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Preface

Planning has primarily considered plans in the context of how they could be generated
from the domain theory and problem specification. While synthesizing plans is useful
and important, it puts heavy demand on how the information is modeled and available in
an application. Beyond synthesis, they may also be acquired from domain meta-models
or experts, or learnt.

As planning is employed in new applications like grid, web services, e-services,
workflows and business processes to facilitate service composition to manage tasks
and resources, there is a growing realization that acquiring plans is just one part of
the complex process of how a plan is used in any real world application. Users want to
generate plans only when needed and they want to know how they are using their plans.
Once available, they may be organized in large collections, where they can be grouped
along different purposes and are made amenable to the search, inspection, evaluation,
and modification by human experts or automated reasoning systems. Eventually, plans
will outlast their utility and be replaced by newer, better ones. This has lead some
researchers to propose a life-cycle view of plans to bring together the various techniques
needed to use plans in an application.

In this workshop, we will look at issues related to how plans are used after they
are obtained and how they play a role in subsequent planning. For our purpose, we
will consider plans and workflows as synonymous to stress the fact that beyond the
PDDL plan representation, planning should also consider the generalized workflows
representation which is not always automatically generated. The workshop will look
at issues of acquiring plans (e.g., eliciting plans, learning them), synthesizing plans
when the domain is incomplete, modeling updates to plans (e.g., through instructions),
analysis techniques to manage plans, metadata generation, storage of plans and how
to retire them. The workshop will bring together researchers who are working on these
topics to discuss these issues as well as real systems that are under development.
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Abstract 
The aim of this paper is to show how the rationale behind a 
plan can be recorded in the plan itself. The <I-N-C-A> 
model which underlies the I-X framework will be described 
in detail, focussing on annotations. It is there that a planner 
can record the justifications for including components into 
the plan. Recording rationale information of this type can be 
used for a number of purposes in the life cycle of a plan, 
including plan indexing and retrieval, failure recovery, plan 
explanation and establishing trust as explained in this paper. 

Introduction  
Plans are the artefact that is the result of the planning 
process. Traditionally, a plan is described as a set of 
activities together with some organizational structure, e.g. 
a sequence in the simplest case (Ghallab et al., 2004). This 
is a simplistic model of a plan that can only be applied in 
toy domains where plans cannot go wrong, need not be 
stored for later re-use, need not be justified, etc. This view 
of plans ignores a lot of the knowledge that is generated 
and used during the planning process. In this paper we will 
describe the <I-N-C-A> model of a plan (Tate, 2003) 
which can store annotations to record knowledge about the 
plan that is generated during the planning process. 
Specifically, we want to record the rationale behind some 
(but not all) planning decisions in the plan itself for later 
use (e.g. during plan execution, re-planning or explanation 
generation). This knowledge can be used to facilitate plan 
analysis and help maintain the plan as a meaningful entity. 

Background  
Rationale has been recognized as an important type of 
information in the planning literature. In fact it can be 
traced back to early work on Hacker’s plan teleology 
(Sussman, 1973), Nonlin’s  “Goal Structure” (Tate, 1977; 
Tate, 1983) and work on Plan Rationale in SIPE (Wilkins, 
1988). Plan rationale capture and use is a key research 
objective in the I-X framework (Tate, 2000; Potter et al., 
2003; Wickler et al., 2006) and its predecessor O-Plan 
(Currie and Tate, 1991; Tate et al., 2000). 
One of the fundamental ideas here is that it is necessary to 
have a clear and sharable ontology of plans before one can 
reason about plans (Tate, 1996; 1998). The <I-N-C-A> 
model of a plan represents such an ontology and will be 
described in detail in this paper, focusing on the 

component that is used to record the rationale behind the 
plan.  
Rationale is an essential component of knowledge-rich 
plans (Polyak and Tate, 1998). Having such models not 
only facilitates the planning process itself, but also makes 
it possible to analyse and re-use such plans. Plan rationale 
can be viewed in terms of causality, dependencies and 
decisions. Each of these dimensions addresses practical 
issues in the planning process and adds value to the 
resultant plan.  

The <I-N-C-A> Model in I-X 
<I-N-C-A> is a generic model for synthesis tasks (Tate, 
2003). While its level of abstraction makes it possible to 
apply the generic model to a wide variety of tasks, it 
assumes a more specific meaning in the I-X agent 
framework when the object to be synthesized is a plan, a 
course of action the I-X agent intends to follow. 

Terminology 
In this section we will introduce some of the terminology 
used in the description of <I-N-C-A> that follows. This is 
necessary as we use the terms explained here with specific 
meanings. 
World-State Propositions. We assume here that a state of 
the world can be described by a set of world-state 
propositions. By a world-state proposition we mean any 
logical expression that represents a proposition about the 
world that can be true or false, and not necessarily a 
proposition in propositional logic. <I-N-C-A> does not 
commit to any specific formalism for world-state 
propositions. Traditionally world-state propositions are 
described as first-order literals or state-variable expressions 
in AI planning, but more complex formalisms may be 
required to reason about, for example, the knowledge of 
agents in a world state.  
Primitive and Complex Activities. Primitive activities are 
considered to be the atomic elements that make up the 
plan. They are primitive in the sense that, from the 
perspective of the planner, they can be executed directly.  
A primitive activity must be an instantiation of some 
activity schema defined in the planning domain. An 
activity schema contains variables representing the 
parameters necessary to describe fully the activity: For 
primitive activities to be executable these parameters must 
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have specific values. The name of each activity schema 
must be unique within a planning domain, whereas there 
can be multiple primitive activities with the same activity 
name in a plan. In classical planning primitive activities are 
often called actions (Ghallab et al., 2004).  
Complex activities are not primitive in that, from the 
perspective of the planner, they cannot be executed directly 
but instead need to be refined or broken down into 
primitive activities that can be executed. In Hierarchical 
Task Network (HTN) planning complex activities are often 
called tasks (Ghallab et al., 2004) or processes (Tate, 
1998). Together, primitive and complex activities 
constitute the set of all activities. Note that this 
terminology applies at the object-level, i.e., referring to 
entities in the domain in question, as well as at the meta-
level relating to the planning process itself, as described 
below.  
Note too that the choice of which activities are primitive 
and which complex depends on the context and knowledge 
of the agent in question: usually an activity will be 
modelled as primitive if it can be carried out in one step 
from this perspective, and as complex otherwise.  
Plans. An instantiation of the <I-N-C-A> model is an 
<I-N-C-A> object. In the I-X framework an <I-N-C-A> 
object is synonymous with a plan. A plan can be partial in 
the sense that it is not (yet) an actionable solution to a 
planning problem. It is the job of the planner to refine a 
partial plan into a solution plan. 

The <I-N-C-A> Representation in I-X 
Planning can be described as synthesizing an <I-N-C-A> 
object, i.e., a plan, in which nodes are activities. We can 
formally define an <I-N-C-A> object in I-X as a 4-tuple 
(I,N,C,A) consisting of: 
• a set of issues I,  
• a set of activity nodes N,  
• a set of constraints C, and  
• a set of annotations A. 
Issues. I is the set of unresolved issues in the current plan, 
i.e., in this <I-N-C-A> object. An issue is represented by a 
syntactic expression of the form l:M(O1,…,On), where:  
• l is a unique label for this issue,  
• M is a symbol denoting a primitive plan modification 

activity, and  
• O1,…,On are plan-space objects, i.e. they are issues, 

nodes, constraints or annotations. The number of such 
objects, n, and the interpretation of each object in the 
context of the issue, will depend on the particular 
primitive plan modification activity represented by this 
issue.  

Issues can be seen as primitive meta-level activities, i.e. 
things that need to be done to the plan before it becomes a 
solution to a given planning problem. This approach is 
inherited from O-Plan (Currie and Tate, 1991; Tate et al., 
2000) and is also seen in planners such as OPIS (Smith, 

1994). The most commonly found primitive meta-level 
activities carried out by planners, but usually only implicit 
in their underlying implementation or internal plan 
representation, are:  
• Achieving a goal (in classical planners): Let p be a 

world-state proposition and τ be a time point, then the 
primitive meta-level activity of achieving p at τ can be 
represented as the issue:  

l1:achieve(p,τ)  
• Accomplishing a complex activity (in HTN planners): 

Let a∈N be a complex activity. Then the primitive meta-
level activity of accomplishing a can be represented as 
the issue:  

l2:refine(a)  
Here, achieve and refine are examples of symbols 
denoting primitive plan modification activities. Note that 
these symbols are not domain specific but specific to the 
planning process by which these types of issue are handled.  
Issues can be either ‘negative’, in which case they can be 
thought of as flaws in the plan, or they can be ‘positive’, 
e.g., opportunities.  
An alternative view of issues now being explored in recent 
I-X research is to see them as always expressed as 
questions that need to be answered. For example, the 
primitive meta-level activity of refining a can be phrased 
as the question “How can a be accomplished?” Adopting 
this view, issues can then be classified and manipulated 
according to the question types (Conklin, 2005) described 
in recent advances based on the large body of work on 
issue-based design (Conklin and Begeman, 1988). 
An <I-N-C-A> object is considered to be a solution to a 
planning problem only if the set of issues is empty.  
Nodes. N is the set of activities (nodes) to be performed in 
the current plan, i.e., in this <I-N-C-A> object. An activity 
is a syntactic expression of the form l:α(o1,…,on), where:  
• l is a unique label for this activity,  
• α is a symbol denoting an activity name, and  
• o1,…,on are object-level terms, i.e. they are either 

constant symbols describing objects in the domain, or 
they are as yet uninstantiated variables standing for such 
objects.  

