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Preface

The areas of AI planning and scheduling have seen important advances thanks to the
constraint satisfaction techniques. Now, many important real-world problems require
dealing with efficient constraint techniques for planning, scheduling and resource allo-
cation to competing goal activities over time in the presence of complex state-dependent
constraints. Therefore, solutions to these problems must integrate resource allocation
and plan synthesis capabilities. Basically, we need to manage complex problems where
planning, scheduling and constraint satisfaction must be interrelated, which entail a
great potential of application.

The workshop therefore aims at providing a platform for meeting and exchanging
ideas and novel works in the field of AI planning, scheduling, constraint satisfaction
techniques, and many other common areas that exist among them. In fact, most of the
received works are based on combined approaches of constraint satisfaction for plan-
ning, scheduling and mixing planning and scheduling. The workshop will be held in
June, 2006 in Cumbria (United Kingdom) as one of the six workshops at the Interna-
tional Conference on Automated Planning & Scheduling (ICAPS’06).

This book contains the proceedings of the workshop which comprise both theoretic
and applied papers. The number of submitted papers was 15. All the papers were re-
viewed by two anonymous referees from the program committee, who decided to accept
7 as long papers and 2 as short papers, all for oral presentation in the workshop. The
papers provide a good mix of constraint satisfaction techniques for planning, scheduling,
related topics and their applications to real-world problems. We hope that the ideas and
approaches presented in the papers and presentations will lead to a valuable discussion
and will inspire future research and developments in all the workshop participants.

The Organizing Committee April, 2006

Organizers

• Miguel A. Salido, Universidad Politcnica de Valencia (Spain)

• Antonio Garrido, Universidad Politcnica de Valencia (Spain)

• Alexander Nareyek, Digital Drama Studios (Czech Republic)

• Maria Fox (additional collaboration), University of Strathclyde (United King-
dom)





Programme Committee

• Federico Barber Universidad Politcnica de Valencia (Spain)

• Roman Bartak Charles University (Czech Republic)

• Chris Beck University of Toronto (Canada)

• Luis Castillo Universidad de Granada (Spain)

• Amedeo Cesta ISTC-CNR (Italy)

• Maria Fox University of Strathclyde (UK)

• Hector Geffner Universidad Pompeu Fabra (Spain)

• Enrico Giunchiglia Universit di Genova (Italy)

• Derek Long University of Strathclyde (UK)

• Pedro Meseguer IIIA-CSIC (Spain)

• Alexander Nareyek Digital Drama Studios (Czech Republic)

• Eva Onaindı́a Universidad Politcnica de Valencia (Spain)

• Pascal Van Hentenryck Brown University (USA)

• Vincent Vidal CRIL-IUT (France)

• Toby Walsh UNSW, Sydney and NICTA (Australia)

Additional Reviewers

• Antonio Garrido Universidad Politcnica de Valencia (Spain)

• Emmanuel Hebrard UNSW, Sydney and NICTA (Australia)

• Federico Pecora ISTC-CNR (Italy)

• Miguel A. Salido Universidad Politcnica de Valencia (Spain)

• Oscar Sapena Universidad Politcnica de Valencia (Spain)





Factored Planning: How, When, and When Not

Ronen I. Brafman∗

Department of Computer Science
Stanford University, CA, USA

brafman@cs.stanford.edu

Carmel Domshlak
Faculty of Industrial Engineering and Management

Technion, Israel
dcarmel@ie.technion.ac.il

Abstract

Automated domain factoring, and planning methods that uti-
lize them, have long been of interest to planning researchers.
Recent work in this area yielded new theoretical insight and
algorithms, but left many questions open: How to decom-
pose a domain into factors? How to work with these fac-
tors? And whether and when decomposition-based methods
are useful? This paper provides theoretical analysis that an-
swers many of these questions: it proposes a novel approach
to factored planning; proves its theoretical superiority over
previous methods; provides insight into how to factor do-
mains; and uses its novel complexity results to analyze when
factored planning is likely to perform well, and when not. It
also establishes the key role played by the domain’s causal
graph in the complexity analysis of planning algorithms.

Introduction
Factored planning is a collective name for planning algo-
rithms that exploit independence within a planning prob-
lem to decompose the domain, and then work on each sub-
domain (= factor) separately while trying to piece the con-
structed sub-plans into a valid global plan. Hierarchical
planners (Knoblock 1994; Lansky & Getoor 1995) are prob-
ably the best-known examples of such algorithms. They ver-
tically factor the domain into a set of increasingly more de-
tailed abstraction levels. They plan in each level separately
while reusing the solution of more abstract levels. The prob-
lem, however, is that hierarchical decomposition works well
only in domains where one component’s value has little di-
rect and indirect influence on that of others. When such
structure is missing, abstraction-generation techniques such
as (Sacerdoti 1974; Knoblock 1994) yield no or only mi-
nor decomposition, and backtracking between sub-domains
in the latter case can dominate the complexity of solving the
non-decomposed problem.

