

ICAPS 2006
Workshop on AI Planning for Computer
Games and Synthetic Characters

Table of contents
Preface 3

Body Mind and Emotion:An Overview of Agent Implementation in
Mainstream Computer Games

9

Stuart Slater, Kevan Buckley, Kamal Bechkoum

Planning for an AI based virtual agents game 14
Susana Fernández, Roberto Adarve, Miguel Pérez, Martõn Rybarczyk and
Daniel Borrajo

Author in the Loop: Using Mixed-Initiative Planning to Improve Inter-
active Narrative

21

James M. Thomas and R. Michael Young

Applying a Plan-Recognition / Plan-Generation Paradigm to Interac-
tive Storytelling

31

Borje Karlsson, Angelo E. M. Ciarlini, Bruno Feijó, Antonio L. Furtado

http://icaps06.icaps-conference.org/

ICAPS 2006
Workshop on AI Planning for Computer
Games and Synthetic Characters

Preface

1. The scope of the workshop

The application of AI technologies in general to computer games and graphical char-
acters is an expanding research field, as witness the growth of regular AAAI Spring
Symposia sessions into the first in a series of international conferences on AI and Inter-
active Digital Media in June 2005, the growth of the conference Intelligent Virtual Agents
(IVA), and the development of sometimes affectively-driven autonomous synthetic char-
acters in projects in Europe, the US and Asia. At the same time, AI is being seen as
a source of commercial edge by Computer Games companies, with expansion in the
range of AI technologies being applied and the introduction of AI-related sessions at
the Games Developers’ Conference, and new tutorials on websites such as Gamasutra.
Games engines have also become a standard tool for groups of AI researchers, with
initiatives such as Gamebots [Kaminka et al 02]helping to make such engines more
versatile and open to researchers in agent architectures.

However so far - with some notable exceptions discussed below - AI planning re-
searchers have not been deeply involved in this work, with two unfortunate outcomes.
One is a tendency for games researchers without specific experience in AI planning to
reinvent wheels or use somewhat outdated approaches. The second is for planning re-
searchers themselves to focus on techniques which are inherently less useful for these
domains and to misunderstand the specific requirements of computer games and syn-
thetic characters.

In this workshop we hope to initiate greater interaction between AI planning research
and the interactive graphical environments used both for games and for more serious
educational and training purposes.

2. What has been done?

The work that has been carried out so far in the use of planning for synthetic char-
acters and in computer games can be divided into a number of different areas. The
first is the sue of planning as an action-selection mechanism for intelligent characters
in interactive graphical environments, not necessarily for games: often for education
and training applications. Pioneering work here was carried out by Gratch [Gratch 00],
whose Emile continuous planner combined AI planning technology with an agent ar-
chitecture in which emotions were used to control the direction of planning, and was
applied in the military training application Mission rehearsal Exercise [Gratch et al 01].
The FearNot! planner [Aylett et al 06] reported on in ther main conference is a develop-
ment of this work, this tome applied to anti-bullying education for children.

Rather than use generative planning, Cavazza [Cavazza et al 01] provided intelligent
graphical characters in a story environment based on friends with already-expanded
plans, in the form of AND-OR trees, which were searched at execution time. These
could produce a variety of narrative events, partly due to random siting of characters
at initialisation, and partly to the ability of the user to remove resources needed by a
character forcing them to replan by searching elsewhere in the tree. Work by Young
[Riedl & Young 04] has applied generative technology not to the action-selection mech-
anisms of intelligent characters, but in the service of the user as a method of authoring
narratives. Here planning is a way of maintaining logical coherence in a wide space of

story possibilities.
Laird is one of the best known proponents of computer games as a testbed for AI

technologies in general [Laird & van Lent 01]. He equipped a games bot with planning
specifically as a way of predicting what a user would do in order to counter it. This use of
a theory of mind - the bot was considering what the user’s plan would be in order to take
advantage of it - can also be thought of as a specialised version fo the counter-planning
used in two-person opponent games. It can also be applied in non-character based
games, and the bridge-bidder of Smith [Smith et al 98] was a particularly successful
example of this.

Finally, commercial games are beginning to move beyond the widespread use of
A*-based motion planning into more general applications of planning technology. The
game F.E.A.R is a good example here, containing a simplified STRIPS-type planner.

3. The role of planning

Two different types of questions are at issue in a workshop such as this. The first
derives from the application areas themselves, and asks what planning can add that
other technologies do not already. A games company might legitimately suggest that
unless AI planning improves gameplay, it is better not included because of the extra
level of risk and complexity it brings.

An interesting question here, already posed of AI technologies in general, is whether
added ’intelligence’ is necessarily a useful thing in a game. More intelligent actions may
improve a game - the example of bridge bidding is appropriate here - but on the other
hand it may not. For example, more intelligent opponents in games based on combat
will not amuse the user if they are impossible to kill as a result. It appears that gameplay
improvement is related to dramatic qualities such a character believability rather than to
intelligence per se. It is hoped that part of the workshop will consider this question in
some detail in relation to specific games.

A second question looks at the problem from the technology side: which of the
technologies associated with AI planning are specifically useful for synthetic characters
and computer games? Again, examining specific games can help to answer this type of
question, but some generic responses do seem clear.

The first is the requirement for interactivity - batch planning of the type practised in
the planning competition does not seem especially appropriate. These are domains in
which interactivity is usually a basic requirement since they are organised around a user
that expects an environment responsive to their actions. Continuous planning, and the
interleaving of planning and execution therefore seem much more relevant than their
current rather low profile in overall research suggests.

Integration is another requirement that is not always well-served by the AI planning
research community. Continuous planning supposes integration with perception and ex-
ecution, but in general AI planning in these domains must also interface to 3D real-time
graphics and to physically-based modelling. In general, planning must sit within a much
larger architecture, for which in the case of characters, goal management, emotional
modelling and personality may be as important as planning competence.

4. The way forward?

At this stage, when only an embryonic group of researchers interested in applying plan-
ning to this domain exists, it seems important to consider both the barriers to developing
this area of research and what needs to be done to remove them.

One barrier that this workshop might hope to start to attack is the lack of knowledge
among planning researchers about the domains themselves. This produces the risk of
working with inaccurate or outdated stereotypes, especially with respect to the computer
games industry, which can change very quickly indeed. It also seems to be true that

combining planning with 3D interactive graphics is inherently inter-disciplinary - with an
understanding of the graphics acting as the execution part of integrated systems rather
essential but usually lacking amongst planning researchers.

A second barrier may lie in the fact that many of the popular research areas of AI
planning technology is not all that useful for these domains in their current form. This
may be one reason for a limited take-up by games practitioners so far. An event such as
this is one rather small step in trying to encourage the development of more applicable
planning technology, as well as to generally educate ourselves on the requirements of
these domains and identify the key problems and tasks for the specific research agenda.

The Planning Competition has served the overall AI planning research community
well for this purpose, but its thrust does not seem very appropriate for planning for
synthetic characters or computer games for the reasons just discussed. Perhaps then
a task for a workshop such as this is also to talk over whether there is a need for
unifying examples or testbeds, for example based on a specific games engine and set
of scenarios.

References

Aylett, R.S, Dias, J and Paiva, A. (2006) An affectively-driven planner for synthetic char-
acters. Proceedings, ICAPS 2006
Cavazza M, Charles F, Mead S. (2001) Characters in search of an author: AI-based
Virtual Storytelling. 2001; IVA 2001: 156-170
Fasciano, M (1996) Everyday-world Plan Use, Tech Report TR-96-07, Computer Sci-
ence Department, U. of Chicago (1996),
Gratch J. (2000) Emile: Marshalling Passions in Training and Education. In 4th Interna-
tional Conference on Autonomous Agents, ACM Press, June 2000
Gratch, J; Rickel, J; & Marsalla, S. (2001) Tears and Fears, 5th International Conference
on Autonomous Agents, pp113-118 2001
Kaminka, G.A; M. M. Veloso, S. Schaffer, C. Sollitto, R. Adobbati, A. N. Marshal, A.
Scholer, and S. Tejada.(2002) GameBots: The ever-challenging multi-agent research
test-bed. Communications of the ACM, Jan 2002.
Laird. J.(2000) It Knows What You’re Going To Do: Adding Anticipation to a Quakebot,
Working Notes of the AAAI Spring Symposium on Artificial Intelligence and Interactive
Entertainment, Technical Report SS-00-02, AAAI Press, 2000.
Laird, J & van Lent, M (2001), Human-Level AI’s Killer Application: Interactive Computer
Games, AI Magazine 22(2), Summer Issue (2001)
Riedl, M & R. Michael Young (2004) An intent-driven planner for multi-agent story gen-
eration. Proceedings, 3rd International Conference on Autonomous Agents and Multi
Agent Systems, July 2004.
Smith, S. J. J.; Nau, D. S.; and Throop, T. A. (1998). Computer bridge - a big win for AI
planning. AI Magazine 19(2):93-106.

Organizers

• Ruth Aylett, MACS, Heriot-Watt University

• Michael Young, Liquid Narrative Group,University of North Carolina

Programme Committee

• Marc Cavazza, Teeside University, UK

• Carlos Delgado-Mata, University of Bonaterra, Mexico

• Joao Dias, INESC-ID, Portugal

• Nick Hawes, Birmingham University, UK

• Eric Jacopin, CREC Saint-Cyr, France

• Gal Kaminka, Bar Ilan University, Israel

• Brian Magerko, Michigan State University,US

• Hector Munoz-Avila, Lehigh University, US

• Alexander Nareyek, CEO/CTO, Digital Drama Studios

• Jeff Orkin, MIT Media Lab, US

• Paolo Traverso, ITC/IRST (Italy)

• Mark Riedl, University of Southern California, US

• Jesus Savage, UNAM, Mexico

Body Mind and Emotion

An Overview of Agent Implementation in Mainstream Computer Games
Stuart Slater, Kevan Buckley, Kamal Bechkoum

School of Computing and Information technology
Wolverhampton University

s.i.slater@wlv.ac.uk
k.a.buckley@wlv.ac.uk
k.bechkoum@wlv.ac.uk

Abstract
As both the growing demand for more immersive games
continues and a widening of the buying audience increases, there
is a growth in the quality and quantity of research and
development in the field of “believable” computer game
characters. This believability is necessary for the continued
improvement in realism for computer games [Smith et al 2002]
and is a key factor in an ongoing drive by developers who are
creating greater immersive experiences for the gamer with each
new generation of game. The purpose of this paper is to look at
the elements that game developers use to give the agents in their
games, human like qualities.

Introduction
Artificial Intelligence (AI) is a broad term, which for this
paper applies to all work involved in making agents behave
in a more challenging and believable way. This is often
achieved through an agent’s behaviour/actions appearing
more human-like, thus creating the illusion that the gamer
is playing against a real human player [Saltzman 2000].

During the early 1980’s agent believability was not needed
in the arcade style games being developed. Instead
developers concentrated on implementing only enough
simple behaviour to enhance game play. This behaviour
was driven by simplistic algorithms many of which were
implemented to allow simple path planning such as the
ghost’s movement in the Pac Man game or simple finite
state machines (FSM’s) for controlling agent actions. These
were traditionally implemented in very small game
environments such as single screen or tile based games and
required almost no agent planning of goals but instead were
more akin to scripted behaviour. Later games utilised more
advanced AI techniques such as A* algorithms [Higgins
2002] which are used for agents path planning simply
because virtual worlds have become considerably more
complex. These techniques were implemented with limited
processing resources and without regard for creating agents
that can either exhibit human behaviour or look real. By
the late 1990’s games such as ‘first person shooter’ (FPS)
style games were becoming more popular and as a
consequence of consumer expectations in graphics, sound
and AI the development became considerably more

complex as the requirement for agents that could interact
with each other and the player increased. This created a
requirement for agents to be able to both look and behave
more realistically within the very tight constraints of both
developer technical skill and processor limitations. This
was especially true when more realistic agents meant
implementing new technologies such as realistic sensory
systems, planning and more human-like agent physiology.

Agent Appearance
One of the key areas for improved agent believability has
evolved from a rapid evolution of graphic processing
technologies. This has resulted in higher polygon
throughput and incorporation of new technologies such as
vertex and pixel shaders, capable of giving surfaces a more
“photo realistic look”. Using pixel shaders, developers are
getting closer to giving agents’ skin a human like
appearance without the need for complex programming.
This reduction in complexity is due to the complementary
programming methods and languages including NVIDIA’s
Cg [Fernando et al 2003] and Microsoft’s High Level
Shader Language (HLSL) [Fosner 2003]. These offer
developers a more simplistic method of shader
programming through a “scripting style” language that
allows the graphic artists to implement the technologies as
well as the programmers. The increase in polygon
throughput has itself led to a greater dependence on
packages such as 3D Studio Max 8 [Autodesk 2005a] and
MAYA 7 [Autodesk 2005b], which are used to create
models and animations for cutting edge games such as
Doom 3 [Id 2004] and Half Life 2 [Valve 2005]

Agent Physiology
With an evolving realism in the outward appearance of
game characters there has been a growing amount of
commercial development in game agent physiology such as
inverse kinematics [Scarowicz 2004] and “ragdoll”
simulation [Karma 2005]. Inverse kinematics include
techniques to allow more realistic limb movements in
agents, these have been coupled with graphical techniques
to allow a smoother transition between actions by agents.
“Ragdoll” is a term for the growing area of physics
application to agent physiology such as allowing agents to

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 9

fall and move in a realistic human way.

Top selling titles such as Half Life 2 combine both the
advances in graphics, physiology and physics modeling to
infuse game agents with human like movements and
appearances. Animals seemingly jump at players and
agents fall realistically when shot with extreme weapons.
This has provided the gamer with a new level of realism
and a higher level of interaction expected with each new
generation of game.

Agent Decision Making
With clear visual improvements of agents, the games
industry has also experienced an increase in the allocation
of resources and research being carried out within project
teams. This is supported by evidence from the roundtable
moderator’s reports for the last six years of the game
developer conferences [GDC 1999-2005] that show up to
around 10% CPU usage in 1999 rising to between 15 and
50% for a majority of development teams in 2003. This
increase parallels the rise of many of the FPS games and
strategy games such as Microsoft’s Age Of Empires and
Westwood Studios’Command and Conquer Games.

An area of AI that has benefited from an increase in
development time is agent path-planning, as almost all
agent goal-based behaviour relies on agents being able to
choose between paths that may lead to the same end goal.
This area of AI allows agents to traverse virtual worlds
using techniques such as A* and waypoint navigation
systems and have been implemented in increasing
complexity for many years in some format from Pac Man
to Doom 3. These navigational systems have been
implemented with both cognitive modeling and goal-based
reasoning, giving the agents the ability to navigate around a
virtual world with a purpose, such as the goal of looking
for food, as can be demonstrated with the use of the
Renderware AI tool [Renderware 2005] or the goal of
collecting weapons to fight against a human opponent.

Recent AI research has focused in two developing areas,
which can be used in conjunction with path planning
techniques to create more believable characters. These are
sensory input processing and increased agent autonomy
through methods such as real-time agent planning [Orkin
2006].

Sensory Input
A growing area of interest in both academia and industry is
in the field of agent sensory systems. This has led to
methods of providing agents with both the ability to “see”
and “hear” items in their environments, but a serious
dilemma exists for its implementation, due to the differing
goals of industry and academia. Industry chooses to
implement only enough technology to provide an element
of game play due to processing limitations and is thus only
concerned with “emulation and not simulation” [Leonard
2003] academic research on the other hand tends to focus

in-depth on areas of interest. Remembering that the vast
majority of commercial AI implementations use “smoke
and mirrors” techniques there is a definite need to be able
to scale down academic research findings so they are
applicable within the processing and game play constraints
of projects.

Current implementations of agent sight and hearing provide
compromises between tweaking virtual worlds so that in
some games the scenery broadcasts to the agents as in the
Sims games [Orkin 2002] and/or the sensory input is driven
by either polled or interrupt driven perceptions in order to
limit processing load [Kirby 2002]. Therefore if an agent
needs to eat, then the agent will actively seek out food
using some form of planning, which blends navigation and
either pre-scripted behaviour or real-time decision making.
Whilst navigating, polled perceptions will provide
information about the environments to the agent’s sensory
system on a continuous basis, if the agent is stationary and
a player gets within its sensory range then an interrupt drive
perception will feed the information to the agent, this gives
a much less processor intensive form of implementation.
This research has led to a greater scope in game play such
as the ability to sneak behind enemies in games such as
Thief [Eidos 2002], which added sophisticated auditory and
visual senses to agents in the game [Leonard 2003]. Half
Life 2 and Thief have agents that can “seemingly” see and
hear human players as they wander around their virtual
world. This has meant that for the first time agents can be
made aware of human players based on similar constraints
to those of real human hearing or sight, or at the very least
the first steps in simulating these sensory systems. The
usage of sensory systems in recent games such as Far Cry
[UBI 2004] have been used to allow not only elements of
stealth, but the ability to distract agents by throwing rocks
near them or sneaking past them whilst their backs are
turned.

Emerging areas of interest are inter-agent communications
as seen in the “walkie talkies” in Far Cry or cries for help
from agents in World of Warcraft [Blizzard 2005] allowing
agents to get support from other agents. Similar techniques
have been used in Call of Duty [Activision 2003], when
bullets are fired near enemy agents this causes a change of
behaviour that allows the agent to dive for cover allowing
human controlled game characters to advance forward to
capture areas or attack.