Time points constitute a special class of domain objects 
that are found as parameters of an activity. Specifically, 
two time points, one representing the begin and the other 
the end of an activity, are often used as parameters. 
In the context of I-X, nodes represent the object-level 
activities in the plan, i.e., things that need to be performed 
by some agent to execute the plan. As mentioned above, 
activities can be of two types from the perspective of the 
planner:  
• Primitive activities: primitive activities can be carried 

out directly by an agent executing the plan. For example, 
in a search and rescue domain, the primitive activity of 
flying the aircraft ac1 from location loc1 to location 
loc2 may be represented as:  

l3:fly(ac1,loc1,loc2)  
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• Complex activities: complex activities cannot be 
accomplished directly by the agent executing the plan 
but need to be refined into primitive activities. For 
example, the complex activity of rescuing an isolated 
person ip may be represented as:  

l4:rescue(ip)  
In this example, fly is a primitive activity symbol and 
rescue is a complex activity symbol in some domain. 
Activity symbols have to be domain specific. It follows 
that there has to be an activity schema defined for the 
domain that has the name fly and describes when this 
activity schema is applicable and how it will change the 
world when applied, and there has to be a refinement 
defined in the domain that accomplishes a complex activity 
with the name rescue and describes how exactly it can 
be accomplished.  
Note that the set N of activities in the plan may contain 
both complex activities and the primitive activities that 
have been chosen to implement them.  
Constraints. C is the set of constraints that must be 
satisfied by the current plan (<I-N-C-A> object). A 
constraint is a syntactic expression of the form l:c(v1,…,vn), 
where:  
• l is a unique label for this constraint,  
• c is a symbol denoting a constraint relation, and  
• v1,…,vn are constraint variables, i.e., they can represent 

domain objects (including time points), variables in 
activities (which may have binding constraints attached).  

Constraints represent the relations that must hold between 
the different objects related in the constraints for the plan 
to be executable. In the context of planning, the most 
commonly used constraints are of the following types:  
• Ordering constraints: Let v1, v2 be variables in the plan 

representing time points. Then the constraint that v1 has 
to be before v2 can be represented as:  

l5:before(v1,v2)  

• World-state constraints: Let p be a world-state 
proposition and v a variable representing a time point in 
the plan. Then the fact that p is a condition that has to 
hold at the time point represented by v, or the fact that p 
is an effect of an activity that holds at time point v can be 
represented respectively as:  

l6:cond(p,v)  
l7:effect(p,v)  

• Variable binding constraints: Let v be a variable 
mentioned in some activity a∈N and s be a constant 
symbol in the planning domain. Then the fact that v must 
take the value s can be represented as:  

l8:value(v,s)  
These are just some of the constraint types that can be 
defined. The objects related to each other can be of 
different types. This is reflected by the domains of the 
constraint variables representing them. They can be world-
state propositions as in conditions and effects, or they can 
be variables used in activities representing time points or 

other domain objects in the plan as in ordering and variable 
binding constraints.  
Annotations. A is the set of annotations attached to the 
current plan. Amongst other things, annotations can be 
used to add human-centric information to the plan. They 
may be informal or they may adhere to some detailed 
syntax (which is not specified as part of <I-N-C-A>).  
Annotations can be used to record arbitrary information 
about the plan (and the annotations form a part of this plan 
– hence the plan becomes, in some sense, self-descriptive). 
Specifically, in this paper we want to discuss the 
annotation of plans with one particular type of rationale, 
namely the rationale information that can be recorded by 
the planner during the planning process. In this case, an 
annotation will be a syntactic expression of the form 
la:r(lp:O,lm:M,O1,…,On), where:  
• la: is a unique label for this annotation,  
• r is a rationale predicate relating a plan-space object to 

other plan-space objects,  
• lp:O is a labelled plan-space object that is part of the 

current plan, i.e., it is an issue, an activity, a constraint or 
an annotation,  

• lm:M is an issue that was formerly in the plan and has 
since been resolved, i.e., it is a primitive meta-level 
activity that has been performed by the planner, and  

• O1,…,On are plan-space objects that may or may not be 
labelled.  

An annotation of this type represents the fact that the plan-
space object O was introduced into the plan as part of 
performing the plan modification activity M, and possibly 
involving other plan-space objects O1,…,On. The rationale 
predicate r denotes the relationship between these objects 
and describes the justification for including O. Thus, the 
interpretation of such an annotation depends on the 
rationale predicate r used. The different labels are 
necessary to specify the exact object that is being referred 
to. This is necessary as there might be two activities in the 
plan which are identical except for the label. The following 
examples illustrate the use of rationale annotations of this 
form. 
• Let lm:achieve(p,τ) be an issue in the current plan 

and let α(o1,…,on) be an activity schema defined in the 
domain that has an effect that unifies with p under the 
substitution σ. Suppose the planner introduces a new 
activity lp:σ(α(o1,…,on)) into the plan to address the issue 
lm:achieve(p,τ). Then the following annotation can 
be added to the plan to record the rationale for adding 
lp:σ(α(o1,…,on)): 

naap(lp:σ(α(o1,…,on)),lm:achieve(p,τ),p)  
 In this case naap is a rationale predicate that expresses 

that a new activity, the first argument, was introduced 
into the plan to address the issue of achieving some 
proposition (the second and third arguments 
respectively). Thus, the argument types for this particular 
rationale predicate are an activity a∈N, an issue M∈I in 
which the plan modification activity symbol is 
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achieve, and a world-state proposition. Furthermore, 
the last argument, the proposition p, must be the same as 
the one to be achieved in the plan modification activity, 
and it must be unifiable with one of the effects of the 
activity a∈N.  

 In this case, a second rationale annotation could be 
introduced in a similar fashion to express the fact that 
lp:σ(α(o1,…,on) has to be performed before the time point 
τ.  

• Let lm:refine(a) be an issue in the current plan and 
let there be a refinement Δ defined in the domain that can 
be used to accomplish a under the substitution σ by 
refining it into, amongst other things, activities 
σ(α1(o1,…,on))…σ(αk(o1,…,on)). Note that the elements 
into which a is refined can together be seen as an 
<I-N-C-A> object, i.e. they can be issues, nodes, 
constraints and annotations. Suppose the planner uses Δ 
to refine a and this adds new activities 
lp1:σ(α1(o1,…,on))…lpk:σ(αk(o1,…,on)) to N to address the 
issue lm:refine(a). Then, the following annotation 
can be added to the plan to record the rationale for 
adding each lpi:σ(αi(o1,…,on)), 1≤i≤k:  

nadi(lpi:σ(αi(o1,…,on)),lm:refine(a),Δ)  
 (One such annotation would be added for each new 

activity αi.) In this case nadi is a rationale predicate that 
expresses that a new activity, the first argument, was 
introduced into the plan to address the issue of refining 
some proposition in accordance with some particular 
refinement in the domain (the second and third 
arguments respectively). Thus, the argument types for 
this rationale predicate must be an activity a∈N, an issue 
m∈I, where the plan modification activity symbol has to 
be refine, and a refinement. Furthermore, the last 
argument, the refinement Δ, must be defined as 
accomplishing a complex activity that can be unified 
with a. 

 Similarly, if appropriate, analogous rationale annotations 
could be introduced to express the fact that other 
<I-N-C-A> elements of the refinement – such as issues 
or constraints – were also introduced as part of this 
refinement.  

Rationale predicates of this type are usually specific to a 
type of issue. Hence, naap rationale will always relate to 
an achieve issue, and nadi rationale will always relate 
to a refine issue. However, there may be multiple 
rationale predicates that may be used with the same issue – 
that used will depend on how the planner did actually 
resolve the issue. For example, achieving a proposition at 
some time point can be done by introducing a new activity 
before the time point or by maintaining the truth of the 
proposition if it was true at another, previous time point. 
Thus, the relation between rationale predicates and issues 
is not one-to-one: issues need not always be resolved in the 
same manner. 
Note too that this type of rationale, recording justifications 
for the inclusion of objects into the plan, is only one type 
of rationale that one may want to record in a plan. For 
example, we may want to record why a specific way of 

refining a plan was chosen among the various available 
options. While we believe that this type of information 
would be very useful to record, we believe that this will 
best be approached by use of a separate decision structure. 
It is in general not possible to extract useful knowledge of 
this kind from a search-based planning algorithm that tries 
out many possibilities and backtracks upon failure. At any 
choice point, there may be a large number of reasons why 
all the leaf nodes that are in the search space under the 
choice point represent failures in the search, and it may be 
hard to abstract these into meaningful rationale. However, 
there also exist choice points in a search space where a 
decision is forced or made via user selection from open 
alternatives and it may be most useful to record this as part 
of the rationale for the plan. This is not described here 
though. 

Issues as Questions 
In the I-X framework, until recently, issues had a task or 
activity orientation to them, being mostly concerned with 
actionable items referring to the process underway – i.e., 
actions in the process space. This is now not felt to be 
appropriate, and we are adopting the gIBIS (Conklin and 
Begeman, 1988) orientation of expressing these issues as 
any of a number of specific types of question to be 
considered (Selvin, 1999; Conklin, 2005). The types of 
questions advocated are: 
1. Deontic questions – What should we do?  
2.  Instrumental questions – How should we do it?  
3. Criterial questions – What are the criteria?  
4. Meaning or conceptual questions – What does X mean?  
5. Factual questions – What is X? or Is X true? 
6. Background questions – What is the background to this 

project?  
7. Stakeholder questions – Who are the stakeholders of this 

project?  
8. Miscellaneous questions – To act as a catch all.  
The first 5 of these are likely to be the most common in our 
task support environment. This is similar to the Questions - 
Options - Criteria approach (MacLean et al., 1991) - itself 
used for rationale capture for plans and plan schema 
libraries in our earlier work (Polyak and Tate, 1998; 2000) 
and similar to the concept mapping approaches used in 
Compendium (Selvin et al. 2001). Compendium can in fact 
exchange its set of issues, activities and some types of 
constraints and annotations with I-X (Buckingham Shum et 
al., 2002; Chen-Burger and Tate, 2003). 

