

ICAPS 2006
Workshop on Plan Analysis and Manage-
ment

Table of contents
Preface 3

Reviewed Papers

Recording Rationale in ¡I-N-C-A¿ for Plan Analysis 5
Gerhard Wickler, Stephen Potter, Austin Tate

Tool Support for Planning and Plan Analysis within Domains Em-
bodying Continuous Change

12

T. L. McCluskey and R. M.Simpson

Finding Inter-Related Plans 18
Biplav Srivastava, Subbarao Kambhampati, Minh Binh Do, Tuan A. Nguyen

Research Statements

Planning process from a user perspective 24
Oscar J. Garcia Perez, Francisco C. Palao Reines, Juan Fernandez Oli-
vares, Luis Castillo Vidal, Tomas Garzon Hervas

Statement of Research Interest 26
Blazej Bulka

http://icaps06.icaps-conference.org/

ICAPS 2006
Workshop on Plan Analysis and Manage-
ment

Preface

Planning has primarily considered plans in the context of how they could be generated
from the domain theory and problem specification. While synthesizing plans is useful
and important, it puts heavy demand on how the information is modeled and available in
an application. Beyond synthesis, they may also be acquired from domain meta-models
or experts, or learnt.

As planning is employed in new applications like grid, web services, e-services,
workflows and business processes to facilitate service composition to manage tasks
and resources, there is a growing realization that acquiring plans is just one part of
the complex process of how a plan is used in any real world application. Users want to
generate plans only when needed and they want to know how they are using their plans.
Once available, they may be organized in large collections, where they can be grouped
along different purposes and are made amenable to the search, inspection, evaluation,
and modification by human experts or automated reasoning systems. Eventually, plans
will outlast their utility and be replaced by newer, better ones. This has lead some
researchers to propose a life-cycle view of plans to bring together the various techniques
needed to use plans in an application.

In this workshop, we will look at issues related to how plans are used after they
are obtained and how they play a role in subsequent planning. For our purpose, we
will consider plans and workflows as synonymous to stress the fact that beyond the
PDDL plan representation, planning should also consider the generalized workflows
representation which is not always automatically generated. The workshop will look
at issues of acquiring plans (e.g., eliciting plans, learning them), synthesizing plans
when the domain is incomplete, modeling updates to plans (e.g., through instructions),
analysis techniques to manage plans, metadata generation, storage of plans and how
to retire them. The workshop will bring together researchers who are working on these
topics to discuss these issues as well as real systems that are under development.

Lee McCluskey, Karen Myers, Biplav Srivastava

Organizers

• Lee McCluskey, t.l.mccluskey@hud.ac.uk, University of Huddersfield, U.K.

• Karen Myers, myers@ai.sri.com, SRI International, USA

• Biplav Srivastava, sbiplav@in.ibm.com, IBM India Research Lab, India

Programme Committee

• Jim Blythe, blythe@isi.edu, USC Information Sciences Institute, USA

• Subbarao Kambhampati, rao@asu.edu, Arizona State University, Tempe
AZ, USA.

Recording Rationale in <I-N-C-A> for Plan Analysis

Gerhard Wickler, Stephen Potter, Austin Tate

Artificial Intelligence Applications Institute
University of Edinburgh, Edinburgh, Scotland

{g.wickler, s.potter, a.tate}@ed.ac.uk

Abstract
The aim of this paper is to show how the rationale behind a
plan can be recorded in the plan itself. The <I-N-C-A>
model which underlies the I-X framework will be described
in detail, focussing on annotations. It is there that a planner
can record the justifications for including components into
the plan. Recording rationale information of this type can be
used for a number of purposes in the life cycle of a plan,
including plan indexing and retrieval, failure recovery, plan
explanation and establishing trust as explained in this paper.

Introduction
Plans are the artefact that is the result of the planning
process. Traditionally, a plan is described as a set of
activities together with some organizational structure, e.g.
a sequence in the simplest case (Ghallab et al., 2004). This
is a simplistic model of a plan that can only be applied in
toy domains where plans cannot go wrong, need not be
stored for later re-use, need not be justified, etc. This view
of plans ignores a lot of the knowledge that is generated
and used during the planning process. In this paper we will
describe the <I-N-C-A> model of a plan (Tate, 2003)
which can store annotations to record knowledge about the
plan that is generated during the planning process.
Specifically, we want to record the rationale behind some
(but not all) planning decisions in the plan itself for later
use (e.g. during plan execution, re-planning or explanation
generation). This knowledge can be used to facilitate plan
analysis and help maintain the plan as a meaningful entity.

Background
Rationale has been recognized as an important type of
information in the planning literature. In fact it can be
traced back to early work on Hacker’s plan teleology
(Sussman, 1973), Nonlin’s “Goal Structure” (Tate, 1977;
Tate, 1983) and work on Plan Rationale in SIPE (Wilkins,
1988). Plan rationale capture and use is a key research
objective in the I-X framework (Tate, 2000; Potter et al.,
2003; Wickler et al., 2006) and its predecessor O-Plan
(Currie and Tate, 1991; Tate et al., 2000).
One of the fundamental ideas here is that it is necessary to
have a clear and sharable ontology of plans before one can
reason about plans (Tate, 1996; 1998). The <I-N-C-A>
model of a plan represents such an ontology and will be
described in detail in this paper, focusing on the

component that is used to record the rationale behind the
plan.
Rationale is an essential component of knowledge-rich
plans (Polyak and Tate, 1998). Having such models not
only facilitates the planning process itself, but also makes
it possible to analyse and re-use such plans. Plan rationale
can be viewed in terms of causality, dependencies and
decisions. Each of these dimensions addresses practical
issues in the planning process and adds value to the
resultant plan.

The <I-N-C-A> Model in I-X
<I-N-C-A> is a generic model for synthesis tasks (Tate,
2003). While its level of abstraction makes it possible to
apply the generic model to a wide variety of tasks, it
assumes a more specific meaning in the I-X agent
framework when the object to be synthesized is a plan, a
course of action the I-X agent intends to follow.

Terminology
In this section we will introduce some of the terminology
used in the description of <I-N-C-A> that follows. This is
necessary as we use the terms explained here with specific
meanings.
World-State Propositions. We assume here that a state of
the world can be described by a set of world-state
propositions. By a world-state proposition we mean any
logical expression that represents a proposition about the
world that can be true or false, and not necessarily a
proposition in propositional logic. <I-N-C-A> does not
commit to any specific formalism for world-state
propositions. Traditionally world-state propositions are
described as first-order literals or state-variable expressions
in AI planning, but more complex formalisms may be
required to reason about, for example, the knowledge of
agents in a world state.
Primitive and Complex Activities. Primitive activities are
considered to be the atomic elements that make up the
plan. They are primitive in the sense that, from the
perspective of the planner, they can be executed directly.
A primitive activity must be an instantiation of some
activity schema defined in the planning domain. An
activity schema contains variables representing the
parameters necessary to describe fully the activity: For
primitive activities to be executable these parameters must

ICAPS 2006 Workshop on Plan Analysis and Management 5

have specific values. The name of each activity schema
must be unique within a planning domain, whereas there
can be multiple primitive activities with the same activity
name in a plan. In classical planning primitive activities are
often called actions (Ghallab et al., 2004).
Complex activities are not primitive in that, from the
perspective of the planner, they cannot be executed directly
but instead need to be refined or broken down into
primitive activities that can be executed. In Hierarchical
Task Network (HTN) planning complex activities are often
called tasks (Ghallab et al., 2004) or processes (Tate,
1998). Together, primitive and complex activities
constitute the set of all activities. Note that this
terminology applies at the object-level, i.e., referring to
entities in the domain in question, as well as at the meta-
level relating to the planning process itself, as described
below.
Note too that the choice of which activities are primitive
and which complex depends on the context and knowledge
of the agent in question: usually an activity will be
modelled as primitive if it can be carried out in one step
from this perspective, and as complex otherwise.
Plans. An instantiation of the <I-N-C-A> model is an
<I-N-C-A> object. In the I-X framework an <I-N-C-A>
object is synonymous with a plan. A plan can be partial in
the sense that it is not (yet) an actionable solution to a
planning problem. It is the job of the planner to refine a
partial plan into a solution plan.

The <I-N-C-A> Representation in I-X
Planning can be described as synthesizing an <I-N-C-A>
object, i.e., a plan, in which nodes are activities. We can
formally define an <I-N-C-A> object in I-X as a 4-tuple
(I,N,C,A) consisting of:
• a set of issues I,
• a set of activity nodes N,
• a set of constraints C, and
• a set of annotations A.
Issues. I is the set of unresolved issues in the current plan,
i.e., in this <I-N-C-A> object. An issue is represented by a
syntactic expression of the form l:M(O1,…,On), where:
• l is a unique label for this issue,
• M is a symbol denoting a primitive plan modification

activity, and
• O1,…,On are plan-space objects, i.e. they are issues,

nodes, constraints or annotations. The number of such
objects, n, and the interpretation of each object in the
context of the issue, will depend on the particular
primitive plan modification activity represented by this
issue.

Issues can be seen as primitive meta-level activities, i.e.
things that need to be done to the plan before it becomes a
solution to a given planning problem. This approach is
inherited from O-Plan (Currie and Tate, 1991; Tate et al.,
2000) and is also seen in planners such as OPIS (Smith,

1994). The most commonly found primitive meta-level
activities carried out by planners, but usually only implicit
in their underlying implementation or internal plan
representation, are:
• Achieving a goal (in classical planners): Let p be a

world-state proposition and τ be a time point, then the
primitive meta-level activity of achieving p at τ can be
represented as the issue:

l1:achieve(p,τ)
• Accomplishing a complex activity (in HTN planners):

Let a∈N be a complex activity. Then the primitive meta-
level activity of accomplishing a can be represented as
the issue:

l2:refine(a)
Here, achieve and refine are examples of symbols
denoting primitive plan modification activities. Note that
these symbols are not domain specific but specific to the
planning process by which these types of issue are handled.
Issues can be either ‘negative’, in which case they can be
thought of as flaws in the plan, or they can be ‘positive’,
e.g., opportunities.
An alternative view of issues now being explored in recent
I-X research is to see them as always expressed as
questions that need to be answered. For example, the
primitive meta-level activity of refining a can be phrased
as the question “How can a be accomplished?” Adopting
this view, issues can then be classified and manipulated
according to the question types (Conklin, 2005) described
in recent advances based on the large body of work on
issue-based design (Conklin and Begeman, 1988).
An <I-N-C-A> object is considered to be a solution to a
planning problem only if the set of issues is empty.
Nodes. N is the set of activities (nodes) to be performed in
the current plan, i.e., in this <I-N-C-A> object. An activity
is a syntactic expression of the form l:α(o1,…,on), where:
• l is a unique label for this activity,
• α is a symbol denoting an activity name, and
• o1,…,on are object-level terms, i.e. they are either

constant symbols describing objects in the domain, or
they are as yet uninstantiated variables standing for such
objects.

Time points constitute a special class of domain objects
that are found as parameters of an activity. Specifically,
two time points, one representing the begin and the other
the end of an activity, are often used as parameters.
In the context of I-X, nodes represent the object-level
activities in the plan, i.e., things that need to be performed
by some agent to execute the plan. As mentioned above,
activities can be of two types from the perspective of the
planner:
• Primitive activities: primitive activities can be carried

out directly by an agent executing the plan. For example,
in a search and rescue domain, the primitive activity of
flying the aircraft ac1 from location loc1 to location
loc2 may be represented as:

l3:fly(ac1,loc1,loc2)

6 ICAPS 2006 Workshop on Plan Analysis and Management

• Complex activities: complex activities cannot be
accomplished directly by the agent executing the plan
but need to be refined into primitive activities. For
example, the complex activity of rescuing an isolated
person ip may be represented as:

l4:rescue(ip)
In this example, fly is a primitive activity symbol and
rescue is a complex activity symbol in some domain.
Activity symbols have to be domain specific. It follows
that there has to be an activity schema defined for the
domain that has the name fly and describes when this
activity schema is applicable and how it will change the
world when applied, and there has to be a refinement
defined in the domain that accomplishes a complex activity
with the name rescue and describes how exactly it can
be accomplished.
Note that the set N of activities in the plan may contain
both complex activities and the primitive activities that
have been chosen to implement them.
Constraints. C is the set of constraints that must be
satisfied by the current plan (<I-N-C-A> object). A
constraint is a syntactic expression of the form l:c(v1,…,vn),
where:
• l is a unique label for this constraint,
• c is a symbol denoting a constraint relation, and
• v1,…,vn are constraint variables, i.e., they can represent

domain objects (including time points), variables in
activities (which may have binding constraints attached).