With the implementation of agent sensory systems has
come a greater use of data storage for the sensory input for
agents. These storage systems are linked to agent decision
making through back-end management systems and have
created a new area of research in fast data access and
storage mechanisms such as spatial data structures
[Reynolds 2000]. These new systems and technologies are
crucial to real time considerations in modern computer
games.
Implementations of senses such as touch and smell though

ICAPS 2006

10 Workshop on AI Planning for Computer Games and Synthetic Characters

not presently adding much to the game play are beginning
to appear as in the use of smell for agents in Half Life 2
which allows agents in the game to “sense” a player
through an artificial olfactory system.

Decision Making
As mentioned previously, decision making has focused on
mainly goal based reasoning and path planning. This allows
agents, such as those seen in Unreal Tournament 2004
[Atari 2004] to work co-operatively or adversarial with or
against the player. Agents are given goals, such as “kill
gamer”, supplemented with inter-agent communication
frameworks that provides co-operative team play with other
agents or the gamer.

Agent decision making traditionally focuses on the use of
finite state machines (FSM) which are based on
deterministic programming i.e. if-then production rules that
are commonly used for controlling agents’ behaviour in
games [Carlisle 2002].

An example is

“IF player in view AND gun loaded then FIRE”

The limitations of FSM’s for computer games is that they
rely on conditional true or false variables resulting in
actions that are predictable and could be perceived as being
limited. To enhance FSM’s the Boolean variables can be
replaced with fuzzy variables that have a much larger range
of values. This allows for a more complex set of actions i.e.

“IF player in sensory range AND gun has enough
bullets THEN fire weapon ELSE look for ammunition”

which would mean that an agent might not fire the gun if
they do not have enough bullets to kill the player, thus they
might go instead to retrieve ammunition. This allows
developers to expand agent goal options by using linguistic
rules to define behaviour in conjunction with tiered goal
systems involving primary and sub goals to allow a
breaking down of complex tasks [Waverren 2001]. This
tiered approach to tasks enhances the behaviour options of
agents to offer them choices depending on the primary task
set. A difficulty with giving agents sub tasks is that if the
agent’s option path is highly varied, then a situation may
arise where conflicting goals will need to be carefully
managed to avoid a gridlocked agent response.

Making more adversarial players is not the only way that
AI has been improved. Games such as Creatures
[CyberLife 1996] blend techniques such as neural
networks, and aspects of biochemistry to create agents with
unique behaviours that can interact and mutate into new
agents with unique behaviours [Stern 1999].

Many developers have serious concerns about agents that
could try and move beyond the constraints of the game
architecture if they exhibited unpredictable behaviour.
Therefore developers rely on a more scripted-behaviour

approach to avoid any kind of adverse emergent behaviour.
Another concern of games developers is that there are
serious concerns with AI adversely affecting game play due
to both the processor time required and the speed of the
response. This may be due to the software waiting for the
next agent action or simply overly complex AI that
interrupts the player’s immersion. In some cases this has
led to developer’s reducing agent capabilities such as in
Ultima Online [Stern 1999]. Techniques to decrease system
load and responses times for complex AI include AI
handlers running as separate threads and/or using level of
detail AI architectures dependant on situation and
processing availability [Woodcock 2003].

Agent Emotions
Commercial implementations of intelligent agents continue
to provide a reasonable challenge to the gamer, but most
games still lack any implementation of agent emotion’s and
thus agents can appear devoid of emotion, which could
appear to the gamer that the agent is lifeless and shallow.
Agents in commercial games currently cannot get annoyed
by failed goals, show satisfaction for a kill against a tough
enemy, or run away in fear.

Some developer’s script facial animations to appear on
agents’ faces at intervals, to give the gamer the illusion of
agent emotion i.e. when a player is killed by an agent the
facial emotions might show a smile. The game Halo
[Bungie 2003] featured simple finite state machines for the
emotions surprise, anger and awe and upon activation of a
particular state the agent would flee in terror, go berserk
and attack, or retreat into a defensive position, this was
complemented with suitable facial animations.

Conclusions
Recent games featuring large-scale environments such as
World of Warcraft have virtual worlds filled with hundreds
of agents and millions of gamers across multiple servers.
The agents in these worlds need to appear to behave as
realistically as possible to provide a satisfactory degree of
immersion to the gamer and therefore are programmed with
some awareness of their environments and a level of
autonomy. These agents seemingly make decisions on
goals given to them by the developer and thus appear to act
in a similar way to a real player. Some games even
implement “planning models” such as in F.E.A.R [Orkin
2006] to allow agents to choose options in real-time, based
on their goals.

Currently agents can be equipped with sophisticated
sensory systems such as sight and sound (hearing) and are
able to traverse virtual worlds. They can plan, choose
between options to complete goals and thus create the
illusion of autonomy. The impact on the developer for
implementing these new technologies is the increased
processing and resource implications for this new
generation of games. This has meant that developers have

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 11

been forced to look at ways of optimising games in such a
way as to maintain a consistent game experience for the
user whilst creating ever evolving virtual agents for the
gamer to interact with. In part this has been achieved
through a greater use of more intelligent environments,
some of which can broadcast information about useful
items in “view” to the agents, such as those found in the
Sims games.
This evolving of both environmental design and AI
architectures is necessary for the continued development of
more sophisticated behavioural models for agents, in order
that these agents are able to affect and interact with the
player and their environments [Todd, P et al 1997]. These
optimisation techniques along with a growth in visual
improvements of agents is currently leading developers to
look at other areas of improving agent believability. One
area of interest is in the use of human emotion modeling.

If agents can be developed with more sophisticated
cognitive and goal architectures then it is feasible that they
could exhibit a level of emotions such as the universal
emotions [Damasio 1999], fear, happiness, sadness, anger,
surprise and disgust. These emotions could be linked to the
agents’ goal structure [Johnson-Laird 1989]:

 Happiness that a goal has been achieved or
progress made.

 Sadness if a goal not completed or loss of a goal.
 Anger if goal challenged or failed because of an

external entity
 Disgust if a goal is violated.
 Anxiety if a goal or the goal of self-preservation is

threatened by a future event.
Plus

 Fear if an immediate goal is in danger or the goal
of self- preservation is immediately threatened.

 Surprise – unexpected successful completion of a
goal.

This may initially be limited to both a blend of facial
[Ekman 2004], physical i.e. posture, voice and emotional
state storage, but could subsequently be expanded to
actually affect primary goals and the choosing of sub goals
that might best satisfy any emotional needs. This could be
the agent experiencing rage at a player killing his comrade
and then choosing to punish the player by killing his
teammate rather than the player. This of course would open
up the possibility that an agent may become unpredictable,
but would certainly offer the gamer a much more human
like opponent.
Looking ahead there are several hurdles to overcome in
implementing agent emotions amongst which are:

1. Constraining agents to virtual world architectures
thus their cognitive model and domain knowledge
would need to be carefully developed which might
require extensive resources and time.

2. Limitations due to the current state of the art in
agent decision making that may not be advanced
enough for the realization of complex emotional
architectures.

3. A possible side effect of adding ‘human like’
emotions to agents is that this unpredictability
could be hard to replicate for testing and
potentially memory and processor intensive.

4. The defining of a suitable emotion architecture
that can adequately model human emotion within
the constraints of developer resources and current
state of the art in AI games technologies.

Web Reference

[Activision 2003] Call of Duty, 2003. Activision.
www.callofduty.com
[Atari 2004] Unreal Tournament 2004. Atari.
www.unrealtournament.com
[Autodesk 2005a] 3D Studio Max 8. www.discreet.com
[Autodesk 2005b] Maya 7. Autodesk formerly Alias.
www.alias.com
[Blizzard 2005] World of Warcraft, 2005. Blizzard.
www.worldofwarcraft.com
 [Bungie 2003] Halo . Bungie Studios.
http://www.microsoft.com/games/halo/default.asp
[CyberLife 1996] Creatures, CyberLife Technologies,1996.
[Eidos 2002] Thief. Eidos Interactive
2002.http://www.eidos.co.uk/games/info.html?gmid=34
[GDC 2001-2005] archive section of the Games
Developers conferences 2001-2005. www.gdconf.com
[Id 2004] Doom 3, Id Software, 2004. www.doom3.com
[Karma 2005] Karma Physics Engine
http://udn.epicgames.com/Two/IntroToKarma
[Renderware 2005] Renderware A.I game engine
http://www.renderware.com/
[UBI 2004] Far Cry 2004. UBI soft. www.ubisoft.com
[Valve 2005] Half Life 2, Valve Software, 2005.
www.valvesoftware.com

Reference

Carlisle, P. 2002.Designing a GUI Tool to Aid in the
Development of Finite State Machines (pg 71-77), AI
Game Programming Wisdom: Charles River Media.
Damasio, A. 1999. The Feeling of What Happens..
Published by Vintage.
Ekman,P. 2004. Emotions Revealed. Published in the UK
by Phoenix
Fernando, R; Kilgard, M.J. 2003. The Cg Tutorial.
Addisson Wesley.
Fosner,R. 2003. Real-Time Shader Programming. Morgan
Kaufmann Publishers.
Funge, J.D. 1999. AI for Games & Animation – A
Cognitive Modelling Approach. AK PETERS LTD.
Natick, Massachusetts.

ICAPS 2006

12 Workshop on AI Planning for Computer Games and Synthetic Characters

Higgins,D. 2002.How to achieve Lightning Fast A*. AI
Game programming Wisdom. Charles River Media.
Johnson-Laird, P.N. & Oatley,K. (1989). The language of
emotions: An analysis of a semantic field. Cognition &
Emotion, 3, 81-123.
Kirby, N. 2002 Moderator’s report – AI Roundtables.
Game Developers Conference 2002. San Jose, California.
Leonard, T .2003. Building AI Sensory Systems – Lessons
from Thief and Half-Life. Game Developers Conference
2003. San Jose, California.
Orkin, J. 2002. Tips from the Trenches, AI Game
programming Wisdom. Charles River Media.
Orkin, J. 2006. Three States and a Plan: The A.I. of Fear.
Game Developer’s Conference 2006. San Jose, California.
Reynolds, C. 2000. Interaction with Groups of
Autonomous Characters, in the proceedings of the Game
Developer Conference 2000, San Francisco, California.
Saltzman, M.1999. Secrets of the Sages. Chapter 9.
Macmilan Digital Publishing USA.
Scarowicz,A. 2004. Artificial Intelligence for Animated
Autonomous Agents. PhD Thesis Kingston University.
Smith, P; Hjelstrom, G. 2002. Polygon soup for the
programmer’s soul: 3D Pathfinding. Game Developers
Conference 2002. San Jose. California.
Stern, A .1999. AI Beyond Computer Games.
(www.lggwg.com/wolff/aicg99/stern.html
Todd, P.;Geoffrey F. 1997. How Cognition shapes
cognitive evolution. IEEE EXPERT: Intelligent Systems
and their applications, 12(4), 7-9.
Waverren, JMP.2001. The Quake 3 Arena Bot. University
of Technology, Delft Facults, ITS
Woodcock, S. 2003. AI Roundtables Moderators’ Report.
Game Developers Conference 2003. San Jose, California.

Biography
Stuart Slater is a senior lecturer in IT & Computing at
Wolverhampton University. His current research involves
the development of an “agent emotion architecture” for use
with commercial AI solutions.

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 13

Planning for an AI based virtual agents game∗

Susana Fernández, Roberto Adarve, Miguel Pérez, Mart́ın Rybarczyk and Daniel Borrajo
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain†

Abstract

Computer games have become a big software industry.
From the early days of the use of AI to solve classical
games, such as chess or checkers, we are now seeing an
intensive use of graphics to attract gamers. Currently,
AI in games, normally refers to either the designing
the behaviour of stock AI agents, like Bots (automated
player characters), or refers to custom AI agents such
as Non-Player Characters (NPCs). We present here our
on-going work on building a game, AI-live, that is ori-
ented towards the intensive use of AI controlled Bots.
The game borrows the idea from the popular The sims,
but with a strong focus on building characters based on
different AI techniques. More particularly, we present
the work on applying planning techniques for building
one such agent.

Introduction
Games has always been a challenging domain for test-
ing AI techniques. In the beginning of AI the focus was
on classical games, such as chess (Newell, Simon, &
Shaw 1972) or checkers (Samuel 1963). The type of AI-
based techniques that were used for solving these games
were mainly search and, sometimes, machine learning.
Then, in the 80’s and 90’s the work on these classi-
cal games continued by intensive use of faster machines
with more memory, such as the work on Deep Blue (Hsu
et al. 1990) or chinook (Schaeffer et al. 1996). Re-
cently, video games have produced a renewed inter-
est from the AI community on applying its techniques
into games. They normally refer to automated play-
ers (Bots), either opponents or teammates, and NPCs.
Bots are agents that act as if controlled by a human

∗This work has been partially supported by the Spanish
MCyT under project TIC2002-04146-C05-05, MEC project
TIN2005-08945-C06-05, and CAM-UC3M project UC3M-
INF-05-016.

†The use of planning for this domain appeared in the dis-
cussions carried out within the Artificial Intelligence Stan-
dards Committee of the International Game Developers As-
sociation, Working Group on Goal Oriented Planning. We
would like to thank its members.
Copyright c© 2006, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

player. They are stock AI characters that will follow
designed behaviours. Non-Player Characters are any
artificial agent that is not a player, like Monsters that
act only as an enemy to all players. A notable exam-
ple of AI in games is the project called FEAR, which
stands for Flexible Embodied Animat aRchitecture.1
This is a framework for creating AI controlled systems
for synthetic characters. The project includes reusable
AI components, a portable framework, and interfaces
to realtime 3D games. A similar system is Arianne, al-
though it is not designed specifically for AI.2 Arianne
is a multiplayer online engine to develop turn based
and real time games providing a simple way of creat-
ing the game server rules and game clients. There have
also been several tasks in games that have been solved
using a variety of AI techniques. Examples are produc-
tion systems for quake (van Lent et al. 1999), planning
for bridge (Smith, Nau, & Throop 1998) or Real Time
Strategy games (Chung, Buro, & Shaeffer 2005) and
in Full Spectrum Command,3 or genetic approaches in
Blondie24 (Fogel 2001) (see (Rabin 2002) for some re-
ported work). Perhaps, the most used technique has
been different versions of the A∗ algorithm for path-
planning purposes.

The idea inspiring AI-live has been the commercial
game The sims4 and how it could be generalised and
modularised so that AI clients could be designed to play
a game together with humans. Our goal is to build an
architecture similar to the one proposed in (Buro & Fur-
tak 2004) for Real Time Strategy games. Each AI client
is developed as an architecture using one AI technique.
So far, we have built a rule-based AI client and a plan-
ner one in AI-live. However, it could be augmented to
incorporate any other planner or AI technique. Further-
more, all agents can interact, leading to a more complex
system that integrates social and psychological models
in order to obtain believable emergent behaviours, as
the work by Silverman (Pelechano et al. 2005).

1http://sourceforge.net/projects/fear
2https://sourceforge.net/projects/arianne
3http://www.ict.usc.edu/content/view/56/108
4http://en.wikipedia.org/wiki/The Sims

ICAPS 2006

14 Workshop on AI Planning for Computer Games and Synthetic Characters

AI-live architecture
AI-live is a client/server application running over
TCP/IP. It works similarly to modern online games
such as Ragnarok Online,5 World of Warcraft6 or Guild
Wars7, where various users connect to a central server
to play in a shared world , with a key difference: in
our case, human clients share the game with AI con-
trolled characters using a variety of AI-oriented tech-
niques, playing in the same world. At this point in
development, a basic universe has been implemented
consisting of a simple room with objects to pick up,
together with two different AI clients and a graphics
renderer. Figure 1 shows a high level view of the archi-
tecture.

Figure 1: High level view of AI-live architecture.

The server holds the state of the universe, which is
divided in separate stages or realms where clients play.
Each stage is made of objects in a cell-based 3D space.
These objects are instances of classes from an ontology
that is shared among all clients. In the future, clients
will be able to travel from one stage to another, as play-
ers do in online games.

AI clients connect to the server to control an actor
object in a specific stage each, while GUI clients connect
to the server to open a window and display a graphi-
cal representation of a particular stage. In the future,
GUI-based clients will allow human players to play and
interact with AI clients.

The greyed application modules in Figure 1 are re-
sponsible for communication between both ends. All
these modules are written in C. The server intelligence
is done using the clips tool for building knowledge-
based systems.

After the server is initialised, it listens for incoming
connections and runs a round-robin loop over the list
of connected clients (we will define in the future asyn-
chronous behaviour):

• Each AI client receives the clips state corresponding
to its stage from the AI server and gets a turn with
unlimited time to decide on what to do. All other
5http://en.wikipedia.org/wiki/Ragnarok Online
6http://www.worldofwarcraft.com
7http://www.guildwars.com/

AI clients are paused as this happens. When the AI
client is done, the server receives an action, which is
passed to the AI engine and executed.

• Clients get all their turns during the game in strict
order of connection.

• All GUI clients receive the clips state corresponding
to their stages from the AI servers in every turn the
server executes, together with each AI client.

Clients connect to the server using a simple bi-
nary network protocol with little overhead, and at
this stage of the project, they synchronise with the
server simply by waiting for incoming data. Currently,
there are two AI clients implemented, using clips and
ipss (Rodŕıguez-Moreno et al. 2004) (an integrated
planner and scheduler based on prodigy (Veloso et al.
1995)) respectively, as well as a 2D GUI client.