The Uses of Rationale 
Fundamental to the <I-N-C-A> model is the idea of 
maintaining annotations as first-class elements placed 
alongside the more conventional elements of a plan. One of 
the principal uses of annotations is to capture rationale; 
hence, we consider rationale to be an important element of 

8 ICAPS 2006  Workshop on Plan Analysis and Management



this model, and rationale capture and expression are areas 
which we are currently exploring. 
The approach outlined in the previous sections, , should be 
seen as a framework and tentative steps towards defining a 
typology of plan rationale and corresponding mechanisms 
for its capture. These tasks are necessarily guided by the 
uses to which we want to put this rationale; hence, in this 
section we discuss briefly some of the types of operations 
and reasoning that we hope to support through the capture 
of rationale. In general terms, these are intended to support 
activity in real domains (as opposed to classical planning 
domains and puzzles). In other words, domains in which 
we accept that information and knowledge may be 
imprecise, incorrect or missing, and as a result, we expect 
plans to fail – and expect that the use of rationale will 
enable us to fail better. 

Explanation and Trust 
As might be expected, a major use of rationale is for 
explaining the existence of particular elements in the plan, 
e.g., why a certain activity (rather than any other) appears 
in the plan. This becomes particularly important when 
trying to decide if the plan can be re-applied in the current 
context, or if execution of the plan fails or partially fails (of 
which, more later). Another use of explanation, one 
particularly important in mixed-initiative (i.e., human and 
computer) agent systems arises when we wish to justify a 
certain activity, particularly in those cases where we are 
asking another agent to perform this activity. In all but the 
most rigidly enforced hierarchical systems, where agents 
simply obey commands (and which occur very rarely in 
practice), we should expect that any agent might respond to 
such a request with a request of its own demanding that the 
activity be justified (and that, if the activity cannot be 
justified to the agent’s satisfaction, it might refuse to 
perform the activity). It should be apparent that rationale 
would allow us to supply some justification. Moreover, 
through the use of <I-N-C-A> objects as our common 
interlingua in the domain, this justification can be included 
and communicated as part of the activity. In this way, the 
object may be thought of as analogous to the idea of proof-
carrying code, in that the presence of the rationale can help 
convince the recipient of the appropriateness of performing 
the activity and that it is ‘safe’ to be performed in the 
current situation. 
This sort of transaction and reasoning can be seen as an 
important step for establishing trust between agents. 
Notions of trust, and ways in which it can be established 
and managed, are currently receiving much attention 
among those considering open agent architectures, 
particularly Semantic Web and Semantic Web Services 
researchers, where it is considered to be vital if these 
initiatives are to come to full fruition. 

Plan Indexing and Retrieval 
Often re-use of existing plans will be more appealing than 
planning anew for a particular task. One use of rationale is 

for richer indexing (and later retrieval) of plans; alongside 
the description of what the plan does (expressed in the 
through the plan itself), and the constraints under which it 
is applicable. The rationale annotations allow us to access 
the reasons why the plan does what it purports to do. 
Properly captured, this information would allow us to 
avoid plan re-use under inappropriate conditions or avoid 
choosing plans that are based on (what are now known to 
be faulty) assumptions or judgements, or at least to be 
aware of these limitations and deal with them accordingly. 

Failure Recovery and Replanning 
In the real world it is inevitable that some plans will fail; 
even the best-laid plans can be undermined by some 
unexpected event. The failure may or may not be important 
with respect to the plan rationale.  We need to separate 
unimportant minor side-effects from failures which impact 
on the intended results of the plan (Tate, 1984; Reece and 
Tate, 1994; Drabble and Tate, 1997). In such cases, it is 
very likely that we will need to do something to recover, 
and to do this efficiently, we will need to try to understand 
why the plan has failed, and hence, when replanning to 
help guide the choice of alternative actions that may 
overcome this failure.  

Explanation-Based Plan Learning 
Since the plan is accompanied by some explanation of why 
it is considered valid (in the form of the rationale), this 
suggests the possibility of learning about the domain from 
both positive and negative examples (plan successes and 
failures). This learning may help to, for instance, identify 
and repair faulty knowledge or assumptions, and provide 
modified rational criteria for choice of particular options 
over others. 

Conclusions 
In this paper we have presented an approach to recording 
the rationale behind a plan in the plan itself, thus making 
the plan a self-contained entity that does not require 
knowledge of the planning algorithm to explain the 
structure of the plan. Fundamental to this approach is the 
<I-N-C-A> model which can be used to describe synthesis 
tasks and has been used in the I-X framework for 
synthesizing plans. Issues in this model can be described as 
meta-level activities that are performed by the planner to 
refine the plan. During this planning process the planner 
adds new constraints on the space of possible behaviour to 
the plan, and each of these constraints is added for a 
reason. It is this type of rationale that we can record as 
annotations in <I-N-C-A> in order to be able to better 
understand the plan, the result of the planning process. 
This knowledge-rich plan can then be used in various ways 
outlined in this paper, thus facilitating the use of the plan in 
a wider context.  
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Abstract

In this paperwe describework in progressthat aimsto de-
velopa domain-independenttool setwhich supportsthecre-
ationandanalysisof domaindescriptionsandplanscontain-
ing continuouslychangingprocesses,instantaneousevents,
andactions. The tools describedare(i) a life history editor
that enablesa designerto createa domaindescriptiondia-
grammatically, automaticallygeneratingmuchof thetextual
encoding;(ii) ananimatorthatsimulatesplans,firing events
andprocesses;(iii) an HTN plannerthat generatesplansin
suchdomains.Tools(i) and(ii) arecurrentlyimplementedas
a subsetof theGIPOIII environment. We concludeby stat-
ing someinitial findingsandpointsthatmightberaisedatthe
workshop.

Introduction
Planningin domainswhich are representedwith rich no-
tationshaslong beena greatchallengefor AI (Bresinaet
al. 2002). In particular, many real world phenomenaare
outsidethe explicit control of plan execution,yet have to
be reasonedwith during plan generation. Changesocur-
ring becauseof fuel consumption,continuousmovement,or
environmentalconditionsmay not be adequatelymodelled
throughinstantaneousor evendurativeactions;ratherthese
requiremodellingascontinuouslychangingprocesses.

Our researchis heavily involvedwith knowledgeformu-
lation of domainswhich involve AI Planning.Evensmall,
classicalplanningdomaindescriptionsare difficult to en-
codeadequatelyandcorrectly. Without tool support,encod-
ing descriptionsrequirethe userto understandthe planner
and the descriptionlanguagein greatdetail. GIPO (Mc-
Cluskey, Liu, & Simpson2003)is a tool whichsupportsthe
creationof domaindescriptions,andtheexplorationof plan-
ning within thedomain,usingan interfacethathidesmuch
of the technicaldetails. Userscanbuild a domaindescrip-
tion usinga diagrammaticinterface,explore plan creation
usinga plan stepper, interfacetheir domainto an external
planner, andanalysethe resultingplansusingan animator.
Thegeneralityof thegraphicaltoolsareenabledby theuse
of the’object’ asthecommonsemanticthread.

RecentlyLong andFox re-visitedthe issuesof planning
within domainswith eventsandcontinuousprocesses,with
the introductionof PDDL+ level 5 (Fox & Long 2001). In
this paperwe discussextensionsto the GIPO architecture

and relatedtools for domainformulation, plan generation
andplan analysisin suchrich domains. We have adopted
anunderlyingformalismsimilarto PDDL+calledOCLplus,
but onewhichalsosupportstheuseof theGIPOknowledge
acquisitiontool.

Using OCLplus: Planning Domains with
Processes and Events

OCLplus is derived from GIPO’s object-centredlanguage
which is documentedin the literature(McCluskey, Liu, &
Simpson2003). This languageimposesa structureon the
domainin termsof objectsand object classes,and struc-
turesaction representationsin termsof objectstatetransi-
tions. Additionally in OCLplus, time is modelledexplic-
itly asa real quantity. This enablessimulationor planning
with themodeltoadoptanarbitraryapproximationto thead-
vancementof time; hencein thedomaindescriptiontime is
modelledasa continuousrealvariable,but in simulationan
approximationhasto beadopted.Thispresentsasetof seri-
ousproblemsasdiscussedin theliterature(Howey, Long,&
Fox 2004). For example,duringdiscretesimulationevents
mayfire or not fire dependingon thechosengranularityof
time.

Statechangingoperationsaredividedinto three:actions,
eventsandprocesses.Actions (with Strips-relatedseman-
tics)bringaboutinstantaneouschangeto thestateof domain
objectsandmayalsoupdatethenumericpropertiesof those
objects.Actionsaretheentitiesthatagentsmustinitiate to
achieveplanninggoals,triggereventsandprocesses.Events
arespecifiedin thesamewayasactions,but their semantics
differ: whenevertheirpreconditionsaremadetrue,theevent
firesandmaychangethestateof theobject(s)involved. In
otherwords,eventsareautomaticallytriggeredasa result
of thenumericchangesbroughtaboutby domainprocesses,
and(possibly)by statechangesof otherobjects. Like ac-
tions, eventsbring aboutinstantaneouschange,but unlike
actionseventsare not directly triggeredby the plan exec-
utive. Processesspecifyin additionto their startcondition
how numericpropertiesof theobjectsin thedomainareup-
datedwith thepassageof timeasaresultof therunningpro-
cesses.Henceprocessesupdatenumericproperties,but do
not bring aboutstatechangeof theobjects(in thesenseof
changingthetruth valueof relations);their descriptionsare
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availabledeclaratively, but they cannotbedirectly activated
by the

�
agentsactingin thedomain,despitethe fact that the

intentionbehindperformingsomeactionmaysimply be to
startaprocessrunning.