The spectacular improvement in standard planning algo-
rithm over the past decade, together with the above lim-
itations of vertical factoring, pushed factored planning to
the backstage of domain-independent planning research.1

∗On leave from Ben-Gurion University.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Here we refer to methods that automatically induce a hierarchy
from domain description, unlike HTN planning (Erol, Hendler, &

Recently, however, this situation has somewhat changed.
First, a number of papers on the formal complexity of plan-
ning as a function of certain factored decomposition ap-
peared (Brafman & Domshlak 2003; Domshlak & Dinitz
2001). Second, recent developments in heuristic-search
planning have shown that factored problem decompositions
and abstractions can provide extremely effective heuristic
guidance (Helmert 2004). Finally, recent work by Amir
& Engelhardt 2003 (henceforth referred to as AE) has pro-
duced a systematic, general-purpose approach to factored
planning, with a clear worst-case complexity analysis.

This recent evolution of work on domain-independent fac-
tored planning leaves open two major questions. The first
question is how, i.e., what is the best way to decompose a
problem? Previous factoring methods used various graphi-
cal structures to drive the factorization process. The struc-
ture of such a graph is a significant parameter in the success
of each method. Hence, finding a graphical structure leading
to a provably better (or even optimal) factorization is clearly
of interest. The second, closely related question is when:
When should factored planning be expected to work better
than standard planning. Addressing this question requires
better understanding of the complexity of factored and non-
factored planning and the parameters affecting them.

In this paper we address these two questions of how and
when through the lens of worst-case complexity analysis.
We identify the domain’s causal graph as an essential struc-
ture in the analysis of factored planning, showing that it cap-
tures all the sufficient and necessary information about vari-
able interactions. In particular, we show that our approach
based on causal graphs is strictly more efficient (by up to
an exponential factor) than the AE approach. We show that
the tree-width of causal graphs plays a key role in the com-
plexity of both our approach to factored planning, as well
as existing methods for non-factored step-optimal planning.
This finding allows us to relate factored and non-factored
methods and understand when each is likely to work best.

Background
We start with a few basic definitions of the planning prob-
lem as defined in the SAS+ formalism (Bäckström & Nebel

Nao 1994) where the hierarchy provides additional domain knowl-
edge that often significantly improves performance.
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1995) followed by the definition of the causal graph. The
SAS+ formalism models domains using multi-valued state
variables. It distinguishes between pre-conditions and pre-
vail conditions of an action. The former are required values
of variables that are affected by the action. The latter are re-
quired values of variables that are not affected by the action.
The post-conditions of an action describe the new values its
precondition variables. For example, having a visa is a pre-
vail condition for applying the action Enter-USA, while hav-
ing a valid ticket is a precondition of the action Fly-To-USA,
as its value changes from true to false following the action’s
execution. An action is applicable if and only if both its pre-
and prevail conditions are satisfied.

Definition 1 A SAS+ problem instance is given by a
quadruple Π = 〈V,A, I,G〉, where:
• V = {v1, . . . , vn} is a set of state variables with finite

domains dom(vi). The domain dom(vi) of the variable vi
induces an extended domain dom+(vi) = dom(vi)∪{u},
where u denotes the value: unspecified.

• I is a fully specified initial state, that is, I ∈ ×dom(vi).
By I[i] we denote the value of vi in I .

• G specifies a set of alternative goal states. Adopting the
standard practice in the planning research, we assume
that such a set is specified by a partial assignment on V ,
that is, G ∈ ×dom+(vi). By G[i] we denote the value
provided by G to vi (with, possibly, G[i] = u.)

• A = {a1, . . . , am} is a finite set of actions. Each
action ai is a tuple 〈pre(ai), post(ai), prv(ai)〉, where
pre(ai), post(ai), prv(ai) ⊆ ×dom+(vi) denote the pre-,
post-, and prevail conditions of a, respectively. In what
follows, by pre(a)[i], post(a)[i], and prv(a)[i] we denote
the corresponding values of vi.

The factorization of planning problems we propose here
is based on the well-known causal graph structure (Bacchus
& Yang 1994; Knoblock 1994; Brafman & Domshlak 2003;
Domshlak & Dinitz 2001; Helmert 2004; Williams & Nayak
1997).