Given that we would like AI-live to grow in the fu-
ture and in order to be flexible, we have defined an on-
tology that is shared by all modules, that is described in
the next subsection. Next subsections describe in more
detail the ontology, the server and the clips clients,
while next section describes the ipss clients.

The ontology
Figure 2 shows AI-live class model. All objects in AI-
live universe are instances of one of these classes. A
set of basic physical properties define all entities, and
actors add personality properties and relationships with
other entities (actors or not).

The main classes in the ontology are:

• Stage : it represents the different stages where the
game can take place.

• Entity : abstract class to represent any possible en-
tity in the stage. An stage is a collection of entities.
There are four entity subclasses:

– Actor : it represents game actors together with
their personality and emotions. Now, we are not
reasoning about this type of knowledge, but we
would like to focus on it in the next future.

– Wall : it represents walls that cannot be traversed.
– Object : it represents any general object.
– ContentCapability : it represents objects with

capacity properties as a Container or an Actor .

• Cell : it represents the atomic space portions inside
a stage.

• Relationship : it represents relationships among
actors and objects.

• ClientAction : each action supported in the
game has an associated class. So far, they are
MoveAction , PickUpAction , PutDownAction
and AddClient .

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 15

Figure 2: AI-live ontology.

The server
The server is the central part of the game. It holds the
state of the game with all of its defined stages and ob-
jects. It is in charge of maintaining a list of connected
clients to serve states to and receive actions from in a
round-robin basis. These actions are verified and exe-
cuted against the state, producing a new state for the
next client. The server is written in C language embed-
ding the clips production system to control the state,
verify and execute rules.

When a client of any kind connects to the server
(which is listening for incoming connections), both
parts will identify. On success, the server will add the
client to the loop. In this loop, all AI clients get one
turn in strict order of connection, while GUI clients re-
ceive a copy of the state in every turn, but they do not
send an action.

The actions currently supported by AI-live are:

• Move an actor from one position to another

• Pick up an object as requested by an actor

• Put down an object as requested by an actor

To execute these actions, the clips code in the server
has a series of rules, that check for validity of the re-
quested operations and alter the state. As the state
changes, clients actions change.

The clips client
The clips client is an AI-live client implemented using
the clips tool for building knowledge-based systems.
We have integrated clips with the rest of client code
that handles, as in the case of the ipss client, all net-
working operations. At this stage of the project, each
clips client playing the game will have to pick up as
many objects as possible, considering its actor maxi-
mum capacity. As in the case of the ipss clients, set-
ting up the goals of the AI characters is, perhaps, one of
the most interesting parts of the project that we would
like to work on. Given that ipss is a backward chaining
planner and clips works in forward mode, there will be
differences in how goals will be defined and pursued in
both types of clients. In the case of clips clients, they
can afford having a more reactive behaviour, while ipss
clients will have to be goal oriented (in its simplest con-
figuration). We are also considering adding other plan-
ners that might have a different behaviour, introducing
new ways of looking at this problem.

To decide on which action to run, the clips client will
use the stage received from the server as state, matching
every object and property (such as class, position, size,
angle, weight, bulk...) with conditions of rules.

The gui client
The first graphical client for AI-live is a conventional
2D sprite-based renderer named CREND. It is modelled
after successful 2D engines still in use by some of today

ICAPS 2006

16 Workshop on AI Planning for Computer Games and Synthetic Characters

video-games, and is written from scratch in pure C,
using the portable SDL low-level multimedia framework
for graphics.

CREND connects to an AI-live server and obtains
the state for a stage as an AI client would, but it does
not send any action. Instead, it draws a graphical rep-
resentation of the stage in a window where users can see
what is happening in the server. Objects are drawn in a
particular parallel perspective derived from traditional
2D scrolling, and used by most 2D role-playing games
such as Tales of Phantasia.

The ipss client
The ipss client is the one that uses planning technology
for deciding at each step which action is best to execute.
It uses the ipss system that integrates planning and
scheduling (Rodŕıguez-Moreno et al. 2004). One can
use any other planner for implementing this planning
step, though there some features of ipss that have been
useful for building these clients (some of them will be
described later). The client is divided in two modules:

• Main module: its tasks are to connect to the server,
deal with the network, and invoke the AI module.
This module is in charge of the low-level network-
ing, receiving each state and interacting with the AI
module to obtain an action, which is then forwarded
to the server. It is written in C. The client can be
configured with the following parameters: the server
address and port; the stage the client is to play in;
and the controlled actor profile.

• AI module: its main task is to decide the actor ac-
tions. The planning tool chosen for this task is the
domain-independent planner ipss. It is used to find
a plan for the AI-live domain and problem supplied
by the main module. The main module receives the
state with all the objects for the current stage from
the server and parses it, translating it into ipss de-
scription language (quite similar to pddl2.1 (Fox &
Long 2002)). The parsed state and goals form the
input problem to the planner. The client domain is
defined as a set of operators designed to be counter-
parts of the set of implemented actions the server can
execute. At this stage of the project, the AI-live ac-
tions are supported as operators: move, pick-up and
put-down. These two last operators use the individ-
ual capacity constrains of characters. Then, ipss pro-
vides a potential plan to achieve the goals from the
current state, and outputs only the first operator in
the plan. This operator is translated back to AI-live
actions scheme, and returned to the server.

Now, we will comment on two specific issues that
have to be considered for applying planning to game
playing in general and how we have solved them within
AI-live: how goals are generated, and how to solve
efficiently the problem of selecting paths to go from one
place to another in a given map, how to integrate path
planning with task planning.

The first issue concerns selecting a goal to work on.
Currently, AI-live selects to maximize the number of
objects taken by the actor, so goals consist on having
the actor the objects that are in the room. Traditional
approaches to planning assume that goals are given as
input to the planners. However, we believe that, from
a planning perspective, setting up the goal of an actor
in this type of domains is precisely one of the key chal-
lenges of using AI planning here. Therefore, we want
to study different types of goals generation schemes for
this type of games. A related problem is the over-
subscription in planning that occurs when agents do
not have enough resources to achieve all of their goals.
This requires finding plans that satisfy only a subset of
them (van den Briel, Sánchez, & Kambhampati 2004).

The second issue relates to the use of grids/maps in
planning domains (that appear in most games), as it
is the case of AI-live. For many planners, reasoning
about how to go from one place to another can easily
make planning intractable, as it is the case of ipss. This
is specially true if we want to optimize the cost of the
path to go from one place to another according to a
quality measure. There are many articles in AI games
about applying heuristics to path planning. However,
planning domains pose the added problem of path plan-
ning integration with the operator definitions. For ex-
ample, to define an action for moving a synthetic char-
acter is necessary to know how the character can move
in the world. We have used two approaches. The first
approach, which is based on a careful manual knowl-
edge engineering of the domain, exploits one of ipss
main features: the support for user-defined heuristics,
to efficiently guide the search. These domain-dependent
heuristics are defined as control rules (if-then struc-
tures), that help the planner taking directions, check-
ing adjacency, and deciding on a position for an ac-
tor to pick up an object from the stage. Figure 3
shows an example of one of these rules for selecting
bindings for the move operator. Suppose that the cur-
rent planner goal is to have an actor on a goal-cell
(the one that has an object which the actor wants to
pick up, with coordinates (x,y)). If the actor is cur-
rently at another cell, this rule selects the best adjacent
cell to the goal-cell , origin-cell (coordinates
(x1,y1)), to which the actor should move first. This
decision is needed given that ipss is a backward chain-
ing planner. The meta-predicate (adjacent-p x y
x1 y1) is true if position (x,y) is adjacent to position
(x1,y1) . The meta-predicate (best-cell-p x y
x1 y1 x2 y2) is true if (x1,y1) is the best adjacent
position for reaching (x,y) starting from (x2,y2)
(where the actor is). Repeated use of this control rule
guides the actor within the map directly from its initial
position to the goal cell.

This approach for solving the path-planning problem
within the task planning requires to define by hand the
appropriate control rules. Obviously, this depends on
the user that defines the right knowledge. The sec-
ond approach integrates the task planner (ipss) and a

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 17

(control-rule select-cell-for-MOVE
(if (and (current-goal (cell-inCell <goal-cell> <actor_id>))

(current-operator move)
(true-in-state (cell-x <goal-cell> <x>))
(true-in-state (cell-y <goal-cell> <y>))
(true-in-state (cell-x <origin-cell> <x1>))
(true-in-state (cell-y <origin-cell> <y1>))
(adjacent-p <x> <y> <x1> <y1>)
(true-in-state (cell-inCell <actor-cell> <actor_id>))
(true-in-state (cell-x <actor-cell> <x2>))
(true-in-state (cell-y <actor-cell> <y2>))
(best-cell-p <x> <y> <x1> <y1> <x2> <y2>)
(or (true-in-state (cell-occupied <origin-cell> false))

(true-in-state (cell-inCell <origin-cell> <actor_id>)))))
(then select bindings ((<cell_id> . <origin-cell>))))

Figure 3: Example of a hand crafted control rule for selecting bindings for the move operator.

path planner (a standard implementation of the A∗ al-
gorithm), by interleaving their execution following the
ideas in (Fox & Long 2001). When ipss needs to find a
path during the search for the task planning solution,
it calls the path planner. If there is a path between the
current position of the actor and the goal position, the
path planner returns a solution (together with all its as-
sociated quality metrics), that can use that information
while solving the problem.

In relation to the integration of task and path plan-
ning, ipss has two useful features:

• Functions can be called within the definition of vari-
ables on operators. If we want to know whether there
is a solution and its quality between two nodes of
a path-planning problem, we can define a variable
distance in the preconditions of the move operator
whose value is the result of calling the path planner
function.

• Different cost metrics can be defined at each opera-
tor. In this paper, we are mainly interested in the
distance quality metric, but both planners (task and
path planners) can also use other quality metrics, and
obtain good solutions according to them.

For describing the overall planning problem we need
two separate files. A problem file for the task plan-
ner, in which we have abstracted the information on
the map/path graph, and a problem file for the path
planner with information about the map/path graph.
Nodes of the path graph will also appear in the task
planner problem file so that there is a connection be-
tween these two processes. In the next subsections we
describe this process in more detail.

Path planner
The input to the path planner is a path-planning prob-
lem composed of an initial node, a final node, a quality
metric, and a graph. In order to automatically specify

the graph for each problem given to the ipss client, we
extract it from the problem definition. Given that we
wanted the approach to be as domain independent as
possible, for each domain we only need to specify the
problem predicates from which the system will create
the graph nodes and the predicates from which the sys-
tem will create the graph arcs. Each arc can have a
set of quality metrics defined. In our experiments, we
have only used one: distance. But in other applica-
tions, such as planning tourist visits in the samap ar-
chitecture (Arias, Sebastiá, & Borrajo 2005), we have
used others such as price (cost of the transportation
method), utility (a subjective value that can represent
user/agent preferences such as I prefer to use the bus
when possible), distance, and time. Then, when call-
ing the path planner we can specify the cost metric to
be minimized.8 The output of the path planner is a
list of move actions in the form of: initial node, final
node, and the values of the cost metrics for that arc
(distance).

Given that the task planner can call the path-planner
for solving the same path planning problem many times
during the search (due to symmetries in the task plan-
ning search tree), the path-planner provides a caching
mechanism. Every solution for the path planning prob-
lems is stored the first time. Then, in case of solving the
same path planning problem is needed, it retrieves the
previous solution. This assumes that the graph does
not change between two calls to the path-planner. In
case it can change, such as domains in which agents
can act on the arcs, the nodes, or their quality metric
features, then the caching mechanism will not be use-
ful. For instance, if the actor leaves objects in the floor
when building a plan, it creates obstacles in the graph.
Therefore, a previous solution to go from one place to
another in a previous call of the path planner can be

8In the case of maximizing cost metrics, such as utility,
we can always convert them to minimization problems.

ICAPS 2006

18 Workshop on AI Planning for Computer Games and Synthetic Characters

made invalid.
This approach can be applied to many other domains,

such as driverlog, sokoban, The driverlog
domain, for instance, has a graph for drivers and a
graph for trucks. So, our implementation of the path
planner admits a set of graphs to be defined. Then, for
each domain operator, the appropriate path-planning
problem file will be selected.

Task planner
ipss uses a backward search to solve planning problems.
The types of decisions that it makes during search are:
goal to work on, operator name that can achieve the
selected goal, bindings for that operator, and decide
whether to continue subgoaling or execute an applicable
operator. In order to integrate it with the path planner,
we redefined the move operator as specified in Figure 4.

Variables appear between brackets. The preconds
section defines first the variables that are used in the
operator, as well as the operator preconditions. The ef-
fects section defines other variables that are used only
in the effects, as well as the postconditions. Finally,
the cost section defines new variables only used for the
costs computation, and the operator costs depending on
the quality metric used by the task planner when solv-
ing a specific problem. In this case, we have defined one
quality metric: steps (distance). The gen-from-pred
function accesses the current state to provide values for
variables. For instance, the room (stage) where the ac-
tor currently is, or the position it is on.

The connection with the path planner is done
through the path-planning-distance function
whose input parameters are the initial node and end
node, that will also appear in the path-planner graph
description. It returns false in case of no solution, or
a numeric value with the total distance to go from the
initial node to the final node. This value is assigned to
the <steps> variable.

Conclusions

We have presented the first steps of building AI-live, a
game inspired in the popular game The sims. We have
defined and built an architecture based on a server and
three types of clients: a rule-based one, a planning-
based one, and a gui. From a planning perspective, we
have defined and provided initial solutions to two plan-
ning problems related to this type of domains: goal se-
lection and integration with path-planning. Both prob-
lems are common to the application of planning tech-
nology to many games.

Currently, we are dealing with a simplified domain
in terms of actions covered, though we have defined the
architecture to be easily augmented with many more ac-
tions. So, we are using an ontology that can cope with
the knowledge needed for many of the potential new
actions. For instance, in the next future, AI-live is ex-
pected to shift towards the social relationships among
actors and the reasoning about psychological aspects,

that have already been considered in the ontology. We
also want to change our 2D cell-based world represen-
tation to a full 3D with dynamic physical objects.

References
Arias, J.D.; Sebastiá, L.; and Borrajo, D. 2005. Us-
ing ontologies for planning tourist visits. In Working
notes of the ICAPS’05 Workshop on Role of Ontolo-
gies in Planning and Scheduling, 52–59. Monterey, CA
(EEUU): AAAI.
Buro, M., and Furtak, T. 2004. RTS games and
real-time AI research. In Proceedings of the Behav-
ior Representation in Modeling and Simulation Con-
ference (BRIMS), 51–58.
Chung, M.; Buro, M.; and Shaeffer, J. 2005. Monte
carlo planning in RTS games. In Kendall, G., and
Lucas, S., eds., Proceedings of the IEEE Symposium
on Computational Intelligence and Games (CIG’05),
117–124. Essex (UK): IEEE.
Fogel, D.B. 2001. Blondie24: Playing at the Edge of
AI. Morgan Kaufmann.
Fox, M., and Long, D. 2001. Hybrid stan: Identi-
fying and managing combinatorial optimisation sub-
problems in planning. In Proceedings of IJCAI’01.
Fox, M., and Long, D. 2002. PDDL2.1: An Extension
to PDDL for Expressing Temporal Planning Domains.
University of Durham, Durham (UK).
Hsu, F.; Anantharaman, T.; Campbell, M.; and
Nowatzyk, A. 1990. Computers, Chess, and Cogni-
tion. Springer. chapter Deep Thought, 55–78.
Newell, A.; Simon, H.A.; and Shaw, J. 1972. Human
Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.
Rabin, S., ed. 2002. AI Game Programming Wisdom.
Charles River Media.
Rodŕıguez-Moreno, M.D.; Oddi, A.; Borrajo, D.;
Cesta, A.; and Meziat, D. 2004. IPSS: A hybrid rea-
soner for planning and scheduling. In de Mántaras,
R.L., and Saitta, L., eds., Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI
2004), 1065–1066. Valencia (Spain): IOS Press.
Samuel, A. 1963. Some studies in machine learning
using the game of checkers. In Feigenbaum, E., and
Feldman, J., eds., Computers and Thought. New York,
NY: McGraw-Hill.
Schaeffer, J.; Lake, R.; Lu, P.; and Bryant, M. 1996.
Chinook, the world man-machine checkers champion.
AI Magazine 17(1):21–29.
Smith, S. J.; Nau, D.S.; and Throop, T.A. 1998. Com-
puter bridge - a big win for AI planning. AI Magazine
19(2):93–106.
van Lent, M.; Laird, J.E.; Buckman, J.; Hartford, J.;
Houchard, S.; Steinkraus, K.; and Tedrake, R. 1999.
Intelligent agents in computer games. In AAAI/IAAI,
929–930.

