills), relative to specific activities. This advice takes two 
forms. Role Advice designates which object-role 
specifications (role-fills) are required or restricted in 
specific activities. For example, a role template of ”Stay in 
<Accommodation> while vacationing in <Location> might 
be instantiated as ”Stay in 3-star hotels while vacationing 
in Scotland” where the role of <Location> is filled by 
”Scotland” and the filler ”3-star hotel” is prescribed for the 
role <Accommodation> (Myers 1996b). This is an example 
of an target activity with a feature of Vacation. In contrast, 
Method Advice operates at a higher level, as it prescribes 
or prohibits the use of specific activities within the plan.  

Advice For Qualitative Differences  
Once the planner becomes knowledgeable of the advice 
associations of its elements, it is possible to direct it toward 
solutions that have particular qualities relative to that 
advice. Many planners can generate different plans for the 
same problem, but extracting and summarizing the 
meaning of those differences is difficult. Furthermore, the 
particular differences of interest will vary from user to user 
and task to task. A deeper problem is the assumed accuracy 
and completeness of the domain and problem 
representations. Because much of Myers’ work has been 
situated in the application of planning military operations 
for the real world, the domain representation is often seen 
to be incomplete or imperfect by the human experts who 
use the system because they have experience and 
knowledge over a vast number of real world exceptions. 
Therefore, considerable effort is devoted to eliciting more 
complete descriptions of the domain and problem 
representations.  
 
A goal for advisable planning systems is that they create 
novel plans that are qualitatively different from one 
another (Myers and Lee 1999) a goal that is especially 
relevant for interactive narrative. To achieve this goal, the 
plan author nominates a subset of measures from the 
domain metatheory to serve as criteria for evaluating 
chosen properties of plans.  Myers introduces an evaluation 
function that maps feature measures into categories on 
which measurements normalized over the interval [0, 1] 
can be applied.  A set of k evaluation criteria thus define a 
k-dimensional space in which the Euclidean distances can 
be measured between the locations of each plan relative to 
each of these dimensions as measured by the evaluation 
functions.  Myers’ recent work (Myers 2005) uses the 
metatheory to summarize plan content, and uses a type 
hierarchy to reason about differences based on which 
objects are bound to different features of the plan.  
 
As Myers moved toward a mixed-initiative model in which 
the user makes many of the decisions necessary to create 
the final plan, a new problem was introduced. At some 
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points in the creation of a complex plan there may be 
hundreds or thousands of unresolved issues. The system 
must rank these decisions based on importance so that the 
user has a chance to complete the plan. As many as five 
different methods for this type of prioritization were 
considered and three were implemented in a system called 
PASSAT (Wolverton 2004).  The exploratory nature of 
interactive narrative construction is likely to produce 
similarly complex plan spaces.  The prioritization methods 
pioneered in PASSAT would be useful in making optimal 
use of the finite attention of human narrative authors.  

Domain Elaboration Framework 
To leverage the results of advisable and mixed-initiative 
planning, this paper introduces DEF, the Domain 
Elaboration Framework.  DEF is an adaptation of Myers’ 
domain metatheory that allows authors to add detail to 
classical planning domains to enable expressive problem 
definition and reasoning about plans.  
 
The basis of DEF is a STRIPS-stye (Fikes and Nilsson 
1971) planning domain characterized by objects, 
conditions and operators. More formally, an object symbol 
provides a unique name for an entity in the world. All 
object instances are predefined by the plan author. A 
condition is a conjunction of function-free literals 
composed of a unique name identifying a relation and a set 
of placeholder variable terms or object instances. These 
terms are also referred to as condition parameters.  An 
operator is defined by the set of literals stating the 
preconditions that must hold before it can be invoked, the 
set of literals stating the effects that will hold following its 
invocation, and a parameter list that may be applied to 
designate variables in these sets of literals. 
 
Where the metatheory introduced by Myers relies on roles, 
role-fills, features, and measures, DEF uses an alternate 
grammar of types, dimensions, weights, and 
measurements. A type is a symbolic name of a node in a 
global hierarchy of author-defined types with a unique root 
node named “anyThing”. Every operator, parameter, and 
object instance is required to have at least one associated 
type. Although type can be seen as an implicit concept in 
Myers’ original metatheory. it is not until her recent work 
(Myers 2005) that one can find an explicit representation 
of type. In the example of the move operator whose loc1 
parameter was assigned the role of origin the type might be 
inferred to be location. It would seem obvious to a human 
author of the move operator that the loc1 should only bind 
to objects of type location, but without explicit constraints 
a planner could just as easily fill the origin role with a cat, 
a cake, or a comb.  
 
Because every parameter of an operator or condition and 
every object has a type associated with it, the type 
hierarchy can be used to guide the planner in assuring that 
the authorial intentions for bindings are maintained. In fact, 

an interactive narrative creation tool built on the DEF 
framework could communicate type constraints on 
parameters and objects through extending the set of 
preconditions for each operator and for the initial and goal 
states. 
 
For example, in the case of the loc1 parameter within the 
move operator the type constraint isalocation(loc1) could 
be added to the operator’s list of preconditions, and when 
object instances of type location are created, corresponding 
isalocation(newobject) conditions could be added to the 
initial state of the planning problem.  Some planners allow 
the nomination of a special subset of preconditions 
(sometimes referring to these as constraints) whose truth 
values can be computed directly from the assignments to 
the initial state, allowing for faster processing. For these 
planners, type constraints may actually help speed the plan 
search process by reducing the set of objects the planner 
must consider for bindings to parameters of operators and 
literals. 
 
Types are also associated with operators, enabling the 
author to use a portion of the type hierarchy to encompass 
entities much like features in Myers’ formulation.  Every 
operator, parameter, and object instance has one or more 
associated types, and zero or more associated 
measurements. A measurement consists of a dimension 
and a weight. A dimension is a symbolic name selected 
from a global list of unique author-defined dimensions.  A 
weight specifies a relative intensity of the dimension 
normalized on the interval [-1, 1]. The default weight ‘0’ 
represents a neutral intensity, -1 is maximally negative and 
1 is maximally positive.  
 

Expressive Power of DEF 
The dimension construct in DEF corresponds to the 
measure of Myers’ metatheory.  Both are symbolic values 
chosen from an author-defined list, e.g., affordability, 
comfort, or magic.  A key difference is that where DEF 
uses numeric weights to gauge instances on each 
dimension, Myers uses measure values from a set of 
symbols that are defined for each feature category and 
ordered by the plan author for each measure.   
 
For example, in DEF, object instance Lear Jet may have 
the measurement {affordability,  -0.98}, where 
affordability is a dimension, and weight is near the 
minimal value of -1 on the scale [-1, 1]. 
 
With Myers’ metatheory, object instance Lear Jet may be 
assigned the measure value Expensive for the measure 
affordability, from the ordered set of measure values 
{Cheap, Moderate, Expensive}. 
 
At the operator level, DEF allows types and dimensions to 
describe operators in the same way they describe object 
instances.  Myers uses features to describe operators at a 
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higher level of abstraction than DEF.  The strategy chosen 
with DEF is to use a reduced low-level vocabulary to 
elaborate the problem domain description and defer their 
aggregation into more complex abstractions like features 
and feature categories to higher level user interfaces.  
Hopefully, this will allow for abstractions of arbitrary 
complexity at the interface level, while preserving an 
underlying representation that facilitates efficient 
reasoning about the qualities of individual plans and the 
qualitative differences between plans.   
 
To make qualitative judgments about plans, Myers’ 
measures are converted to proportionally distributed values 
over the interval [0, 1]. DEF requires explicit 
normalization of weights over an interval [-1, 1] (chosen to 
facilitate a default neutral weight of 0).  Clearly, this shifts 
some responsibility to the interface to ensure that human 
authors assign weights with this normalization in mind.  
An interface using DEF can provide abstractions such as 
symbolic ranges, {Cheap, Moderate, Expensive} and 
convert these values to proportional internal 
representations.   However, an interface is not precluded 
from allowing more precise or non-proportional numerical 
representations when appropriate. 
 