Constraints represent the relations that must hold between
the different objects related in the constraints for the plan
to be executable. In the context of planning, the most
commonly used constraints are of the following types:
• Ordering constraints: Let v1, v2 be variables in the plan

representing time points. Then the constraint that v1 has
to be before v2 can be represented as:

l5:before(v1,v2)

• World-state constraints: Let p be a world-state
proposition and v a variable representing a time point in
the plan. Then the fact that p is a condition that has to
hold at the time point represented by v, or the fact that p
is an effect of an activity that holds at time point v can be
represented respectively as:

l6:cond(p,v)
l7:effect(p,v)

• Variable binding constraints: Let v be a variable
mentioned in some activity a∈N and s be a constant
symbol in the planning domain. Then the fact that v must
take the value s can be represented as:

l8:value(v,s)
These are just some of the constraint types that can be
defined. The objects related to each other can be of
different types. This is reflected by the domains of the
constraint variables representing them. They can be world-
state propositions as in conditions and effects, or they can
be variables used in activities representing time points or

other domain objects in the plan as in ordering and variable
binding constraints.
Annotations. A is the set of annotations attached to the
current plan. Amongst other things, annotations can be
used to add human-centric information to the plan. They
may be informal or they may adhere to some detailed
syntax (which is not specified as part of <I-N-C-A>).
Annotations can be used to record arbitrary information
about the plan (and the annotations form a part of this plan
– hence the plan becomes, in some sense, self-descriptive).
Specifically, in this paper we want to discuss the
annotation of plans with one particular type of rationale,
namely the rationale information that can be recorded by
the planner during the planning process. In this case, an
annotation will be a syntactic expression of the form
la:r(lp:O,lm:M,O1,…,On), where:
• la: is a unique label for this annotation,
• r is a rationale predicate relating a plan-space object to

other plan-space objects,
• lp:O is a labelled plan-space object that is part of the

current plan, i.e., it is an issue, an activity, a constraint or
an annotation,

• lm:M is an issue that was formerly in the plan and has
since been resolved, i.e., it is a primitive meta-level
activity that has been performed by the planner, and

• O1,…,On are plan-space objects that may or may not be
labelled.

An annotation of this type represents the fact that the plan-
space object O was introduced into the plan as part of
performing the plan modification activity M, and possibly
involving other plan-space objects O1,…,On. The rationale
predicate r denotes the relationship between these objects
and describes the justification for including O. Thus, the
interpretation of such an annotation depends on the
rationale predicate r used. The different labels are
necessary to specify the exact object that is being referred
to. This is necessary as there might be two activities in the
plan which are identical except for the label. The following
examples illustrate the use of rationale annotations of this
form.
• Let lm:achieve(p,τ) be an issue in the current plan

and let α(o1,…,on) be an activity schema defined in the
domain that has an effect that unifies with p under the
substitution σ. Suppose the planner introduces a new
activity lp:σ(α(o1,…,on)) into the plan to address the issue
lm:achieve(p,τ). Then the following annotation can
be added to the plan to record the rationale for adding
lp:σ(α(o1,…,on)):

naap(lp:σ(α(o1,…,on)),lm:achieve(p,τ),p)
 In this case naap is a rationale predicate that expresses

that a new activity, the first argument, was introduced
into the plan to address the issue of achieving some
proposition (the second and third arguments
respectively). Thus, the argument types for this particular
rationale predicate are an activity a∈N, an issue M∈I in
which the plan modification activity symbol is

ICAPS 2006 Workshop on Plan Analysis and Management 7

achieve, and a world-state proposition. Furthermore,
the last argument, the proposition p, must be the same as
the one to be achieved in the plan modification activity,
and it must be unifiable with one of the effects of the
activity a∈N.

 In this case, a second rationale annotation could be
introduced in a similar fashion to express the fact that
lp:σ(α(o1,…,on) has to be performed before the time point
τ.

• Let lm:refine(a) be an issue in the current plan and
let there be a refinement Δ defined in the domain that can
be used to accomplish a under the substitution σ by
refining it into, amongst other things, activities
σ(α1(o1,…,on))…σ(αk(o1,…,on)). Note that the elements
into which a is refined can together be seen as an
<I-N-C-A> object, i.e. they can be issues, nodes,
constraints and annotations. Suppose the planner uses Δ
to refine a and this adds new activities
lp1:σ(α1(o1,…,on))…lpk:σ(αk(o1,…,on)) to N to address the
issue lm:refine(a). Then, the following annotation
can be added to the plan to record the rationale for
adding each lpi:σ(αi(o1,…,on)), 1≤i≤k:

nadi(lpi:σ(αi(o1,…,on)),lm:refine(a),Δ)
 (One such annotation would be added for each new

activity αi.) In this case nadi is a rationale predicate that
expresses that a new activity, the first argument, was
introduced into the plan to address the issue of refining
some proposition in accordance with some particular
refinement in the domain (the second and third
arguments respectively). Thus, the argument types for
this rationale predicate must be an activity a∈N, an issue
m∈I, where the plan modification activity symbol has to
be refine, and a refinement. Furthermore, the last
argument, the refinement Δ, must be defined as
accomplishing a complex activity that can be unified
with a.

 Similarly, if appropriate, analogous rationale annotations
could be introduced to express the fact that other
<I-N-C-A> elements of the refinement – such as issues
or constraints – were also introduced as part of this
refinement.

Rationale predicates of this type are usually specific to a
type of issue. Hence, naap rationale will always relate to
an achieve issue, and nadi rationale will always relate
to a refine issue. However, there may be multiple
rationale predicates that may be used with the same issue –
that used will depend on how the planner did actually
resolve the issue. For example, achieving a proposition at
some time point can be done by introducing a new activity
before the time point or by maintaining the truth of the
proposition if it was true at another, previous time point.
Thus, the relation between rationale predicates and issues
is not one-to-one: issues need not always be resolved in the
same manner.
Note too that this type of rationale, recording justifications
for the inclusion of objects into the plan, is only one type
of rationale that one may want to record in a plan. For
example, we may want to record why a specific way of

refining a plan was chosen among the various available
options. While we believe that this type of information
would be very useful to record, we believe that this will
best be approached by use of a separate decision structure.
It is in general not possible to extract useful knowledge of
this kind from a search-based planning algorithm that tries
out many possibilities and backtracks upon failure. At any
choice point, there may be a large number of reasons why
all the leaf nodes that are in the search space under the
choice point represent failures in the search, and it may be
hard to abstract these into meaningful rationale. However,
there also exist choice points in a search space where a
decision is forced or made via user selection from open
alternatives and it may be most useful to record this as part
of the rationale for the plan. This is not described here
though.

Issues as Questions
In the I-X framework, until recently, issues had a task or
activity orientation to them, being mostly concerned with
actionable items referring to the process underway – i.e.,
actions in the process space. This is now not felt to be
appropriate, and we are adopting the gIBIS (Conklin and
Begeman, 1988) orientation of expressing these issues as
any of a number of specific types of question to be
considered (Selvin, 1999; Conklin, 2005). The types of
questions advocated are:
1. Deontic questions – What should we do?
2. Instrumental questions – How should we do it?
3. Criterial questions – What are the criteria?
4. Meaning or conceptual questions – What does X mean?
5. Factual questions – What is X? or Is X true?
6. Background questions – What is the background to this

project?
7. Stakeholder questions – Who are the stakeholders of this

project?
8. Miscellaneous questions – To act as a catch all.
The first 5 of these are likely to be the most common in our
task support environment. This is similar to the Questions -
Options - Criteria approach (MacLean et al., 1991) - itself
used for rationale capture for plans and plan schema
libraries in our earlier work (Polyak and Tate, 1998; 2000)
and similar to the concept mapping approaches used in
Compendium (Selvin et al. 2001). Compendium can in fact
exchange its set of issues, activities and some types of
constraints and annotations with I-X (Buckingham Shum et
al., 2002; Chen-Burger and Tate, 2003).

The Uses of Rationale
Fundamental to the <I-N-C-A> model is the idea of
maintaining annotations as first-class elements placed
alongside the more conventional elements of a plan. One of
the principal uses of annotations is to capture rationale;
hence, we consider rationale to be an important element of

8 ICAPS 2006 Workshop on Plan Analysis and Management

this model, and rationale capture and expression are areas
which we are currently exploring.
The approach outlined in the previous sections, , should be
seen as a framework and tentative steps towards defining a
typology of plan rationale and corresponding mechanisms
for its capture. These tasks are necessarily guided by the
uses to which we want to put this rationale; hence, in this
section we discuss briefly some of the types of operations
and reasoning that we hope to support through the capture
of rationale. In general terms, these are intended to support
activity in real domains (as opposed to classical planning
domains and puzzles). In other words, domains in which
we accept that information and knowledge may be
imprecise, incorrect or missing, and as a result, we expect
plans to fail – and expect that the use of rationale will
enable us to fail better.

Explanation and Trust
As might be expected, a major use of rationale is for
explaining the existence of particular elements in the plan,
e.g., why a certain activity (rather than any other) appears
in the plan. This becomes particularly important when
trying to decide if the plan can be re-applied in the current
context, or if execution of the plan fails or partially fails (of
which, more later). Another use of explanation, one
particularly important in mixed-initiative (i.e., human and
computer) agent systems arises when we wish to justify a
certain activity, particularly in those cases where we are
asking another agent to perform this activity. In all but the
most rigidly enforced hierarchical systems, where agents
simply obey commands (and which occur very rarely in
practice), we should expect that any agent might respond to
such a request with a request of its own demanding that the
activity be justified (and that, if the activity cannot be
justified to the agent’s satisfaction, it might refuse to
perform the activity). It should be apparent that rationale
would allow us to supply some justification. Moreover,
through the use of <I-N-C-A> objects as our common
interlingua in the domain, this justification can be included
and communicated as part of the activity. In this way, the
object may be thought of as analogous to the idea of proof-
carrying code, in that the presence of the rationale can help
convince the recipient of the appropriateness of performing
the activity and that it is ‘safe’ to be performed in the
current situation.
This sort of transaction and reasoning can be seen as an
important step for establishing trust between agents.
Notions of trust, and ways in which it can be established
and managed, are currently receiving much attention
among those considering open agent architectures,
particularly Semantic Web and Semantic Web Services
researchers, where it is considered to be vital if these
initiatives are to come to full fruition.

Plan Indexing and Retrieval
Often re-use of existing plans will be more appealing than
planning anew for a particular task. One use of rationale is

for richer indexing (and later retrieval) of plans; alongside
the description of what the plan does (expressed in the
through the plan itself), and the constraints under which it
is applicable. The rationale annotations allow us to access
the reasons why the plan does what it purports to do.
Properly captured, this information would allow us to
avoid plan re-use under inappropriate conditions or avoid
choosing plans that are based on (what are now known to
be faulty) assumptions or judgements, or at least to be
aware of these limitations and deal with them accordingly.

Failure Recovery and Replanning
In the real world it is inevitable that some plans will fail;
even the best-laid plans can be undermined by some
unexpected event. The failure may or may not be important
with respect to the plan rationale. We need to separate
unimportant minor side-effects from failures which impact
on the intended results of the plan (Tate, 1984; Reece and
Tate, 1994; Drabble and Tate, 1997). In such cases, it is
very likely that we will need to do something to recover,
and to do this efficiently, we will need to try to understand
why the plan has failed, and hence, when replanning to
help guide the choice of alternative actions that may
overcome this failure.