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 19

(OPERATOR move
(params <actor_id> <cell_id> <destination_cell_id>)
(preconds

((<actor_id> ACTOR)
(<stage_id> (and STAGE (gen-from-pred (stage-entities <stage_id> <actor_id>))))
(<cell_id> (and CELL (gen-from-pred (cell-inCell <cell_id> <actor_id>))))
(<destination_cell_id> (and CELL (diff <cell_id> <destination_cell_id>)))
(<steps> (and STEPS (path-planning-distance <cell_id> <destination_cell_id> <steps>)))
(<xx> (and COORDINATE (gen-from-pred (cell-x <destination_cell_id> <xx>))))
(<yy> (and COORDINATE (gen-from-pred (cell-y <destination_cell_id> <yy>))))
(<x> (and COORDINATE (gen-from-pred (cell-x <cell_id> <x>))))
(<y> (and COORDINATE (gen-from-pred (cell-y <cell_id> <y>)))))

(and (cell-inCell <cell_id> <actor_id>)
(cell-occupied <destination_cell_id> false)))

(effects ()
((del (cell-inCell <cell_id> <actor_id>))

(del (cell-occupied <destination_cell_id> false))
(del (cell-occupied <cell_id> true))
(del (actor-x <actor_id> <x>))
(del (actor-y <actor_id> <y>))
(add (cell-inCell <destination_cell_id> <actor_id>))
(add (cell-occupied <destination_cell_id> true))
(add (cell-occupied <cell_id> false))
(add (actor-x <actor_id> <xx>))
(add (actor-y <actor_id> <yy>))))

(costs ()
((steps <steps>))))

Figure 4: Example of the move operator for the AI-live domain in the ipss language.

Veloso, M.; Carbonell, J.; Pérez, A.; Borrajo, D.; Fink,
E.; and Blythe, J. 1995. Integrating planning and
learning: The prodigy architecture. Journal of Ex-
perimental and Theoretical AI 7:81–120.

Champandard, A.J. 2003. Synthetic Creatures with
Learning and Reactive Behaviors. New Riders Games.

Pelechano, N.; O’Brien, K.; Silverman, B.; and Badler,
N. 2005. Crowd simulation incorporating agent
psychological models, roles and communication. In
First International Workshop on Crowd Simulation
(V-CROWDS ’05).

van den Briel, M.; Sánchez, R.; and Kambhampati, S.
2004. Over-Subcription in Planning: A Partial Satis-
faction Problem. In ICAPS Workshop on Integrating
Planning into Scheduling.

ICAPS 2006

20 Workshop on AI Planning for Computer Games and Synthetic Characters

Author in the Loop: Using Mixed-Initiative Planning to Improve
Interactive Narrative

James M. Thomas
Liquid Narrative Group

Department of Computer Science
Box 7535, NC State University

Raleigh, NC 27695 USA
jmthoma5@ncsu.edu

R. Michael Young
Liquid Narrative Group

Department of Computer Science
Box 7535, NC State University

Raleigh, NC 27695 USA
young@csc.ncsu.edu

Abstract
This paper describes a foundation for an interface to allow
non-technical human authors to collaborate with an
automated planning system to design interactive narrative.
Drawing from research in advisable and mixed-initiative
planning, a domain metatheory is presented that allows for
qualitative elaborations of narrative domains. The authors
describe a graphical user interface that exploits this
metatheory to specify authorial preferences. Specific
constructs related to interactive narrative are considered to
demonstrate how the preferences of the human author may
be used to define and control the possible user experiences
of an interactive narrative.

Introduction

“Interactive narrative” describes the stories that develop
within virtual worlds in which human users interact with
one or more computer controlled agents. The most well
known examples of interactive narrative are computer
games, but also included are intelligent tutoring systems,
embodied conversational agents, virtual environments, and
training simulators. A persistent challenge for such systems
is the narrative paradox: “how to reconcile the needs of the
user who is now potentially a participant rather than a
spectator with the idea of narrative coherence.” (Aylett
2000).

Few systems attempt to reconcile these goals dynamically
at run-time. Those favoring strong plot coherence often
restrict the depth of the computer-controlled characters,
and/or the human user’s available palette of interactions
with these characters, reducing character believability.
Systems with interesting and believable characters often
lack any automated mechanism to coerce these ‘emergent’
bots to meaningfully contribute to a story. Although many
useful and commercially successful systems have been
built with these limitations, none has yet fully met the goal
of Hamlet on the Holodeck (Murray 1998, Cavazza et. al,
2000).

One approach for the balancing of these competing goals is
the Mimesis system (Riedl, Saretto, and Young 2003).
Their algorithm generates plans for actions of story world
characters based on hierarchical task decompositions and
discrete causal requirements. Although Mimesis
simultaneously solves for plot coherence and character
believability, the authors acknowledge (Riedl and Young
2004) that a primary limitation is the lack of a search space
heuristic that would allow the system to judge the relative
“goodness” of one plan over another. In other words,
there is no mechanism to ensure that particular narrative
qualities such as “suspense”, “surprise” or “romance” will
be produced in resulting plans.

One might attempt to define a generalized heuristic
function in terms of universally accepted narrative ideals,
but most planners lack a sufficiently powerful model to
make associations between such generalized ideals and the
semantics of a specific problem domain and plan space.
Also, no set of heuristics has yet been identified that
guarantees “good” narrative even when applied by skilled
and motivated humans. As author Somerset Maugham
quipped, “There are three rules for writing the novel.
Unfortunately, no one knows what they are”.

An alternative approach is to involve the human author in
defining heuristic functions for each interactive narrative
based on that author’s preferences of setting and plot. For
the system to capture these preferences and report them to
the planner, it must have an integrated understanding of the
definitions of actions and entities in the problem domain
(the setting) and the effects that the constraints on those
actions have in defining the topology of the plan space
(plot experiences). A reasonable approach for gaining that
understanding is to keep the author “in the loop”
throughout the plan construction process. This paper
describes the foundations for the design of such a
collaborative authoring environment for interactive
narrative. The first stage of this environment is being
implemented as part of the Zócalo system of planning
services at North Carolina State University (NCSU).

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 21

Planning For Interactive Narrative

Planning for interactive narrative offers special challenges
and opportunities. Even in systems that do not attempt the
dynamic generation of narrative structure, it is difficult to
maintain clear knowledge or control of what can happen at
run-time. Two examples from a sub-genre of narrative,
massively multiplayer online games, illustrate this point.
An early such game (1985) was Lucasfilm’s Habitat. One
of the first game-wide campaigns planned inside Habitat
was a treasure hunt called the ”D’nalsi Island Adventure”.
Habitat designers Morningstar and Farmer recall:

 It took us hours to design, weeks to build (including a
100-region island), and days to coordinate the actors
involved. It was designed much like the puzzles in an
adventure game. We thought it would occupy our
players for days. In fact, the puzzle was solved in
about 8 hours by a person who had figured out the
critical clue in the first 15 minutes. Many of the
players hadn’t even had a chance to get into the game.
The result was that one person had had a wonderful
experience, dozens of others were left bewildered, and
a huge investment in design and setup time had been
consumed in an eyeblink. (Benedikt 1990)

This lack of predictability was not simply an artifact of the
times. In January of 2006, Jeff Kaplan, a lead designer of
World of Warcraft (the most popular on-line game to date
at the time of the article with 5.5 million subscribers) was
interviewed by the New York Times. In the interview he
was asked how long it would take until the top boss in one
realm of the game (Ahn’Qiraj) would be defeated:

My estimates are in the one-to-two-month range, but
my expectation is that it could happen today. I've
learned that as soon as something is in the game, you
have to expect that it's going to be beaten. (Shiesel,
2006)

In essence, the designers of this type of interactive
narrative have given up on predicting the run-time
possibilities of their work. Instead, these Game-Masters
(Louchart and Aylett 2003) are kept busy developing the
next episodic installment of narrative while tweaking its
predecessor to accommodate the unforeseen actions of
users.

Despite the difficulty of constructing shrink-wrapped
games that solve the narrative paradox, designers continue
to make the attempt. Marc Laidlaw, lead designer of the
commercially successful, narrative-rich game Half Life 2
for Valve Entertainment, asserted the importance of plot in
at the Austin Game Writer’s Conference in late 2005:

Game designers should be in love with plot. It’s the
engine of the story. It’s the core tech, that little

mathematical nub that everyone can point at and make
the subject of proofs and axioms and corollaries.
None of these technical considerations serve us very
well when we start arguing about meaning, but if you
get plot right, then meaning inevitably follows.

 I like to talk about plot because it can be directly
implemented in a game. Plot is the sum of cause and
effect. Whether the cause is something in the player’s
control, or something the designers force upon the
player, it’s measurable. It can map directly to
gameplay decisions, and lead to an outcome or
outcomes that are equally tangible.

A thorough discussion of plot gives you everything
you need to build your story, and your game.
(Laidlaw 2005)

Automated planning manages “the sum of cause and
effect” that defines plot. Beyond its desirability to a few
risk-takers in the game industry, ensuring that a coherent
narrative achieves particular goals is an important
requirement for educational and training applications. The
task for planning systems in interactive narrative reaches
well beyond finding a single complete and consistent plan.
Authors are interested in understanding how unplanned
user actions may affect story goals. This in turn raises
issues about the variability of narrative experiences that are
possible with each construction and how those possibilities
shift as authors make changes. Compared to other plan
authors, those building interactive narrative are probably
more likely to work with the planner to make incremental
refinements to the planning problem through multiple
iterations.

Including Domain Knowledge in Planning
Traditional automated planners are not designed
specifically to facilitate iterative collaboration with the
plan author. Research into collaborative planning
methodologies has generally been referred to as advisable
or mixed-initiative planning. Advisable planning (Myers
1996b) attempts to shape the behavior of the planner by
adding additional information to the definition of the
planning problem prior to invocation of the planners.
Mixed-initiative planners allow for the iterative and
incremental construction of the plan with both the user and
the planner capable of proposing or initiating requests to
change aspects of the problem or solution. Thus, advisable
planning is effectively a special case of mixed-initiative
planning where the initiative is first taken by the human,
then by the planning system. “Configurable” planning
(Nau 2005) is the combination of domain-independent
planning engines with higher-level abstractions like
hierarchical task networks that capture and exploit domain
knowledge. Each of these research threads has application
toward collaborative planning of interactive narrative.

ICAPS 2006

22 Workshop on AI Planning for Computer Games and Synthetic Characters

Interactive Narrative as a Planning Domain
Much of the motivation for configurable planners is based
on the gulf between the real world and restrictive
experimental domains descended from “blocks world.
Where Nau’s “configurable” planners represent an
architectural middle ground, interactive narrative
represents a domain of similarly intermediate complexity
between the “blocks world” and the real world.

Because interactive narrative takes place in a virtual world,
its domains are both fully knowable and fully malleable.
An advantage for planning research is that these domains
may be amended or contracted to suit the requirements of
the planning problem. In fact, the plan author may be
responsible not only for the domain representation, but also
may be involved in the construction of the domain itself.
As interactive narrative planning is a component within
this larger creative process, there are possibilities and
requirements for experimentation and exploration than are
not found working with real world domains. This affords
researchers the freedom to investigate intricate
relationships between the domain, its representation, the
planning problem and the resulting plan spaces.
Integrating these concepts into an authoring tool can
benefit both the interactive narrative and the planning
research communities.

Mixed-Initiative Planning Research
Mixed-initiative techniques have long been associated with
several prominent planning research projects. Ferguson
and Allen (1998) have studied extensively aspects of
mixed-initiative in their TRIPS and TRAINS projects In
their estimation ”far more attention needs to be paid to the
gap between the abilities of automated reasoners and the
needs of human decision makers (Allen and Ferguson
2002). The systems Allen and Ferguson have built rely on
human-computer interfaces based on natural human dialog.
Their focus is on building a dialog system intermediary
between the human plan author and group of back-end
agents. A key challenge they have addressed is the
mapping of individual communicative utterances of the
user to the most appropriate plan editing action. They bias
this intention recognition toward those candidates
suggested by recency and those that will minimize plan
churn. Another challenge they have addressed is the
resolution of ambiguities about the scope of an intended
change. Is the requested change to be performed on the
problem goal or the proposed solution? Is the solution to be
modified, extended or rejected? To perform these types of
reasoning, the authors employ a collaborative interaction
model compatible with the SharedPlans formalism of
Grosz and Kraus (1996) and realized as an inter-agent
communication protocol. The application of Allen and
Ferguson’s work to interactive narrative is limited by two
factors. First, they rely on a domain representation

assumed to be complete and accurate, where these are very
much in flux during the authoring process of interactive
narrative. Second, much of their focus is on the
interpretation of spoken natural language statements about
plans and plan goals in order to make the appropriate
changes to the plans, where interactive narrative inputs are
likely to be text with formally constrained syntax and
semantics. A key contribution of their work that can help
interactive narrative is modeling the problem solving state
at multiple levels of abstraction, from a high-level
hierarchy of objectives, to a compact summary of a class of
possible concrete solutions, to the intermediate world states
of particular solutions (Ferguson and Allen 2002).

Rich and Sidner (1998) also leverage discourse
interpretation and SharedPlans in COLLAGEN.
COLLAGEN, like TRIPS and TRAINS, is a few steps
beyond the immediate challenges of authoring interactive
narrative. COLLAGEN constrains search through a
detailed model of interaction history. This includes
intentional structure (partial SharedPlans), linguistic
structure (hierarchical groupings of actions into segments),
and attentional structure (a ”focus stack” of segments).
This model is used to generate context-dependent natural
language formulations from which the user may choose.
Rich and Sidner believe that, in contrast to the weakly
structured interaction histories in most interactive systems,
the interaction history in COLLAGEN “reflects the user’s
problem solving process”. This idea of the system asserting
informed choices of actions to the plan author could be
used to guide the authors of interactive narrative toward
decisions that have the best utility relative to their goals.

Tate, Dalton, Levine (1998) introduced the <I-N-OVA>
Model (for Issues, Nodes, Orderings / Variables /
Auxiliary) abstraction to allow for “plans to be
manipulated and used separately from the environments in
which they are generated.” In Tate’s system, the user and
planning system work to refine the sets of constraints
under which the planner must operate. Amant, et. al.,
(2001) have built mixed initiative interfaces for plan
visualization and navigation. Blythe, et. al. (2001) have
investigated representing plan structures in ways
interpretable by humans as business processes. These
systems focus on mapping plan representations to natural
language correlates within the domain.

Advisable Planning
The idea of an advisable problem solving system goes back
as far as John McCarthy’s proposed “Advice Taker”
program (McCarthy 1959). McCarthy’s first example
problem for a ‘program with common sense’ was a
planning problem. Advice continued to have a prominent
role in research into automating common sense including
projects such as Cyc (Lenat 1995). Meanwhile, as the field
of automated planning developed specialized knowledge
representations and reasoning methods it became separated

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 23

from McCarthy’s more general strain of commonsense
reasoning work. However, Myers and her colleagues
(Myers 1996b), have recently investigated the application
of user-supplied advice within the context of modern
planning techniques. Myers’ advisable planner employs a
model where abstract advice specifications provided by the
user are compiled into a language of constraints common
to traditional planning algorithms. Myers distinguishes
between three ”idioms” of advice. Task advice identifies
the goals and actions to be included in solution. Strategic
Advice recommends how goals and actions are to be
accomplished relative to parameter values. “Evaluational”
Advice puts constraints on some metric defined for the
overall plan (e.g., resource usage, execution time or
solution quality).

In Myers’ work, the advice an author gives the planner is
grounded in a domain metatheory, an abstract
representation independent of underlying planning
technologies. A domain metatheory is intended to enhance
user directability of the planning process, aid in the
generation of qualitatively different plans, and aid plan
summarization. Myers (2000a) proposes a model built on
three constructs: roles, features, and measures. Roles
describe the function of an object within an operator,
features are attributes that differentiate operators, and
measures are partial orderings of features with respect to
some criterion.

For example, the feature “Air” might be associated with
the operator “AirMail(loc1, loc2, item)” while the feature
“Land” might be associated with “BicycleMessage(loc1,
loc2, item)”. Related features may be grouped into feature
categories, e.g., Transport-Media could be a category
containing both Air and Land.

A measure is an ordering (possibly partial) of features
within a feature category. For example, the measure
AFFORDABILITY might be defined over feature
category Transport-Media as to rank Land higher than
Air, where the measure COMFORT might be defined
over feature category Transport-Media as to rank Air
over Land. A role-fill specifies explicit object instances or
constraints over a set of instances relative to a given
operator role.

Measures may be extended to describe object instances
within the domain through the assignment of measure
values. For example, if the measure AFFORDABILITY
has measure values defined as (Cheap, Moderate,
Expensive) the object instance Lear Jet would have the
AFFORDABILITY measure value Expensive while the
object instance Subway would have the
AFFORDABILITY measure value Cheap.

Strategic advice is specified through the metatheoretic
elements of Activities, Roles, Role-Fills and Measures,
which in turn are simpler and closer to the natural

cognitive models employed by human experts than the
lower level planning constructs of goals, operators,
variables and bindings. Strategic advice consists of
prescriptions and restrictions of roles, fillers (a.k.a. role-
fills), relative to specific activities. This advice takes two
forms. Role Advice designates which object-role
specifications (role-fills) are required or restricted in
specific activities. For example, a role template of ”Stay in
<Accommodation> while vacationing in <Location> might
be instantiated as ”Stay in 3-star hotels while vacationing
in Scotland” where the role of <Location> is filled by
”Scotland” and the filler ”3-star hotel” is prescribed for the
role <Accommodation> (Myers 1996b). This is an example
of an target activity with a feature of Vacation. In contrast,
Method Advice operates at a higher level, as it prescribes
or prohibits the use of specific activities within the plan.