An expressive advantage of DEF is that types and 
measurements are applicable to every operator, operator 
parameter, and condition parameter. Authorial goals are 
often articulated in terms of the types of actions contained 
in a story. The knowledge to support this type of reasoning 
can be represented through measurements applied to 
operators. Suppose, as in the film The Princess Bride, a 
young boy would like to make sure that the story does not 
contain too much kissing. Kissing could be introduced as a 
dimension and every operator associated with the act of 
kissing could be assigned measurements on the order of 
(kissing, .95). Other operators could have neutral values of 
0, or negative values. Kissing could be selected as an 
evaluation criterion and the plans whose evaluation 
functions return low values of kissing could be favored.  
 
Object instances could also have attributes that are directly 
derived from authorial goals. Perhaps the author would like 
to favor stories that contain a lot of enchanted objects. A 
dimension of “magical” could be created and applied with 
high levels to magic rings, scrolls, and potions, and low 
levels to chewing gum wrappers and socks.  A planning 
heuristic that takes these measurements as an input can 
offer a high-degree of fidelity to discrimination between 
candidate plans.  
 
Higher-level narrative constructs will necessitate the use of 
more complex representations.  Suppose the author wants a 
‘happy’ story. Is give-money(giving-player, receiving-
player) a ‘happy’ action? It might be happy for receiving-
player but not for giving-player depending on the state of 
the world. Using parameter-level measurements in DEF, a 
default positive measurement of happiness could be given 

to the receiving-player and a default negative measurement 
to the giving-player.  Still, what if the measurement value 
of one parameter may depend on the bindings to other 
parameters in the same operator?  For example, the giving-
player might be happy to give money to her child, but 
unhappy to give the money to a thief.  
 
One approach would be to recognize that these two 
situations describe actions that differ from the perspective 
of drama (mothering vs. mugging), even if they may have 
the same add and delete list from the perspective of 
classical planning. Thus, the action can be split into a give-
moneyto-child action where ischildof(player2, player1) is 
added as a precondition, and a give-money-to-thief action 
where isthief(player2) is added as a precondition. Then the 
happiness of player1 can be assigned different values in 
each action.   It may be possible for a tool using DEF could 
create cloned actions like these when the user indicates that 
happiness is a function of the sub-types of player1 and 
player2 and use a more compact representation to solicit 
and display such preferences.   Still, the role the operator 
plays within the larger context of the plan may also 
significantly effect the user’s evaluation of the plan. DEF 
merely serves as a starting point for reasoning about 
interactive narrative. 
 
To summarize, DEF associates a set of one or more types 
and zero or more measurements with every operator, 
operator parameter, condition parameter, and object 
instance.  DEF is a domain-independent representation 
intended to by leveraged by a user interface for use with 
any planner that can work with a STRIPS-style domain 
description. 

Qualitative Reasoning With DEF 
One motivation for DEF is to provide a general framework 
for elaborations of the plan author’s preferences for the 
objects and actions in the domain over a variety of criteria.  
It is left to the planner and whatever interfaces are put 
between the human and the planner to make use of these 
preferences to influence plan reasoning. An evaluation 
function can be easily constructed from the measurements 
in DEF to apply the qualitative reasoning power of Myers’ 
work to resulting plans, simply by transforming the 
weights from their interval [-1, 1] to the interval [0,1] 
employed by Myers’ algorithms. This function can be used 
to iteratively refine and navigate through the plan space, or 
it can influence can be in the heuristics that are applied by 
the planner to direct search, perhaps in conjunction with 
other DEF constructs.   
 
Another mechanism for reasoning about types recently 
introduced by Myers (2005) is also easily applicable in the 
DEF context. Myers defines a function MinSuperType(V) 
which finds the most specific super-type common to a set 
of elements V . This allows the author to characterize the 
differences between plans or parts of plans, through the 
five distinct set relationships that correspond to particular 
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subsets of their typed elements. Set arithmetic functions 
are described that help pinpoint key strategic differences 
between plans and show areas where plans are not as 
different as they might seem. 

Incorporating DEF in a Planning System 
While DEF supplies the raw materials for qualitative 
reasoning about plan structures, it requires an interface to 
allow non-technical authors to apply it to a planning 
system. This interface should represent the problem 
solving state at multiple levels of abstractions, similar to 
the four-layer model employed by Allen and Ferguson 
(2002). Their model allowed the user to move from high-
level hierarchical objectives, through task structures that 
summarized classes of concrete solutions, to more 
primitive descriptions of particular plan fragments and 
world states.  
 
Implementation of such an interface has begun with a 
program called Bowman, which is currently part of the 
Zócalo suite of planning tools available at NCSU at 
http://zocalo.csc.ncsu.edu. Bowman provides a GUI that 
allows authors to describe types, objects, operators, 
conditions and the initial and goal state of a planning 
problem. Bowman seamlessly passes an XML 
representation of the planning problem to a planning web-
service to generate plans.  The planner interface supports 
requests for the next N plans, planning for N seconds, or 
simply until a complete plan is found.  
 
Bowman shows not only individual plans but also the 
entire plan space through scalable vector graphics (SVGs) 
that can be navigated through mouse clicks.  Bowman can 
depict the plan space as a tree of nodes, where each node is 
a partial plan with zero or more plan flaws to be resolved.  
A plan flaw is an open precondition, a threatened causal 
link, or a flawed decomposition. Plan nodes with zero 
flaws are shown in green and plans with one or more flaws 
are shown in progressively more pale shades of yellow.  
  

Figure 1   Bowman Plan Space View 

The Bowman user can navigate the plan space and 
individual plans either through direct manipulation with 
the mouse or through dialog-based search. 

Application to Interactive Narrative 
Bowman can work with any planner that supports its 
straightforward XML representation of the planning and 
conforms to a simple web service interface.  However, to 
provide support for interactive narrative domains, Bowman 
assumes a particular type of planner is being used.  In its 
initial deployment, Bowman assumes that this is the 
Zócalo planner, based on Longbow, a decompositional 
(HTN) partial order causal link planner described by 
Young, Pollack and Moore (1994). Riedl, Saretto, and 
Young (2003) extended Longbow to support what they 
called narrative mediation to manage and respond to user 
actions in interactive narrative. Mediation policies are 
invoked in response to unplanned user actions that would 
threaten conditions in the world required for a planned 
future action. When such an action occurs, a mediation 
policy may nominate alternative actions called failure 
modes that may be substituted at run-time for the 
threatening user action.  
 
To leverage narrative mediation, Bowman must be able to 
represent the particular mediation policies in effect for 
particular actions. Since failure modes are simply lists of 
operators, it would be possible to provide guidance on the 
subset of operators that are good candidates for failure 
modes through DEF constructs.  In addition, DEF may be 
used to inform Bowman of abstract specifications of the 
characteristics of failure modes required to resolve plan 
bottlenecks.  A first step is to use DEF to differentiate 
between types of agents.   

Agent Types 
For Bowman to be useful in addressing narrative 
mediation, it must contain in its representation of operators 
the types of agents that fill various roles.  Thus a first step 
toward supporting narrative mediation is to distinguish 
between user-controlled agents and system-controlled 
agents (often called NPCs, or Non Player-controlled 
Characters).  This distinction can be accomplished through 
a convention applied to the population of the type 
hierarchy of DEF.  A subtree of the hierarchy can be fixed 
to contain “agent” and “inanimate”. “Agent” can be 
subdivided into “NPC” and “User”.   A generalized 
mechanism can be realized in Bowman to allow the author 
to designate the subtree of the global type tree that is 
associated with the user (the default convention being 
“User” above) and that which is associated with NPC 
agents.   
 
For interactive planning domains, the definition of operator 
in DEF is then extended to require specification of the type 
of agent that is capable of invoking the action (“User”, 
“NPC”, or the un-committed “Agent” as a default).  Also, 
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individual object instances are extended to have a required 
agent type specification. 