Explanation-Based Plan Learning
Since the plan is accompanied by some explanation of why
it is considered valid (in the form of the rationale), this
suggests the possibility of learning about the domain from
both positive and negative examples (plan successes and
failures). This learning may help to, for instance, identify
and repair faulty knowledge or assumptions, and provide
modified rational criteria for choice of particular options
over others.

Conclusions
In this paper we have presented an approach to recording
the rationale behind a plan in the plan itself, thus making
the plan a self-contained entity that does not require
knowledge of the planning algorithm to explain the
structure of the plan. Fundamental to this approach is the
<I-N-C-A> model which can be used to describe synthesis
tasks and has been used in the I-X framework for
synthesizing plans. Issues in this model can be described as
meta-level activities that are performed by the planner to
refine the plan. During this planning process the planner
adds new constraints on the space of possible behaviour to
the plan, and each of these constraints is added for a
reason. It is this type of rationale that we can record as
annotations in <I-N-C-A> in order to be able to better
understand the plan, the result of the planning process.
This knowledge-rich plan can then be used in various ways
outlined in this paper, thus facilitating the use of the plan in
a wider context.

ICAPS 2006 Workshop on Plan Analysis and Management 9

Acknowledgments
The I-X project is sponsored by the Defense Advanced
Research Projects Agency (DARPA) under agreement
number F30602-03-2-0014. Parts of this work are
supported by the Advanced Knowledge Technologies
(AKT) Interdisciplinary Research Collaboration (IRC)
sponsored by the UK Engineering and Physical Sciences
Research Council by grant no. GR/N15764/01. The
University of Edinburgh and research sponsors are
authorized to reproduce and distribute reprints and on-line
copies for their purposes notwithstanding any copyright
annotation hereon. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of other
parties.

References
Buckingham Shum, S., De Roure, D., Eisenstadt, M.,
Shadbolt, N. and Tate, A. (2002) CoAKTinG:
Collaborative Advanced Knowledge Technologies in the
Grid, Proceedings of the Second Workshop on Advanced
Collaborative Environments, Eleventh IEEE Int.
Symposium on High Performance Distributed Computing
(HPDC-11), July 24-26, 2002, Edinburgh, Scotland.
Chen-Burger, Y. and Tate, A. (2003) Concept Mapping
Between Compendium and I-X, Informatics Report Series,
University of Edinburgh, EDI-INF-RR-0166, May 2003.
Conklin J. and Begeman M. L. (1988). gIBIS: A hypertext
tool for exploratory policy discussion. ACM Transactions
on Office Information Systems, 4(6), pp 303-331.
Conklin J. (2005) Dialogue Mapping: Building Shared
Understanding of Wicked Problems, Wiley.
Currie K. and Tate A.. (1991) O-Plan: the Open Planning
Architecture. Artificial Intelligence, Vol. 52, pp 49-86.
Drabble, B. and Tate, A. (1997) Repairing Plans on the
Fly, in Proceedings of the NASA Workshop on Planning
and Scheduling for Space, Oxnard CA, USA, October
1997
Ghallab M., Nau D., and Traverso P. (2004) Automated
Planning – Theory and Practice,. Elsevier/Morgan
Kaufmann.
MacLean A., Young R., Bellotti V. and Moran T. (1991)
Design space analysis: Bridging from theory to practice via
design rationale. In Proceedings of Esprit '91, pages 720-
730, Brussels, November 1991.
Polyak S. and Tate A. (1998) Rationale in Planning:
Causality, Dependencies and Decisions, Knowledge
Engineering Review, Vol.13 (3), pp. 247-262, September,
1998, Cambridge University Press. See
http://www.aiai.ed.ac.uk/project/oplan/documents/1998/98
-rationale.pdf
Polyak S. and Tate A. (2000) A Common Process
Ontology for Process-Centred Organisations, Knowledge

based Systems, 2000. Earlier version by S. Polyak
published as University of Edinburgh Department of
Artificial Intelligence Research paper 930, 1998. See
http://www.aiai.ed.ac.uk/project/oplan/documents/1999/99
-sebpc-cpm.pdf
Potter, S., Tate, A. and Dalton, J. (2003) I-X: Task Support
on the Semantic Web, Poster Abstract, Second
International Semantic Web Conference (ISWC-2003),
Sanibel Island, Florida, October 2003.
Reece, G. and Tate, A. (1994) Synthesizing Protection
Monitors from Causal Structure, in Proceedings of the
Second International Conference on Planning Systems
(AIPS-94), Chicago, June 1994, AAAI Press.
Selvin A.M. (1999) Supporting Collaborative Analysis and
Design with Hypertext Functionality, Journal of Digital
Information, Volume 1 Issue 4.
Selvin, A.M, Buckingham Shum, S.J., Sierhuis, M.,
Conklin, J., Zimmermann, B., Palus, C., Drath, W., Horth,
D., Domingue, J., Motta, E. and Li, G. (2001)
Compendium: Making Meetings into Knowledge Events,
Knowledge Technologies 2001, Austin TX, USA, March
4-7, 2001.
Smith, S.F. (1994) OPIS: A methodology and architecture
for reactive scheduling. In Zweben, M. and Fox, M.S.
(eds), Intelligent Scheduling, chapter 8, pages 29--66.
Morgan Kaufmann, San Francisco, CA, USA.
Sussman, G. J. (1973) "A Computational Model of Skill
Acquisition," Technical Report 297, MIT AI Lab,
Cambridge, MA.
Tate, A., (1975) "Generating Project Networks",
Proceedings of the Fifth International Joint Conference on
Artificial Intelligence (IJCAI-77) pp. 888-893, Boston,
Mass. USA, August 1977. Reprinted in Readings in
Planning, Morgan-Kaufmann, 1990.
Tate A. (1983) The Less Obvious Side of Nonlin.
Department of Artificial Intelligence, University of
Edinburgh. http://www.aiai.ed.ac.uk/project/oplan/
documents/1990-PRE/1983-unpub-tate-nonlin-less-
obvious.pdf
Tate, A. (1984) Planning and Condition Monitoring in a
FMS, Proceedings of the International Conference on
Flexible Automation Systems, Institute of Electrical
Engineers, London, UK, July 1984.
Tate A.. (1996) Towards a Plan Ontology. AI*IA Notiziqe
(Quarterly Publication of the Associazione Italiana per
l'Intelligenza Artificiale), Special Issue on "Aspects of
Planning Research", Vol. 9. No. 1, pp.19-26 - March 1996
Tate A.. (1998) Roots of SPAR - Shared Planning and
Activity Representation, The Knowledge Engineering
Review, Vol 13(1), pp. 121-128, Special Issue on Putting
Ontologies to Use (eds. Uschold. M. and Tate, A.),
Cambridge University Press, March 1998.
Tate, A. (2000) Intelligible AI Planning, in Research and
Development in Intelligent Systems XVII, Proceedings of
ES2000, The Twentieth British Computer Society Special

10 ICAPS 2006 Workshop on Plan Analysis and Management

Group on Expert Systems International Conference on
Knowledge Based Systems and Applied Artificial
Intelligence, pp. 3-16, Cambridge, UK, December 2000,
Springer.
Tate A.., Dalton J. and Levine J. (2000) O-Plan: a Web-
based AI Planning Agent, AAAI-2000 Intelligent Systems
Demonstrator, in Proceedings of the National Conference
of the American Association of Artificial Intelligence
(AAAI-2000), Austin, Texas, USA, August 2000.
Tate A.. (2003) An Ontology for Mixed-initiative
Synthesis Tasks. Proceedings of the Workshop on Mixed-
Initiative Intelligent Systems (MIIS) at the International
Joint Conference on Artificial Intelligence (IJCAI-03),
Acapulco, Mexico, August 2003, pp 125-130.
Wickler G., Tate A., and Potter S. (2006) Using the
<I-N-C-A> Artifact Model as a Shared Representation of
Intentions for Emergency Response Coordination. In:
Jennings N., Tambe M., Ishida T., Ramchurn G. Proc.
First International Workshop on Agent Technology for
Disaster Management, Japan, May 2006.
Wilkins, D.E. (1988) Practical Planning: Extending the
Classical AI Planning Paradigm, Morgan Kaufmann, San
Mateo, CA, USA.

ICAPS 2006 Workshop on Plan Analysis and Management 11

Tool Support for Planning and Plan Analysis within Domains embodying
Continuous Change

T. L. McCluskey and R. M.Simpson
Schoolof ComputingandEngineering

TheUniversityof Huddersfield,HuddersfieldHD1 3DH, UK
t.l.mccluskey,r.m.simpson@hud.ac.uk

Abstract

In this paperwe describework in progressthat aimsto de-
velopa domain-independenttool setwhich supportsthecre-
ationandanalysisof domaindescriptionsandplanscontain-
ing continuouslychangingprocesses,instantaneousevents,
andactions. The tools describedare(i) a life history editor
that enablesa designerto createa domaindescriptiondia-
grammatically, automaticallygeneratingmuchof thetextual
encoding;(ii) ananimatorthatsimulatesplans,firing events
andprocesses;(iii) an HTN plannerthat generatesplansin
suchdomains.Tools(i) and(ii) arecurrentlyimplementedas
a subsetof theGIPOIII environment. We concludeby stat-
ing someinitial findingsandpointsthatmightberaisedatthe
workshop.

Introduction
Planningin domainswhich are representedwith rich no-
tationshaslong beena greatchallengefor AI (Bresinaet
al. 2002). In particular, many real world phenomenaare
outsidethe explicit control of plan execution,yet have to
be reasonedwith during plan generation. Changesocur-
ring becauseof fuel consumption,continuousmovement,or
environmentalconditionsmay not be adequatelymodelled
throughinstantaneousor evendurativeactions;ratherthese
requiremodellingascontinuouslychangingprocesses.

Our researchis heavily involvedwith knowledgeformu-
lation of domainswhich involve AI Planning.Evensmall,
classicalplanningdomaindescriptionsare difficult to en-
codeadequatelyandcorrectly. Without tool support,encod-
ing descriptionsrequirethe userto understandthe planner
and the descriptionlanguagein greatdetail. GIPO (Mc-
Cluskey, Liu, & Simpson2003)is a tool whichsupportsthe
creationof domaindescriptions,andtheexplorationof plan-
ning within thedomain,usingan interfacethathidesmuch
of the technicaldetails. Userscanbuild a domaindescrip-
tion usinga diagrammaticinterface,explore plan creation
usinga plan stepper, interfacetheir domainto an external
planner, andanalysethe resultingplansusingan animator.
Thegeneralityof thegraphicaltoolsareenabledby theuse
of the’object’ asthecommonsemanticthread.

RecentlyLong andFox re-visitedthe issuesof planning
within domainswith eventsandcontinuousprocesses,with
the introductionof PDDL+ level 5 (Fox & Long 2001). In
this paperwe discussextensionsto the GIPO architecture

and relatedtools for domainformulation, plan generation
andplan analysisin suchrich domains. We have adopted
anunderlyingformalismsimilarto PDDL+calledOCLplus,
but onewhichalsosupportstheuseof theGIPOknowledge
acquisitiontool.

Using OCLplus: Planning Domains with
Processes and Events

OCLplus is derived from GIPO’s object-centredlanguage
which is documentedin the literature(McCluskey, Liu, &
Simpson2003). This languageimposesa structureon the
domainin termsof objectsand object classes,and struc-
turesaction representationsin termsof objectstatetransi-
tions. Additionally in OCLplus, time is modelledexplic-
itly asa real quantity. This enablessimulationor planning
with themodeltoadoptanarbitraryapproximationto thead-
vancementof time; hencein thedomaindescriptiontime is
modelledasa continuousrealvariable,but in simulationan
approximationhasto beadopted.Thispresentsasetof seri-
ousproblemsasdiscussedin theliterature(Howey, Long,&
Fox 2004). For example,duringdiscretesimulationevents
mayfire or not fire dependingon thechosengranularityof
time.