Advice For Qualitative Differences
Once the planner becomes knowledgeable of the advice
associations of its elements, it is possible to direct it toward
solutions that have particular qualities relative to that
advice. Many planners can generate different plans for the
same problem, but extracting and summarizing the
meaning of those differences is difficult. Furthermore, the
particular differences of interest will vary from user to user
and task to task. A deeper problem is the assumed accuracy
and completeness of the domain and problem
representations. Because much of Myers’ work has been
situated in the application of planning military operations
for the real world, the domain representation is often seen
to be incomplete or imperfect by the human experts who
use the system because they have experience and
knowledge over a vast number of real world exceptions.
Therefore, considerable effort is devoted to eliciting more
complete descriptions of the domain and problem
representations.

A goal for advisable planning systems is that they create
novel plans that are qualitatively different from one
another (Myers and Lee 1999) a goal that is especially
relevant for interactive narrative. To achieve this goal, the
plan author nominates a subset of measures from the
domain metatheory to serve as criteria for evaluating
chosen properties of plans. Myers introduces an evaluation
function that maps feature measures into categories on
which measurements normalized over the interval [0, 1]
can be applied. A set of k evaluation criteria thus define a
k-dimensional space in which the Euclidean distances can
be measured between the locations of each plan relative to
each of these dimensions as measured by the evaluation
functions. Myers’ recent work (Myers 2005) uses the
metatheory to summarize plan content, and uses a type
hierarchy to reason about differences based on which
objects are bound to different features of the plan.

As Myers moved toward a mixed-initiative model in which
the user makes many of the decisions necessary to create
the final plan, a new problem was introduced. At some

ICAPS 2006

24 Workshop on AI Planning for Computer Games and Synthetic Characters

points in the creation of a complex plan there may be
hundreds or thousands of unresolved issues. The system
must rank these decisions based on importance so that the
user has a chance to complete the plan. As many as five
different methods for this type of prioritization were
considered and three were implemented in a system called
PASSAT (Wolverton 2004). The exploratory nature of
interactive narrative construction is likely to produce
similarly complex plan spaces. The prioritization methods
pioneered in PASSAT would be useful in making optimal
use of the finite attention of human narrative authors.

Domain Elaboration Framework
To leverage the results of advisable and mixed-initiative
planning, this paper introduces DEF, the Domain
Elaboration Framework. DEF is an adaptation of Myers’
domain metatheory that allows authors to add detail to
classical planning domains to enable expressive problem
definition and reasoning about plans.

The basis of DEF is a STRIPS-stye (Fikes and Nilsson
1971) planning domain characterized by objects,
conditions and operators. More formally, an object symbol
provides a unique name for an entity in the world. All
object instances are predefined by the plan author. A
condition is a conjunction of function-free literals
composed of a unique name identifying a relation and a set
of placeholder variable terms or object instances. These
terms are also referred to as condition parameters. An
operator is defined by the set of literals stating the
preconditions that must hold before it can be invoked, the
set of literals stating the effects that will hold following its
invocation, and a parameter list that may be applied to
designate variables in these sets of literals.

Where the metatheory introduced by Myers relies on roles,
role-fills, features, and measures, DEF uses an alternate
grammar of types, dimensions, weights, and
measurements. A type is a symbolic name of a node in a
global hierarchy of author-defined types with a unique root
node named “anyThing”. Every operator, parameter, and
object instance is required to have at least one associated
type. Although type can be seen as an implicit concept in
Myers’ original metatheory. it is not until her recent work
(Myers 2005) that one can find an explicit representation
of type. In the example of the move operator whose loc1
parameter was assigned the role of origin the type might be
inferred to be location. It would seem obvious to a human
author of the move operator that the loc1 should only bind
to objects of type location, but without explicit constraints
a planner could just as easily fill the origin role with a cat,
a cake, or a comb.

Because every parameter of an operator or condition and
every object has a type associated with it, the type
hierarchy can be used to guide the planner in assuring that
the authorial intentions for bindings are maintained. In fact,

an interactive narrative creation tool built on the DEF
framework could communicate type constraints on
parameters and objects through extending the set of
preconditions for each operator and for the initial and goal
states.

For example, in the case of the loc1 parameter within the
move operator the type constraint isalocation(loc1) could
be added to the operator’s list of preconditions, and when
object instances of type location are created, corresponding
isalocation(newobject) conditions could be added to the
initial state of the planning problem. Some planners allow
the nomination of a special subset of preconditions
(sometimes referring to these as constraints) whose truth
values can be computed directly from the assignments to
the initial state, allowing for faster processing. For these
planners, type constraints may actually help speed the plan
search process by reducing the set of objects the planner
must consider for bindings to parameters of operators and
literals.

Types are also associated with operators, enabling the
author to use a portion of the type hierarchy to encompass
entities much like features in Myers’ formulation. Every
operator, parameter, and object instance has one or more
associated types, and zero or more associated
measurements. A measurement consists of a dimension
and a weight. A dimension is a symbolic name selected
from a global list of unique author-defined dimensions. A
weight specifies a relative intensity of the dimension
normalized on the interval [-1, 1]. The default weight ‘0’
represents a neutral intensity, -1 is maximally negative and
1 is maximally positive.

Expressive Power of DEF
The dimension construct in DEF corresponds to the
measure of Myers’ metatheory. Both are symbolic values
chosen from an author-defined list, e.g., affordability,
comfort, or magic. A key difference is that where DEF
uses numeric weights to gauge instances on each
dimension, Myers uses measure values from a set of
symbols that are defined for each feature category and
ordered by the plan author for each measure.

For example, in DEF, object instance Lear Jet may have
the measurement {affordability, -0.98}, where
affordability is a dimension, and weight is near the
minimal value of -1 on the scale [-1, 1].

With Myers’ metatheory, object instance Lear Jet may be
assigned the measure value Expensive for the measure
affordability, from the ordered set of measure values
{Cheap, Moderate, Expensive}.

At the operator level, DEF allows types and dimensions to
describe operators in the same way they describe object
instances. Myers uses features to describe operators at a

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 25

higher level of abstraction than DEF. The strategy chosen
with DEF is to use a reduced low-level vocabulary to
elaborate the problem domain description and defer their
aggregation into more complex abstractions like features
and feature categories to higher level user interfaces.
Hopefully, this will allow for abstractions of arbitrary
complexity at the interface level, while preserving an
underlying representation that facilitates efficient
reasoning about the qualities of individual plans and the
qualitative differences between plans.

To make qualitative judgments about plans, Myers’
measures are converted to proportionally distributed values
over the interval [0, 1]. DEF requires explicit
normalization of weights over an interval [-1, 1] (chosen to
facilitate a default neutral weight of 0). Clearly, this shifts
some responsibility to the interface to ensure that human
authors assign weights with this normalization in mind.
An interface using DEF can provide abstractions such as
symbolic ranges, {Cheap, Moderate, Expensive} and
convert these values to proportional internal
representations. However, an interface is not precluded
from allowing more precise or non-proportional numerical
representations when appropriate.

An expressive advantage of DEF is that types and
measurements are applicable to every operator, operator
parameter, and condition parameter. Authorial goals are
often articulated in terms of the types of actions contained
in a story. The knowledge to support this type of reasoning
can be represented through measurements applied to
operators. Suppose, as in the film The Princess Bride, a
young boy would like to make sure that the story does not
contain too much kissing. Kissing could be introduced as a
dimension and every operator associated with the act of
kissing could be assigned measurements on the order of
(kissing, .95). Other operators could have neutral values of
0, or negative values. Kissing could be selected as an
evaluation criterion and the plans whose evaluation
functions return low values of kissing could be favored.

Object instances could also have attributes that are directly
derived from authorial goals. Perhaps the author would like
to favor stories that contain a lot of enchanted objects. A
dimension of “magical” could be created and applied with
high levels to magic rings, scrolls, and potions, and low
levels to chewing gum wrappers and socks. A planning
heuristic that takes these measurements as an input can
offer a high-degree of fidelity to discrimination between
candidate plans.

Higher-level narrative constructs will necessitate the use of
more complex representations. Suppose the author wants a
‘happy’ story. Is give-money(giving-player, receiving-
player) a ‘happy’ action? It might be happy for receiving-
player but not for giving-player depending on the state of
the world. Using parameter-level measurements in DEF, a
default positive measurement of happiness could be given

to the receiving-player and a default negative measurement
to the giving-player. Still, what if the measurement value
of one parameter may depend on the bindings to other
parameters in the same operator? For example, the giving-
player might be happy to give money to her child, but
unhappy to give the money to a thief.

One approach would be to recognize that these two
situations describe actions that differ from the perspective
of drama (mothering vs. mugging), even if they may have
the same add and delete list from the perspective of
classical planning. Thus, the action can be split into a give-
moneyto-child action where ischildof(player2, player1) is
added as a precondition, and a give-money-to-thief action
where isthief(player2) is added as a precondition. Then the
happiness of player1 can be assigned different values in
each action. It may be possible for a tool using DEF could
create cloned actions like these when the user indicates that
happiness is a function of the sub-types of player1 and
player2 and use a more compact representation to solicit
and display such preferences. Still, the role the operator
plays within the larger context of the plan may also
significantly effect the user’s evaluation of the plan. DEF
merely serves as a starting point for reasoning about
interactive narrative.

To summarize, DEF associates a set of one or more types
and zero or more measurements with every operator,
operator parameter, condition parameter, and object
instance. DEF is a domain-independent representation
intended to by leveraged by a user interface for use with
any planner that can work with a STRIPS-style domain
description.

Qualitative Reasoning With DEF
One motivation for DEF is to provide a general framework
for elaborations of the plan author’s preferences for the
objects and actions in the domain over a variety of criteria.
It is left to the planner and whatever interfaces are put
between the human and the planner to make use of these
preferences to influence plan reasoning. An evaluation
function can be easily constructed from the measurements
in DEF to apply the qualitative reasoning power of Myers’
work to resulting plans, simply by transforming the
weights from their interval [-1, 1] to the interval [0,1]
employed by Myers’ algorithms. This function can be used
to iteratively refine and navigate through the plan space, or
it can influence can be in the heuristics that are applied by
the planner to direct search, perhaps in conjunction with
other DEF constructs.

Another mechanism for reasoning about types recently
introduced by Myers (2005) is also easily applicable in the
DEF context. Myers defines a function MinSuperType(V)
which finds the most specific super-type common to a set
of elements V . This allows the author to characterize the
differences between plans or parts of plans, through the
five distinct set relationships that correspond to particular

ICAPS 2006

26 Workshop on AI Planning for Computer Games and Synthetic Characters

subsets of their typed elements. Set arithmetic functions
are described that help pinpoint key strategic differences
between plans and show areas where plans are not as
different as they might seem.

Incorporating DEF in a Planning System
While DEF supplies the raw materials for qualitative
reasoning about plan structures, it requires an interface to
allow non-technical authors to apply it to a planning
system. This interface should represent the problem
solving state at multiple levels of abstractions, similar to
the four-layer model employed by Allen and Ferguson
(2002). Their model allowed the user to move from high-
level hierarchical objectives, through task structures that
summarized classes of concrete solutions, to more
primitive descriptions of particular plan fragments and
world states.

Implementation of such an interface has begun with a
program called Bowman, which is currently part of the
Zócalo suite of planning tools available at NCSU at
http://zocalo.csc.ncsu.edu. Bowman provides a GUI that
allows authors to describe types, objects, operators,
conditions and the initial and goal state of a planning
problem. Bowman seamlessly passes an XML
representation of the planning problem to a planning web-
service to generate plans. The planner interface supports
requests for the next N plans, planning for N seconds, or
simply until a complete plan is found.

Bowman shows not only individual plans but also the
entire plan space through scalable vector graphics (SVGs)
that can be navigated through mouse clicks. Bowman can
depict the plan space as a tree of nodes, where each node is
a partial plan with zero or more plan flaws to be resolved.
A plan flaw is an open precondition, a threatened causal
link, or a flawed decomposition. Plan nodes with zero
flaws are shown in green and plans with one or more flaws
are shown in progressively more pale shades of yellow.

Figure 1 Bowman Plan Space View

The Bowman user can navigate the plan space and
individual plans either through direct manipulation with
the mouse or through dialog-based search.

Application to Interactive Narrative
Bowman can work with any planner that supports its
straightforward XML representation of the planning and
conforms to a simple web service interface. However, to
provide support for interactive narrative domains, Bowman
assumes a particular type of planner is being used. In its
initial deployment, Bowman assumes that this is the
Zócalo planner, based on Longbow, a decompositional
(HTN) partial order causal link planner described by
Young, Pollack and Moore (1994). Riedl, Saretto, and
Young (2003) extended Longbow to support what they
called narrative mediation to manage and respond to user
actions in interactive narrative. Mediation policies are
invoked in response to unplanned user actions that would
threaten conditions in the world required for a planned
future action. When such an action occurs, a mediation
policy may nominate alternative actions called failure
modes that may be substituted at run-time for the
threatening user action.

To leverage narrative mediation, Bowman must be able to
represent the particular mediation policies in effect for
particular actions. Since failure modes are simply lists of
operators, it would be possible to provide guidance on the
subset of operators that are good candidates for failure
modes through DEF constructs. In addition, DEF may be
used to inform Bowman of abstract specifications of the
characteristics of failure modes required to resolve plan
bottlenecks. A first step is to use DEF to differentiate
between types of agents.

Agent Types
For Bowman to be useful in addressing narrative
mediation, it must contain in its representation of operators
the types of agents that fill various roles. Thus a first step
toward supporting narrative mediation is to distinguish
between user-controlled agents and system-controlled
agents (often called NPCs, or Non Player-controlled
Characters). This distinction can be accomplished through
a convention applied to the population of the type
hierarchy of DEF. A subtree of the hierarchy can be fixed
to contain “agent” and “inanimate”. “Agent” can be
subdivided into “NPC” and “User”. A generalized
mechanism can be realized in Bowman to allow the author
to designate the subtree of the global type tree that is
associated with the user (the default convention being
“User” above) and that which is associated with NPC
agents.

For interactive planning domains, the definition of operator
in DEF is then extended to require specification of the type
of agent that is capable of invoking the action (“User”,
“NPC”, or the un-committed “Agent” as a default). Also,

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 27

individual object instances are extended to have a required
agent type specification.

Mediation Strategies
As described in by Riedl, Saretto, and Young (2003) the
planner is responsible for detecting user actions that could
threaten the story plan. For each of these exceptional
actions, the system must determine if changing part of the
unexecuted portion of the plan can accommodate the action
or if an intervention is required. An intervention requires
that the requested action does not execute. Instead an
instance of a non-threatening action, called a failure mode
is substituted for the requested action in real-time. For
example, if the user tries to shoot a character that is
required to achieve a narrative goal later in the plan, a
failure mode of “shoot-and-miss” or “jamming-shoot”
might be substituted for the threatening “shoot(?gun,
?target, ?victim)” action. For this substitution to occur in
real-time while as the user invokes the action, the
intervention policies must be communicated to the story
world system as soon as the initial story plan is created and
whenever that story plan is altered.

How does the system know which actions can be invoked
by the user? With DEF and Bowman, the author must
explicitly specify the type of agent capable of invoking any
particular action. Bowman provides this information to the
planner, and also uses it to advise the human author of the
set of actions for which failure modes are appropriate. For
example, if the author at some point in the construction of
the narrative has specified that the “shoot(?gun, ?target,
?victim)” action is one that can be invoked by an agent
that can be a human user, Bowman can later take the
initiative to advise the human author this action is
contained in the set of actions for which failure modes may
be useful. This indication could be provided prior to the
invocation of the planner, or following invocation of the
planner, after which the set may have been reduced by the
set of actions for which the accommodation strategy
proved sufficient. Bowman can further aid the human
author in creating failure modes by reminding the author of
the preconditions and effects of the underlying operators,
highlighted with the planner’s understanding of particular
threatening effects if the planner has provided such
guidance. Finally, the plan space depiction can be
enhanced with explicit representation of the impact of
mediation strategies.

Narrative “Macro” Libraries
Bowman allows for libraries of planning “macros” to be
made available for plan authors. These sets of related
literals and operators can assist plan authors to achieve
typical planning goals with less total work. As a
motivating example, consider the issue of inter-agent
relationships and their effect on character believability.

Narrative systems have been built with rich emotional
models of agents (Gratch and Marsella 2004). But in most
commercial games the attitudes of NPCs are modeled with
a single bit of memory – “friend” vs. “foe”. Bowman
proposes a modest extension of this model to enhance the
believability of characters through three-valued attitudes
defined by the narrative author. These attitudinal values
can shift based on actions chosen by the agents in the
world to enhance the component of character believability
that is inferred by characters changing their behaviors
based on social history. Examples of attitudes could be
“ally/foe”, “trust”, “niceness”, “sincerity”, or “goal-
directedness”. Bowman predefines a set of literals that
handle initialization of attitudes and transitions from one
attitude to another. These attitude “macros” can be
invoked through simpler constructs that the author
manipulates. This may seem an overly shallow modeling
of social relationships, but it does match up quite well with
the emotional “bank account” metaphor pioneered by
psychologists like George Bach and later popularized by
Stephen Covey (1989).