Review of GIPO III’s Life History Editor
GIPOIII’ s objectlife historyeditor (OLHE) is usedto for-
mulatedomiandescriptions.Is is reminiscentof CASEtools
that supportdesignersconstructdiagrammaticrepresenta-
tionsof systems.Thesesystemsareusuallybasedaroundan
’object model’. TheCASEtool’s principal functionwould
be to help the userconstructa (partial) formal modelfrom
the diagrammaticdescription,thus insulatingthe designer
from thecode.Dependingon theCASEtool, thecodegen-
eratedby thetool maybesomeabstract,formalspecification
(eg toolsthatgeneratepartialZ specifications),or partialim-
plementationswithin aprogramminglanguage.

In the caseof GIPO III, the user has to createa dia-
grammaticrepresentationof the planningdomainusing a
state- machinemetaphor. This forcesthe designerto de-
composethe systeminto an assemblyof machines,where
eachmachinerepresentsthebehaviour of a classof objects.
Eachmachine’s nodesrepresentthe setof mutually exclu-
sive statesthat an object of the classcan hold. Other at-
tributesof the objectsare modelledas ’properties’. The
diagrammaticform first undergoesconsistency checks,and
then is translatedinto a domaindescriptionwhich can be
usedfor plangenerationpurposes.

Apart from an adequatediagrammaticdescription,the
useronly needspecifyproblemscenarios(includingobject
instances)beforea targetplannercanbeinvoked.As anex-
ample,to constructtheDockworkers- robotsworld usedin
therecentAI planningtextbook(Ghallab,Nau,& Traverso
2004),oneonlyneedstoconstructthediagramshown is Fig-
ure2. FromthisdiagramGIPOIII generatesthedynamicsof
thedomain,andconvertsthis into aplanner-friendly form.

The diagramsarebasedon primitive machinesandma-
chinetransitions.Machinesrepresenta classof objectsthat
sharethe samebehaviour, nodesrepresentthe stateof ob-
jects,andarcschangethe statethat objectsgo through. In
additionto changingstate,nodescanhave changingprop-
erties(for example,locatedness)and theseoccurasanno-
tatedtransitionsof a differentcolour to statechanges.Ac-
tions involving morethanonetype of objectaremodelled
by co-ordinationarcs. To capturepreconditions,we con-
strainobjectsfrom differentmachinesto bein certainstates
or have certainpropertieswhena transitionoccurs.To cap-
ture necessaryor conditionalchangeswe constraintwo or
moretransitionsof objectsfrom differentmachinesto occur
together. For moredetails,the readercanconsulta recent
paperin which we gave aninformal, translator-independent
semanticsto thesediagramsvia thetechniquesof algebraic
specification(McCluskey & Simpson2005).

As a furtheraid to construction,the useris givenan ex-
tensibleset of machineprimitiveswith which to work (in
Figure 2 the primitives are listed in the left hand pane).
This leadsto ahigherlevel platformthanconstructingat the
level of the nodeandarc. For example,the dockworkers-

algorithm PlusPlan:OCLplusPlanner

1.store= � node(0,init-state,empty,init-task,init-constraints)�
2.repeat
3. call expand-plan();
4. call simulateevents-processes();
5.until empty(store)or � N � store:

solution-node(N);
6.end
procedure expand-plan()
1. repeat
2. removenode(T,S,PP,Exp,C)from store;
3. if notmethods(start(Exp),S,C)= ��� then
4. � M � methods(start(Exp),S,C)
5. Exp+= Expwith M expanded;
6. C+ = C with M’s expansionconstraints;
7. storenode(T,S,PP,Exp+,C+)
8. elseif notoperators(start(Exp),S,C)= ��� then
9. � O � operators(start(Exp),S,C)
10. storenode(T,apply(O,S),add(PP,O),rem(Exp,O),C)
11. elsewrite node(T,S,PP,Exp,C)to temporarystore
12. until empty(store)or � N � store

solution-node(N);
13. let store:= temporarystore;
14. end
procedure simulateevents-processes()
1. temporarystore:= store;store= empty;
2. � node(T,S,PP,Exp,C) � temporarystore:
3. � E � Events:
4. if preconds(E,S)= truethenS := apply(E,S)
5. � P � Processes:
6. if preconds(E,S)= truethenS := apply(P,S)
7. storenode(T+Delta,S,PP,Exp,C);
8. end

Figure1: ThePlusPlanAlgorithm

robotsworld canbeconstructedby selectingtwo instances
of stacks,andtwo bistates,andthenconfiguringandcom-
bining themtogetherto producethediagramshown in Fig-
ure2. GIPOIII thenproducesthedomaindescriptioncode
from thediagram,readyfor input to a planner.

GIPO III’s Life History Editor for OCLplus
TheOLHE for continuousdomainsusesthesamephiloso-
phy asthestandardOLHE discussedabove. Colourcoding
distinguishesactions,events, transitions,processes,states
etc.Eventsareconnectedto thestatesthatchangeasaresult
of theevent,andaneventmaybeco-ordinatedwith objects
of otherclassesin thesamewayasactions.Additionally, an
eventwill haveoneor morepreconditionswhichdependon
time. Thespecificationof thesepropertiesareinitiatedand
changedby clicking on theevent’s icon.

Processesareconnectedup diagrammaticallywith states
that are required as their preconditions,but expressions
involving continuouslyvarying valuesrequirethe useof a
expressioneditor. We illustrate this ideawith the familiar
bath- filling applicationshown in Figure3. In thediagram
there is one processspecified(filling), annotatedwith a
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Figure2: TheDockworkersDomain:Exampleof GIPOIII’ sOLHE

clock icon to show it is a process.As well asconnectingup
theprocessto relevantstates/events,thedesignermustinput
triggersfor theprocess,i.e.

level� Bath�
	 capacity� Bath�
flow� Bath�
�
��� �

aswell astheeffectof theprocess:

level� Bath��� level� Bath��� flow-rate � time-increment

An expressioneditor is provided for this. There is one
event in the diagram- ’flood’. Statechangeinformationis
generatedby the connectionsof the event in the diagram,
but, like a Process,an expressioneditor is neededto input
thefluenttriggerfor theevent,in thiscase:

level� Bath�
� capacity� Bath��� flow� Bath���
��� �

With this extra information,GIPO III cangeneratethe do-
maindescriptionfor usewith theStepperandPlannerout-
linedbelow.

GIPO III’s Plan Stepper
The Plan Stepper assumesa completebut not necessarily
correctdomaindescriptionexistsandthatthedescriptionre-

quiresdynamictesting.Thestepperallows theuserto man-
ually developa graphicalrepresentationof a planto solve a
givendomainproblemby choosingfrom thedefinedopera-
torsa sequencein which to applythemandby choosingin-
stantiationsof theoperatorparametersthatlegally allow the
operator’s applicationat that stagein the developingplan.
We continuethe simple bath filling example in Figure 4.
Herethe object’s timelinesrun alongfrom left to right, in
thetop pane.In thelower panetheprocess(es)activationis
shown from left to right. Initially aplugis placedin thebath
(first dot - in red) then the hot water tap is turnedon (af-
fectingthebath,thetapandhaving theeffectof startingthe
filling process).Next the cold tap is turnedon, andfinally
afterseveralminutesthebathoverflows andcausesa flood
(thefloodeventis signifiedby across).

The tool in additionto providing a graphicalrepresenta-
tion of theplanchecksthateachstepcanbelegally applied
assumingthe given problem’s initial state. In this way the
usergainsfeedbackon whetheror not thedomaindescrip-
tion fulfills his/herexpectation. Clearly if the plan is not
legal theneithertheplanitself is flawedor thedomainspec-
ification is at fault. Theuseris expectedto iterateover this
processuntil bothsampleplansanddomainspecificationap-
pearsatisfactory. Theplanstepperallowsauserto manually
createplandescriptionsandhavethemcheckedagainstade-
velopingformal descriptionof the problemdomain. Tools
basedon theideaof a plansteppercanbeof moreusethan
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Figure3: TheBathFilling Domain:Exampleof GIPOIII’ sOLHE

just as a tool for domaindescriptionvalidation. In many
domainsusersarenot looking for nor would bepreparedto
trustfully automatedtoolsto carryout theirplanningtasks.

Plan Generation
We havedesignedandimplementeda plangenerationalgo-
rithm (’PlusPlan’)for OCLpluswhichwasderivedfrom Hy-
HTN (McCluskey, Liu, & Simpson2003).HyHTN is ahier-
archicalplannerwhich,likeShop(Nauetal. 2000),plansby
selectingandexpandingmethodoperators,andkeepingan
advancedstatewithin searchnodes. HyHTN’s innovation
is that it is equallysuitedto hierarchical,non-hierarchical
planning,or acombinationof thetwo. Duringsearch,nodes
undergoexpansionoperationswhichreplacenamesof meth-
ods with their decomposition.However, if within a node
someconditioncannotbeachievedin thecurrentstatethen
HyHTN canperformaheuristicstatespacesearch(usingthe
plangraphheuristic)to generatea planto achievethegoal.

Essentially, PlusPlanworksusingablendof planningand
simulation. The simulationis similar to that carriedout in
thePlanStepperdescribedabove: an incrementaltime step
is usedto simulatethepassingof time. Planninginvolvesa
state-advancingHTN searchat eachinstantof time. Hence,
if thegoalcanbereachedby theeffect of instantaneousac-
tions only, it will endeavour to find a plan to achieve this,
andapply that plan’s actionsto an advancingstate,in the

first instant.More likely, nodeswill beprocessedresulting
in theadditionof new nodesto thesearch,but thesewill not
be furtherprocessedassomeeventor processis neededto
occuror terminatebeforefurtherwork onaplancanoccur.

Figure 1 containsan outline of PlusPlan. It searches
throughaspaceof nodesof theform:

node� T � S� PP� Exp� C �

whereT is theelapsedtime from thestartof theplan,S is
the currentstateat time T, PP is the plan that producesS,
Expis asetof operatorsrepresentingthedeveloping(future)
plan, andC is a setof constraintson Exp. Initially Exp is
theabstracttaskto beachieved,andC aninitial setof con-
straints.