Statechangingoperationsaredividedinto three:actions,
eventsandprocesses.Actions (with Strips-relatedseman-
tics)bringaboutinstantaneouschangeto thestateof domain
objectsandmayalsoupdatethenumericpropertiesof those
objects.Actionsaretheentitiesthatagentsmustinitiate to
achieveplanninggoals,triggereventsandprocesses.Events
arespecifiedin thesamewayasactions,but their semantics
differ: whenevertheirpreconditionsaremadetrue,theevent
firesandmaychangethestateof theobject(s)involved. In
otherwords,eventsareautomaticallytriggeredasa result
of thenumericchangesbroughtaboutby domainprocesses,
and(possibly)by statechangesof otherobjects. Like ac-
tions, eventsbring aboutinstantaneouschange,but unlike
actionseventsare not directly triggeredby the plan exec-
utive. Processesspecifyin additionto their startcondition
how numericpropertiesof theobjectsin thedomainareup-
datedwith thepassageof timeasaresultof therunningpro-
cesses.Henceprocessesupdatenumericproperties,but do
not bring aboutstatechangeof theobjects(in thesenseof
changingthetruth valueof relations);their descriptionsare

12 ICAPS 2006 Workshop on Plan Analysis and Management

availabledeclaratively, but they cannotbedirectly activated
by the

�
agentsactingin thedomain,despitethe fact that the

intentionbehindperformingsomeactionmaysimply be to
startaprocessrunning.

Review of GIPO III’s Life History Editor
GIPOIII’ s objectlife historyeditor (OLHE) is usedto for-
mulatedomiandescriptions.Is is reminiscentof CASEtools
that supportdesignersconstructdiagrammaticrepresenta-
tionsof systems.Thesesystemsareusuallybasedaroundan
’object model’. TheCASEtool’s principal functionwould
be to help the userconstructa (partial) formal modelfrom
the diagrammaticdescription,thus insulatingthe designer
from thecode.Dependingon theCASEtool, thecodegen-
eratedby thetool maybesomeabstract,formalspecification
(eg toolsthatgeneratepartialZ specifications),or partialim-
plementationswithin aprogramminglanguage.

In the caseof GIPO III, the user has to createa dia-
grammaticrepresentationof the planningdomainusing a
state- machinemetaphor. This forcesthe designerto de-
composethe systeminto an assemblyof machines,where
eachmachinerepresentsthebehaviour of a classof objects.
Eachmachine’s nodesrepresentthe setof mutually exclu-
sive statesthat an object of the classcan hold. Other at-
tributesof the objectsare modelledas ’properties’. The
diagrammaticform first undergoesconsistency checks,and
then is translatedinto a domaindescriptionwhich can be
usedfor plangenerationpurposes.

Apart from an adequatediagrammaticdescription,the
useronly needspecifyproblemscenarios(includingobject
instances)beforea targetplannercanbeinvoked.As anex-
ample,to constructtheDockworkers- robotsworld usedin
therecentAI planningtextbook(Ghallab,Nau,& Traverso
2004),oneonlyneedstoconstructthediagramshown is Fig-
ure2. FromthisdiagramGIPOIII generatesthedynamicsof
thedomain,andconvertsthis into aplanner-friendly form.

The diagramsarebasedon primitive machinesandma-
chinetransitions.Machinesrepresenta classof objectsthat
sharethe samebehaviour, nodesrepresentthe stateof ob-
jects,andarcschangethe statethat objectsgo through. In
additionto changingstate,nodescanhave changingprop-
erties(for example,locatedness)and theseoccurasanno-
tatedtransitionsof a differentcolour to statechanges.Ac-
tions involving morethanonetype of objectaremodelled
by co-ordinationarcs. To capturepreconditions,we con-
strainobjectsfrom differentmachinesto bein certainstates
or have certainpropertieswhena transitionoccurs.To cap-
ture necessaryor conditionalchangeswe constraintwo or
moretransitionsof objectsfrom differentmachinesto occur
together. For moredetails,the readercanconsulta recent
paperin which we gave aninformal, translator-independent
semanticsto thesediagramsvia thetechniquesof algebraic
specification(McCluskey & Simpson2005).

As a furtheraid to construction,the useris givenan ex-
tensibleset of machineprimitiveswith which to work (in
Figure 2 the primitives are listed in the left hand pane).
This leadsto ahigherlevel platformthanconstructingat the
level of the nodeandarc. For example,the dockworkers-

algorithm PlusPlan:OCLplusPlanner

1.store= � node(0,init-state,empty,init-task,init-constraints)�
2.repeat
3. call expand-plan();
4. call simulateevents-processes();
5.until empty(store)or � N � store:

solution-node(N);
6.end
procedure expand-plan()
1. repeat
2. removenode(T,S,PP,Exp,C)from store;
3. if notmethods(start(Exp),S,C)= ��� then
4. � M � methods(start(Exp),S,C)
5. Exp+= Expwith M expanded;
6. C+ = C with M’s expansionconstraints;
7. storenode(T,S,PP,Exp+,C+)
8. elseif notoperators(start(Exp),S,C)= ��� then
9. � O � operators(start(Exp),S,C)
10. storenode(T,apply(O,S),add(PP,O),rem(Exp,O),C)
11. elsewrite node(T,S,PP,Exp,C)to temporarystore
12. until empty(store)or � N � store

solution-node(N);
13. let store:= temporarystore;
14. end
procedure simulateevents-processes()
1. temporarystore:= store;store= empty;
2. � node(T,S,PP,Exp,C) � temporarystore:
3. � E � Events:
4. if preconds(E,S)= truethenS := apply(E,S)
5. � P � Processes:
6. if preconds(E,S)= truethenS := apply(P,S)
7. storenode(T+Delta,S,PP,Exp,C);
8. end

Figure1: ThePlusPlanAlgorithm

robotsworld canbeconstructedby selectingtwo instances
of stacks,andtwo bistates,andthenconfiguringandcom-
bining themtogetherto producethediagramshown in Fig-
ure2. GIPOIII thenproducesthedomaindescriptioncode
from thediagram,readyfor input to a planner.

GIPO III’s Life History Editor for OCLplus
TheOLHE for continuousdomainsusesthesamephiloso-
phy asthestandardOLHE discussedabove. Colourcoding
distinguishesactions,events, transitions,processes,states
etc.Eventsareconnectedto thestatesthatchangeasaresult
of theevent,andaneventmaybeco-ordinatedwith objects
of otherclassesin thesamewayasactions.Additionally, an
eventwill haveoneor morepreconditionswhichdependon
time. Thespecificationof thesepropertiesareinitiatedand
changedby clicking on theevent’s icon.

Processesareconnectedup diagrammaticallywith states
that are required as their preconditions,but expressions
involving continuouslyvarying valuesrequirethe useof a
expressioneditor. We illustrate this ideawith the familiar
bath- filling applicationshown in Figure3. In thediagram
there is one processspecified(filling), annotatedwith a

ICAPS 2006 Workshop on Plan Analysis and Management 13

Figure2: TheDockworkersDomain:Exampleof GIPOIII’ sOLHE

clock icon to show it is a process.As well asconnectingup
theprocessto relevantstates/events,thedesignermustinput
triggersfor theprocess,i.e.

level� Bath�
	 capacity� Bath�
flow� Bath�
�
��� �

aswell astheeffectof theprocess:

level� Bath��� level� Bath��� flow-rate � time-increment

An expressioneditor is provided for this. There is one
event in the diagram- ’flood’. Statechangeinformationis
generatedby the connectionsof the event in the diagram,
but, like a Process,an expressioneditor is neededto input
thefluenttriggerfor theevent,in thiscase:

level� Bath�
� capacity� Bath��� flow� Bath���
��� �

With this extra information,GIPO III cangeneratethe do-
maindescriptionfor usewith theStepperandPlannerout-
linedbelow.

GIPO III’s Plan Stepper
The Plan Stepper assumesa completebut not necessarily
correctdomaindescriptionexistsandthatthedescriptionre-

quiresdynamictesting.Thestepperallows theuserto man-
ually developa graphicalrepresentationof a planto solve a
givendomainproblemby choosingfrom thedefinedopera-
torsa sequencein which to applythemandby choosingin-
stantiationsof theoperatorparametersthatlegally allow the
operator’s applicationat that stagein the developingplan.
We continuethe simple bath filling example in Figure 4.
Herethe object’s timelinesrun alongfrom left to right, in
thetop pane.In thelower panetheprocess(es)activationis
shown from left to right. Initially aplugis placedin thebath
(first dot - in red) then the hot water tap is turnedon (af-
fectingthebath,thetapandhaving theeffectof startingthe
filling process).Next the cold tap is turnedon, andfinally
afterseveralminutesthebathoverflows andcausesa flood
(thefloodeventis signifiedby across).

The tool in additionto providing a graphicalrepresenta-
tion of theplanchecksthateachstepcanbelegally applied
assumingthe given problem’s initial state. In this way the
usergainsfeedbackon whetheror not thedomaindescrip-
tion fulfills his/herexpectation. Clearly if the plan is not
legal theneithertheplanitself is flawedor thedomainspec-
ification is at fault. Theuseris expectedto iterateover this
processuntil bothsampleplansanddomainspecificationap-
pearsatisfactory. Theplanstepperallowsauserto manually
createplandescriptionsandhavethemcheckedagainstade-
velopingformal descriptionof the problemdomain. Tools
basedon theideaof a plansteppercanbeof moreusethan

14 ICAPS 2006 Workshop on Plan Analysis and Management

Figure3: TheBathFilling Domain:Exampleof GIPOIII’ sOLHE

just as a tool for domaindescriptionvalidation. In many
domainsusersarenot looking for nor would bepreparedto
trustfully automatedtoolsto carryout theirplanningtasks.

Plan Generation
We havedesignedandimplementeda plangenerationalgo-
rithm (’PlusPlan’)for OCLpluswhichwasderivedfrom Hy-
HTN (McCluskey, Liu, & Simpson2003).HyHTN is ahier-
archicalplannerwhich,likeShop(Nauetal. 2000),plansby
selectingandexpandingmethodoperators,andkeepingan
advancedstatewithin searchnodes. HyHTN’s innovation
is that it is equallysuitedto hierarchical,non-hierarchical
planning,or acombinationof thetwo. Duringsearch,nodes
undergoexpansionoperationswhichreplacenamesof meth-
ods with their decomposition.However, if within a node
someconditioncannotbeachievedin thecurrentstatethen
HyHTN canperformaheuristicstatespacesearch(usingthe
plangraphheuristic)to generatea planto achievethegoal.

Essentially, PlusPlanworksusingablendof planningand
simulation. The simulationis similar to that carriedout in
thePlanStepperdescribedabove: an incrementaltime step
is usedto simulatethepassingof time. Planninginvolvesa
state-advancingHTN searchat eachinstantof time. Hence,
if thegoalcanbereachedby theeffect of instantaneousac-
tions only, it will endeavour to find a plan to achieve this,
andapply that plan’s actionsto an advancingstate,in the

first instant.More likely, nodeswill beprocessedresulting
in theadditionof new nodesto thesearch,but thesewill not
be furtherprocessedassomeeventor processis neededto
occuror terminatebeforefurtherwork onaplancanoccur.

Figure 1 containsan outline of PlusPlan. It searches
throughaspaceof nodesof theform:

node� T � S� PP� Exp� C �

whereT is theelapsedtime from thestartof theplan,S is
the currentstateat time T, PP is the plan that producesS,
Expis asetof operatorsrepresentingthedeveloping(future)
plan, andC is a setof constraintson Exp. Initially Exp is
theabstracttaskto beachieved,andC aninitial setof con-
straints.