Mediation Strategies 
As described in by Riedl, Saretto, and Young (2003) the 
planner is responsible for detecting user actions that could 
threaten the story plan.  For each of these exceptional 
actions, the system must determine if changing part of the 
unexecuted portion of the plan can accommodate the action 
or if an intervention is required.  An intervention requires 
that the requested action does not execute.  Instead an 
instance of a non-threatening action, called a failure mode 
is substituted for the requested action in real-time.  For 
example, if the user tries to shoot a character that is 
required to achieve a narrative goal later in the plan, a 
failure mode of “shoot-and-miss” or “jamming-shoot” 
might be substituted for the threatening “shoot(?gun, 
?target, ?victim)” action.  For this substitution to occur in 
real-time while as the user invokes the action, the 
intervention policies must be communicated to the story 
world system as soon as the initial story plan is created and 
whenever that story plan is altered.   
 
How does the system know which actions can be invoked 
by the user? With DEF and Bowman, the author must 
explicitly specify the type of agent capable of invoking any 
particular action.  Bowman provides this information to the 
planner, and also uses it to advise the human author of the 
set of actions for which failure modes are appropriate. For 
example, if the author at some point in the construction of 
the narrative has specified that the “shoot(?gun, ?target, 
?victim)”  action is one that can be invoked by an agent 
that can be a human user, Bowman can later take the 
initiative to advise the human author this action is 
contained in the set of actions for which failure modes may 
be useful.  This indication could be provided prior to the 
invocation of the planner, or following invocation of the 
planner, after which the set may have been reduced by the 
set of actions for which the accommodation strategy 
proved sufficient.  Bowman can further aid the human 
author in creating failure modes by reminding the author of 
the preconditions and effects of the underlying operators, 
highlighted with the planner’s understanding of particular 
threatening effects if the planner has provided such 
guidance.  Finally, the plan space depiction can be 
enhanced with explicit representation of the impact of 
mediation strategies.   

Narrative “Macro” Libraries 
Bowman allows for libraries of planning “macros” to be 
made available for plan authors.  These sets of related 
literals and operators can assist plan authors to achieve 
typical planning goals with less total work.  As a 
motivating example, consider the issue of inter-agent 
relationships and their effect on character believability. 
 

Narrative systems have been built with rich emotional 
models of agents (Gratch and Marsella 2004).  But in most 
commercial games the attitudes of NPCs are modeled with 
a single bit of memory – “friend” vs. “foe”.  Bowman 
proposes a modest extension of this model to enhance the 
believability of characters through three-valued attitudes 
defined by the narrative author.  These attitudinal values 
can shift based on actions chosen by the agents in the 
world to enhance the component of character believability 
that is inferred by characters changing their behaviors 
based on social history.  Examples of attitudes could be 
“ally/foe”, “trust”, “niceness”, “sincerity”, or “goal-
directedness”.  Bowman predefines a set of literals that 
handle initialization of attitudes and transitions from one 
attitude to another.  These attitude “macros” can be 
invoked through simpler constructs that the author 
manipulates.  This may seem an overly shallow modeling 
of social relationships, but it does match up quite well with 
the emotional “bank account” metaphor pioneered by 
psychologists like George Bach and later popularized by 
Stephen Covey (1989).  
 
For example, suppose the author would like to model the 
ally/foe attitude.  Assume that we name this quality “ally”.  
The following literals express possible initial states for the 
“ally” attitude between ?agent-a and ?agent-b: 
 
• attitude-negative(ally(?agent-a, ?agent-b)) means that 

?agent-a is a foe of ?agent-b 
• attitude-neutral(ally(?agent-a, ?agent-b)) means that 

?agent-a is neither an ally nor a foe of ?agent-b 
• attitude-positive(ally(?agent-a, ?agent-b)) means that 

?agent-a is an ally of ?agent-b 
 
The pre-defined library of helper operators that support 
attitude maintenance are: 
 
attitude-up-to-neutral( ?attitude-name, ?a, ?b) 

Preconditions: 
 attitude-negative(?attitude-name(?a, ?b))  
 incr(?attitude-name, ?a, ?b)  
Effects: 
 attitude-neutral(?attitude-name(?a, ?b))  
 ^incr(?attitude-name, ?a, ?b) 
  

attitude-up-to-positive( ?attitude-name, ?a, ?b) 
Preconditions: 
 attitude- neutral (?attitude-name(?a, ?b))  
 incr(?attitude-name, ?a, ?b)  
Effects: 
 attitude- positive (?attitude-name(?a, ?b))  
 ^incr(?attitude-name, ?a, ?b)  
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A reciprocal set of “attitude-down” actions that reference 
the “decr” literal are also automatically added to the 
domain description.  Then, the only thing the plan author 
needs to do is establish initial attitude values for 
relationships that need to be modeled and insert “incr” or 
“decr” attitude literals as the effects of actions that make 
sense in the world.  The planner will find the appropriate 
“attitude-up” or “attitude-down” actions to insert in the 
plan to meet attitudinal goals specified later in the plan (if 
any).   
 
For example, if the author intends for character ?agent-a to 
become an ally of ?agent-b, the author could add condition 
attitude-neutral(?ally, ?agent-a, ?agent-b) to the initial 
state, attitude-positive(?ally, ?agent-a, ?agent-b) to the 
goal state and create an operator like join-up(?ally, ?agent-
a, ?agent-b) that has incr(?ally, ?agent-a, ?agent-b) as 
effect. A planner could add the attitude-up-to-positive 
operator to establish the attitude-positive goal condition.  
Then an operator like join-up would be selected to 
establish the incr condition.   
 
Creating an inter-agent relationship library of macros is 
just one example of what might be done with a sufficiently 
general interface like Bowman. Bowman can serve as a test 
bed for assessing the usefulness of other macro-like 
libraries of related operators and literals.   

Research Ambitions 
DEF and Bowman can aid in narrative construction and 
qualitative reasoning about plans. At the point of this 
writing, Bowman works with the Zócalo planner to 
construct planning domains and planning problems and 
navigate through plan spaces and individual plans.  
However, only the “type” component of the DEF 
framework is realized in the current version of Bowman.  
To achieve the ambitions outlined in this paper, much work 
remains.   
 
First, the full DEF framework must be implemented in 
Bowman, so that agent types, mediation strategies and 
narrative “macros” can be specified.  Second, authors must 
be given an ability to articulate their narrative preferences 
through DEF constructs. Third, because authors are 
engaged in a creative process, it will be important for 
Bowman to provide a rich interaction history as in 
COLLAGEN (Rich and Sidner 1998) to allow exploration 
of alternate approaches.   Plan summarization techniques 
will be needed to annotate the plan space with DEF 
constructs and increase the effectiveness of the 
“navigation” paradigm. The qualitative metrics proposed 
by Myers should overlay all these capabilities to provide a 
clear understanding of the differences between plans. 
 
In such a system, the author could use “world manipulation 
sliders” like a sound engineer uses a mixing board to 
control the relative levels of different components in a 
production. In the case of interactive narrative, these 

components may be primitive constructs like DEF 
dimensions, or more complex features like the number of 
different execution paths or the amount of “conflict” or 
“happiness” in the story.  A tight coupling with the 
planning system could allow the Bowman to 
opportunistically highlight areas of the plan that would best 
benefit from the attention of the human author.   To 
conserve that attention, Bowman would benefit from an 
internal model of the author’s intentions and apply them 
automatically to situations that are deemed similar.  The 
result would be a system whose behavior is interesting 
enough to hold the interest of people who create interesting 
characters for a living. 