Procedureexpand-plantriesto createandapplya planat
oneinstant. The resultingopennodesin ’store’ areeither
solutionsor nodeswhereoperatorscannotbe executed.In
line 3 start� Exp� = setof fringeoperators,ie thosethatcould
possiblystart(temporally)Exp;
methods� start� Exp��� S� C � is the setof non-primitive oper-
atorsin the fringe suchthat their preconditionsaremet in
S andthe constraintC aresatisfiable.For all thesepossi-
bledecompositions,new nodesarecreatedandstored.If no
non-primitiveoperatorscanbeexpanded,thenin lines8-10
any operatorsthatcanbeappliedareappliedto advancethe
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Figure4: TheBathFilling Domain:Exampleof GIPOIII’ sPlanStepper

state.Whena nodecannotbeexpanded,it is put into a tem-
porarystore,andwhenall nodesareprocessed(or asolution
is found)thenthetemporarystoreis copiedbackto themain
storeandcontrolis givenbackto themainalgorithm.

The procedurefor simulating events and processesre-
tractsall of the storednodes,andwith eachin turn, it ap-
pliesall applicableeventsandprocesses.If � 1 eventsoc-
cur at thesametime thentheorderthatthey fire is assumed
unimportant- theobjectstatesthatany two firing eventsre-
fer to mustbe independent.Similarly, if eventsoccurdur-
ing processexecution,they areassumednotto interferewith
theprocesses,that is the ’order’ of simulationis not impor-
tant. Finally, it is assumedthat two processesthatarecon-
tinuouslyrunningdo not directly interfere. Theseassump-
tions avoid the problemof interferingevents”occurring at
thesametime” - which canleadto a paradox.After all the
effectsof applicableeventsandprocesseshavebeenapplied
to a node,thetimeof its stateis movedonaninstant(signi-
fiedby ”Delta”) andthenodeis stored.

Themainloopprogressesuntil expand-plan()is in aposi-
tion to fully expandtheabstracttaskinto a plancontaining
primitive instantiatedoperators.

Results and Open Questions
Planningin domainswith continuousprocesses,eventsand
actionshaslong beena greatchallengefor AI. Realworld

phenomenaare often outsidethe explicit control of plan
execution and yet have to be reasonedwith during plan
generation. In this position paperwe have outlined three
tools usedto formulatedomaindescriptions,analyseplans
throughsimulation,andgenerateplansrespectively, in do-
mainswith actions,events,andprocesses.An importantaim
of this work to allow theexpressivenessof theOCLplusde-
scriptionto beexploredandto investigateadditionalknowl-
edgeengineeringfeaturesthatmaybeaddedto thelanguage
to supportthemodellinganddomainvalidationprocesses.

We have evaluatedthe tools on toy problemsincluding
anair traffic controlscenario(specifiedin (Simpson& Mc-
Cluskey 2003)), a bath domain,and an autonomousvehi-
cle domain. The first tools (formualationand simulation)
areencodedinto GIPOIII with OCLplus, andcanbedown-
loadedfrom http://scom.hud.ac.uk/planform/gipo. For the
future we are aiming to apply the tools to a more realis-
tic flood simulationdomain. The initial work shows that
(a) theGIPOtoolsoriginally designedfor classicaldomains
generalisenaturallyto domaindescriptionsin OCLplus(b)
problemsto do with thesimulationareextremelycomplex.
Dependingon the choiceof the time step”Delta” in both
simulationandplangeneration,eventsmayfire or not fire,
andprocessesmay not run accuratelyor at all. The work
hasalreadyraisedcertainfundamentalquestionssuchas: is
the developmentof a domain-independenttoolsetfor such
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expressivedomainsfeasibleor evendesirable?While conti-
nouschangeis expressiblein domaindescriptionlanguages
suchasOCLplus, how canthis be adequatelysimulatedin
animatorsandplanners?
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Abstract

In many planning situations, a planner is required to return
a set of plans satisfying the same goals which will be used
by the external systems collectively. The external systems
can specify the desired inter-relationships among the returned
plans (e.g., diverse plans, similar plans, non-dominated plans)
and the task of the planner is to return a set of plans which
will meet these requirements. As an example, in adaptive
web services composition, the web service engine wants to
have a set of diverse plans/ compositions such that if there is
a failure while executing one composition, an alternative may
be used which is less likely to be failing simultaneously. In
this paper, we investigate the problem, propose functions for
defining similarity among plans and propose methods to find
sets of inter-related plans.

Introduction
A typical AI planner takes as input the specifications of the
initial and goal states and the set of available actions, and
finds a plan that will satisfy the goals by efficiently search-
ing in the space of possible states configurations or action
orderings (plans). In many planning situations, a planner is
required to return not one but a set of plans satisfying the
same goals which will be used by the external systems col-
lectively. The external systems can specify the desired inter-
relationship among returned plans (e.g., diverse plans, simi-
lar plans, dominated plans) and the task of the planner is to
return a set of plans which meet these requirements.

As an example, in adaptive web services composition, the
web service engine wants to have a set of diverse plans/ com-
positions such that if there is a failure while executing one
composition, an alternative may be used which is less likely
to be failing simultaneously. However, if a user is helping in
selecting the compositions, the planner could be first asked
for a set of diverse plans and when she selects one of them,
the planner is next asked to find plans that are similar to the
selected one. Another example is using planning for intru-
sion detection (Boddyet al. 2005), where the aim is to detect
as many ways of possible intrusion as possible where an in-
trusion attack is represented as a plan. A third, more general

∗Kambhampati’s research is supported in part by the NSF grant
IIS-0308139 and the ONR Grant N000140610058.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

example involves any complex planning situation where the
user is interested in optimizing multiple and possibly con-
flicting objectives, to generate a set of desired plans.

Existing planners, that are designed to find single solu-
tion plans, are not well suited for this problem. Even though
many of the planners are capable of outputting multiple
solutions by continuing their search beyond the first solu-
tion, they cannot guarantee any desired relations between
the plans that are output.

To find inter-related plans, we need to be able to (1) de-
fine distance measures between plans and (2) modify exist-
ing planners so that they can use this distance measure to
generate sets of inter-related plans. Similarity and diversity
are examples of such inter-relationships for plans.

There has been very little work on this problem in plan-
ning. Hebrard et al 2005 solve the problem of similar/
dissimilar solutions for CSPs. If we consider their work
for planning, since a planning problem of finite length can
be compiled as a CSP problem, their results are the lower
bounds for finding similar or diverse plans.

Our major contributions in the paper are:
• We formalize the problem of finding diverse/ similar plans

by extending previous formulations for CSPs.

• We introduce useful bases and measures for plan distance.
We show that different measures can give drastically dif-
ferent picture about inter-plan relationships.

• We discuss some preliminary work on effective solutions
to the proposed problems.

We start by formalizing the problem and then propose a se-
ries of plan similarity function. Next, we propose methods to
find inter-related plan and present initial results about their
effectiveness. We then explore the problem with hierarchical
plans. We end with discussion on related work and provide
pointers for future work.

Problem Statement
At its simplest, a planning problemPP is a 4-tuple
〈P, I, G, A〉 whereP is the set of predicates,I (⊆ P ) is
the complete description of the initial state,G (⊆ P ) is the
partial description of the goal state, andA is the set of ex-
ecutable (primitive) actions. A specification of an action
consists of preconditions (A

pre
i ⊆ P ) and postconditions

(Apost
i ⊆ P ).
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A plan for PP is an action sequenceSj , such that ifSj

is executed inI, the resulting state of the world would con-
tain (entail)G. It is a 3-tuple〈T, O,ST 〉 where: T is the
set of steps in the plan;T contains two distinguished step
namest0 andt∞. ST is a symbol table, which maps step
names to actions. (Note that multiple steps can be mapped
to the same action.) The special stept0 is always mapped
to the dummy operatorstart, and similarlyt∞ is always
mapped tofinish. The effects ofstart and the precon-
ditions of finish correspond, respectively, to the initial
state and the desired goals of the planning problem.O is a
partial ordering relation overT .

As an example, suppose a person in Las Vegas (LV) wants
to plan a weekend and is considering to visit one or more
of the Disneyland (DL) in Los Angeles, his friend in San
Francisco (SF) or an event at San Jose (SJ), based on the
cost of each choice and its relative utility. In Figure 1, two
possible plansS1 andS2 are given.

We also see in the Figure that there can be different repre-
sentations for a plan. For example, plans can be hierarchical
consisting of non-primitive actions (tasks) which can be de-
composed further into primitive/ executable actions or other
non-primitive actions by one or more reductions. In the ex-
ample, we had consideredTravel actions as primitive. If we
consider them as non-primitive, plans are trees of AND-OR
nodes. In Figure 1,S1

3
andS2

3
are two possible reductions

of the non-primitive actionTravel between LV and DL. We
will focus on plans with primitive actions but we note that
plans in alternative representations could also be compared.

Travel_LV_DL

Travel_DL_SJ

Travel_SJ_SF

Travel_SF_LV

Travel_LV_DL

Travel_DL_SJ

Travel_SJ_SF

Travel_SF_LV

Travel_LV_SJ

Travel_SJ_SF

Travel_SF_LV

Travel_LV_DL

FlyBuyTicket

BoardPlane

TravelByCar_LV_DL TravelByFlight_LV_DL

UnboardPlaneBoardCar Drive UnboardCar

Plan S1 Plan S2

Plan S3-1 Plan S3-2

AND trees

OR trees

Figure 1: Examples of plans.

Let δ(Si, Sj) → [0, 1] denote a distance function between
a pair of plans. A value of 0 represents complete simi-
larity of plans while 1 represents complete diversity. Fol-
lowing the convention of (Hebrardet al. 2005), we de-
fine max(δ, S) = max

Si,Sj∈S
δ(Si, Sj) andmin(δ, S) = min

Si,Sj∈S

δ(Si, Sj). Also, we definemax(δ, S, Sj) = max
Sk∈S

δ(Sj , Sk)

Notation Description
PP A planning problem
Plan(PP ) Set of all plans ofPP

Si, Sj A plan forPP (⊆ Plan(PP ))
S, S′ Sets of plans

Table 1: Notation used in the paper.