Procedureexpand-plantriesto createandapplya planat
oneinstant. The resultingopennodesin ’store’ areeither
solutionsor nodeswhereoperatorscannotbe executed.In
line 3 start� Exp� = setof fringeoperators,ie thosethatcould
possiblystart(temporally)Exp;
methods� start� Exp��� S� C � is the setof non-primitive oper-
atorsin the fringe suchthat their preconditionsaremet in
S andthe constraintC aresatisfiable.For all thesepossi-
bledecompositions,new nodesarecreatedandstored.If no
non-primitiveoperatorscanbeexpanded,thenin lines8-10
any operatorsthatcanbeappliedareappliedto advancethe

ICAPS 2006 Workshop on Plan Analysis and Management 15

Figure4: TheBathFilling Domain:Exampleof GIPOIII’ sPlanStepper

state.Whena nodecannotbeexpanded,it is put into a tem-
porarystore,andwhenall nodesareprocessed(or asolution
is found)thenthetemporarystoreis copiedbackto themain
storeandcontrolis givenbackto themainalgorithm.

The procedurefor simulating events and processesre-
tractsall of the storednodes,andwith eachin turn, it ap-
pliesall applicableeventsandprocesses.If � 1 eventsoc-
cur at thesametime thentheorderthatthey fire is assumed
unimportant- theobjectstatesthatany two firing eventsre-
fer to mustbe independent.Similarly, if eventsoccurdur-
ing processexecution,they areassumednotto interferewith
theprocesses,that is the ’order’ of simulationis not impor-
tant. Finally, it is assumedthat two processesthatarecon-
tinuouslyrunningdo not directly interfere. Theseassump-
tions avoid the problemof interferingevents”occurring at
thesametime” - which canleadto a paradox.After all the
effectsof applicableeventsandprocesseshavebeenapplied
to a node,thetimeof its stateis movedonaninstant(signi-
fiedby ”Delta”) andthenodeis stored.

Themainloopprogressesuntil expand-plan()is in aposi-
tion to fully expandtheabstracttaskinto a plancontaining
primitive instantiatedoperators.

Results and Open Questions
Planningin domainswith continuousprocesses,eventsand
actionshaslong beena greatchallengefor AI. Realworld

phenomenaare often outsidethe explicit control of plan
execution and yet have to be reasonedwith during plan
generation. In this position paperwe have outlined three
tools usedto formulatedomaindescriptions,analyseplans
throughsimulation,andgenerateplansrespectively, in do-
mainswith actions,events,andprocesses.An importantaim
of this work to allow theexpressivenessof theOCLplusde-
scriptionto beexploredandto investigateadditionalknowl-
edgeengineeringfeaturesthatmaybeaddedto thelanguage
to supportthemodellinganddomainvalidationprocesses.

We have evaluatedthe tools on toy problemsincluding
anair traffic controlscenario(specifiedin (Simpson& Mc-
Cluskey 2003)), a bath domain,and an autonomousvehi-
cle domain. The first tools (formualationand simulation)
areencodedinto GIPOIII with OCLplus, andcanbedown-
loadedfrom http://scom.hud.ac.uk/planform/gipo. For the
future we are aiming to apply the tools to a more realis-
tic flood simulationdomain. The initial work shows that
(a) theGIPOtoolsoriginally designedfor classicaldomains
generalisenaturallyto domaindescriptionsin OCLplus(b)
problemsto do with thesimulationareextremelycomplex.
Dependingon the choiceof the time step”Delta” in both
simulationandplangeneration,eventsmayfire or not fire,
andprocessesmay not run accuratelyor at all. The work
hasalreadyraisedcertainfundamentalquestionssuchas: is
the developmentof a domain-independenttoolsetfor such

16 ICAPS 2006 Workshop on Plan Analysis and Management

expressivedomainsfeasibleor evendesirable?While conti-
nouschangeis expressiblein domaindescriptionlanguages
suchasOCLplus, how canthis be adequatelysimulatedin
animatorsandplanners?

References
Bresina,J.L.; Dearden,R.; Meuleau,N.; Ramkrishnan,S.;
Smith,D. E.; andWashington,R. 2002. Planningunder
continuoustime andresourceuncertainty:A challengefor
ai. In UAI, 77–84.
Fox, M., andLong, D. 2001. PDDL2.1: An extension
to PDDL for expressingtemporalplanningdomains. In
TechnicalReport,Deptof ComputerScience, Universityof
Durham.
Ghallab,M.; Nau,D.; andTraverso,P. 2004. Automated
Planning: TheoryandPractice. MorganKaufmannISBN
1-55860-856-7.
Howey, R.; Long, D.; and Fox, M. 2004. Val: Auto-
maticplanvalidation,continuouseffectsandmixedinitia-
tiveplanningusingpddl. In ICTAI, 294–301.
McCluskey, T. L., and Simpson,R. M. 2005. Towards
An Algebraic Formulation of Domain Definitions using
ParameterisedMachines. In Proceedingsof the 24th UK
PlanningandSchedulingWorkshop(PLANSIG-2005),City
University, London.
McCluskey, T. L.; Liu, D.; and Simpson,R. M. 2003.
GIPO II: HTN Planningin a Tool-supportedKnowledge
EngineeringEnvironment.In TheThirteenthInternational
ConferenceonAutomatedPlanningandScheduling.
Nau,D.; Cao,Y.; Lotem,A.; andMunoz-Avila, H. 2000.
SHOPandM-SHOP:Planningwith OrderedTaskDecom-
position. Tech.ReportCSTR 4157,Universityof Mary-
land,CollegePark,MD.
Simpson,R. M., andMcCluskey, T. L. 2003.PlanAuthor-
ing with ContinuousEffects. In Proceedingsof the 22nd
UK PlanningandSchedulingWorkshop(PLANSIG-2003),
Glasgow, Scotland.

ICAPS 2006 Workshop on Plan Analysis and Management 17

Finding Inter-Related Plans

Biplav Srivastava
IBM India Research Laboratory
IIT, New Delhi 110016, India

sbiplav@in.ibm.com

Subbarao Kambhampati∗
Arizona State University
Tempe, AZ, USA 85287

rao@asu.edu

Minh Binh Do
Palo Alto Research Center

Palo Alto, CA 94304
minhdo@parc.com

Tuan A. Nguyen
University of Natural Sciences

Ho Chi Minh, Vietnam
natuan@fit.hcmuns.edu.vn

Abstract

In many planning situations, a planner is required to return
a set of plans satisfying the same goals which will be used
by the external systems collectively. The external systems
can specify the desired inter-relationships among the returned
plans (e.g., diverse plans, similar plans, non-dominated plans)
and the task of the planner is to return a set of plans which
will meet these requirements. As an example, in adaptive
web services composition, the web service engine wants to
have a set of diverse plans/ compositions such that if there is
a failure while executing one composition, an alternative may
be used which is less likely to be failing simultaneously. In
this paper, we investigate the problem, propose functions for
defining similarity among plans and propose methods to find
sets of inter-related plans.

Introduction
A typical AI planner takes as input the specifications of the
initial and goal states and the set of available actions, and
finds a plan that will satisfy the goals by efficiently search-
ing in the space of possible states configurations or action
orderings (plans). In many planning situations, a planner is
required to return not one but a set of plans satisfying the
same goals which will be used by the external systems col-
lectively. The external systems can specify the desired inter-
relationship among returned plans (e.g., diverse plans, simi-
lar plans, dominated plans) and the task of the planner is to
return a set of plans which meet these requirements.

As an example, in adaptive web services composition, the
web service engine wants to have a set of diverse plans/ com-
positions such that if there is a failure while executing one
composition, an alternative may be used which is less likely
to be failing simultaneously. However, if a user is helping in
selecting the compositions, the planner could be first asked
for a set of diverse plans and when she selects one of them,
the planner is next asked to find plans that are similar to the
selected one. Another example is using planning for intru-
sion detection (Boddyet al. 2005), where the aim is to detect
as many ways of possible intrusion as possible where an in-
trusion attack is represented as a plan. A third, more general

∗Kambhampati’s research is supported in part by the NSF grant
IIS-0308139 and the ONR Grant N000140610058.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

example involves any complex planning situation where the
user is interested in optimizing multiple and possibly con-
flicting objectives, to generate a set of desired plans.

Existing planners, that are designed to find single solu-
tion plans, are not well suited for this problem. Even though
many of the planners are capable of outputting multiple
solutions by continuing their search beyond the first solu-
tion, they cannot guarantee any desired relations between
the plans that are output.

To find inter-related plans, we need to be able to (1) de-
fine distance measures between plans and (2) modify exist-
ing planners so that they can use this distance measure to
generate sets of inter-related plans. Similarity and diversity
are examples of such inter-relationships for plans.

There has been very little work on this problem in plan-
ning. Hebrard et al 2005 solve the problem of similar/
dissimilar solutions for CSPs. If we consider their work
for planning, since a planning problem of finite length can
be compiled as a CSP problem, their results are the lower
bounds for finding similar or diverse plans.

Our major contributions in the paper are:
• We formalize the problem of finding diverse/ similar plans

by extending previous formulations for CSPs.

• We introduce useful bases and measures for plan distance.
We show that different measures can give drastically dif-
ferent picture about inter-plan relationships.

• We discuss some preliminary work on effective solutions
to the proposed problems.

We start by formalizing the problem and then propose a se-
ries of plan similarity function. Next, we propose methods to
find inter-related plan and present initial results about their
effectiveness. We then explore the problem with hierarchical
plans. We end with discussion on related work and provide
pointers for future work.

Problem Statement
At its simplest, a planning problemPP is a 4-tuple
〈P, I, G, A〉 whereP is the set of predicates,I (⊆ P) is
the complete description of the initial state,G (⊆ P) is the
partial description of the goal state, andA is the set of ex-
ecutable (primitive) actions. A specification of an action
consists of preconditions (A

pre
i ⊆ P) and postconditions

(Apost
i ⊆ P).

18 ICAPS 2006 Workshop on Plan Analysis and Management

A plan for PP is an action sequenceSj , such that ifSj

is executed inI, the resulting state of the world would con-
tain (entail)G. It is a 3-tuple〈T, O,ST 〉 where: T is the
set of steps in the plan;T contains two distinguished step
namest0 andt∞. ST is a symbol table, which maps step
names to actions. (Note that multiple steps can be mapped
to the same action.) The special stept0 is always mapped
to the dummy operatorstart, and similarlyt∞ is always
mapped tofinish. The effects ofstart and the precon-
ditions of finish correspond, respectively, to the initial
state and the desired goals of the planning problem.O is a
partial ordering relation overT .

As an example, suppose a person in Las Vegas (LV) wants
to plan a weekend and is considering to visit one or more
of the Disneyland (DL) in Los Angeles, his friend in San
Francisco (SF) or an event at San Jose (SJ), based on the
cost of each choice and its relative utility. In Figure 1, two
possible plansS1 andS2 are given.

We also see in the Figure that there can be different repre-
sentations for a plan. For example, plans can be hierarchical
consisting of non-primitive actions (tasks) which can be de-
composed further into primitive/ executable actions or other
non-primitive actions by one or more reductions. In the ex-
ample, we had consideredTravel actions as primitive. If we
consider them as non-primitive, plans are trees of AND-OR
nodes. In Figure 1,S1

3
andS2

3
are two possible reductions

of the non-primitive actionTravel between LV and DL. We
will focus on plans with primitive actions but we note that
plans in alternative representations could also be compared.

Travel_LV_DL

Travel_DL_SJ

Travel_SJ_SF

Travel_SF_LV

Travel_LV_DL

Travel_DL_SJ

Travel_SJ_SF

Travel_SF_LV

Travel_LV_SJ

Travel_SJ_SF

Travel_SF_LV

Travel_LV_DL

FlyBuyTicket

BoardPlane

TravelByCar_LV_DL TravelByFlight_LV_DL

UnboardPlaneBoardCar Drive UnboardCar

Plan S1 Plan S2

Plan S3-1 Plan S3-2

AND trees

OR trees

Figure 1: Examples of plans.