Conclusion  
This paper introduced a general planning domain 
metatheory called DEF and a general plan-authoring 
interface called Bowman, currently under development at 
North Carolina State University.  These tools are being 
used to support author-preference realization in interactive 
narrative. As these tools grown into high-level interfaces 
accessible to non-technical authors, new avenues of 
planning research may become accessible as well.  
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Abstract 
A key issue in interactive storytelling is how to generate 
stories which are, at the same time, interesting and coherent. 
On the one hand, it is desirable to provide means for the 
user to intervene in the story. But, on the other hand, it is 
necessary to guarantee that user intervention will not 
introduce events that violate the rules of the intended genre. 
This paper describes the usage of a plan recognition / plan 
generation paradigm in LOGTELL, a logic-based tool for 
the interactive generation and dramatization of stories. We 
focus on the specification of a formal logic model for events 
and characters' behaviour and on how the tool helps the 
interactive composition of plots through the adaptation of 
fully or partially generated plots. Based on the model, the 
user can interact with the tool at various levels, obtaining a 
variety of stories agreeable to individual tastes, within the 
imposed coherence requirements. The system alternates 
stages of goal inference, planning, plan recognition, user 
intervention and 3D visualization. Our experiments have 
shown that the system can be used not only for 
entertainment purposes but also, more generally, to help in 
the creation and adaptation of stories in conformity with a 
specified genre. 

Introduction  
In recent years, the convergence of games and filmmaking 
has been seen as an opportunity to create storytelling 
systems in which authors, audience, and virtual agents 
engage in a collaborative experience. The resulting systems 
can be useful for many different purposes, such as story 
board production, education and training, and, of course, 
entertainment. Different approaches have been proposed, 
using techniques and concepts from many areas such as 
Computer Graphics, Artificial Intelligence, Cognitive 
Science, Literature and Psychology. The suitability of each 
approach depends on the goal of each application. 
 A first decision to be made before implementing a 
storytelling system is whether it should be able to actually 
create stories or only enable the user to tell different stories 
based on previously computed sequences of actions. In the 
former case, the opportunities of interaction and the variety 
of different stories tend to be greater, but a coherent 
chaining of actions is more difficult to attain. 

 A second important point corresponds to the focus of the 
story models. The focus can be either on characters or on 
plots. In a character-based approach, the storyline usually 
results from the real-time interaction among virtual 
autonomous agents. The main advantage of a character-
based model is the ability of anytime user intervention, 
which means that the user may interfere with the ongoing 
action of any character in the story, thereby altering the 
plot as it unfolds. Although powerful in terms of 
interaction, such an extreme interference level may lead 
the plot to unexpected situations or miss essential 
predefined events. Additionally, there is no guarantee that 
narratives emerging from the interaction of autonomous 
agents will be complex enough to create an interesting 
drama. By contrast, in plot-based models, characters 
should follow more rigid rules, specifying the intended plot 
structures. A fundamental inspiration for plot-based 
approaches has been the seminal work of Vladimir Propp 
in the field of literary theory (Propp 1968). Propp observed 
that significant events within a narrative of a given genre 
(in his case, Fairy Tales) can be associated with a fixed 
repertoire of functions, and that these occur in certain 
typical sequences. In a pure plot-based approach, user 
intervention might be more limited, but it is usually easier 
to guarantee coherence and a measure of dramatic power. 
 A third decision is whether stories should be told using a 
first- or a third-person viewpoint - cf. the notion of 
focalization in narratology studies (Bal 2002). First-person 
tends to be particularly suitable for applications closer to 
digital games, whereas third-person is more appropriate for 
those involving filmmaking. 
 Finally, it is necessary to choose between a reactive and 
a deliberative behaviour for the characters. In the first 
option efficiency is the main advantage, but modeling an 
intelligent behaviour is more complicated and the 
alternatives for the agents are somewhat limited. In the 
second, planning and reasoning techniques are usually 
applied to simulate an intelligent behaviour, but 
performance is often affected, especially if the story 
generation occurs at real-time. 
 LOGTELL is based on modeling and simulation. The 
idea behind LOGTELL is to try to express the basic 
structure of a genre through a temporal logic model, and 
then verify what kind of stories can be generated by 

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 31



simulation, combined with user intervention. In this way, 
we focus not simply on different ways of telling 
preexisting stories, but on the dynamic creation of plots. 
The model includes typical events and goal-inference 
rules. Plots are generated by successive cycles of goal-
inference, planning, plan recognition and user intervention. 
 Specifically, we try to conciliate both plot-based and 
character-based modeling. On the one hand, we borrowed 
from Propp's ideas, but tried to extend his rather informal 
notion of function. In our treatment, typical events are 
described by parameterized operations with pre-conditions 
and post-conditions, so that planning algorithms can be 
used for plot generation. On the other hand, the goal-
inference rules model the behaviour of the various actors, 
thus providing some character-based features. The rules 
declaratively specify how situations can bring about new 
goals for each character. 
 Our objective is not to create an immersive experience 
in which the user takes part in the story as one of the 
characters. We endeavour, instead, to explore the 
possibilities of generating a large variety of coherent 
stories by means of a plan-recognition/plan-generation 
paradigm. For this reason, our stories are told with a third-
person viewpoint. User intervention is always indirect. 
During the simulation, the user can intervene either 
passively, just letting the partially-generated plots that 
seem interesting to be continued, or, in a more active way, 
trying to force the occurrence of situations and events. 
These are rejected by the system whenever it finds no valid 
way to change the story to accommodate the intervention. 
 Plot dramatization can be activated for exhibiting the 
final as also the partially generated plots. For 
dramatization, characters are represented by actors in a 3D-
world. During the performance of an event, low-level 
planning is used to detail the tasks involved in each event. 
We decided to implement our own graphical engine, so 
that we could better guarantee the compatibility between 
the logical model of our plots and the corresponding 
graphical dramatization. 
 The next section describes related work in the area of 
storytelling. Section 3 presents LOGTELL's overall 
architecture. Section 4 describes the main features of the 
Interactive Plot Generator (IPG), which is the kernel of the 
system. Section 5 illustrates how the user can interact with 
LOGTELL to generate stories. Section 6 shows how the 
generated plots are dramatized. Section 7 illustrates the use 
of the tool with an example. Section 8 contains concluding 
remarks.  

Related Work 
The approach adopted in the DEFACTO project (Sgouros 
1999) uses successive evaluations of rules to control the 
generation of an interactive story where the user is the 
protagonist. The interaction among characters’ goals is 
explicitly represented and an Aristotelian conception of 
plot is used to lead the story to a climax and then resolve it. 
The chaining of events, however, is not explained by pre- 