Definition 2 Given a planning problem Π = 〈V,A, I,G〉,
the causal graph CGΠ of Π is a mixed (directed/undirected)
graph over the nodes V . A directed edge (−−−→vi, vj) appears
in CGΠ if (and only if) some action in A that changes the
value of vj has a prevail condition involving some value of
vi. An undirected edge (vi, vj) appears in CGΠ if (and only
if) some action in A changes the values of vi and vj simul-
taneously.

Informally, the immediate predecessors of v in CGΠ are
all those variables that directly affect our ability to change
the value of v. It is worth noting that nothing in Definition 2
prevents us from having for some pair of variables vi, vj ∈
V in CGΠ both (−−−→vi, vj), and (−−−→vj , vi), and (vi, vj). In any
case, it is evident that constructing the causal graph CGΠ of
any given SAS+ planning problem Π is straightforward.

Example 1 Suppose we have two packages, A and B, a
rocket, and two locations, E and M . Packages can be ei-
ther in a location or in the rocket, and the rocket requires

?>=<89:;f

?>=<89:;r
����

��
��

��?
??

??
?

?>=<89:;a ?>=<89:;b
Figure 1: Causal graph for Example 1.

fuel to fly. The actions correspond to loading and unloading
the packages, flying the rocket, and fueling the rocket. Fly-
ing the rocket consumes the fuel, but it can be fueled in any
location. We model this problem in the SAS+ formalism as
follows. The variables are r, a, b, f ; r denotes the position
of the rocket and its domain is at-E, at-M. a and b denote
positions of the packages A and B and their domains are:
at-E, at-M, at-rocket. f denotes whether or not the rocket
has fuel with values full and empty. For x 6= y ∈ {e,m},
the actions are fly-x-y, load-x-y, unload-x-y, and fuel. The
fly-x-y actions have two precondition – f=full and r=at-x.
Their post-conditions are f=empty and r=at-y. The load-
x-y actions have one precondition – x=at-y – and one pre-
vail condition – r=at-y. The single post-condition is x=at-
rocket. Finally, the action fuel has one pre-condition and
one post-condition: empty and full respectively. The causal
graph for this problem is shown in Figure 1.

Sequence-Based CSP Planning
The central questions for any factored planning approach are
how to decompose the problem and how to piece together
solutions from different sub-domains. Our initial answer to
the first question, which later we generalize, is very simple:
factor = variable. We can now focus on the questions of how
to combine a set of given local plans for different factors, and
then, how to generate these local plans. The causal graph
plays a key role in the algorithm we propose. Its tree-width
plays an equally important role in the complexity analysis of
the algorithm.

Locally-Optimal Factored Planning
Let Ai ⊆ A denote the set of all actions affecting vi ∈
V . Suppose that, for every vi, we are given a set of pre-
scheduled action sequences SP lan(vi) where each ρi ∈
SP lan(vi) is a finite sequence of pairs (a, t) with a ∈ Ai,
and t ∈ Z+ is the time point at which a is to be performed.
We now ask ourselves how we might construct plans using
these n sets of action sequences SP lan(vi). A key observa-
tion is that this particular problem can be solved by compil-
ing it into a binary CSP (denoted SeqCSP) over n variables
X1, . . . , Xn where:

1. The domain of Xi is exactly SP lan(vi), and
2. The constraints of SeqCSP bijectively correspond to the

edges of the causal graph CGΠ.
Informally, the constraint corresponding to a directed edge
(−−−→vi, vj) ∈ CGΠ ensures that the action sequence selected
for vi provides all the prevail conditions required by the ac-
tions of the sequence selected for vj , and that the timing of
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procedure LID
d := 1
loop

for i := 1 . . . n do
Dom(Xi) := all sub-plans for vi of length up to d,

over all schedules across nd time points.
Construct SeqCSPΠ(d) over X1, . . . , Xn.
if ( solve-csp(SeqCSPΠ(d)) ) then

Reconstruct a plan ρ from the solution of SeqCSPΠ(d).
return ρ

else
d := d+ 1

endloop

Figure 2: Factored planning via local iterative deepening.

this provision is correct. The constraint corresponding to an
undirected edge (vi, vj) ∈ CGΠ ensures that the restrictions
of the sequences selected for vi and vj to Ai∩Aj are identi-
cal. This causal-graph based problem reformulation allows
us to formalize the worst-case complexity of solving our
“sequences combination” problem in a structure-informed
manner. Since each constraint of SeqCSP can be veri-
fied in polynomial time, from a classical result on tractable
CSPs (Dechter 2003) we have that the time complexity of
the “sub-plans combination” problem is O(nσw+1), where
w is the tree-width of the undirected graph underlying CGΠ,
and σ = maxi {|SP lan(vi)|}.