Let δ(Si, Sj) → [0, 1] denote a distance function between
a pair of plans. A value of 0 represents complete simi-
larity of plans while 1 represents complete diversity. Fol-
lowing the convention of (Hebrardet al. 2005), we de-
fine max(δ, S) = max

Si,Sj∈S
δ(Si, Sj) andmin(δ, S) = min

Si,Sj∈S

δ(Si, Sj). Also, we definemax(δ, S, Sj) = max
Sk∈S

δ(Sj , Sk)

Notation Description
PP A planning problem
Plan(PP) Set of all plans ofPP

Si, Sj A plan forPP (⊆ Plan(PP))
S, S′ Sets of plans

Table 1: Notation used in the paper.

Problem Description
dDISTANTkSET FindS with S ⊆ Plan(PP)
(resp.dCLOSEkSET) | S | = k andmin(δ, S) ≥ d (resp.max(δ, S) ≤ d)
Input: PP ; Output:S
MAXDIVERSEkSET FindS with S ⊆ Plan(PP), | S | = k and
(resp. MAXSIMILARkSET) for all S′ ⊆ Plan(PP), | S′ | = k,
Input: PP ; Output:S min(δ, S) ≥ min(δ, S′) (resp.max(δ, S) ≤ max(δ, S′))
MAX dDISTANTSET FindS with S ⊆ Plan(PP), min(δ, S) ≥ d
(resp. MAXdCLOSESET) (resp.max(δ, S) ≤ d), and for allS′ with min(δ, S’) ≥ d
Input: PP ; Output:S (resp.max(δ, S’) ≤ d), | S |≥| S′ |
MOSTDISTANT FindSj with Sj ∈ Plan(PP)-S, such that for
(resp. MOSTCLOSE) Sk with Sk ∈ Plan(PP)-S, max(δ, S, Sj) ≥
Input: PP , S; Output:Sj max(δ, S, Sk) (resp.min(δ, S, Sj) ≤ min(δ, S, Sk))
nNEARdDISTANTkSET FindS such that it isdDISTANTkSET
(resp.nNEARdCLOSEkSET) (resp.dCLOSEkSET) and
Input: PP , Sk ; Output:S δ(Si, Sk) ≤ n for all Si ∈ S

nNEARMAXDIVERSEkSET FindS such that it is MAXDIVERSEkSET
(resp.nNEARMAXSIMILAR kSET) (resp. MAXSIMILARkSET) and
Input: PP , Sk ; Output:S δ(Si, Sk) ≤ n for all Si ∈ S

nNEARMAXdDISTANTSET FindS such that it is MAXdDISTANTSET
(resp.nNEARMAXdCLOSESET) (resp. MAXdCLOSESET) and
Input: PP , Sk ; Output:S δ(Si, Sk) ≤ n for all Si ∈ S

Table 2: Different instances of the inter-relationship aware
planning problem.

andmin(δ, S, Sj) = min
Sk∈S

δ(Sj , Sk). In Table 1, we sum-
marize the notations that are followed and Table 2 lists
the various problems to find inter-related plans. The first
3 problems,dDISTANTkSET, MAXDIVERSEkSET and
MAX dDISTANTSET (and their respectiveclose variants)
are planning adaptations of offline CSP problems in (He-
brardet al. 2005) while MOSTDISTANT is adaptation of
their online problem1. We also introduce thenNEAR varia-
tions of the offline problems which takes the planning prob-
lem and a reference (previous) plan as input and requires that
all returned plans be close to the reference plan.

Distance Measures
In this section, we motivate different bases for comparing
plans, the different methods of comparing plans, and pro-
pose useful plan distance functions.

Different Bases for Plan Comparison
At the heart of the problem of finding inter-related plans is
the issue of defining criteria by which two plans are com-
pared. A plan can be characterized by:

1. Actions that are present in the plan

2. Its behavior where the behavior represents the set of states
that an execution of the plan will take

3. Causal chains that support the different goals achieved by
the plan. They represent a middle-ground between actions
and states by encoding how actions contribute to the goal
states being achieved.

1We have converted all the decision problems to seek their so-
lutions.

ICAPS 2006 Workshop on Plan Analysis and Management 19

Basis Pros Cons
Actions Does not require No problem information

problem information is used
States Not dependent on any specific Needs an execution

plan representation simulator to identify states
Causal chains Considers causal proximity Requires domain theory

of state transitions (action)
rather than positional
(physical) proximity

Table 3: The pros and cons of different bases to characterize
plans.

These different criteria for characterizing plans can also
serve as the basis for different ways of comparing plans. Ta-
ble 3 gives the pros and cons of using the different basis.
We note that if actions in the plans are used as the basis
for comparison, no problem or domain theory information
is employed. If plan behaviors are used as the basis for com-
parison, the representation of the actions that bring about
state transition becomes irrelevant since the actual states that
an execution of the plan will take is considered. Hence, we
can now compare plans of different representations, e.g., 4
plans where the first is a deterministic plan, the second is a
contingent plan, the third is a hierarchical plan and the fourth
is a policy encoding probabilistic behavior. If causal chains
is used as the basis for comparison, the causal proximity
among actions is now considered rather than just physical
proximity in the plan. But it requires the domain theory to
be available.

Different Ways for Computing Comparison
After a basis for plan comparison is chosen, there can be
different ways of using its characterizer to derive distance
functions. The analogy we use is to string comparison where
inter-relationship among characters in the string are usedto
define distance functions. Without loss of generality, assume
that we are interested in action based comparison of plans.

One way to measure distance between plans is to consider
plans as sets of actions and string similarity functions that
depend on characters sets. This view ignores the absolute
position of an action in the plan string and cares only about
the presence or absence of an action in the plan.

Set-difference based Distance Computation We can
also use the set-difference measure between plans. Here, the
distance between plansSi andSj is measured as the num-
ber of actions that occur in one plan but not the other. This
measure is used in (Myers 2005; Foxet al. 2006).

δ1(Si, Sj) =
| Si − Sj | + | Sj − Si |

| Si | + | Sj |
(1)

Neighbourhood-based Distance Computation We can
also consider the ordering of the actions in the plan (char-
acters in the string). LetSi andSj be broken into substrings
P = P1, ..., PK andQ = Q1, ..., QL. Then neighbourhood
similarity functions follow the general pattern as follows.

δ∗(Si, Sj) =
1

K

K∑

i=1

minL
j=1

δ
′

(Pi, Qj) (2)

Name Basis Computation
δ1 Actions Set-difference
δ2 Actions Prefixes Neighbourhood
δ3 States Set-difference
δ4 States Prefixes Neighbourhood
δ5 Causal Chains Set-difference
δ6 Causal Chains Prefixes Neighbourhood

Table 4: A spectrum of distance functions based on different
bases and way of computations.

whereδ
′

refers to some secondary similarity function. Let
δ
′

be δ1 in the remainder. We give the distance function
based on prefixes and more can be proposed based on how
different substrings are created.

Prefixes-based Distance Computation PandQ contains
prefixes ofS1 andS2, respectively.

δ2(Si, Sj) = δ∗(Si, Sj) (3)

In Table 4, 6 distance functions are presented which use
3 different bases and 2 different ways of computation. More
distance functions can be derived by extending any of the
two dimensions.

g3p3A3

g3p3, g2A3’

g2p2, g1A2’

g2p2A2

g1p1A1

EffectPreconditionsAction

g3p3A3

g3p3, g2A3’

g2p2, g1A2’

g2p2A2

g1p1A1

EffectPreconditionsAction

p1,
p2,
p3

g1,
g2,
g3

A1 A2

<p1,p2,p3>

A3

<g1,p2,p3> <g1,g2,p3>

<g1,g2,g3>

Plan S6-2

p1,
p2,
p3

g1,
g2,
g3

A1 A2

<p1,p2,p3>

A3

<g1,p2,p3> <g1,g2,p3>

<g1,g2,g3>

Plan S6-2

p1,
p2,
p3

g1,
g2,
g3

A1

A2

A3<p1,p2,p3>

<g1,g2,g3>

Plan S6-1

p1,
p2,
p3

g1,
g2,
g3

A1

A2

A3<p1,p2,p3>

<g1,g2,g3>

Plan S6-1

I-p1-A1-g1g1S6-1,
S6-2

I-p2-A2-g2g2

I-p3-A3-g3g3

I-p1-A1-g1,p2-A2’-g2-
p3,g2-A3’-g3

g3

I-p1-A1-g1,p2-A2’-g2g2

I-p1-A1-g1g1S6-3

Causal ChainsGoalPlan

I-p1-A1-g1g1S6-1,
S6-2

I-p2-A2-g2g2

I-p3-A3-g3g3

I-p1-A1-g1,p2-A2’-g2-
p3,g2-A3’-g3

g3

I-p1-A1-g1,p2-A2’-g2g2

I-p1-A1-g1g1S6-3

Causal ChainsGoalPlan

p1,
p2,
p3

g1,
g2,
g3

A1 A2’

<p1,p2,p3>

A3’

<g1,p2,p3>
<g1,g2,p3>

<g1,g2,g3>

Plan S6-3

Initial
State Goal

State

Figure 2: Three different plans for an example problem. The
significant fluents of the states after every action is shown in
≺ ... 〉. The domain description and causal chains in the 3
plans are also given.

Example: Comparing Plans by Different Bases
In Figure 2, three plans are shown for a planning problem
where the initial state is〈p1, p2, p3〉 and the goal state is
〈g1, g2, g3〉. Plans S6-1 and S6-2 have the same actions but
different structures. S6-1 has parallel actions while S6-2has
them in sequence. The plan S6-3 hasA1 like the other plans
but all other actions are different (A

′

2
andA

′

3
). However, it

also achieves the same goals.
An action based plan comparison method which uses

prefix-neighbourhood based distance computation would
find S6-1, S6-2 and S6-3 to be all different. This is because

20 ICAPS 2006 Workshop on Plan Analysis and Management

all the three plans have different sets of action prefixes. If
instead, the action information is used with set differencing,
S6-1 and S6-2 would be found identical.

A state based comparison method which uses any of the
given computation choice would find S6-2 and S6-3 to be
identical, and both of them to be different from S6-1. This is
because the states after every transition in S6-2 and S6-3 are
identical. S6-1, on the other hand, has (trivially) the same
first and last states but no intermediate states.

A causal link based comparison method which uses set
differencing would find S6-1 and S6-2 to be the same while
S6-3 as different. The causal chains for all the goals are
shown in the figure.

Solution Methods
We start by noting that one straightforward approach to gen-
eratek multiple inter-related plans is to make existing plan-
ners run further after finding the first solution. As new so-
lutions are generated, their distance from the already se-
lected plans can be assessed and used to decide whether they
should be added to the selected set.

A more efficient alternative would be to bias the planners’
search process so it progresses towards plans that are likely
to meet both the solution quality and inter-releatedness con-
straints. There are broadly two ways of achieving this: One
idea is to bias the search for the latter plans so as to sat-
isfy the inter-relatedness constraints. In the case of heur-
sitic search planners such as FF, this can be accomplished by
modifying the heuristic to reflect the inter-relatedness con-
straints. For example, if we are interested in finding maxi-
mally dissimilar plans, we can penalize plans similar to the
ones already selected. The technical challenge in imple-
menting this approach would be making the heuristics sen-
sitive to inter-relatedness constraints.

The heuristic search approach outlined above is “greedy”
in the sense that the seed plans that we have already commit-
ted to could force us into a sub-optimal overall set of plans.
The second idea is thus to search simultaneously for thek
solutions. One avenue for doing this is to model planning
as constraint satisfaction (c.f. (Do & Kambhampati 2001)),
and adapt the technique proposed in (Hebrardet al. 2005)
for simultaneously searching fork inter-related CSP solu-
tions.

As of this writing, we have experimented with one spe-
cific implementation of each of the above ideas. We will
describe the techniques implemented and provide prelimi-
nary results. We are currently in the process of completing a
more careful investigation of the comparative advantages of
these approaches.