and post-conditions, making the control of what can and 
what cannot occur rather complex. Additionally, it does not 
allow the use of planning algorithms to develop sequences 
of events for the achievement of goals. The need of user 
intervention seems to be high if one wishes to generate a 
complete plot. Goals are inferred by means of rules 
analyzing the current situation, but the choice of actions to 
achieve goals appears to be more reactive than 
deliberative. 
 The approach described in (Cavazza, Charles, and Mead 
2002) adopts a character-based model to make user 
interventions at any possible time. Characters are 
autonomous agents, executing plans to achieve their goals, 
and, from their interactions, it is expected that a narrative 
will eventually emerge. Users are spectators but can 
“physically” interact with the context and even advise 
characters, affecting their decisions and the resulting 
stories. In order to decide, at real-time, the actions to be 
performed, characters consult a Hierarchical Task Network 
(HTN), corresponding to pre-compiled plans. In this way, 
the system does not have to pay the price of using 
problem-solving planners while presenting a 3D animation. 
It might demand more effort to model the behaviour of the 
characters, but it makes sense if one does not consider 
maximizing the alternatives as a requirement. The main 
doubt about pure character-based approaches is to what 
extent dramatic and engaging narratives may actually 
result. The task seems to be easier with genres like sitcoms, 
wherein the climax of a story is not so clearly 
distinguishable. 
 The use of Propp’s ideas in pure plot-based approaches 
leads to systems more concerned with the guidance of 
interactive stories than with their generation (Spierling et 
al. 2002). For each “Proppian” function within a story of a 
certain genre, such systems present alternatives to be 
chosen by the users. Still, we claim that to obtain an 
effective method to generate stories, it is necessary to 
extend Propp’s ideas, adding semantics to the functions 
(and to their specializations), so that preconditions, effects 
and goals can be fully expressed. 
 Reference (Paiva, Machado, and Prada 2001) presents 
the Teatrix environment, where Propp’s functions are used 
to model synthetic characters that interact with other 
characters, directed by children, in a virtual world. Each 
child directs one character and the synthetic characters are 
autonomous. All characters have a role in the story, 
specifying the functions in which they can take part. 
Synthetic characters have goals that change according to 
the situation. They plan and try to execute actions (i.e. 
functions) according to their roles. The approach seems 
interesting for education, but the control of the consistency 
of actions and goals and the generation of dramatic 
situations are not guaranteed. Additionally, the use of pre-
defined plans in the planning process can enhance the 
performance, but might limit the amount of different 
stories that can be generated. 
 The interactive drama FAÇADE (Mateas and Stern 
2000) is an effort to build an interactive system that 
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integrates characteristics of both plot-based and character-
based approaches. A drama manager is responsible for 
maintaining the story state. Characters have autonomy 
most of the time, but their goals and their behaviour can be 
changed by the drama manager, in order to move the plot 
forward. The interactive story has the user as the 
protagonist. The drama manager automatically selects 
scenes to be played. Scenes are composed of beats, which 
define the granularity of the interaction between characters 
and plots. The user can directly interfere in the execution 
of a beat, determining how the rest of the scene will be 
played. The approach clearly separates higher-level goals, 
important for the story, from lower-level goals, more 
specific of the autonomous behaviour of the characters. 
Such separation can also be found in LOGTELL. The 
generation phase deals only with higher-level goals, which 
are essential for the creation of plots. Lower-level goals are 
assigned to actors when they have to dramatize an event. 
The main differences between LOGTELL and FAÇADE 
result from the objectives of each system. In FAÇADE, the 
focus is on letting the user experience a story from a first-
person perspective. As a consequence, the interaction 
occurs at real-time, at the level of the beats. In LOGTELL, 
we focus on the generation of a maximum of different and 
coherent stories with a third-person viewpoint. The 
interaction basically occurs during the generation phase. 
The user is not allowed to interfere in the dramatization 
phase. 
 The Erasmatron system (Crawford 1999) is intended to 
support the authoring process of interactive stories. It tries 
to balance plot-based and character-based approaches by 
using the notions of verbs and sentences. Actions are 
represented by verbs with roles assigned to characters to 
form sentences. Such a proposal is close to the way we 
extended Propp’s functions in LOGTELL. Functions are 
implemented as logical operations, with parameters, pre- 
and post-conditions.  
 The use of planning in (Riedl and Young 2004) to create 
plots has many similarities with the decisions made while 
implementing LOGTELL. In both approaches, a non-
linear, least-commitment planner is used to create plots, 
conciliating actions of many different characters. The main 
difference is that LOGTELL does not assume the existence 
of one goal for the story as a whole. Instead, at the 
beginning of the story and after each planning phase, we 
use goal-inference rules (defined in a temporal modal 
logic) to consider new goals induced, for the various 
characters, by situations arising from the part of the plot so 
far generated. On the other hand, plans generated 
according to (Riedl and Young 2004) incorporate 
information explaining the intention of the actions, which 
can be useful to help in the dramatization of a plot, in 
particular to choose a convincing order of events. In 
LOGTELL, it is up to the user to choose a compatible total 
order of events to be dramatized.  

The LOGTELL Architecture 
LOGTELL comprises a number of distinct modules to 
provide support for generation, editing and visualization of 
interactive plots, as shown in Figure 1. The arrows 
represent the dataflow. The general architecture can be 
seen as a pipeline, where data is transformed from 
morphological functions into real-time 3D animations 
dramatized by virtual actors and handled by a graphical 
engine. Consequently, each module has specific input and 
output data.  

Figure 1: LOGTELL Architecture 
 The user interfaces with the system through the Plot 
Manager. The generation of plots by the Interactive Plot 
Generator (IPG) is started by the Plot Manager, which 
receives the partial plots generated so far and allows the 
user to intervene in the generation process. In order to 
visualize the dramatization of a plot (final or partial), the 
user chooses a total order of events, compatible with the 
partially ordered sequence generated by IPG, and asks the 
Plot Manager to activate the Drama Manager.  
 The Drama Manager is responsible for controlling the 
dramatization of the plot. In order to do that, it controls 
actors for each character in a 3D environment running on 
our game engine. During the dramatization, the Drama 
Manager consults IPG to keep the coherence between 
logical and graphical representations of the plot.  
 For the time being, the context of the stories to be 
generated and told is directly accessed by the modules and 
there is a certain replication of data. IPG uses files directly 
specifying the logical context in Prolog and the Drama 
Manager uses its own graphical and logical data. In order 
to eliminate compatibility problems, we are currently 
implementing the Context Control Module (CCM) to store 
all data in a single database. CCM will control the access 
to the data and format the data items to be used by the 
other modules. We are also extending our interface to help 
the user specify the context via the Plot Manager.  
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Plot Generation 
IPG (Ciarlini 1999) semi-automatically generates plots of 
narratives of a specific genre. Narratives could be both of 
literary genres and of more mundane ones, such as the 
context of a business information system. In its use for 
entertainment, the focus is on checking the logical 
coherence of a genre and its characters and exploring the 
variety of stories that can be generated. 
 The context for the creation of stories comprises the 
following items: 
• a set of facts (state), introducing the characters and their 

initial situation, as well as the description of the 
scenarios and other static features needed for the 
generation of stories; 

• a set of logical rules, to infer goals to be pursued by each 
character, as certain situations arise in the course of 
plots; and 

• a limited repertoire of pre-defined operations (typical of 
the chosen genre) in which characters can take part. 

 Examples of possible facts in a simple swords-and-
dragons context, using a Prolog notation, are listed below: 
• dragon('Draco'). 
• strength('Draco',45). 
• affection('Brian','Marian',100). 
 The facts at a current state change as a consequence of 
the occurrence of events, which result from the execution 
of operations by the various characters. For each operation, 
the following data is supplied: 
• a list of arguments, indicating the characters involved in 

the event, locations, etc.; 
• a list of pre-conditions, specifying facts that should or 

should not hold prior to the execution of the operation; 
• a list of post-conditions (effects), specifying facts that 

hold or cease to hold immediately after the execution 
of the operation; 

• its representation, specifying details about the exhibition 
of an event caused by the operation. 

 An example of an operation in the fairy tale context is 
“kidnap”, having a "villain" as agent and a "victim" as 
patient. Usual pre-conditions are that “the victim should 
presently be fragile” and that “both the victim and the 
villain should be present at the victim’s current location”. 
Post-conditions are that “the victim will be a captive of the 
villain” and “both the villain and the victim will be at the 
villain’s home”. The representation of events based on this 
operation would involve the specification of smaller-grain 
actions, such as: the villain getting closer to the victim, 
grasping the victim and taking him/her to the villain’s 
home. 
 During the generation phase, plots are represented by 
partially-ordered sets of events. Partial rather than total 
ordering is a consequence of the use of non-linear planning 
during the simulation, establishing temporal constraints 
only when necessary, which makes the conciliation of 
goals easier. As a consequence, the truth of a fact at a 
certain time might depend on the final total order that will 
be chosen later. For instance, suppose there are two events 
without a predefined order between them: “the knight gets 

stronger” and “the knight fights the dragon”. Depending on 
the order, the knight has different strength levels at the 
time he fights the dragon. 
 For each class of characters, there are goal-inference 
rules, specifying, in a temporal modal logic formalism 
(Ciarlini, Veloso, and Furtado 2000), the goals that the 
characters of the class will have when certain situations 
occur during a narrative. The rules use the following meta-
predicates to speak about the occurrence of an event or the 
truth value of a literal (a fact or a negation of a fact) at 
certain times: 
• h(T,LITERAL): LITERAL is necessarily true at time T; 
• p(T,LITERAL): LITERAL is possibly true at time T; 
• e(T,LITERAL): LITERAL is established at time T; and 
• o(T,EVENT): EVENT occurred at time T. 
 In order to express constraints relating variables, there 
are two additional meta-predicates: 
• h(CONSTRAINT): CONSTRAINT is necessarily true; 

and 
• p(CONSTRAINT): CONSTRAINT is possibly true. 
 An example of goal-inference rule appropriate to the 
present context is: “when the victim becomes fragile, the 
villain will regard that as an opportunity and will have the 
goal of kidnapping the victim”. Another possible rule is 
that “when the victim is kidnapped, the hero will feel 
motivated to free the victim”. This last rule, is represented 
in our logic as follows: 