Problem Description
dDISTANTkSET FindS with S ⊆ Plan(PP )
(resp.dCLOSEkSET) | S | = k andmin(δ, S) ≥ d (resp.max(δ, S) ≤ d)
Input: PP ; Output:S
MAXDIVERSEkSET FindS with S ⊆ Plan(PP ), | S | = k and
(resp. MAXSIMILARkSET) for all S′ ⊆ Plan(PP ), | S′ | = k,
Input: PP ; Output:S min(δ, S) ≥ min(δ, S′) (resp.max(δ, S) ≤ max(δ, S′))
MAX dDISTANTSET FindS with S ⊆ Plan(PP ), min(δ, S) ≥ d
(resp. MAXdCLOSESET) (resp.max(δ, S) ≤ d), and for allS′ with min(δ, S’) ≥ d
Input: PP ; Output:S (resp.max(δ, S’) ≤ d), | S |≥| S′ |
MOSTDISTANT FindSj with Sj ∈ Plan(PP )-S, such that for
(resp. MOSTCLOSE) Sk with Sk ∈ Plan(PP )-S, max(δ, S, Sj ) ≥
Input: PP , S; Output:Sj max(δ, S, Sk) (resp.min(δ, S, Sj ) ≤ min(δ, S, Sk))
nNEARdDISTANTkSET FindS such that it isdDISTANTkSET
(resp.nNEARdCLOSEkSET) (resp.dCLOSEkSET) and
Input: PP , Sk ; Output:S δ(Si, Sk) ≤ n for all Si ∈ S

nNEARMAXDIVERSEkSET FindS such that it is MAXDIVERSEkSET
(resp.nNEARMAXSIMILAR kSET) (resp. MAXSIMILARkSET) and
Input: PP , Sk ; Output:S δ(Si, Sk) ≤ n for all Si ∈ S

nNEARMAXdDISTANTSET FindS such that it is MAXdDISTANTSET
(resp.nNEARMAXdCLOSESET) (resp. MAXdCLOSESET) and
Input: PP , Sk ; Output:S δ(Si, Sk) ≤ n for all Si ∈ S

Table 2: Different instances of the inter-relationship aware
planning problem.

andmin(δ, S, Sj) = min
Sk∈S

δ(Sj , Sk). In Table 1, we sum-
marize the notations that are followed and Table 2 lists
the various problems to find inter-related plans. The first
3 problems,dDISTANTkSET, MAXDIVERSEkSET and
MAX dDISTANTSET (and their respectiveclose variants)
are planning adaptations of offline CSP problems in (He-
brardet al. 2005) while MOSTDISTANT is adaptation of
their online problem1. We also introduce thenNEAR varia-
tions of the offline problems which takes the planning prob-
lem and a reference (previous) plan as input and requires that
all returned plans be close to the reference plan.

Distance Measures
In this section, we motivate different bases for comparing
plans, the different methods of comparing plans, and pro-
pose useful plan distance functions.

Different Bases for Plan Comparison
At the heart of the problem of finding inter-related plans is
the issue of defining criteria by which two plans are com-
pared. A plan can be characterized by:

1. Actions that are present in the plan

2. Its behavior where the behavior represents the set of states
that an execution of the plan will take

3. Causal chains that support the different goals achieved by
the plan. They represent a middle-ground between actions
and states by encoding how actions contribute to the goal
states being achieved.

1We have converted all the decision problems to seek their so-
lutions.
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Basis Pros Cons
Actions Does not require No problem information

problem information is used
States Not dependent on any specific Needs an execution

plan representation simulator to identify states
Causal chains Considers causal proximity Requires domain theory

of state transitions (action)
rather than positional
(physical) proximity

Table 3: The pros and cons of different bases to characterize
plans.

These different criteria for characterizing plans can also
serve as the basis for different ways of comparing plans. Ta-
ble 3 gives the pros and cons of using the different basis.
We note that if actions in the plans are used as the basis
for comparison, no problem or domain theory information
is employed. If plan behaviors are used as the basis for com-
parison, the representation of the actions that bring about
state transition becomes irrelevant since the actual states that
an execution of the plan will take is considered. Hence, we
can now compare plans of different representations, e.g., 4
plans where the first is a deterministic plan, the second is a
contingent plan, the third is a hierarchical plan and the fourth
is a policy encoding probabilistic behavior. If causal chains
is used as the basis for comparison, the causal proximity
among actions is now considered rather than just physical
proximity in the plan. But it requires the domain theory to
be available.

Different Ways for Computing Comparison
After a basis for plan comparison is chosen, there can be
different ways of using its characterizer to derive distance
functions. The analogy we use is to string comparison where
inter-relationship among characters in the string are usedto
define distance functions. Without loss of generality, assume
that we are interested in action based comparison of plans.

One way to measure distance between plans is to consider
plans as sets of actions and string similarity functions that
depend on characters sets. This view ignores the absolute
position of an action in the plan string and cares only about
the presence or absence of an action in the plan.

Set-difference based Distance Computation We can
also use the set-difference measure between plans. Here, the
distance between plansSi andSj is measured as the num-
ber of actions that occur in one plan but not the other. This
measure is used in (Myers 2005; Foxet al. 2006).

δ1(Si, Sj) =
| Si − Sj | + | Sj − Si |

| Si | + | Sj |
(1)

Neighbourhood-based Distance Computation We can
also consider the ordering of the actions in the plan (char-
acters in the string). LetSi andSj be broken into substrings
P = P1, ..., PK andQ = Q1, ..., QL. Then neighbourhood
similarity functions follow the general pattern as follows.

δ∗(Si, Sj) =
1

K

K∑

i=1

minL
j=1

δ
′

(Pi, Qj) (2)

Name Basis Computation
δ1 Actions Set-difference
δ2 Actions Prefixes Neighbourhood
δ3 States Set-difference
δ4 States Prefixes Neighbourhood
δ5 Causal Chains Set-difference
δ6 Causal Chains Prefixes Neighbourhood

Table 4: A spectrum of distance functions based on different
bases and way of computations.

whereδ
′

refers to some secondary similarity function. Let
δ
′

be δ1 in the remainder. We give the distance function
based on prefixes and more can be proposed based on how
different substrings are created.

Prefixes-based Distance Computation PandQ contains
prefixes ofS1 andS2, respectively.

δ2(Si, Sj) = δ∗(Si, Sj) (3)

In Table 4, 6 distance functions are presented which use
3 different bases and 2 different ways of computation. More
distance functions can be derived by extending any of the
two dimensions.
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Initial
State Goal
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Figure 2: Three different plans for an example problem. The
significant fluents of the states after every action is shown in
≺ ... 〉. The domain description and causal chains in the 3
plans are also given.

Example: Comparing Plans by Different Bases
In Figure 2, three plans are shown for a planning problem
where the initial state is〈p1, p2, p3〉 and the goal state is
〈g1, g2, g3〉. Plans S6-1 and S6-2 have the same actions but
different structures. S6-1 has parallel actions while S6-2has
them in sequence. The plan S6-3 hasA1 like the other plans
but all other actions are different (A

′

2
andA

′

3
). However, it

also achieves the same goals.
An action based plan comparison method which uses

prefix-neighbourhood based distance computation would
find S6-1, S6-2 and S6-3 to be all different. This is because
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all the three plans have different sets of action prefixes. If
instead, the action information is used with set differencing,
S6-1 and S6-2 would be found identical.

A state based comparison method which uses any of the
given computation choice would find S6-2 and S6-3 to be
identical, and both of them to be different from S6-1. This is
because the states after every transition in S6-2 and S6-3 are
identical. S6-1, on the other hand, has (trivially) the same
first and last states but no intermediate states.

A causal link based comparison method which uses set
differencing would find S6-1 and S6-2 to be the same while
S6-3 as different. The causal chains for all the goals are
shown in the figure.

Solution Methods
We start by noting that one straightforward approach to gen-
eratek multiple inter-related plans is to make existing plan-
ners run further after finding the first solution. As new so-
lutions are generated, their distance from the already se-
lected plans can be assessed and used to decide whether they
should be added to the selected set.

A more efficient alternative would be to bias the planners’
search process so it progresses towards plans that are likely
to meet both the solution quality and inter-releatedness con-
straints. There are broadly two ways of achieving this: One
idea is to bias the search for the latter plans so as to sat-
isfy the inter-relatedness constraints. In the case of heur-
sitic search planners such as FF, this can be accomplished by
modifying the heuristic to reflect the inter-relatedness con-
straints. For example, if we are interested in finding maxi-
mally dissimilar plans, we can penalize plans similar to the
ones already selected. The technical challenge in imple-
menting this approach would be making the heuristics sen-
sitive to inter-relatedness constraints.

The heuristic search approach outlined above is “greedy”
in the sense that the seed plans that we have already commit-
ted to could force us into a sub-optimal overall set of plans.
The second idea is thus to search simultaneously for thek
solutions. One avenue for doing this is to model planning
as constraint satisfaction (c.f. (Do & Kambhampati 2001)),
and adapt the technique proposed in (Hebrardet al. 2005)
for simultaneously searching fork inter-related CSP solu-
tions.

As of this writing, we have experimented with one spe-
cific implementation of each of the above ideas. We will
describe the techniques implemented and provide prelimi-
nary results. We are currently in the process of completing a
more careful investigation of the comparative advantages of
these approaches.

Compiling Planning as CSP and Solving for Exact
Diverse Plans
The GP-CSP planner(Do & Kambhampati 2001) is a Graph-
plan based planner that converts Graphplan’s planning graph
into a CSP encoding, and solves the CSP encoding using
standard CSP solvers. Here, the variables correspond to the
predicates that have to be achieved at a level and its pos-
sible values are the actions that can support the predicates.