Compiling Planning as CSP and Solving for Exact
Diverse Plans
The GP-CSP planner(Do & Kambhampati 2001) is a Graph-
plan based planner that converts Graphplan’s planning graph
into a CSP encoding, and solves the CSP encoding using
standard CSP solvers. Here, the variables correspond to the
predicates that have to be achieved at a level and its pos-
sible values are the actions that can support the predicates.

Constraints encode the relationship (e.g., mutual exclusions)
among predicates and the relationship among the supporters
of the predicates.

Similar to the way Hebrard et. al 2005 solved their
dDISTANTkSET/dCLOSEkSET problem by reformulating
it as a new CSP, we solve the same problem with different
distance measures by making k copies of each planning en-
coding. Each encoding is created using GP-CSP planner and
the k copies are connected to each other using global con-
straints. Due to the way the CSP library is used in conjunc-
tion with the planning graph structure to solve the planning
encoding, there are some complications. The details of our
approach are:

• As opposed to creating k(k-1)/2 special variables to repre-
sent the distances between each pair of copies, we create
k(k-1)/2 global constraints connecting them. If each copy
has n variable, then this constraint involves 2n variables
from each of k(k-1)/2 possible pairs of k copies2. Each
global constraint between the ith and jth copies ensures
that two plans represented by the solutions of those two
copies will be at least/mostd diverse/similar to each other.

• Because the CSP library used in GP-CSP uses implicit
constraint representation, we implement special con-
straint checking routine to check those k(k-1)/2 con-
straints. Those routines are called upon by the normal for-
ward checking and arc-consistency checking procedure
inside the default solver. In the future, we plan on imple-
menting special consistency checking techniques to deal
more efficiently with those global constraints.

Due to the special planning encoding in GP-CSP and the
distance measure defined earlier in this paper, there are sub-
stantial differences between how each global constraint is
satisfied between traditional CSP encoding as in (Hebrard
et al. 2005) and our encoding. In our encoding, facts rep-
resent variables and actions represent values. A given ac-
tion a can represent different values in domains of differ-
ent variables. For example, if there are two variablesx1

andx2 and their current assignments in the first copy are
{x1 → v1, x2 → v2} and in the second copy, they are:
{x1 → v2, x2 → v1}, then in traditional CSP, the distance
between two sets of assignments would be 2. However, the
valuev1 of x1 andv1 of x2 may represent the same action
instance, alsov2 of x1 andv2 of x2. Therefore, the dis-
tance between those two set of assignments in our planning
encoding can be 2, 1 or even 0.

Thus, when each global constraint is called upon to check
if the distance between two copies is within/over a prede-
fined value d, we first have to map each set of assignments
to an actual set of actions. Then, we compare the action sets
(not the variable assignments) to decide if the two copies
satisfy the global constraint defined by the distance measure.
This process is done by mapping each variable→ value into
action using a call to the planning graph, which is outside
but works closely with the general purpose CSP solver in
GP-CSP.

2An alternative approach would be to create only one global
constraint involving k*n variables from all k copies.

ICAPS 2006 Workshop on Plan Analysis and Management 21

Problem k d Time (in sec) Dist.(Min, Max, Avg)
prob002-rocket-a 2 0.1 2.45 (0.154, 0.154, 0.154)

0.2 6.72 (0.862, 0.862, 0.862)
0.8 6.79 (0.862, 0.862, 0.862)

prob002-rocket-a 3 0.05 11.1683 (0.154, 0.862, 0.626)
0.1 10.88 (0.154, 0.862, 0.626)

prob004-log-a 3 0.05 7.86 (0.054, 0.203, 0.151)
0.1 24.11 (0.197, 0.698, 0.525)
0.15 21.04 (0.197, 0.698, 0.525)
0.2 19.50 (0.209, 0.701, 0.536)

Table 5:Initial results of GP-CSP in dDISTANTkSET

Table 5 presents the results of GP-CSP on some logistics
problems as run on a Pentium-3 667Mhz with 256MB RAM.
We see that this approach can give diverse plans effectively.
The last column shows the diversity in the returned plans
usingδ1 and that it is greater than minimum diversity needed
for the problem (d). We also found that with higher k and d,
the problems take longer to solve, as expected.

Heuristic Approach for Approximate Diverse Plans
In heuristic state space planning, a search framework like
A* is used to find plans driven by heuristics that measure
the progress to goals. Specifically, the cost of a search node
is measured by:

f(si) = g(si) + w ∗ h(si) (4)

whereg is the cost to achieve the current node starting
from the initial search state,h is the heuristic estimate of the
effort to achieve the goals andw is a weighing function. In
measuringh, heuristics derived from the relaxed planning
graph (RPG) have been found to be very effective(Nguyen,
Kambhampati, & Nigenda 2002).

The RPG heuristic estimate can be biased towards plans
that use as many of the actions already supporting other
goals as possible. To do this, the planner will now take as
input not just the goals to be supported, but also the set of
actions already committed to in previous plans. RPG heuris-
tic can also be biased to find plans that do not share many
actions with another plan. Thus, the relaxed plan extraction
process will be biased to avoid actions that are in the input
plan. This approach works as long as we have similarity
measures that are dependent on action presence and not on
the relative position of the actions.

We implement this idea by usingh′(si) as defined below
instead ofh(si).

h′(si) = h(si) + wδ ∗ δj(si, S0) (5)

Hence, we increase the heuristic values with a weighted
factor accounting for the distance between the partial plan
and the reference input plan.δj can be any distance measure
including the ones defined earlier. Ifwδ is positive, search
nodes close to the reference plan (S0) get priority over other
nodes. Ifwδ is negative, search nodes away from neigh-
bourhood of the reference plan get priority. Given a distance
function, one can start from a reference plan and control the
relationship of the subsequent plan by using appropriatewδ.
The new plan can be added to the reference plans set and
more plans generated appropriately related to it.

Problem wδ wk Time (in sec) Dist. (Min, Max, Avg)
bw-prob-4-0 -100 0 2.08 (0.334, 0.334, 0.334)

10 100 2.04 (0.0, 0.0, 0.0)
-10 -100 2.22 (0.156, 0.318, 0.249)

lilprob-4-0 -10 -10 1.77 (0.143, 0.334, 0.242)
100 -100 1.68 (0.0, 0.0, 0.0)
-100 -100 1.73 (0.0, 0.5, 0.334)

Table 6:Initial results of Planner4J RPG for k=3

The above approach would work regardless of whether
the h was obtained from a relaxed plan of RPG (e.g., Ad-
jSum2 heuristic) or not (e.g., max heuristic). We can also
affect the relaxed plan extraction process for obtainingh.
Consider the AdjSum2 heuristic where the value of a state
is estimated by the length of the relaxed plan to reach the
goal and an interaction factor derived from the maximum
interaction among the predicates in the state.

hAdjSum2(si) = len(RP (si)) + maxp,q∈si
∆(p, q) (6)

len(RP (si)) = len(RelP lan(si)+wk∗δk(RelP lan(si), S0))
(7)

Specifically, at each step of the extraction of the relaxed
plan, we prefer actions that are not present in other plans.
We give a cost metric to each action in the PG and the cost
is dependent on how many of the other plans these actions
already support. Then we can use the costs to extract the
relaxed plan.

We have implemented both the methods in the Planner4J
family of Java planners and they together seem to give the
best results. Table 6 presents the results on a sample of
blocksworld and logistics problems as run on a Pentium-M
1.5GHz with 1.25GB RAM under Windows XP with w=5.
We see in lilprob-4-0 that onlywk could not lead to diversity
in the solution.

Related Work
Although the need for finding similar or different plans has
been noticed in the past, there has been little concrete work
on formalizing and solving the problem. Researchers in-
cluding Tate (Tate, Dalton, & Levine 1998) and Myers (My-
ers 2005) have articulated the need for finding dissimilar
plans. Myers, in particular, allows evaluating the plan simi-
larity, but does not seem to provide a way of generating dis-
similar plans efficiently. As we mentioned earlier, intrusion
detection work by Boddy et. al. (Boddyet al. 2005) focuses
on finding multiple qualitatively different plans for a prob-
lem. However, they coerce a traditional planner (Metric-
FF) to generate multiple plans, and filter them out in a post-
processing phase. Boddy et. al. acknowledge the need for
a technique that takes inter-relatedness constraints intoac-
count during search more actively. The problem of finding
similar plans has been considered in the context of replan-
ning. A recent effort in this direction is (Foxet al. 2006),
which shows how a local search planner called LPG can be
modified to produce a plan that is similar to a reference plan.

22 ICAPS 2006 Workshop on Plan Analysis and Management

Finally, Linden et. al. (Linden, Hanks, & Lesh 1997) mo-
tivate the need for finding related plans comprising a pareto
set in the context of a travel planning scenario.

Outside of planning, we have already mentioned the con-
nections to the work in CSP community in finding sim-
ilar/dissimilar solutions. The challenges in finding inter-
related plans also bears some tangential similarities to the
work in information retrieval on finding similar or dissimi-
lar documents (c.f. (Callan & Minka 2002)).

Conclusion and Future Work
In this paper, we investigated the problem of finding inter-
related plans. We formalized the problem of finding diverse/
similar plans by extending previous formulations for CSPs.
We looked at the different bases for comparing plans, the
different methods of computing comparison, and proposed
useful plan distance functions. We conducted preliminary
experiments with a CSP based exact approach and a heuris-
tic based approximate approach to generate diverse plans.
In future, we intend to implement more approaches and run
extensive experiments.

References
Boddy, M.; Gohde, J.; Haigh, T.; and Harp, S. 2005.
Course of action generation for cyber security using classi-
cal planning. InProc. ICAPS. AAAI.
Callan, J., and Minka, T. 2002. Novelty and redundancy
detection in adaptive filtering. InProc. SIGIR. ACM Press.
Do, M. B., and Kambhampati, S. 2001. Planning as con-
straint satisfaction: Solving the planning graph by compil-
ing it into CSP.AI 132(2):151–182.
Fox, M.; Gerevini, A.; Serina, I.; and Long, D. 2006. Plan
stability: Replanning versus plan repair. InProc. ICAPS.
Hebrard, E.; Hnich, B.; O’Sullivan, B.; and Walsh, T.
2005. Finding diverse and similar solutions in constraint
programming. InProc. AAAI.
Linden, G.; Hanks, S.; and Lesh, N. 1997. Interactive as-
sessment of user preference models: The automated travel
assistant. InProc. UM.
Myers, K. 2005. Metatheoretic plan summarization and
comparison. InProc. ICAPS WK. Mixed-initiative Plan-
ning and Scheduling.
Nguyen, X.; Kambhampati, S.; and Nigenda, R. 2002.
Planning graph as the basis for deriving heuristics for plan
synthesis by state space and csp search. InAI.
Tate, A.; Dalton, J.; and Levine, J. 1998. Generation of
multiple qualitatively different plan options. InProc. AIPS-
98, Pittsburgh. AIAI.

ICAPS 2006 Workshop on Plan Analysis and Management 23

Planning process from a user perspective ∗

Oscar J. Garcia Perez, Francisco C. Palao Reines, Juan Fernandez Olivares, Luis Castillo Vidal, Tomas Garzon Hervas
oscar,palao,faro,l.castillo,tommusc @decsai.ugr.es

Dpt. Computer Science and Artificial Intelligence, Univ. of Granada (Spain)

Planning researchers are used to think about how to solve
a combinatorial problem like planning efficiently. During
the history of this field, algorithms, heuristics and techniques
with strong formal foundations have been developed. With
this advances researchers have tried to adapt their algorithms
to solve real life problems, and have realized that the
planning algorithm is only a small part of a much more
complex system. When a planning system is introduced in
the workflow of a company or an organization, this system
has to communicate and collaborate with human users. So
fields related to planning like knowledge acquisition, mixed
initiative, machine-user interaction, plan analysis, and plan
management are emerging with strong interest.