(VIC,T1,VIL)  (T1,kidnapped(VIC,VIL) � 

T2 h(T2,not(kidnapped(VIC,VIL)))  h(T2>T1) 

 It is important to notice that the rules do not determine 
the specific reaction of a character. They only indicate 
goals to be pursued somehow. The events that will 
eventually achieve the goals are determined by the 
planning algorithm. 
 The generation of a plot starts by inferring goals of 
characters from the initial configuration. Given this initial 
input, the system uses a planner that inserts events in the 
plot in order to allow the characters to try to fulfill their 
goals. When the planner detects that all goals have been 
either achieved or abandoned, the first stage of the process 
is finished. The partial plot then generated is presented to 
the user by means of the Plot Manager and can optionally 
be dramatized. If the user does not like the partial plot, IPG 
can be asked to generate another alternative. If the user 
accepts the plot generated so far, the process continues by 
inferring new goals from the situations generated in the 
first stage. If new goals are inferred, the planner is 
activated again to fulfill them. The process alternates goal-
inference, plan generation/recognition and user 
interference until the moment the user decides to stop or no 
new goal is inferred. 
 Notice that, in this process, we mix forward and 
backward reasoning. In the goal-inference phase, we adopt 
forward reasoning, so that situations in the past generate 
goals to be fulfilled in the future. In the planning phase, an 
event inserted in the plot for the achievement of a goal 
might have unsatisfied pre-conditions, to be handled 
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through backward reasoning. Also, to establish them 
before the event, the planner might insert previous events 
with further unfulfilled pre-conditions, and so on, 
recursively. 
 The user can also force the occurrence of events at 
certain times. For instance, the user could well insert “the 
wedding of the knight with the princess”. It is also possible 
to specify that some situations should be true at certain 
times along the narrative, leaving to the system the job of 
planning the events that bring about such situations. It 
should be possible to say, for instance, that “the knight will 
be weaker than the dragon at a certain time”. This kind of 
intervention is allowed both at the beginning of the process 
and at the pauses occurring between two simulation cycles. 
The planner tries to conciliate both inferred goals and user 
specified events and situations. 
 Our planning tool is a non-linear planner implemented in 
Prolog, adapted from (Yang, Tenenberg, and Woods 1996) 
with extensions. The use of a non-linear planner, as 
suggested before, seems more suitable because it uses a 
least-commitment strategy. Constraints (including the 
order of events) are established only when necessary, 
making easier the conciliation of various goals. Features to 
permit the abandonment of goals were included, and also 
constraint programming techniques for dealing with 
numerical pre-conditions.  
 Our plots are not restricted to incorporating only 
successful plans. In trying to provide adequate means for 
handling negative interactions happening along a plot, we 
realized that the solution of conflicts and competitions 
sometimes requires the presence of totally or partially 
failed plans, which conventional plan generators reject. 
When a goal is abandoned, events occurring prior to the 
moment of abandonment must be kept as part of the 
narrative, and thus influence its continuation.  
 We use two main mechanisms to handle goal 
abandonment and competitive plan execution: conditional 
goals and limited goals. A conditional goal has attached to 
it a survival condition, which the planner must check to 
determine whether the goal should still be pursued. 
Limited goals are those that are tried once only, and have 
an associated limit (expressed as a natural number). The 
limit restricts the number of new events that can be 
inserted to achieve the goal. 

Composing by plan recognition 
An alternative way to derive plans for goals is to take, from 
a conveniently structured library, a pre-existing typical 
plan, adapting it if necessary to specific circumstances. We 
have been using a structure for such libraries of typical 
plans that also allows plan-recognition by a method 
proposed by Kautz (Kautz 1991), and which has been 
implemented as a complementary feature of IPG. The 
method consists of matching observed events against the 
plan definitions (also called complex operations) stored in 
the library, trying to find one or more plans of which these 
events may be part.  

 A structured library with these typical plans (complex 
operations) is shown in Figure 2. Single arrows denote 
composition (part-of link) and double arrows denote 
generalization (is-a link). 

Figure 2: Typical plan hierarchy 
 These complex operations have the same syntax shown 
for (basic) operations, if the complex operation results 
from a composition of other possibly complex and/or basic 
operations, there will be two more parameters, 
respectively, a list of the component operations, and a list 
declaring any order requirements holding between them. 
 Complex operations formed by generalization are also 
represented, branching down to specialized operations 
corresponding to alternative ways to reach the same main 
effects; clauses is_a(<more-specialized-operation>,<more-
general-operation>) declare this structural link. 
 The first step of the plan recognition algorithm is the 
generation of explanation graphs for the observed (or 
selected) events. An explanation graph for an event 
describes in which way this event can be used as part of 
some end-plan. After the graphs for all observed events are 
created, they are unified. The final graph will contain all 
the end-plans where the observed events fit.  
 Using this approach in LOGTELL, the user can select a 
group of events and request the possible complex 
operations that contain them. The system will then insert 
the complex operations components (if any) in the original 
plan. More details about this mode of interaction will be 
provided in the next section. 

User Interaction 
People who have no special talent for literary composition, 
like ourselves, find it difficult to invent interesting plots. 
Storytelling researchers (Glassner 2004) repeatedly point 
out that there may be problems when users participating in 
a game are prompted to function as "authors". But we 
usually do not feel so uncomfortable if asked to adapt an 
existing plot, by introducing small modifications in a 
gradual fashion. 
 The underlying philosophy of the system consists of 
providing the user with efficient means for exploring 
coherent alternatives that the story may allow at a given 
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state, and for guiding the plot at the level of events and 
characters’ goals. 
 In the LOGTELL tool, the user has direct control only 
over the Plot Manager. This module, in turn, 
communicates with IPG to execute plot generation and 
enforce coherence, and with the Drama Manager to control 
plot visualization. The Plot Manager comprises the user 
graphical interface (implemented in Java), whereby the 
user can participate in the choice of the events that will 
figure in the plot and decide on their final sequence (Figure 
3). Each event is represented by a rectangular box that may 
assume a specific color according to its current status. 

 
Figure 3: Plot Manager Interface 

 The user neither has direct control over the scene, nor 
over the characters themselves. Moreover, user 
intervention is always indirect, in the sense that any user 
intervention must be validated by IPG before being 
incorporated to the current plan.  
 Plot generation and dramatization are two separate 
processes, in contrast to pure character-based approaches, 
where user interaction affects plot structuring at real-time. 
This means that only during the simulation process the user 
has an opportunity to intervene in the creation of the plot.  
 As explained in the previous section, plots are created in 
an attempt to fulfill goals that the characters aim to 
achieve. At each simulation step, new goals may be 
inferred and automatically added to the plot, which causes 
the insertion of a new set of events. The events inserted in 
the plot so far are sent to the graphical interface for user 
intervention via the Plot Manager, which offers two 
commands for automatic plot generation: another and 
continue. The command another, requests from IPG an 
alternative solution to achieve the same goals of the step 
just finished. The command continue asks IPG to try to 
infer new goals and continue the simulation process.  

These two commands provide a form of weak user 
intervention. The user merely selects partially-generated 
plots that seem interesting from his/her perspective to 
proceed with the simulation. This weak form of 
intervention usually leads the plot to situations that the 
author of the story has devised beforehand.  