For example, suppose the author would like to model the
ally/foe attitude. Assume that we name this quality “ally”.
The following literals express possible initial states for the
“ally” attitude between ?agent-a and ?agent-b:

• attitude-negative(ally(?agent-a, ?agent-b)) means that

?agent-a is a foe of ?agent-b
• attitude-neutral(ally(?agent-a, ?agent-b)) means that

?agent-a is neither an ally nor a foe of ?agent-b
• attitude-positive(ally(?agent-a, ?agent-b)) means that

?agent-a is an ally of ?agent-b

The pre-defined library of helper operators that support
attitude maintenance are:

attitude-up-to-neutral(?attitude-name, ?a, ?b)

Preconditions:
 attitude-negative(?attitude-name(?a, ?b))
 incr(?attitude-name, ?a, ?b)
Effects:
 attitude-neutral(?attitude-name(?a, ?b))
 ^incr(?attitude-name, ?a, ?b)

attitude-up-to-positive(?attitude-name, ?a, ?b)
Preconditions:
 attitude- neutral (?attitude-name(?a, ?b))
 incr(?attitude-name, ?a, ?b)
Effects:
 attitude- positive (?attitude-name(?a, ?b))
 ^incr(?attitude-name, ?a, ?b)

ICAPS 2006

28 Workshop on AI Planning for Computer Games and Synthetic Characters

A reciprocal set of “attitude-down” actions that reference
the “decr” literal are also automatically added to the
domain description. Then, the only thing the plan author
needs to do is establish initial attitude values for
relationships that need to be modeled and insert “incr” or
“decr” attitude literals as the effects of actions that make
sense in the world. The planner will find the appropriate
“attitude-up” or “attitude-down” actions to insert in the
plan to meet attitudinal goals specified later in the plan (if
any).

For example, if the author intends for character ?agent-a to
become an ally of ?agent-b, the author could add condition
attitude-neutral(?ally, ?agent-a, ?agent-b) to the initial
state, attitude-positive(?ally, ?agent-a, ?agent-b) to the
goal state and create an operator like join-up(?ally, ?agent-
a, ?agent-b) that has incr(?ally, ?agent-a, ?agent-b) as
effect. A planner could add the attitude-up-to-positive
operator to establish the attitude-positive goal condition.
Then an operator like join-up would be selected to
establish the incr condition.

Creating an inter-agent relationship library of macros is
just one example of what might be done with a sufficiently
general interface like Bowman. Bowman can serve as a test
bed for assessing the usefulness of other macro-like
libraries of related operators and literals.

Research Ambitions
DEF and Bowman can aid in narrative construction and
qualitative reasoning about plans. At the point of this
writing, Bowman works with the Zócalo planner to
construct planning domains and planning problems and
navigate through plan spaces and individual plans.
However, only the “type” component of the DEF
framework is realized in the current version of Bowman.
To achieve the ambitions outlined in this paper, much work
remains.

First, the full DEF framework must be implemented in
Bowman, so that agent types, mediation strategies and
narrative “macros” can be specified. Second, authors must
be given an ability to articulate their narrative preferences
through DEF constructs. Third, because authors are
engaged in a creative process, it will be important for
Bowman to provide a rich interaction history as in
COLLAGEN (Rich and Sidner 1998) to allow exploration
of alternate approaches. Plan summarization techniques
will be needed to annotate the plan space with DEF
constructs and increase the effectiveness of the
“navigation” paradigm. The qualitative metrics proposed
by Myers should overlay all these capabilities to provide a
clear understanding of the differences between plans.

In such a system, the author could use “world manipulation
sliders” like a sound engineer uses a mixing board to
control the relative levels of different components in a
production. In the case of interactive narrative, these

components may be primitive constructs like DEF
dimensions, or more complex features like the number of
different execution paths or the amount of “conflict” or
“happiness” in the story. A tight coupling with the
planning system could allow the Bowman to
opportunistically highlight areas of the plan that would best
benefit from the attention of the human author. To
conserve that attention, Bowman would benefit from an
internal model of the author’s intentions and apply them
automatically to situations that are deemed similar. The
result would be a system whose behavior is interesting
enough to hold the interest of people who create interesting
characters for a living.

Conclusion
This paper introduced a general planning domain
metatheory called DEF and a general plan-authoring
interface called Bowman, currently under development at
North Carolina State University. These tools are being
used to support author-preference realization in interactive
narrative. As these tools grown into high-level interfaces
accessible to non-technical authors, new avenues of
planning research may become accessible as well.

Acknowledgements
The authors wish to thank the members of the Liquid
Narrative Group at NC State University for their assistance
in developing Zocalo. This is material is based upon work
supported under a National Science Foundation Graduate
Research Fellowship and National Science CAREER
award 0092586.

References

Allen, J. F., and Ferguson, G. 2002. Human-Machine
collaborative planning. In Proceedings of the Third
International Workshop on Planning and Scheduling for
Space.

Aylett, R.S. 2000. Emergent Narrative, Social Immersion
And “Storification” Proceedings, Narrative Interaction for
Learning Environments, Edinburgh.

Benedikt, M. ed. 1990. The Lessons Of Lucasfilm’s
Habitat. In Cyberspace: First Steps. MIT Press,
Cambridge, Massachusetts, p. 288.

Blythe, J., Kim, J., Ramachandran, S., and Gil, Y. 2001.
An Integrated Environment For Knowledge Acquisition. In
IUI ’01: Proceedings of the 6th international conference
on Intelligent user interfaces (New York, NY, USA, 2001),
ACM Press, pp. 13–20.

Cavazza, M., 2000. Interactive Storytelling In Virtual
Environments: Building The Holodeck. presented at the 6

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 29

International Conference on Virtual Systems and
Multimedia (VSMM), 2000, October 4-6, Gifu, Japan.

Covey, S. 1989. The Seven Habits of Highly Effective
People. Simon & Schuster, New York, NY, USA, pp. 188-
199.

Ferguson, G., and Allen, J. F. 1998. TRIPS: An Integrated
Intelligent Problem-Solving Assistant. In AAAI/IAAI pp.
567–572.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intellligence, 2, pp. 189-208.

Gratch, J. and Marsella, A. 2004. A Domain-independent
framework for modeling emotion, Journal of Cognitive
Systems Research, Volume 5, Issue 4, pp. 269-306

Grosz, B. J., and Kraus, S. 1996. Collaborative Plans For
Complex Group Action. Artificial Intelligence 86, 2, 269–
357.

Lenat, D. B. 1995. CYC: A Large-Scale Investment In
Knowledge Infrastructure. Communications of the ACM
38, 11, 33–38.

Louchart, S. and Aylett, R. 2003. Solving The Narrative
Paradox In VEs - Lessons From Rpgs In Intelligent Virtual
Agents, 4th International Workshop IVA2003 eds T. Rist,
R.Aylett, D.Ballin,

McCarthy, J. 1959. Programs With Common Sense. In
Proceedings of the Teddington Conference on the
Mechanization of Thought Processes, Her Majesty’s
Stationary Office, pp. 75–91.

Murray, J. 1997. Hamlet on the Holodeck: The Future of
Narrative in Cyberspace, MIT Press, Cambridge,
Massachusettes.

Myers, K. Strategic Advice For Hierarchical Planners.
1996a. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Fifth International
Conference (KR96), L. C. Aiello, J. Doyle, and S. C.
Shapiro, Eds., Morgan Kaufmann Publishers, pp. 112–123.

Myers, K. 2000a. Domain Metatheories: Enabling User-
Centric Planning. In Proceedings of the AAAI Workshop on
Representational Issues for Real-World Planning Systems,
K. Myers and Y. Gil, Eds.

Myers, 2000b. K. Planning With Conflicting Advice. In
Proceedings of the Fifth International Conference on AI
Planning Systems (AIPS 2000).

Myers, K., and Lee, T. J. 1999. Generating Qualitatively
Different Plans Through Metatheoretic Biases. In

Proceedings of the Sixteenth National Conference on
Artificial Intelligence, AAAI Press.

Myers, K. L. 1996b. Advisable Planning Systems. In
Advanced Planning Technology, A. Tate, Ed. AAAI Press,
Menlo Park, CA.

Myers, K. L. 2005. Metatheoretic Plan Summarization
And Comparison. In Proceedings of the ICAPS-05
Workshop on Mixed-initiative Planning and Scheduling
Monterey, CA.

Nau, D. S. 2005. May All Your Plans Succeed!
Proceedings of the National Conference on Artificial
Intelligence (AAAI), July 2005. Invited talk.

Rich, C., and Sidner, C. L. 1998. COLLAGEN: A
Collaboration Manager For Software Interface Agents.
User Modeling and User-Adapted Interaction 8, 3-4, 315–
350.

Riedl, M., Saretto, C., and Young, R. M. 2003. Managing
Interaction Between Users And Agents In A Multiagent
Storytelling Environment. In Proceedings of the
Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-03).

Riedl, M., and Young, R. M. 2004. An Intent-Driven
Planner For Multi-Agent Story Generation. In Proceedings
of the Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-04).

Riedl, M. O., and Amant, R. S. 2002. Toward Automated
Exploration Of Interactive Systems. In IUI ’02:
Proceedings of the 7th international conference on
Intelligent user interfaces (New York, NY, USA, 2002),
ACM Press, pp. 135–142.

Schiesel, Seth. 2006. “Kill the Big, Bad Dragon
(Teamwork Required).” New York Times, 28 January 2006.

Tate, A., Dalton, J., and Levine, J. 1998. Generation Of
Multiple Qualitatively Different Plan Options. In AIPS, pp.
27–35.

Tate, A. 1977. Generating Project Networks. In
Proceedings of IJCAI-77, pp. 888-893.

Wolverton, M. 2004. Prioritizing Planning Decisions In
Real-World Plan Authoring. In Proceedings of the
ICAPS04 Workshop on Connecting Planning Theory with
Practice.

Young, R.M., Pollack, M.E., and Moore, J.D. (1994).
Decomposition and causality in partial-order planning. In
Proceedings of the Second International Conference on AI
and Planning Systems, 188-193, Chicago, IL, 1994.

ICAPS 2006

30 Workshop on AI Planning for Computer Games and Synthetic Characters

Applying a Plan-Recognition / Plan-Generation Paradigm
to Interactive Storytelling

Börje Karlsson, Angelo E. M. Ciarlini1, Bruno Feijó, Antonio L. Furtado

PUC-Rio – Departamento de Informática, R. Marquês de São Vicente, 225, Rio de Janeiro, Brazil, 22453-900
1UniRio – Departamento de Informática Aplicada, Av Pasteur, 458 – Térreo, Rio de Janeiro, Brazil, 22290-240

borje@inf.puc-rio.br, angelo.ciarlini@uniriotec.br, bruno@inf.puc-rio.br, furtado@inf.puc-rio.br

Abstract
A key issue in interactive storytelling is how to generate
stories which are, at the same time, interesting and coherent.
On the one hand, it is desirable to provide means for the
user to intervene in the story. But, on the other hand, it is
necessary to guarantee that user intervention will not
introduce events that violate the rules of the intended genre.
This paper describes the usage of a plan recognition / plan
generation paradigm in LOGTELL, a logic-based tool for
the interactive generation and dramatization of stories. We
focus on the specification of a formal logic model for events
and characters' behaviour and on how the tool helps the
interactive composition of plots through the adaptation of
fully or partially generated plots. Based on the model, the
user can interact with the tool at various levels, obtaining a
variety of stories agreeable to individual tastes, within the
imposed coherence requirements. The system alternates
stages of goal inference, planning, plan recognition, user
intervention and 3D visualization. Our experiments have
shown that the system can be used not only for
entertainment purposes but also, more generally, to help in
the creation and adaptation of stories in conformity with a
specified genre.

Introduction
In recent years, the convergence of games and filmmaking
has been seen as an opportunity to create storytelling
systems in which authors, audience, and virtual agents
engage in a collaborative experience. The resulting systems
can be useful for many different purposes, such as story
board production, education and training, and, of course,
entertainment. Different approaches have been proposed,
using techniques and concepts from many areas such as
Computer Graphics, Artificial Intelligence, Cognitive
Science, Literature and Psychology. The suitability of each
approach depends on the goal of each application.
 A first decision to be made before implementing a
storytelling system is whether it should be able to actually
create stories or only enable the user to tell different stories
based on previously computed sequences of actions. In the
former case, the opportunities of interaction and the variety
of different stories tend to be greater, but a coherent
chaining of actions is more difficult to attain.

 A second important point corresponds to the focus of the
story models. The focus can be either on characters or on
plots. In a character-based approach, the storyline usually
results from the real-time interaction among virtual
autonomous agents. The main advantage of a character-
based model is the ability of anytime user intervention,
which means that the user may interfere with the ongoing
action of any character in the story, thereby altering the
plot as it unfolds. Although powerful in terms of
interaction, such an extreme interference level may lead
the plot to unexpected situations or miss essential
predefined events. Additionally, there is no guarantee that
narratives emerging from the interaction of autonomous
agents will be complex enough to create an interesting
drama. By contrast, in plot-based models, characters
should follow more rigid rules, specifying the intended plot
structures. A fundamental inspiration for plot-based
approaches has been the seminal work of Vladimir Propp
in the field of literary theory (Propp 1968). Propp observed
that significant events within a narrative of a given genre
(in his case, Fairy Tales) can be associated with a fixed
repertoire of functions, and that these occur in certain
typical sequences. In a pure plot-based approach, user
intervention might be more limited, but it is usually easier
to guarantee coherence and a measure of dramatic power.
 A third decision is whether stories should be told using a
first- or a third-person viewpoint - cf. the notion of
focalization in narratology studies (Bal 2002). First-person
tends to be particularly suitable for applications closer to
digital games, whereas third-person is more appropriate for
those involving filmmaking.
 Finally, it is necessary to choose between a reactive and
a deliberative behaviour for the characters. In the first
option efficiency is the main advantage, but modeling an
intelligent behaviour is more complicated and the
alternatives for the agents are somewhat limited. In the
second, planning and reasoning techniques are usually
applied to simulate an intelligent behaviour, but
performance is often affected, especially if the story
generation occurs at real-time.
 LOGTELL is based on modeling and simulation. The
idea behind LOGTELL is to try to express the basic
structure of a genre through a temporal logic model, and
then verify what kind of stories can be generated by

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 31

simulation, combined with user intervention. In this way,
we focus not simply on different ways of telling
preexisting stories, but on the dynamic creation of plots.
The model includes typical events and goal-inference
rules. Plots are generated by successive cycles of goal-
inference, planning, plan recognition and user intervention.
 Specifically, we try to conciliate both plot-based and
character-based modeling. On the one hand, we borrowed
from Propp's ideas, but tried to extend his rather informal
notion of function. In our treatment, typical events are
described by parameterized operations with pre-conditions
and post-conditions, so that planning algorithms can be
used for plot generation. On the other hand, the goal-
inference rules model the behaviour of the various actors,
thus providing some character-based features. The rules
declaratively specify how situations can bring about new
goals for each character.
 Our objective is not to create an immersive experience
in which the user takes part in the story as one of the
characters. We endeavour, instead, to explore the
possibilities of generating a large variety of coherent
stories by means of a plan-recognition/plan-generation
paradigm. For this reason, our stories are told with a third-
person viewpoint. User intervention is always indirect.
During the simulation, the user can intervene either
passively, just letting the partially-generated plots that
seem interesting to be continued, or, in a more active way,
trying to force the occurrence of situations and events.
These are rejected by the system whenever it finds no valid
way to change the story to accommodate the intervention.
 Plot dramatization can be activated for exhibiting the
final as also the partially generated plots. For
dramatization, characters are represented by actors in a 3D-
world. During the performance of an event, low-level
planning is used to detail the tasks involved in each event.
We decided to implement our own graphical engine, so
that we could better guarantee the compatibility between
the logical model of our plots and the corresponding
graphical dramatization.
 The next section describes related work in the area of
storytelling. Section 3 presents LOGTELL's overall
architecture. Section 4 describes the main features of the
Interactive Plot Generator (IPG), which is the kernel of the
system. Section 5 illustrates how the user can interact with
LOGTELL to generate stories. Section 6 shows how the
generated plots are dramatized. Section 7 illustrates the use
of the tool with an example. Section 8 contains concluding
remarks.