Constraints encode the relationship (e.g., mutual exclusions)
among predicates and the relationship among the supporters
of the predicates.

Similar to the way Hebrard et. al 2005 solved their
dDISTANTkSET/dCLOSEkSET problem by reformulating
it as a new CSP, we solve the same problem with different
distance measures by making k copies of each planning en-
coding. Each encoding is created using GP-CSP planner and
the k copies are connected to each other using global con-
straints. Due to the way the CSP library is used in conjunc-
tion with the planning graph structure to solve the planning
encoding, there are some complications. The details of our
approach are:

• As opposed to creating k(k-1)/2 special variables to repre-
sent the distances between each pair of copies, we create
k(k-1)/2 global constraints connecting them. If each copy
has n variable, then this constraint involves 2n variables
from each of k(k-1)/2 possible pairs of k copies2. Each
global constraint between the ith and jth copies ensures
that two plans represented by the solutions of those two
copies will be at least/mostd diverse/similar to each other.

• Because the CSP library used in GP-CSP uses implicit
constraint representation, we implement special con-
straint checking routine to check those k(k-1)/2 con-
straints. Those routines are called upon by the normal for-
ward checking and arc-consistency checking procedure
inside the default solver. In the future, we plan on imple-
menting special consistency checking techniques to deal
more efficiently with those global constraints.

Due to the special planning encoding in GP-CSP and the
distance measure defined earlier in this paper, there are sub-
stantial differences between how each global constraint is
satisfied between traditional CSP encoding as in (Hebrard
et al. 2005) and our encoding. In our encoding, facts rep-
resent variables and actions represent values. A given ac-
tion a can represent different values in domains of differ-
ent variables. For example, if there are two variablesx1

andx2 and their current assignments in the first copy are
{x1 → v1, x2 → v2} and in the second copy, they are:
{x1 → v2, x2 → v1}, then in traditional CSP, the distance
between two sets of assignments would be 2. However, the
valuev1 of x1 andv1 of x2 may represent the same action
instance, alsov2 of x1 andv2 of x2. Therefore, the dis-
tance between those two set of assignments in our planning
encoding can be 2, 1 or even 0.

Thus, when each global constraint is called upon to check
if the distance between two copies is within/over a prede-
fined value d, we first have to map each set of assignments
to an actual set of actions. Then, we compare the action sets
(not the variable assignments) to decide if the two copies
satisfy the global constraint defined by the distance measure.
This process is done by mapping each variable→ value into
action using a call to the planning graph, which is outside
but works closely with the general purpose CSP solver in
GP-CSP.

2An alternative approach would be to create only one global
constraint involving k*n variables from all k copies.
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Problem k d Time (in sec) Dist.(Min, Max, Avg)
prob002-rocket-a 2 0.1 2.45 (0.154, 0.154, 0.154)

0.2 6.72 (0.862, 0.862, 0.862)
0.8 6.79 (0.862, 0.862, 0.862)

prob002-rocket-a 3 0.05 11.1683 (0.154, 0.862, 0.626)
0.1 10.88 (0.154, 0.862, 0.626)

prob004-log-a 3 0.05 7.86 (0.054, 0.203, 0.151)
0.1 24.11 (0.197, 0.698, 0.525)
0.15 21.04 (0.197, 0.698, 0.525)
0.2 19.50 (0.209, 0.701, 0.536)

Table 5:Initial results of GP-CSP in dDISTANTkSET

Table 5 presents the results of GP-CSP on some logistics
problems as run on a Pentium-3 667Mhz with 256MB RAM.
We see that this approach can give diverse plans effectively.
The last column shows the diversity in the returned plans
usingδ1 and that it is greater than minimum diversity needed
for the problem (d). We also found that with higher k and d,
the problems take longer to solve, as expected.

Heuristic Approach for Approximate Diverse Plans
In heuristic state space planning, a search framework like
A* is used to find plans driven by heuristics that measure
the progress to goals. Specifically, the cost of a search node
is measured by:

f(si) = g(si) + w ∗ h(si) (4)

whereg is the cost to achieve the current node starting
from the initial search state,h is the heuristic estimate of the
effort to achieve the goals andw is a weighing function. In
measuringh, heuristics derived from the relaxed planning
graph (RPG) have been found to be very effective(Nguyen,
Kambhampati, & Nigenda 2002).

The RPG heuristic estimate can be biased towards plans
that use as many of the actions already supporting other
goals as possible. To do this, the planner will now take as
input not just the goals to be supported, but also the set of
actions already committed to in previous plans. RPG heuris-
tic can also be biased to find plans that do not share many
actions with another plan. Thus, the relaxed plan extraction
process will be biased to avoid actions that are in the input
plan. This approach works as long as we have similarity
measures that are dependent on action presence and not on
the relative position of the actions.

We implement this idea by usingh′(si) as defined below
instead ofh(si).

h′(si) = h(si) + wδ ∗ δj(si, S0) (5)

Hence, we increase the heuristic values with a weighted
factor accounting for the distance between the partial plan
and the reference input plan.δj can be any distance measure
including the ones defined earlier. Ifwδ is positive, search
nodes close to the reference plan (S0) get priority over other
nodes. Ifwδ is negative, search nodes away from neigh-
bourhood of the reference plan get priority. Given a distance
function, one can start from a reference plan and control the
relationship of the subsequent plan by using appropriatewδ.
The new plan can be added to the reference plans set and
more plans generated appropriately related to it.

Problem wδ wk Time (in sec) Dist. (Min, Max, Avg)
bw-prob-4-0 -100 0 2.08 (0.334, 0.334, 0.334)

10 100 2.04 (0.0, 0.0, 0.0)
-10 -100 2.22 (0.156, 0.318, 0.249)

lilprob-4-0 -10 -10 1.77 (0.143, 0.334, 0.242)
100 -100 1.68 (0.0, 0.0, 0.0)
-100 -100 1.73 (0.0, 0.5, 0.334)

Table 6:Initial results of Planner4J RPG for k=3

The above approach would work regardless of whether
the h was obtained from a relaxed plan of RPG (e.g., Ad-
jSum2 heuristic) or not (e.g., max heuristic). We can also
affect the relaxed plan extraction process for obtainingh.
Consider the AdjSum2 heuristic where the value of a state
is estimated by the length of the relaxed plan to reach the
goal and an interaction factor derived from the maximum
interaction among the predicates in the state.

hAdjSum2(si) = len(RP (si)) + maxp,q∈si
∆(p, q) (6)

len(RP (si)) = len(RelP lan(si)+wk∗δk(RelP lan(si), S0))
(7)

Specifically, at each step of the extraction of the relaxed
plan, we prefer actions that are not present in other plans.
We give a cost metric to each action in the PG and the cost
is dependent on how many of the other plans these actions
already support. Then we can use the costs to extract the
relaxed plan.

We have implemented both the methods in the Planner4J
family of Java planners and they together seem to give the
best results. Table 6 presents the results on a sample of
blocksworld and logistics problems as run on a Pentium-M
1.5GHz with 1.25GB RAM under Windows XP with w=5.
We see in lilprob-4-0 that onlywk could not lead to diversity
in the solution.

Related Work
Although the need for finding similar or different plans has
been noticed in the past, there has been little concrete work
on formalizing and solving the problem. Researchers in-
cluding Tate (Tate, Dalton, & Levine 1998) and Myers (My-
ers 2005) have articulated the need for finding dissimilar
plans. Myers, in particular, allows evaluating the plan simi-
larity, but does not seem to provide a way of generating dis-
similar plans efficiently. As we mentioned earlier, intrusion
detection work by Boddy et. al. (Boddyet al. 2005) focuses
on finding multiple qualitatively different plans for a prob-
lem. However, they coerce a traditional planner (Metric-
FF) to generate multiple plans, and filter them out in a post-
processing phase. Boddy et. al. acknowledge the need for
a technique that takes inter-relatedness constraints intoac-
count during search more actively. The problem of finding
similar plans has been considered in the context of replan-
ning. A recent effort in this direction is (Foxet al. 2006),
which shows how a local search planner called LPG can be
modified to produce a plan that is similar to a reference plan.
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Finally, Linden et. al. (Linden, Hanks, & Lesh 1997) mo-
tivate the need for finding related plans comprising a pareto
set in the context of a travel planning scenario.

Outside of planning, we have already mentioned the con-
nections to the work in CSP community in finding sim-
ilar/dissimilar solutions. The challenges in finding inter-
related plans also bears some tangential similarities to the
work in information retrieval on finding similar or dissimi-
lar documents (c.f. (Callan & Minka 2002)).

Conclusion and Future Work
In this paper, we investigated the problem of finding inter-
related plans. We formalized the problem of finding diverse/
similar plans by extending previous formulations for CSPs.
We looked at the different bases for comparing plans, the
different methods of computing comparison, and proposed
useful plan distance functions. We conducted preliminary
experiments with a CSP based exact approach and a heuris-
tic based approximate approach to generate diverse plans.
In future, we intend to implement more approaches and run
extensive experiments.
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Planning researchers are used to think about how to solve
a combinatorial problem like planning efficiently. During
the history of this field, algorithms, heuristics and techniques
with strong formal foundations have been developed. With
this advances researchers have tried to adapt their algorithms
to solve real life problems, and have realized that the
planning algorithm is only a small part of a much more
complex system. When a planning system is introduced in
the workflow of a company or an organization, this system
has to communicate and collaborate with human users. So
fields related to planning like knowledge acquisition, mixed
initiative, machine-user interaction, plan analysis, and plan
management are emerging with strong interest.

The goal of this paper is to show the experiences acquired
during the development of various planning systems,
specially SIADEX (Fdez-Olivares et al. 2006) which is a
platform to assist technical staff in the forest fire fighting in
the region of Andalusia (Spain), in the aim that this could
help other researchers.