The Plot Manager offers, in addition, two 
complementary means for strong user intervention in the 
creation of more personalized stories. Firstly, the command 
insert situation allows users to specify situations that 

should occur at specific times along the plot by inserting 
some additional goal to be reached. The specific details of 
how the goal will be accomplished are left to IPG, which is 
charged to find a solution, if one exists, using the planning 
algorithm. It must be noted that, in view of performance 
considerations, a valid computable plan may fail to be 
obtained if the search limits currently configured in IPG 
are exceeded. As in the purely automatic generation, the 
user may confirm the solution (by indicating continue) or 
request an alternative (another), which (as said before), is 
a case of weak intervention. Secondly, at a lower 
interaction level, the user is allowed to explicitly insert 
events into the plot with the command insert event. To 
validate the insertions, the user must invoke IPG through 
the continue command. At this moment, all user defined 
operations are submitted to IPG, which runs the planning 
algorithm to check whether or not they are consistent with 
the ongoing plot. If not, IPG tries to fulfill possible 
unsatisfied constraints by inserting further new operations 
in a specific order. The user may also remove user defined 
operations that were not yet incorporated to (or were 
rejected by) the planner.  
 Besides these interaction modes, the user can also use 
two other commands, tree and recognize. The tree 
command displays the available hierarchy of typical plans 
and can be used, by itself, as a clue to be taken into 
consideration when inserting new events in the story. 
Figure 4 shows the hierarchy for our swords-and-dragons 
example; blue edges denote composition (part-of link) and 
red edges denote generalization (is-a link).  

 
Figure 4: Plan Hierarchy Interface 

 When using the recognize command (which is 
supported by the plan-recognition feature of IPG) the user 
needs to mark one or more events already inserted and/or 
being considered for insertion in the Plot Manager 
interface and the system will try to match these events, as 
observations, against the library in an attempt to identify 
one or more typical plans subsuming them. 
 The system will then show the typical Plan Hierarchy 
representing the story genre in use with the complex 
operation found (if any) marked in red and its components 
marked in orange. The user can then choose if the complex 
operation found is an interesting one or try to change it into 
another one that fits the intended story. For example, the 
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list of observations [attack('Brian', 'Red_Castle'), 
kill('Brian', 'Draco')] fits in both rescue and avenge plans 
and thus suggests two alternative ways to structure the 
narrative from which the user may draw his preferences. 
Upon selecting the desired partial plan, its component 
events will be inserted in the Plot Manger interface. 
 The usage of plan hierarchies can be much enriched if 
literary indices are made available. For folktales, for 
example, there is the monumental index compiled by 
Aarne and Thompson (Aarne 1964). Their identified 
themes and motifs have always been an inexhaustible 
source of inspiration for novice and even experienced 
authors. Treated as fragments of typical plans, they could 
then be retrieved, to become part of user-composed plots. 
 Before dramatization, there must be − as said before − 
one additional user interaction that is actually mandatory, 
namely the conversion of the partially-ordered generated 
plan into a strict sequence, thereby completing the 
composition of a proper plot. Notice that, if the simulation 
is resumed afterwards, this addition of new temporal 
constraints is also an intervention, because it can affect the 
inference of new goals. To determine the sequence, the 
user connects the events in a sequential order of his/her 
choice, respecting the temporal constraints supplied by 
IPG. The plot’s configuration emerges as the user moves 
the cursor to draw edges linking the operation boxes, 
starting from the root. To help the user in this process, we 
utilize colors to distinguish operations that are already 
connected (yellow), operations that − in view of the 
temporal constraints − can be immediately connected 
(green), or cannot yet be connected (red). The starting root 
is blue and the current operation being rendered is cyan. To 
connect two operation boxes, the user must click with the 
mouse over the source box and drag over the destination 
box (the same process is used to remove a link between 
two operations). Once the current plot (or part of it) is thus 
connected into a linear sequence, it can be dramatized by 
invoking the Drama Manager with the render command.  
 The tool also offers a facility for querying the IPG 
module about the state of any element of the narrative at a 
specific time Ti, using our temporal modal logic. This 
feature allows advanced users to find out, for instance, why 
an operation or goal is not being allowed, and helps 
authors to revise and tune the story requirements.  

Dramatization 
We have developed our own engine to support the 
graphical representation of the plots. It is implemented in 
C++ and uses the OpenGL graphical API to support real-
time rendering of the 3D elements. Characters in a 
generated plot are regarded as actors for the dramatization.  
 The graphical engine does not have to perform any 
intelligent processing. It is merely responsible for 
rendering, at each frame, the scene and the current actors’ 
aspect and movements, resulting from real-time 
interactions with the scene and, occasionally, with other 
actors. In doing that, it follows the ordered sequence of 

events generated at the previous stages of simulation. The 
Drama Manager is the module that synchronizes 
characters’ actions and the overall graphical representation.  
 The Drama Manager's job is not limited to assigning the 
actions that specific characters must perform. It translates 
symbolic operations into fully realized 3D visual graphical 
animations. And it must guarantee the synchronism and 
logical coherence between the intended world and its 
graphical representation. Figures 5 and 6 show some 
snapshots of the dramatization of the generated plots. 
 As received from IPG, the plot is organized as a 
sequence of events, each one associated with a discrete 
time instant. The simulation occurs in continuous real-time 
and the duration of an operation rendering is not previously 
known. Variable attributes change as the event is 
dramatized. In order to make logical and graphical 
representations compatible, the values of the variables 
before the dramatization of each event must agree with the 
pre-conditions of the event and the values at the end with 
its post-conditions.  

 
Figure 5: Draco attacking Marian’s castle. 

 
Figure 6: Hoel meeting Marian before getting married. 
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 The dramatization starts by the selection of a specific 
event and the execution of the command render in the Plot 
Manager. All subsequent chained events from this point to 
the end are visualized, unless the user interrupts the 
process. When an event is activated for rendering, the 
engine uses the current values of the pertinent attributes as 
a starting point for the representation.  
 The user can alternate between plot generation and 
dramatization. In this case, after a dramatization, new 
events and time constraints can be added either by the user 
or by IPG. If dramatization is activated again, it can start 
only at events that occur before the modifications.  
 The Drama Manager converts all events into actions, 
which are delegated to specific actors, at specific times, 
according to the plot order of events. Whenever an event 
finishes, the Drama Manager asks the Plot Manager to give 
it the next event. If none exists, the dramatization stops.  
 The dramatization of an event ends when the involved 
actors(s) finish enacting the associated graphical 
representation. In our experiments, this may take from a 
few seconds to about one minute, depending on the kind of 
operation and on the scenario features.  

Scene and Actors 
For the graphical representation of the plots, according to 
the genre of the story being represented, the engine loads a 
specific scenario. The scenario is represented by a 3D 
environment that is suitable for the events and characters 
that the story is supposed to contain, taking into 
consideration the conventions of the genre (e.g. the 
presence of castles). 
 Because most events have an association with the place 
where they are performed, actors should be constrained, 
while moving through the scene, to maintain graphical 
coherence with respect to how they follow the plot 
directions. Buildings, such as castles and other genre-
related objects, serve, more than as an ornament, as a 
conditioning factor to orient the displacements of the 
characters, the absolute and relative position where an 
action is to be executed, and the form to treat collisions. 
We make use of terrain reasoning and path-planning based 
on waypoints (Pozzer et al. 2004).  
 Actors have a geometric structure amenable to graphical 
representation, and are provided with a minimum of 
planning capabilities, at a low level of detail. Since actors 
are expected to play the assigned roles achieving an 
adequate performance, some rudimentary planning 
resources are indispensable, so that, in real-time, an actor 
be able to make decisions and to schedule the necessary 
micro-actions. In general, simple path-finding algorithms 
and direct inter-agent communication schemes are 
sufficient. Each actor must also incorporate behaviours for 
interacting with the physical environment and with the 
other actors. Contrary to the generality of the IPG planner, 
the local planning of each actor must be simplified to 
ensure short response times. 
 During graphical representation of the plot, all control of  
the actions each actor is supposed to perform is made by 