The goal of this paper is to show the experiences acquired
during the development of various planning systems,
specially SIADEX (Fdez-Olivares et al. 2006) which is a
platform to assist technical staff in the forest fire fighting in
the region of Andalusia (Spain), in the aim that this could
help other researchers.

What users need usually is not what the planning
researchers think they will need. In this sense we could
distinguish two type of users, in one hand final users that
will be the persons on the console using the system, and are
interested on make their every day work easier, and on the
other hand managers that do not unnecessarily would use
our system, but are interested in improving the workflow of
his enterprise or organization.

The exposition will start showing how the users see a
planning system and what are the drawbacks from their
point of view. Taking as a reference the SIADEX platform
the importance of knowledge acquisition, correct plan
management, and user interaction will be explained. Finally
some final remarks will be presented.

Advantages and disadvantages of using a
planning system from a user perspective

In this section we will contrast some remarkable aspects that
the users balance at the moment of accepting or rejecting
a planning system and are crucial from the success of the

∗This work has been partially financed with a research contract
with the Andalusian Regional Ministry of Environment (Spain)
Copyright c© 2006, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

system implantation on the workflow of a company or
organization.

The advantages the users see in a planning system:

• Automation and detail: The resulting plan is obtained
quickly and the “tactics” of the plan are covered in detail.
Users save time in their decisions.

• Correctness: The obtained plan is “correct” taking into
account the knowledge encoded in the domain.

• Optimization: The plans could be optimized in time,
resources, efficiency, security etc. At last this translates
into a reduction of costs for the company or organization.

• Ubiquity: The plan could be accessed from any place and
from any person who had permissions.

• Instant update: A change in the plan under execution, a
delay of a fail, is immediately known by all the members
of the organization.

• Experience capitalization: If the plans are stored
correctly, the database of past plans could be analysed
in order to learn from the experience or improve the
workflow.

• Security: The monitoring process assures that all tasks are
carried out and in any case stores the failures.

Disadvantages:

• Understanding: Experts users have difficulty in
understanding synthesised plans of hundred of actions.

• Knowledge extraction: Requires willpower, dedication
and time from the experts. Time and knowledge for the
experts is very valuable and they are not always in good
mood to share it.

• Changes in the workflow: Final users are reluctant to
change their way of working. Introduction of an alien
element in the workflow always requires a learning effort
from the users and changes in their working routines.
From the users perspective this is an inconvenient.

• Flexibility of the planner. Changes in the environment
must be reflected in the plan under execution. The
planner has to allow modifications from the expert user.
Automated planners do not always take this into account.

24 ICAPS 2006 Workshop on Plan Analysis and Management

In next sections some techniques used in the SIADEX
platform in the aim to reduce the weight of these
disadvantages will be presented. Also the areas in where
special research effort is necessarily will be remarked.

Plan understanding
Automatically created plans are hard to understand and
analyse. We need techniques to extract valuable information
from the plan, specially related with the acquisition of the
global structure or “strategy” underlying the plan. Tools
for querying and summarising the plan are necessary. Some
steps have been done (Myers 2006) but there is still an open
field of research in this area. In SIADEX the problem is
being solved in two ways. Firstly the way the users view
the plan is very important. Different users are interested
in different aspects of the plan, in our forest fire fighting
domain for example “operations chief” is interested in the
global strategy while “logistic chief” is more interested in
shifts of the brigades and supplies. Different views of
the same plan, or parts of the same plan, are presented
to different human experts. Note that this views depend
strongly on the domain, and the users. Secondly a generic
language to query the plans is being defined under this
project. Probably users will not use this language directly
but could improve the process of making more advanced
visualization interfaces that could show interesting statistic
and strategical information. Remark that in SIADEX we
have developed a translator from the XML representation of
the plan to Microsoft Project XML format. This possibility
to analyse, query and filter the plan in Ms Project is showing
good results.

Knowledge extraction
The acquisition of information from the experts is crucial for
the success of a planning system. From our point of view
this is the most difficult and critical part in the development
of a planning centered system, mainly because the lack
of research in this area. There are general methodologies
that help in the process of extracting the information, but
none specific for planning. Also there is not a unique
standard way to model and store planning or workflow
related information. Finally there are not automatic tools
that could extract the information from the users without
the intervention of a knowledge engineer. Without these
tools and methodologies three main problems could be
identified. Firstly, the costs of extracting the knowledge
and encoding the domain are high and must be done by
a planning expert. Secondly, changes in the workflow of
the organization imply an adaptation that only could be
afforded by a knowledge engineer. And thirdly because
the complexity of the models, the validation of the plans
is difficult because can not be done directly by the domain
experts. This problem is also related with the correct way
to show the information. In SIADEX we have used UML,
class, flow and process diagrams to represent workflows and
the relations between the different actors. Part of the model
is stored in our ontology server BACAREX but operators
have been encoded in an PDDL extension.

Changes in the workflow
SIADEX is a platform of independent web services
communicated through HTTP. The services could be
connected or disconnected when necessary. This modular
design has the advantage that different services could be
inserted one by one in the workflow of the organization. In
this the adaptation is easier, going from a semi-manual way
of work to a fully automated system.

Flexibility of the planner
Balance between a totally user guided plan generation and
a totally automated planning process must be carefully
measured. In forest fire fighting domain, experts do not
have time to sit down in front of the computer. A waterfall
model where different goal specification, plan generation,
plan reject/accept has been adopted. There are different
subsets of the plan that could be planned separately, every
subset depends on the decisions taken during the previous
subset of the plan. The planner and the domain are carefully
designed to start from a current state and a set of decided
actions and generate the remaining plan. The same model
could be used in plan repairing. Stop the current plan under
execution, modify the state, and generate the remaining plan.
As we use an HTN planner we used the expansion tree as an
heuristic to guide the regeneration process searching for a
new repaired plan similar to the older one in order to not
to mislead the final user. There are a lack of descriptions
of repairing algorithms in the literature. Researchers tend
to concentrate in the planning part forgetting the repairing
when in changing environments you could not make a fresh
new plan, and this is probably more important.

Conclusions
All the disadvantages we have shown lead to projects that
are not able to cope with this contingencies and finally are
not implanted in real workflows, or in any case, that are
expensive, and could only be affordable by medium/big
companies or organizations. Economic costs come mainly
because the lack of methodologies and tools that assist the
knowledge engineer in the domain modeling. Also come
from the necessity to develop and adapt customized tools
for the analysis and management of the obtained plans, and
even for the development of an specific planner designed
to solve certain types of problems. Fortunately the interest
of researchers in fields like knowledge acquisition, domain
modeling or mixed initiative is growing and important
advances in this areas are expected in next years.

References
Fdez-Olivares, J.; Castillo, L.; Garcia-Perez, O.; and Palao-
Reines, F. 2006. Bringing users and planning technology
together. experiences in siadex. In Proceedings of the Int.
Conf. on Automated Planning and Scheduling, June, 2006
AAAI press. (ICAPS’06) . AAAI Press.
Myers, K. 2006. Metatheoretic plan summarization and
comparison. In In Proceedings of the 16th Int. Conf. on
Automated Planning and Scheduling (ICAPS-06). AAAI
Press.

ICAPS 2006 Workshop on Plan Analysis and Management 25

Statement of Research Interest

Blazej Bulka
Department of Computer Science

University of Maryland, Baltimore County
bulka1@umbc.edu

Introduction

My current research interests can be divided into three ma-
jor areas in automated planning. The first one relates to the
idea of analyzing the search space by the search algorithm
(planner) so that important points of the space can be iden-
tified. Another focuses on choosing appropriate represen-
tation of knowledge for the search. The third one attempts
to combine different search methods or heuristics depending
on local features of the search space and gained experience.

Analysis of the search space

Given a domain description, it is reasonable for the planner
to analyze the domain in order to find useful hints about the
structure of the search space. Such analysis can be either
performed in a preliminary way or by gathering experience
from multiple planning attempts. (The latter method may be
used to detect properties of the search space that are very
difficult to prove, or properties that are often but not always
true.) Hints about the structure of the search space result-
ing from these two methods could be treated as a heuristic
that allows a meta-planner to select an appropriate search
method, or to change to a different representation (conscious
shaping of the search space by the planner).

The learning approach seems to be appealing, especially
given that previous research has mostly focused on analyz-
ing the search space to identify properties that always hold.
The requirement of the existence of such properties in every
plan may be too strong, though. There may still be regu-
larities in the search space, such as hub nodes, that areusu-
ally included in the plan. The belief that many domains (in-
cluding benchmark domains for planning) have regularities
is based on the successful use of heuristics to guide planning
(Haslum & Geffner 2000). Additionally, Hoffmann (2003)
analyzed heuristics that ignore delete lists of operations, and
described phenomena that occur in the local search topology.
I believe that a heuristic planner can develop better heuris-
tics using the information mentioned earlier. For example, if
a planner determines that plans in the domain often include
a specific subgoal, it may be wise to start using a heuristic
that adds this subgoal to the goal list right at the beginning
of the planning.

Knowledge representation and shaping the
search space

One way to change the shape of the search space is to change
the representation of facts. My idea is partially inspired by
work by Haslum and Jonsson (2000), who focused on the
idea of removing redundant operatorsgiven an initial state.
I believe that planning could be improved by removing par-
ticular effects of the operators, while still preserving correct-
ness comparing to the plan with non-modified operators (re-
dundant effects). It may also be possible to remove operators
that are rarely used in plans (as learned by the planner). As a
result, removing some operators would allow easier prepro-
cessing of the domain regardless of the initial state (e.g., if it
would reduce the class of a search space to a simpler one) at
the expense of producing less optimal plans in terms of the
plan’s length.

Another way to shape the search space is to search at an
appropriate abstraction level. There exist techniques that ex-
plicitly take the abstraction level into account during the
search. The most notable example of such an approach
is HTN planning using a predefined abstraction structure.
There is also work that mentions learning of an appropriate
hierarchical representation (Knoblock 1994).

Choosing an appropriate search method

Given information about the search space, either from analy-
sis of the space or from learning during the previous searches
in the space, a planner can make an informed decision to se-
lect an appropriate search method. This issue has already
been partially analyzed by Veloso and Stone (1995), who
present a planner that alternates between forward-chaining
and backward-chaining. A similar idea could be to combine
HTN planning (a top-down approach) with a more reactive
approach that finds regularities in the low-level data, and de-
cides to merge them into a higher-level structure (bottom-up
approach). Deciding which of the two approaches to de-
velop may be a challenge because none of them is perfect
by itself. On the other hand, it would be beneficial to use a
hybrid approach that would learn which of the search meth-
ods are most promising in the current state.

26 ICAPS 2006 Workshop on Plan Analysis and Management

Status of the work
This paper presents research interests and thoughts arising
from preliminary work done under supervision of my advi-
sor, Prof. Marie desJardins. Currently, the ideas are far from
being complete, but I plan to have the ideas further extended
so that they can be used in a Ph.D. thesis proposal (planned
in June 2006).

References
Haslum, P., and Geffner, H. 2000. Admissible Heuristics
for Optimal Planning. InProceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling (AIPS-2000), 140–149.
Haslum, P., and Jonsson, P. 2000. Planning with Re-
duced Operator Sets. InProceedings of the Fifth Interna-
tional Conference on Artificial Intelligence Planning and
Scheduling (AIPS-2000), 150–158.
Hoffmann, J. 2003. Where Ignoring Delete Lists Works:
Local Search Topology in Planning Benchmarks. Tech-
nical Report 185, Institute for Computer Science, Albert-
Ludwigs-University, Freiburg, Germany.
Knoblock, C. A. 1994. Automatically Generating Abstrac-
tions for Planning.Artificial Intelligence68(2):243–302.
Veloso, M., and Stone, P. 1995. FLECS: Planning with a
Flexible Commitment Strategy.Journal of Artificial Intel-
ligence Research (JAIR)3:25–52.

ICAPS 2006 Workshop on Plan Analysis and Management 27

	Página 17
	Página 18
	Página 19
	Página 20