Related Work
The approach adopted in the DEFACTO project (Sgouros
1999) uses successive evaluations of rules to control the
generation of an interactive story where the user is the
protagonist. The interaction among characters’ goals is
explicitly represented and an Aristotelian conception of
plot is used to lead the story to a climax and then resolve it.
The chaining of events, however, is not explained by pre-

and post-conditions, making the control of what can and
what cannot occur rather complex. Additionally, it does not
allow the use of planning algorithms to develop sequences
of events for the achievement of goals. The need of user
intervention seems to be high if one wishes to generate a
complete plot. Goals are inferred by means of rules
analyzing the current situation, but the choice of actions to
achieve goals appears to be more reactive than
deliberative.
 The approach described in (Cavazza, Charles, and Mead
2002) adopts a character-based model to make user
interventions at any possible time. Characters are
autonomous agents, executing plans to achieve their goals,
and, from their interactions, it is expected that a narrative
will eventually emerge. Users are spectators but can
“physically” interact with the context and even advise
characters, affecting their decisions and the resulting
stories. In order to decide, at real-time, the actions to be
performed, characters consult a Hierarchical Task Network
(HTN), corresponding to pre-compiled plans. In this way,
the system does not have to pay the price of using
problem-solving planners while presenting a 3D animation.
It might demand more effort to model the behaviour of the
characters, but it makes sense if one does not consider
maximizing the alternatives as a requirement. The main
doubt about pure character-based approaches is to what
extent dramatic and engaging narratives may actually
result. The task seems to be easier with genres like sitcoms,
wherein the climax of a story is not so clearly
distinguishable.
 The use of Propp’s ideas in pure plot-based approaches
leads to systems more concerned with the guidance of
interactive stories than with their generation (Spierling et
al. 2002). For each “Proppian” function within a story of a
certain genre, such systems present alternatives to be
chosen by the users. Still, we claim that to obtain an
effective method to generate stories, it is necessary to
extend Propp’s ideas, adding semantics to the functions
(and to their specializations), so that preconditions, effects
and goals can be fully expressed.
 Reference (Paiva, Machado, and Prada 2001) presents
the Teatrix environment, where Propp’s functions are used
to model synthetic characters that interact with other
characters, directed by children, in a virtual world. Each
child directs one character and the synthetic characters are
autonomous. All characters have a role in the story,
specifying the functions in which they can take part.
Synthetic characters have goals that change according to
the situation. They plan and try to execute actions (i.e.
functions) according to their roles. The approach seems
interesting for education, but the control of the consistency
of actions and goals and the generation of dramatic
situations are not guaranteed. Additionally, the use of pre-
defined plans in the planning process can enhance the
performance, but might limit the amount of different
stories that can be generated.
 The interactive drama FAÇADE (Mateas and Stern
2000) is an effort to build an interactive system that

ICAPS 2006

32 Workshop on AI Planning for Computer Games and Synthetic Characters

integrates characteristics of both plot-based and character-
based approaches. A drama manager is responsible for
maintaining the story state. Characters have autonomy
most of the time, but their goals and their behaviour can be
changed by the drama manager, in order to move the plot
forward. The interactive story has the user as the
protagonist. The drama manager automatically selects
scenes to be played. Scenes are composed of beats, which
define the granularity of the interaction between characters
and plots. The user can directly interfere in the execution
of a beat, determining how the rest of the scene will be
played. The approach clearly separates higher-level goals,
important for the story, from lower-level goals, more
specific of the autonomous behaviour of the characters.
Such separation can also be found in LOGTELL. The
generation phase deals only with higher-level goals, which
are essential for the creation of plots. Lower-level goals are
assigned to actors when they have to dramatize an event.
The main differences between LOGTELL and FAÇADE
result from the objectives of each system. In FAÇADE, the
focus is on letting the user experience a story from a first-
person perspective. As a consequence, the interaction
occurs at real-time, at the level of the beats. In LOGTELL,
we focus on the generation of a maximum of different and
coherent stories with a third-person viewpoint. The
interaction basically occurs during the generation phase.
The user is not allowed to interfere in the dramatization
phase.
 The Erasmatron system (Crawford 1999) is intended to
support the authoring process of interactive stories. It tries
to balance plot-based and character-based approaches by
using the notions of verbs and sentences. Actions are
represented by verbs with roles assigned to characters to
form sentences. Such a proposal is close to the way we
extended Propp’s functions in LOGTELL. Functions are
implemented as logical operations, with parameters, pre-
and post-conditions.
 The use of planning in (Riedl and Young 2004) to create
plots has many similarities with the decisions made while
implementing LOGTELL. In both approaches, a non-
linear, least-commitment planner is used to create plots,
conciliating actions of many different characters. The main
difference is that LOGTELL does not assume the existence
of one goal for the story as a whole. Instead, at the
beginning of the story and after each planning phase, we
use goal-inference rules (defined in a temporal modal
logic) to consider new goals induced, for the various
characters, by situations arising from the part of the plot so
far generated. On the other hand, plans generated
according to (Riedl and Young 2004) incorporate
information explaining the intention of the actions, which
can be useful to help in the dramatization of a plot, in
particular to choose a convincing order of events. In
LOGTELL, it is up to the user to choose a compatible total
order of events to be dramatized.

The LOGTELL Architecture
LOGTELL comprises a number of distinct modules to
provide support for generation, editing and visualization of
interactive plots, as shown in Figure 1. The arrows
represent the dataflow. The general architecture can be
seen as a pipeline, where data is transformed from
morphological functions into real-time 3D animations
dramatized by virtual actors and handled by a graphical
engine. Consequently, each module has specific input and
output data.

Figure 1: LOGTELL Architecture
 The user interfaces with the system through the Plot
Manager. The generation of plots by the Interactive Plot
Generator (IPG) is started by the Plot Manager, which
receives the partial plots generated so far and allows the
user to intervene in the generation process. In order to
visualize the dramatization of a plot (final or partial), the
user chooses a total order of events, compatible with the
partially ordered sequence generated by IPG, and asks the
Plot Manager to activate the Drama Manager.
 The Drama Manager is responsible for controlling the
dramatization of the plot. In order to do that, it controls
actors for each character in a 3D environment running on
our game engine. During the dramatization, the Drama
Manager consults IPG to keep the coherence between
logical and graphical representations of the plot.
 For the time being, the context of the stories to be
generated and told is directly accessed by the modules and
there is a certain replication of data. IPG uses files directly
specifying the logical context in Prolog and the Drama
Manager uses its own graphical and logical data. In order
to eliminate compatibility problems, we are currently
implementing the Context Control Module (CCM) to store
all data in a single database. CCM will control the access
to the data and format the data items to be used by the
other modules. We are also extending our interface to help
the user specify the context via the Plot Manager.

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 33

Plot Generation
IPG (Ciarlini 1999) semi-automatically generates plots of
narratives of a specific genre. Narratives could be both of
literary genres and of more mundane ones, such as the
context of a business information system. In its use for
entertainment, the focus is on checking the logical
coherence of a genre and its characters and exploring the
variety of stories that can be generated.
 The context for the creation of stories comprises the
following items:
• a set of facts (state), introducing the characters and their

initial situation, as well as the description of the
scenarios and other static features needed for the
generation of stories;

• a set of logical rules, to infer goals to be pursued by each
character, as certain situations arise in the course of
plots; and

• a limited repertoire of pre-defined operations (typical of
the chosen genre) in which characters can take part.

 Examples of possible facts in a simple swords-and-
dragons context, using a Prolog notation, are listed below:
• dragon('Draco').
• strength('Draco',45).
• affection('Brian','Marian',100).
 The facts at a current state change as a consequence of
the occurrence of events, which result from the execution
of operations by the various characters. For each operation,
the following data is supplied:
• a list of arguments, indicating the characters involved in

the event, locations, etc.;
• a list of pre-conditions, specifying facts that should or

should not hold prior to the execution of the operation;
• a list of post-conditions (effects), specifying facts that

hold or cease to hold immediately after the execution
of the operation;

• its representation, specifying details about the exhibition
of an event caused by the operation.

 An example of an operation in the fairy tale context is
“kidnap”, having a "villain" as agent and a "victim" as
patient. Usual pre-conditions are that “the victim should
presently be fragile” and that “both the victim and the
villain should be present at the victim’s current location”.
Post-conditions are that “the victim will be a captive of the
villain” and “both the villain and the victim will be at the
villain’s home”. The representation of events based on this
operation would involve the specification of smaller-grain
actions, such as: the villain getting closer to the victim,
grasping the victim and taking him/her to the villain’s
home.
 During the generation phase, plots are represented by
partially-ordered sets of events. Partial rather than total
ordering is a consequence of the use of non-linear planning
during the simulation, establishing temporal constraints
only when necessary, which makes the conciliation of
goals easier. As a consequence, the truth of a fact at a
certain time might depend on the final total order that will
be chosen later. For instance, suppose there are two events
without a predefined order between them: “the knight gets

stronger” and “the knight fights the dragon”. Depending on
the order, the knight has different strength levels at the
time he fights the dragon.
 For each class of characters, there are goal-inference
rules, specifying, in a temporal modal logic formalism
(Ciarlini, Veloso, and Furtado 2000), the goals that the
characters of the class will have when certain situations
occur during a narrative. The rules use the following meta-
predicates to speak about the occurrence of an event or the
truth value of a literal (a fact or a negation of a fact) at
certain times:
• h(T,LITERAL): LITERAL is necessarily true at time T;
• p(T,LITERAL): LITERAL is possibly true at time T;
• e(T,LITERAL): LITERAL is established at time T; and
• o(T,EVENT): EVENT occurred at time T.
 In order to express constraints relating variables, there
are two additional meta-predicates:
• h(CONSTRAINT): CONSTRAINT is necessarily true;

and
• p(CONSTRAINT): CONSTRAINT is possibly true.
 An example of goal-inference rule appropriate to the
present context is: “when the victim becomes fragile, the
villain will regard that as an opportunity and will have the
goal of kidnapping the victim”. Another possible rule is
that “when the victim is kidnapped, the hero will feel
motivated to free the victim”. This last rule, is represented
in our logic as follows:

(VIC,T1,VIL) (T1,kidnapped(VIC,VIL) �

T2 h(T2,not(kidnapped(VIC,VIL))) h(T2>T1)

 It is important to notice that the rules do not determine
the specific reaction of a character. They only indicate
goals to be pursued somehow. The events that will
eventually achieve the goals are determined by the
planning algorithm.
 The generation of a plot starts by inferring goals of
characters from the initial configuration. Given this initial
input, the system uses a planner that inserts events in the
plot in order to allow the characters to try to fulfill their
goals. When the planner detects that all goals have been
either achieved or abandoned, the first stage of the process
is finished. The partial plot then generated is presented to
the user by means of the Plot Manager and can optionally
be dramatized. If the user does not like the partial plot, IPG
can be asked to generate another alternative. If the user
accepts the plot generated so far, the process continues by
inferring new goals from the situations generated in the
first stage. If new goals are inferred, the planner is
activated again to fulfill them. The process alternates goal-
inference, plan generation/recognition and user
interference until the moment the user decides to stop or no
new goal is inferred.
 Notice that, in this process, we mix forward and
backward reasoning. In the goal-inference phase, we adopt
forward reasoning, so that situations in the past generate
goals to be fulfilled in the future. In the planning phase, an
event inserted in the plot for the achievement of a goal
might have unsatisfied pre-conditions, to be handled

ICAPS 2006

34 Workshop on AI Planning for Computer Games and Synthetic Characters

through backward reasoning. Also, to establish them
before the event, the planner might insert previous events
with further unfulfilled pre-conditions, and so on,
recursively.
 The user can also force the occurrence of events at
certain times. For instance, the user could well insert “the
wedding of the knight with the princess”. It is also possible
to specify that some situations should be true at certain
times along the narrative, leaving to the system the job of
planning the events that bring about such situations. It
should be possible to say, for instance, that “the knight will
be weaker than the dragon at a certain time”. This kind of
intervention is allowed both at the beginning of the process
and at the pauses occurring between two simulation cycles.
The planner tries to conciliate both inferred goals and user
specified events and situations.
 Our planning tool is a non-linear planner implemented in
Prolog, adapted from (Yang, Tenenberg, and Woods 1996)
with extensions. The use of a non-linear planner, as
suggested before, seems more suitable because it uses a
least-commitment strategy. Constraints (including the
order of events) are established only when necessary,
making easier the conciliation of various goals. Features to
permit the abandonment of goals were included, and also
constraint programming techniques for dealing with
numerical pre-conditions.
 Our plots are not restricted to incorporating only
successful plans. In trying to provide adequate means for
handling negative interactions happening along a plot, we
realized that the solution of conflicts and competitions
sometimes requires the presence of totally or partially
failed plans, which conventional plan generators reject.
When a goal is abandoned, events occurring prior to the
moment of abandonment must be kept as part of the
narrative, and thus influence its continuation.
 We use two main mechanisms to handle goal
abandonment and competitive plan execution: conditional
goals and limited goals. A conditional goal has attached to
it a survival condition, which the planner must check to
determine whether the goal should still be pursued.
Limited goals are those that are tried once only, and have
an associated limit (expressed as a natural number). The
limit restricts the number of new events that can be
inserted to achieve the goal.

Composing by plan recognition
An alternative way to derive plans for goals is to take, from
a conveniently structured library, a pre-existing typical
plan, adapting it if necessary to specific circumstances. We
have been using a structure for such libraries of typical
plans that also allows plan-recognition by a method
proposed by Kautz (Kautz 1991), and which has been
implemented as a complementary feature of IPG. The
method consists of matching observed events against the
plan definitions (also called complex operations) stored in
the library, trying to find one or more plans of which these
events may be part.

 A structured library with these typical plans (complex
operations) is shown in Figure 2. Single arrows denote
composition (part-of link) and double arrows denote
generalization (is-a link).

Figure 2: Typical plan hierarchy
 These complex operations have the same syntax shown
for (basic) operations, if the complex operation results
from a composition of other possibly complex and/or basic
operations, there will be two more parameters,
respectively, a list of the component operations, and a list
declaring any order requirements holding between them.
 Complex operations formed by generalization are also
represented, branching down to specialized operations
corresponding to alternative ways to reach the same main
effects; clauses is_a(<more-specialized-operation>,<more-
general-operation>) declare this structural link.
 The first step of the plan recognition algorithm is the
generation of explanation graphs for the observed (or
selected) events. An explanation graph for an event
describes in which way this event can be used as part of
some end-plan. After the graphs for all observed events are
created, they are unified. The final graph will contain all
the end-plans where the observed events fit.
 Using this approach in LOGTELL, the user can select a
group of events and request the possible complex
operations that contain them. The system will then insert
the complex operations components (if any) in the original
plan. More details about this mode of interaction will be
provided in the next section.

User Interaction
People who have no special talent for literary composition,
like ourselves, find it difficult to invent interesting plots.
Storytelling researchers (Glassner 2004) repeatedly point
out that there may be problems when users participating in
a game are prompted to function as "authors". But we
usually do not feel so uncomfortable if asked to adapt an
existing plot, by introducing small modifications in a
gradual fashion.
 The underlying philosophy of the system consists of
providing the user with efficient means for exploring
coherent alternatives that the story may allow at a given

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 35

state, and for guiding the plot at the level of events and
characters’ goals.
 In the LOGTELL tool, the user has direct control only
over the Plot Manager. This module, in turn,
communicates with IPG to execute plot generation and
enforce coherence, and with the Drama Manager to control
plot visualization. The Plot Manager comprises the user
graphical interface (implemented in Java), whereby the
user can participate in the choice of the events that will
figure in the plot and decide on their final sequence (Figure
3). Each event is represented by a rectangular box that may
assume a specific color according to its current status.

Figure 3: Plot Manager Interface

 The user neither has direct control over the scene, nor
over the characters themselves. Moreover, user
intervention is always indirect, in the sense that any user
intervention must be validated by IPG before being
incorporated to the current plan.
 Plot generation and dramatization are two separate
processes, in contrast to pure character-based approaches,
where user interaction affects plot structuring at real-time.
This means that only during the simulation process the user
has an opportunity to intervene in the creation of the plot.
 As explained in the previous section, plots are created in
an attempt to fulfill goals that the characters aim to
achieve. At each simulation step, new goals may be
inferred and automatically added to the plot, which causes
the insertion of a new set of events. The events inserted in
the plot so far are sent to the graphical interface for user
intervention via the Plot Manager, which offers two
commands for automatic plot generation: another and
continue. The command another, requests from IPG an
alternative solution to achieve the same goals of the step
just finished. The command continue asks IPG to try to
infer new goals and continue the simulation process.

These two commands provide a form of weak user
intervention. The user merely selects partially-generated
plots that seem interesting from his/her perspective to
proceed with the simulation. This weak form of
intervention usually leads the plot to situations that the
author of the story has devised beforehand.

The Plot Manager offers, in addition, two
complementary means for strong user intervention in the
creation of more personalized stories. Firstly, the command
insert situation allows users to specify situations that

should occur at specific times along the plot by inserting
some additional goal to be reached. The specific details of
how the goal will be accomplished are left to IPG, which is
charged to find a solution, if one exists, using the planning
algorithm. It must be noted that, in view of performance
considerations, a valid computable plan may fail to be
obtained if the search limits currently configured in IPG
are exceeded. As in the purely automatic generation, the
user may confirm the solution (by indicating continue) or
request an alternative (another), which (as said before), is
a case of weak intervention. Secondly, at a lower
interaction level, the user is allowed to explicitly insert
events into the plot with the command insert event. To
validate the insertions, the user must invoke IPG through
the continue command. At this moment, all user defined
operations are submitted to IPG, which runs the planning
algorithm to check whether or not they are consistent with
the ongoing plot. If not, IPG tries to fulfill possible
unsatisfied constraints by inserting further new operations
in a specific order. The user may also remove user defined
operations that were not yet incorporated to (or were
rejected by) the planner.
 Besides these interaction modes, the user can also use
two other commands, tree and recognize. The tree
command displays the available hierarchy of typical plans
and can be used, by itself, as a clue to be taken into
consideration when inserting new events in the story.
Figure 4 shows the hierarchy for our swords-and-dragons
example; blue edges denote composition (part-of link) and
red edges denote generalization (is-a link).