the Drama Manager. It acts as a director that coordinates 
sequences of actions performed by the whole cast. It 
continuously monitors the representation process, 
activating new tasks whenever the previous ones have been 
finished. As a director, it also controls the positioning of 
the (virtual) camera, which an option of LOGTELL 
permits to be transferred to the user. The manual option 
provides zooming, rotation, and vertical and horizontal 
shifting; some users have found particularly entertaining to 
look at the scene from a bird's eye perspective, watching 
the plot unfold with all locations in view. 
 For IPG, as the number of characters increase, the 
computational effort required to control such characters 
and their interactions may become prohibitive. However, 
the use of fewer characters − a small number of actors, 
consequently − may lead to poor graphical representations. 
The test scenario used as an example in this paper, based 
on swords-and-dragons tales, features two heroes, one 
villain, one victim and a magician. To enhance the 
diversity and liveliness of plots, but also to turn the 
representation more realistic, we introduced a supporting 
cast, consisting of groups of soldiers (guardians) in charge 
of the protection of locations where the leading actors live, 
and where events take place. As opposed to the leading 
actors, whose actions are predetermined by the plot, these 
extras are endowed with a higher although still limited 
level of behavioural autonomy. 
 For the purposes of our example IPG totally ignores and 
not even distinguishes individual extras, since only as 
groups they have some influence over the plot conduction. 
For instance, when the plot is being represented, the 
graphical engine queries IPG about the current protection 
level of each location. At this moment, a proportional 
number of guardians is inserted into the scenario, together 
with the leading characters. We feel that, either as partially 
or fully autonomous graphical entities, supporting actors 
positively contribute plot visualization. 
 The degree of autonomy conceded to the extras leaves 
them free to perform certain actions randomly, such as 
walking in different directions; this feature is being 
improved with the integration of an AI middleware 
(Karlsson and Feijó 2005) into the Drama Manager.  
 When the actors are required to participate in some plot 
event, which has always a higher priority, the Drama 
Manager makes them interrupt momentarily whatever they 
were doing. So, the autonomous actions are not allowed to 
interfere with the execution of the plot; for instance, the 
guardians cannot inadvertently kill a leading actor.  

Test Scenario 
The test scenario currently in use for LOGTELL 
corresponds to a small sub-class of the popular swords-
and-dragons genre. The possible events were modeled by 
just a few parameterized operations, which can 
nevertheless generate a considerable variety of different 
plots. The specified operations were the following: 
• go(CH,PL): character CH goes to place PL; 
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• reduce_protection(VIC,PL): the protection of place PL 
(represented by the number of guardians) is 
spontaneously reduced by the prospective victim VIC; 

• kidnap(VIL,VIC): the villainous character VIL kidnaps 
VIC; 

• attack(CH,PL): character CH attacks place PL (fighting 
the guardians); 

• fight(CH1,CH2): character CH1 fights character CH2; 
• kill(CH1,CH2): character CH1 kills character CH2; 
• free(HERO,VIC): character HERO frees character VIC, 

raising the degree of affection of VIC for HERO; 
• marry(CH1,CH2): the two characters get married;  
• donate(CH1, CH2): strength level of character CH2 is 

raised by the magical powers of CH1; and 
• bewitch(CH1,CH2): the double effect of this operation is 

to instill an evil nature into CH2 and, at the same time, 
make him or her much stronger. 

 Besides these basic operations, a hierarchy of complex 
operations (structured by is-a or part-of links) was added: 
• rescue, avenge - these are the two species of adventure. 

The rescue variety has components: abduct, liberate, 
marry, accompany, donate. The other variety, avenge, 
has components: murder, execute, accompany, donate.  

• do villainy, retaliate, accompany - do villainy specializes 
into: abduct or murder; retaliate specializes into: 
liberate or execute; accompany specializes into: help 
or false help. 

• abduct, murder, execute, liberate, help, false help. 
Abduct has components: reduce protection, attack, 
kidnap; murder has components: reduce protection, 
attack, fight, kill; liberate has components: attack, 
fight, kill, free; execute has components: attack, fight, 
kill; help has components: attack, fight, free; false help 
has components: free, marry. 

 We left out two basic operations from this hierarchy. As 
operation go is in fact a component of practically all 
others, it is therefore assumed to be always present. And 
bewitch was deliberately excluded, since any plot 
including it should not be considered typical in the context 
of our genre (a sort of tolerated transgression of the 
conventions). 
 The model of the genre was completed by the following 
goal-inference rules, presented here in English for 
simplicity: 
• If a character plays the role of a victim, this character 

will spontaneously do something that puts her/him in a 
less protected situation. 

• If the strongest character playing an heroic role is still 
weaker than the villain, this character will want to get 
stronger. 

• If the protection level of a victim is reduced, the villain 
will want to kidnap the victim. 

• If a victim is kidnapped, a hero will want to free her. 
• If the affection levels of two characters vis-à-vis each 

other exceeds a threshold, they will want to marry. 
• If a victim is killed, a hero will want to avenge her 
 As one of the possible starting configurations, we 
defined an initial state including the following information: 

• Marian is a princess, living in a palace (the victim). 
• Brian and Hoel are knights (the heroes). 
• Turjan is a forest-dwelling magician (a donor, in Propp's 

sense). 
• Draco is a dragon whose lair is in a red castle (the 

villain). 
• The princess, the dragon, and the magician have 

protecting guardians around their homes. 
• Each character is endowed with a certain strength level 

for fighting. 
• The two heroes have a high affection for the princess, 

which is not reciprocated by her. 
• Turjan is neutral with respect to all the others. 

Examples of interactive step-wise plot composition 
 Using the tool, it is possible to generate many different 
plots. An example plot tells the classical happy-ending 
story: “The protection of Marian’s castle is reduced. Draco 
regards that as an opportunity to kidnap her. Draco then 
goes to Marian’s Castle, attacks the castle and kidnaps 
Marian. As a noble knight, Brian feels compelled to save 
her. But, before that, he needs to ask for Turjan’s magic to 
raise his strength. He then goes to Draco’s Castle, attacks 
the castle and fights Draco. He kills Draco and frees 
Marian, who starts loving her saviour. Motivated by their 
mutual affection, Brian and Marian go to the church and 
marry each other.”  

 
Figure 7: An example of a generated plot. 

 The plot in Figure 7 follows the same course until the 
point where Marian is kidnapped, but, after that, it can be 
summarized as follows: “The two knights, Brian and Hoel, 
propose to save the princess. They both go to Draco’s 
castle and attack the guardians. But Brian alone fights 
Draco, and finally defeats and kills it. Hoel then is seen to 
free Marian, causing her to fall in love with him and 
become his wife. In spite of doing most of the effort to 
save Marian, Brian is not able to marry the princess.” 
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Concluding Remarks 
Having implemented and extended an initial version of 
LOGTELL, we have been running a number of 
experiments, which seem to demonstrate that combining 
goal inference, plan generation/recognition and user 
participation constitutes a promising strategy towards the 
production of plots which are both entertaining and 
coherent. Moreover, our modeling method, based on 
temporal logic, has proved adequate to capture the 
conventions of genres encompassing stories with a high 
degree of regularity, such as fairy tales (as one could 
foresee, on the basis of Propp's pioneering work) and, 
consequently, simple swords-and-dragons narratives. 
 On the negative side, we must admit that modern and 
post-modern genres, with their emphasis on a more radical 
transgression of any conventions should not be so easy to 
formalize in a systematic way.  
 Also, plan generation is unfortunately limited by 
computational complexity considerations. There is 
however a continuing research effort to improve its 
efficiency, and we intend to look into that, to try to 
upgrade the performance of the IPG planning algorithms. 
What we have already verified is that an interactive 
regime, with the intervention of the user at various stages 
and at different levels, as our methods and implemented 
tools favour, does much to expand such bounds. A 
particularly effective help to this interaction is provided by 
using plan-recognition over libraries of typical plans, 
which offer expert advice to all kinds of users. 
 A specific topic for our future research is how to alter 
the LOGTELL approach in order to offer more advanced 
dramatization resources, such as investing more on 
affective computing (Izard 1991, Velázquez 1997) and 
improving automatic camera control.  
 To explore the range of applications of LOGTELL is yet 
another objective of our project. The system could be used, 
for example, to generate side quests in MMORPGs. Our 
efforts are now mainly concentrated on the continuing 
development of our tool, so as to cope with genres 
involving more sophisticated forms of communication 
among the characters and a deeper treatment of drives and 
emotions (Gratch and Marsella 2004). 
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