What users need usually is not what the planning
researchers think they will need. In this sense we could
distinguish two type of users, in one hand final users that
will be the persons on the console using the system, and are
interested on make their every day work easier, and on the
other hand managers that do not unnecessarily would use
our system, but are interested in improving the workflow of
his enterprise or organization.

The exposition will start showing how the users see a
planning system and what are the drawbacks from their
point of view. Taking as a reference the SIADEX platform
the importance of knowledge acquisition, correct plan
management, and user interaction will be explained. Finally
some final remarks will be presented.

Advantages and disadvantages of using a
planning system from a user perspective

In this section we will contrast some remarkable aspects that
the users balance at the moment of accepting or rejecting
a planning system and are crucial from the success of the

∗This work has been partially financed with a research contract
with the Andalusian Regional Ministry of Environment (Spain)
Copyright c© 2006, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

system implantation on the workflow of a company or
organization.

The advantages the users see in a planning system:

• Automation and detail: The resulting plan is obtained
quickly and the “tactics” of the plan are covered in detail.
Users save time in their decisions.

• Correctness: The obtained plan is “correct” taking into
account the knowledge encoded in the domain.

• Optimization: The plans could be optimized in time,
resources, efficiency, security etc. At last this translates
into a reduction of costs for the company or organization.

• Ubiquity: The plan could be accessed from any place and
from any person who had permissions.

• Instant update: A change in the plan under execution, a
delay of a fail, is immediately known by all the members
of the organization.

• Experience capitalization: If the plans are stored
correctly, the database of past plans could be analysed
in order to learn from the experience or improve the
workflow.

• Security: The monitoring process assures that all tasks are
carried out and in any case stores the failures.

Disadvantages:

• Understanding: Experts users have difficulty in
understanding synthesised plans of hundred of actions.

• Knowledge extraction: Requires willpower, dedication
and time from the experts. Time and knowledge for the
experts is very valuable and they are not always in good
mood to share it.

• Changes in the workflow: Final users are reluctant to
change their way of working. Introduction of an alien
element in the workflow always requires a learning effort
from the users and changes in their working routines.
From the users perspective this is an inconvenient.

• Flexibility of the planner. Changes in the environment
must be reflected in the plan under execution. The
planner has to allow modifications from the expert user.
Automated planners do not always take this into account.
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In next sections some techniques used in the SIADEX
platform in the aim to reduce the weight of these
disadvantages will be presented. Also the areas in where
special research effort is necessarily will be remarked.

Plan understanding
Automatically created plans are hard to understand and
analyse. We need techniques to extract valuable information
from the plan, specially related with the acquisition of the
global structure or “strategy” underlying the plan. Tools
for querying and summarising the plan are necessary. Some
steps have been done (Myers 2006) but there is still an open
field of research in this area. In SIADEX the problem is
being solved in two ways. Firstly the way the users view
the plan is very important. Different users are interested
in different aspects of the plan, in our forest fire fighting
domain for example “operations chief” is interested in the
global strategy while “logistic chief” is more interested in
shifts of the brigades and supplies. Different views of
the same plan, or parts of the same plan, are presented
to different human experts. Note that this views depend
strongly on the domain, and the users. Secondly a generic
language to query the plans is being defined under this
project. Probably users will not use this language directly
but could improve the process of making more advanced
visualization interfaces that could show interesting statistic
and strategical information. Remark that in SIADEX we
have developed a translator from the XML representation of
the plan to Microsoft Project XML format. This possibility
to analyse, query and filter the plan in Ms Project is showing
good results.

Knowledge extraction
The acquisition of information from the experts is crucial for
the success of a planning system. From our point of view
this is the most difficult and critical part in the development
of a planning centered system, mainly because the lack
of research in this area. There are general methodologies
that help in the process of extracting the information, but
none specific for planning. Also there is not a unique
standard way to model and store planning or workflow
related information. Finally there are not automatic tools
that could extract the information from the users without
the intervention of a knowledge engineer. Without these
tools and methodologies three main problems could be
identified. Firstly, the costs of extracting the knowledge
and encoding the domain are high and must be done by
a planning expert. Secondly, changes in the workflow of
the organization imply an adaptation that only could be
afforded by a knowledge engineer. And thirdly because
the complexity of the models, the validation of the plans
is difficult because can not be done directly by the domain
experts. This problem is also related with the correct way
to show the information. In SIADEX we have used UML,
class, flow and process diagrams to represent workflows and
the relations between the different actors. Part of the model
is stored in our ontology server BACAREX but operators
have been encoded in an PDDL extension.

Changes in the workflow
SIADEX is a platform of independent web services
communicated through HTTP. The services could be
connected or disconnected when necessary. This modular
design has the advantage that different services could be
inserted one by one in the workflow of the organization. In
this the adaptation is easier, going from a semi-manual way
of work to a fully automated system.

Flexibility of the planner
Balance between a totally user guided plan generation and
a totally automated planning process must be carefully
measured. In forest fire fighting domain, experts do not
have time to sit down in front of the computer. A waterfall
model where different goal specification, plan generation,
plan reject/accept has been adopted. There are different
subsets of the plan that could be planned separately, every
subset depends on the decisions taken during the previous
subset of the plan. The planner and the domain are carefully
designed to start from a current state and a set of decided
actions and generate the remaining plan. The same model
could be used in plan repairing. Stop the current plan under
execution, modify the state, and generate the remaining plan.
As we use an HTN planner we used the expansion tree as an
heuristic to guide the regeneration process searching for a
new repaired plan similar to the older one in order to not
to mislead the final user. There are a lack of descriptions
of repairing algorithms in the literature. Researchers tend
to concentrate in the planning part forgetting the repairing
when in changing environments you could not make a fresh
new plan, and this is probably more important.

Conclusions
All the disadvantages we have shown lead to projects that
are not able to cope with this contingencies and finally are
not implanted in real workflows, or in any case, that are
expensive, and could only be affordable by medium/big
companies or organizations. Economic costs come mainly
because the lack of methodologies and tools that assist the
knowledge engineer in the domain modeling. Also come
from the necessity to develop and adapt customized tools
for the analysis and management of the obtained plans, and
even for the development of an specific planner designed
to solve certain types of problems. Fortunately the interest
of researchers in fields like knowledge acquisition, domain
modeling or mixed initiative is growing and important
advances in this areas are expected in next years.
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Introduction

My current research interests can be divided into three ma-
jor areas in automated planning. The first one relates to the
idea of analyzing the search space by the search algorithm
(planner) so that important points of the space can be iden-
tified. Another focuses on choosing appropriate represen-
tation of knowledge for the search. The third one attempts
to combine different search methods or heuristics depending
on local features of the search space and gained experience.

Analysis of the search space

Given a domain description, it is reasonable for the planner
to analyze the domain in order to find useful hints about the
structure of the search space. Such analysis can be either
performed in a preliminary way or by gathering experience
from multiple planning attempts. (The latter method may be
used to detect properties of the search space that are very
difficult to prove, or properties that are often but not always
true.) Hints about the structure of the search space result-
ing from these two methods could be treated as a heuristic
that allows a meta-planner to select an appropriate search
method, or to change to a different representation (conscious
shaping of the search space by the planner).

The learning approach seems to be appealing, especially
given that previous research has mostly focused on analyz-
ing the search space to identify properties that always hold.
The requirement of the existence of such properties in every
plan may be too strong, though. There may still be regu-
larities in the search space, such as hub nodes, that areusu-
ally included in the plan. The belief that many domains (in-
cluding benchmark domains for planning) have regularities
is based on the successful use of heuristics to guide planning
(Haslum & Geffner 2000). Additionally, Hoffmann (2003)
analyzed heuristics that ignore delete lists of operations, and
described phenomena that occur in the local search topology.
I believe that a heuristic planner can develop better heuris-
tics using the information mentioned earlier. For example, if
a planner determines that plans in the domain often include
a specific subgoal, it may be wise to start using a heuristic
that adds this subgoal to the goal list right at the beginning
of the planning.

Knowledge representation and shaping the
search space

One way to change the shape of the search space is to change
the representation of facts. My idea is partially inspired by
work by Haslum and Jonsson (2000), who focused on the
idea of removing redundant operatorsgiven an initial state.
I believe that planning could be improved by removing par-
ticular effects of the operators, while still preserving correct-
ness comparing to the plan with non-modified operators (re-
dundant effects). It may also be possible to remove operators
that are rarely used in plans (as learned by the planner). As a
result, removing some operators would allow easier prepro-
cessing of the domain regardless of the initial state (e.g., if it
would reduce the class of a search space to a simpler one) at
the expense of producing less optimal plans in terms of the
plan’s length.

Another way to shape the search space is to search at an
appropriate abstraction level. There exist techniques that ex-
plicitly take the abstraction level into account during the
search. The most notable example of such an approach
is HTN planning using a predefined abstraction structure.
There is also work that mentions learning of an appropriate
hierarchical representation (Knoblock 1994).

Choosing an appropriate search method

Given information about the search space, either from analy-
sis of the space or from learning during the previous searches
in the space, a planner can make an informed decision to se-
lect an appropriate search method. This issue has already
been partially analyzed by Veloso and Stone (1995), who
present a planner that alternates between forward-chaining
and backward-chaining. A similar idea could be to combine
HTN planning (a top-down approach) with a more reactive
approach that finds regularities in the low-level data, and de-
cides to merge them into a higher-level structure (bottom-up
approach). Deciding which of the two approaches to de-
velop may be a challenge because none of them is perfect
by itself. On the other hand, it would be beneficial to use a
hybrid approach that would learn which of the search meth-
ods are most promising in the current state.
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Status of the work
This paper presents research interests and thoughts arising
from preliminary work done under supervision of my advi-
sor, Prof. Marie desJardins. Currently, the ideas are far from
being complete, but I plan to have the ideas further extended
so that they can be used in a Ph.D. thesis proposal (planned
in June 2006).
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