Figure 4: Plan Hierarchy Interface

 When using the recognize command (which is
supported by the plan-recognition feature of IPG) the user
needs to mark one or more events already inserted and/or
being considered for insertion in the Plot Manager
interface and the system will try to match these events, as
observations, against the library in an attempt to identify
one or more typical plans subsuming them.
 The system will then show the typical Plan Hierarchy
representing the story genre in use with the complex
operation found (if any) marked in red and its components
marked in orange. The user can then choose if the complex
operation found is an interesting one or try to change it into
another one that fits the intended story. For example, the

ICAPS 2006

36 Workshop on AI Planning for Computer Games and Synthetic Characters

list of observations [attack('Brian', 'Red_Castle'),
kill('Brian', 'Draco')] fits in both rescue and avenge plans
and thus suggests two alternative ways to structure the
narrative from which the user may draw his preferences.
Upon selecting the desired partial plan, its component
events will be inserted in the Plot Manger interface.
 The usage of plan hierarchies can be much enriched if
literary indices are made available. For folktales, for
example, there is the monumental index compiled by
Aarne and Thompson (Aarne 1964). Their identified
themes and motifs have always been an inexhaustible
source of inspiration for novice and even experienced
authors. Treated as fragments of typical plans, they could
then be retrieved, to become part of user-composed plots.
 Before dramatization, there must be − as said before −
one additional user interaction that is actually mandatory,
namely the conversion of the partially-ordered generated
plan into a strict sequence, thereby completing the
composition of a proper plot. Notice that, if the simulation
is resumed afterwards, this addition of new temporal
constraints is also an intervention, because it can affect the
inference of new goals. To determine the sequence, the
user connects the events in a sequential order of his/her
choice, respecting the temporal constraints supplied by
IPG. The plot’s configuration emerges as the user moves
the cursor to draw edges linking the operation boxes,
starting from the root. To help the user in this process, we
utilize colors to distinguish operations that are already
connected (yellow), operations that − in view of the
temporal constraints − can be immediately connected
(green), or cannot yet be connected (red). The starting root
is blue and the current operation being rendered is cyan. To
connect two operation boxes, the user must click with the
mouse over the source box and drag over the destination
box (the same process is used to remove a link between
two operations). Once the current plot (or part of it) is thus
connected into a linear sequence, it can be dramatized by
invoking the Drama Manager with the render command.
 The tool also offers a facility for querying the IPG
module about the state of any element of the narrative at a
specific time Ti, using our temporal modal logic. This
feature allows advanced users to find out, for instance, why
an operation or goal is not being allowed, and helps
authors to revise and tune the story requirements.

Dramatization
We have developed our own engine to support the
graphical representation of the plots. It is implemented in
C++ and uses the OpenGL graphical API to support real-
time rendering of the 3D elements. Characters in a
generated plot are regarded as actors for the dramatization.
 The graphical engine does not have to perform any
intelligent processing. It is merely responsible for
rendering, at each frame, the scene and the current actors’
aspect and movements, resulting from real-time
interactions with the scene and, occasionally, with other
actors. In doing that, it follows the ordered sequence of

events generated at the previous stages of simulation. The
Drama Manager is the module that synchronizes
characters’ actions and the overall graphical representation.
 The Drama Manager's job is not limited to assigning the
actions that specific characters must perform. It translates
symbolic operations into fully realized 3D visual graphical
animations. And it must guarantee the synchronism and
logical coherence between the intended world and its
graphical representation. Figures 5 and 6 show some
snapshots of the dramatization of the generated plots.
 As received from IPG, the plot is organized as a
sequence of events, each one associated with a discrete
time instant. The simulation occurs in continuous real-time
and the duration of an operation rendering is not previously
known. Variable attributes change as the event is
dramatized. In order to make logical and graphical
representations compatible, the values of the variables
before the dramatization of each event must agree with the
pre-conditions of the event and the values at the end with
its post-conditions.

Figure 5: Draco attacking Marian’s castle.

Figure 6: Hoel meeting Marian before getting married.

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 37

 The dramatization starts by the selection of a specific
event and the execution of the command render in the Plot
Manager. All subsequent chained events from this point to
the end are visualized, unless the user interrupts the
process. When an event is activated for rendering, the
engine uses the current values of the pertinent attributes as
a starting point for the representation.
 The user can alternate between plot generation and
dramatization. In this case, after a dramatization, new
events and time constraints can be added either by the user
or by IPG. If dramatization is activated again, it can start
only at events that occur before the modifications.
 The Drama Manager converts all events into actions,
which are delegated to specific actors, at specific times,
according to the plot order of events. Whenever an event
finishes, the Drama Manager asks the Plot Manager to give
it the next event. If none exists, the dramatization stops.
 The dramatization of an event ends when the involved
actors(s) finish enacting the associated graphical
representation. In our experiments, this may take from a
few seconds to about one minute, depending on the kind of
operation and on the scenario features.

Scene and Actors
For the graphical representation of the plots, according to
the genre of the story being represented, the engine loads a
specific scenario. The scenario is represented by a 3D
environment that is suitable for the events and characters
that the story is supposed to contain, taking into
consideration the conventions of the genre (e.g. the
presence of castles).
 Because most events have an association with the place
where they are performed, actors should be constrained,
while moving through the scene, to maintain graphical
coherence with respect to how they follow the plot
directions. Buildings, such as castles and other genre-
related objects, serve, more than as an ornament, as a
conditioning factor to orient the displacements of the
characters, the absolute and relative position where an
action is to be executed, and the form to treat collisions.
We make use of terrain reasoning and path-planning based
on waypoints (Pozzer et al. 2004).
 Actors have a geometric structure amenable to graphical
representation, and are provided with a minimum of
planning capabilities, at a low level of detail. Since actors
are expected to play the assigned roles achieving an
adequate performance, some rudimentary planning
resources are indispensable, so that, in real-time, an actor
be able to make decisions and to schedule the necessary
micro-actions. In general, simple path-finding algorithms
and direct inter-agent communication schemes are
sufficient. Each actor must also incorporate behaviours for
interacting with the physical environment and with the
other actors. Contrary to the generality of the IPG planner,
the local planning of each actor must be simplified to
ensure short response times.
 During graphical representation of the plot, all control of
the actions each actor is supposed to perform is made by

the Drama Manager. It acts as a director that coordinates
sequences of actions performed by the whole cast. It
continuously monitors the representation process,
activating new tasks whenever the previous ones have been
finished. As a director, it also controls the positioning of
the (virtual) camera, which an option of LOGTELL
permits to be transferred to the user. The manual option
provides zooming, rotation, and vertical and horizontal
shifting; some users have found particularly entertaining to
look at the scene from a bird's eye perspective, watching
the plot unfold with all locations in view.
 For IPG, as the number of characters increase, the
computational effort required to control such characters
and their interactions may become prohibitive. However,
the use of fewer characters − a small number of actors,
consequently − may lead to poor graphical representations.
The test scenario used as an example in this paper, based
on swords-and-dragons tales, features two heroes, one
villain, one victim and a magician. To enhance the
diversity and liveliness of plots, but also to turn the
representation more realistic, we introduced a supporting
cast, consisting of groups of soldiers (guardians) in charge
of the protection of locations where the leading actors live,
and where events take place. As opposed to the leading
actors, whose actions are predetermined by the plot, these
extras are endowed with a higher although still limited
level of behavioural autonomy.
 For the purposes of our example IPG totally ignores and
not even distinguishes individual extras, since only as
groups they have some influence over the plot conduction.
For instance, when the plot is being represented, the
graphical engine queries IPG about the current protection
level of each location. At this moment, a proportional
number of guardians is inserted into the scenario, together
with the leading characters. We feel that, either as partially
or fully autonomous graphical entities, supporting actors
positively contribute plot visualization.
 The degree of autonomy conceded to the extras leaves
them free to perform certain actions randomly, such as
walking in different directions; this feature is being
improved with the integration of an AI middleware
(Karlsson and Feijó 2005) into the Drama Manager.
 When the actors are required to participate in some plot
event, which has always a higher priority, the Drama
Manager makes them interrupt momentarily whatever they
were doing. So, the autonomous actions are not allowed to
interfere with the execution of the plot; for instance, the
guardians cannot inadvertently kill a leading actor.

Test Scenario
The test scenario currently in use for LOGTELL
corresponds to a small sub-class of the popular swords-
and-dragons genre. The possible events were modeled by
just a few parameterized operations, which can
nevertheless generate a considerable variety of different
plots. The specified operations were the following:
• go(CH,PL): character CH goes to place PL;

ICAPS 2006

38 Workshop on AI Planning for Computer Games and Synthetic Characters

• reduce_protection(VIC,PL): the protection of place PL
(represented by the number of guardians) is
spontaneously reduced by the prospective victim VIC;

• kidnap(VIL,VIC): the villainous character VIL kidnaps
VIC;

• attack(CH,PL): character CH attacks place PL (fighting
the guardians);

• fight(CH1,CH2): character CH1 fights character CH2;
• kill(CH1,CH2): character CH1 kills character CH2;
• free(HERO,VIC): character HERO frees character VIC,

raising the degree of affection of VIC for HERO;
• marry(CH1,CH2): the two characters get married;
• donate(CH1, CH2): strength level of character CH2 is

raised by the magical powers of CH1; and
• bewitch(CH1,CH2): the double effect of this operation is

to instill an evil nature into CH2 and, at the same time,
make him or her much stronger.

 Besides these basic operations, a hierarchy of complex
operations (structured by is-a or part-of links) was added:
• rescue, avenge - these are the two species of adventure.

The rescue variety has components: abduct, liberate,
marry, accompany, donate. The other variety, avenge,
has components: murder, execute, accompany, donate.

• do villainy, retaliate, accompany - do villainy specializes
into: abduct or murder; retaliate specializes into:
liberate or execute; accompany specializes into: help
or false help.

• abduct, murder, execute, liberate, help, false help.
Abduct has components: reduce protection, attack,
kidnap; murder has components: reduce protection,
attack, fight, kill; liberate has components: attack,
fight, kill, free; execute has components: attack, fight,
kill; help has components: attack, fight, free; false help
has components: free, marry.

 We left out two basic operations from this hierarchy. As
operation go is in fact a component of practically all
others, it is therefore assumed to be always present. And
bewitch was deliberately excluded, since any plot
including it should not be considered typical in the context
of our genre (a sort of tolerated transgression of the
conventions).
 The model of the genre was completed by the following
goal-inference rules, presented here in English for
simplicity:
• If a character plays the role of a victim, this character

will spontaneously do something that puts her/him in a
less protected situation.

• If the strongest character playing an heroic role is still
weaker than the villain, this character will want to get
stronger.

• If the protection level of a victim is reduced, the villain
will want to kidnap the victim.

• If a victim is kidnapped, a hero will want to free her.
• If the affection levels of two characters vis-à-vis each

other exceeds a threshold, they will want to marry.
• If a victim is killed, a hero will want to avenge her
 As one of the possible starting configurations, we
defined an initial state including the following information:

• Marian is a princess, living in a palace (the victim).
• Brian and Hoel are knights (the heroes).
• Turjan is a forest-dwelling magician (a donor, in Propp's

sense).
• Draco is a dragon whose lair is in a red castle (the

villain).
• The princess, the dragon, and the magician have

protecting guardians around their homes.
• Each character is endowed with a certain strength level

for fighting.
• The two heroes have a high affection for the princess,

which is not reciprocated by her.
• Turjan is neutral with respect to all the others.

Examples of interactive step-wise plot composition
 Using the tool, it is possible to generate many different
plots. An example plot tells the classical happy-ending
story: “The protection of Marian’s castle is reduced. Draco
regards that as an opportunity to kidnap her. Draco then
goes to Marian’s Castle, attacks the castle and kidnaps
Marian. As a noble knight, Brian feels compelled to save
her. But, before that, he needs to ask for Turjan’s magic to
raise his strength. He then goes to Draco’s Castle, attacks
the castle and fights Draco. He kills Draco and frees
Marian, who starts loving her saviour. Motivated by their
mutual affection, Brian and Marian go to the church and
marry each other.”

Figure 7: An example of a generated plot.

 The plot in Figure 7 follows the same course until the
point where Marian is kidnapped, but, after that, it can be
summarized as follows: “The two knights, Brian and Hoel,
propose to save the princess. They both go to Draco’s
castle and attack the guardians. But Brian alone fights
Draco, and finally defeats and kills it. Hoel then is seen to
free Marian, causing her to fall in love with him and
become his wife. In spite of doing most of the effort to
save Marian, Brian is not able to marry the princess.”

ICAPS 2006

Workshop on AI Planning for Computer Games and Synthetic Characters 39

Concluding Remarks
Having implemented and extended an initial version of
LOGTELL, we have been running a number of
experiments, which seem to demonstrate that combining
goal inference, plan generation/recognition and user
participation constitutes a promising strategy towards the
production of plots which are both entertaining and
coherent. Moreover, our modeling method, based on
temporal logic, has proved adequate to capture the
conventions of genres encompassing stories with a high
degree of regularity, such as fairy tales (as one could
foresee, on the basis of Propp's pioneering work) and,
consequently, simple swords-and-dragons narratives.
 On the negative side, we must admit that modern and
post-modern genres, with their emphasis on a more radical
transgression of any conventions should not be so easy to
formalize in a systematic way.
 Also, plan generation is unfortunately limited by
computational complexity considerations. There is
however a continuing research effort to improve its
efficiency, and we intend to look into that, to try to
upgrade the performance of the IPG planning algorithms.
What we have already verified is that an interactive
regime, with the intervention of the user at various stages
and at different levels, as our methods and implemented
tools favour, does much to expand such bounds. A
particularly effective help to this interaction is provided by
using plan-recognition over libraries of typical plans,
which offer expert advice to all kinds of users.
 A specific topic for our future research is how to alter
the LOGTELL approach in order to offer more advanced
dramatization resources, such as investing more on
affective computing (Izard 1991, Velázquez 1997) and
improving automatic camera control.
 To explore the range of applications of LOGTELL is yet
another objective of our project. The system could be used,
for example, to generate side quests in MMORPGs. Our
efforts are now mainly concentrated on the continuing
development of our tool, so as to cope with genres
involving more sophisticated forms of communication
among the characters and a deeper treatment of drives and
emotions (Gratch and Marsella 2004).

Acknowledgments
This work has been partly sponsored by CNPq, CAPES
and FINEP.

References
Aarne, A. 1964. The Types of the Folktale: A Classification
and Bibliography. Translated and enlarged by Thompson,
S., FF Communications.
Bal, M. 2002. Narratology - Introduction to the Theory of
Narrative. University of Toronto Press.

Cavazza, M., Charles, F., and Mead, S. 2002. Character-
based interactive storytelling. IEEE Intelligent Systems, sp.
issue on AI in Interactive Entertainment, 17(4):17-24.
Ciarlini, A. 1999. Geração interativa de enredos. PhD
thesis, Depto. de Informática, PUC-Rio, Brazil.
Ciarlini, A., Veloso, P., and Furtado, A. 2000. A Formal
Framework for Modelling at the Behavioural Level. In
Proc. of the Tenth European-Japanese Conference on
Information Modelling and Knowledge Bases, Saariselkä,
Finland.
Crawford, C. 1999. Assumptions underlying the
Erasmatron storytelling system. In Working Notes of the
1999 AAAI Spring Symposium on Narrative Intelligence.
Glassner, A. 2004. Interactive Storytelling. A K Peters.
Gratch, J. and Marsella, S. 2004. A domain independent
framework for modelling emotion. In Journal of Cognitive
Systems Research, 5(4):269-306.
Karlsson, B. and Feijó, B. 2005. AI Middleware as Means
for Improving Gameplay. In Proceedings of the ACM
SIGCHI International Conference on Advances in
Computer Entertainment Technology, Valencia, Spain.
Kautz, H. 1991. A Formal Theory of Plan Recognition and
its Implementation. In Reasoning about Plans. J. F. Allen
et al. (eds.). Morgan Kaufmann, San Mateo, EUA.
Izard, C. E. 1991. The psychology of emotions. New York:
Plenum Press, New York.
Mateas, M., and Stern, A. 2000. Towards integrating plot
and character for interactive drama. In Socially Intelligent
Agents: the Human in the Loop, AAAI Fall Symposium,
technical report, p. 113-118, Menlo Park, USA.
Paiva, A., Machado, I., and Prada, R. 2001. Heroes,
villians, magicians, ...: Dramatis personae in a virtual story
creation environment. In Proc. Intelligent User Interfaces
2001: 129-136, Santa Fe, USA.
Pozzer, C. T., Feijo, B., Ciarlini, A. et al. 2004. Managing
Actions and Movements of Non-Player Characters in
Computer Games. In Proc. of the Brazilian Symposium on
Computer Games and Digital Entertainment.
Propp, V. 1968. Morphology of the Folktale, Laurence
Scott (trans.), Austin: University of Texas Press.
Riedl, M.; Young, M. 2004. An intent-driven planner for
multi-agent story generation. In Proceedings of the 3rd
International Conference on Autonomous Agents and Multi
Agent Systems, New York, USA.
Spierling, U., Braun, N., Iurgel, I., and Grasbon, D. 2002.
Setting the scene: playing digital director in interactive
storytelling and creation. Computers&Graphics, 26:31-44.
Sgouros, N. M. 1999. Dynamic generation, management
and resolution of interactive plots. Artificial Intelligence,
107(1):29-62.
Velázquez, J. D. 1997. Modeling emotions and other
motivations in synthetic agents. In AAAI-97: Proceedings
of The Fourteenth National Conference on Artificial
Intelligence, p. 10-15, Menlo Park, USA. AAAI Press.
Yang, Q., Tenenberg, J. and Woods, S. 1996. On the
Implementation and Evaluation of Abtweak. In
Computational Intelligence Journal, 12(2):295-318.

ICAPS 2006

40 Workshop on AI Planning for Computer Games and Synthetic Characters

	Página 13
	Página 14
	Página 15
	Página 16