While in itself our “sequences combination” problem is
not of general interest, the distance between its CSP formu-
lation, and that of general planning problems is not large.
Specifically, given a planning problem Π = 〈V,A, I,G〉,
one can solve it using the LID (short for local iterative deep-
ening) procedure depicted in Figure 2. LID searches for a
plan by performing local iterative deepening on the maximal
number of changes that a plan might induce on a single state
variable. Given such an upper bound d ≥ 1, LID formu-
lates a constraint satisfaction problem SeqCSPΠ(d) where,
for 1 ≤ i ≤ n, SP lan(vi) contains all (consistent with I
and G) sequences of length at most d of actions affecting vi.
Each such sequence is considered with respect to all possi-
ble time schedules of its actions. Since each state variable
in iteration d is allowed to change its value up to d times,
it is sufficient to consider a time horizon of nd. If, at some
iteration d, SeqCSPΠ(d) is solvable, a valid plan (containing
no idle time points) can be easily extracted from the corre-
sponding solution of SeqCSPΠ(d).

Theorem 1 LID is a sound and complete planning algo-
rithm. Moreover, if LID terminates with a plan ρ at iteration
d, then, for any other plan ρ′ for the considered problem in-
stance, there exists a state variable that changes its value on
ρ′ at least d times.

The CSP encoding used in LID may seem a bit crude, but
it is simple to understand, and all the essential ideas and
formal results of this work already fall out from it. Later,
however, we describe an equivalent, yet technically more
involved, encoding in the spirit of standard planning-as-CSP
encodings. For the next result we introduce the following
notation: Let Plan(Π) be the (possibly infinite) set of all
plans for Π. For each plan ρ ∈ Plan(Π), and each 1 ≤

i ≤ n, let ρi denote the subset of all actions in ρ affecting
variable vi. Finally, let GCG denote the undirected graph
underlying causal graph CGΠ.

Theorem 2 Given a planning problem Π, it can be solved
using LID in time

O(n(nδa)wδ+δ) (1)

where a = maxi {|Ai|}, w is the tree-width of GCG, and δ
is the local depth of Π defined as:

δ = min
ρ∈Plan(Π)

max
1≤i≤n

{|ρi|} (2)

Theorem 2 expresses2 the complexity of LID in terms of
two parameters. The tree width of the domain’s causal graph
measures the level of interaction between the domain vari-
ables. The parameter δ is problem-instance dependent and it
expresses the minmax amount of work required on a single
variable. In particular, we note that Theorem 2 establishes a
new tractable class of planning problems, because for prob-
lems with both w and δ bounded by some constants, Eq. 1
trivially reduces to a polynomial.

Generalized Factoring
So far, we assumed that factor = variable, yet it is not clear
that this factorization leads to the best possible worst-case
performance. Here we take a closer look at this question
by drawing on our previous analysis to understand possible
effects of using a different factoring.

Two parameters affect the worst-case complexity of fac-
tored planning: tree-width and minmax number of changes
per factor (local depth, for factor=variable.) Thus, we need
to understand the effect of alternative factorizations on these
parameters. Consider variables v1, . . . , vk that change their
value c1, . . . , ck times in a locally optimal plan when single
variable factors are used. If we combine these variables into
a single factor, this new factor will change its value at most∑k
i=1 ci times in any locally optimal (for the new factoriza-

tion) plan. In general, it is not hard to verify that the minmax
number of changes per factor under factorization with max-
imal factor size k could be as large as kδ.

While this seems like a big loss, observe that it can be off-
set by a reduction in the tree-width of the constraint graph.
Indeed, it is well known that for each CSP whose primal
graph has tree-width w, there is a tree-decomposition with
maximal node size w + 1. Such a tree-decomposition de-
fines an equivalent CSP whose variables (our new factors)
are cross-products of the original variables, and whose con-
straint graph forms a tree3, that is, has tree-width of 1. We
also already know that df , the minmax number of value
changes per new factor, is upper bounded by (w+1)δ. How-
ever, observe that it can also be much better. For any tree-
decomposition, we know that df is bounded by the maximal

2For the proofs of this and other formal claims in the paper, we
refer the reader to the full version.

3Though constructing an optimal tree-decomposition (i.e., one
with maximal node size w + 1) is NP-hard (Arnborg, Cornell, &
Proskurowski 1987), there are numerous effective, fast approxima-
tion and heuristic algorithms for this problem.
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sum of value changes of original variables in any new factor.
If so, then unless all the variables clustered together have to
change δ times each, df would be less than (w + 1)δ, and
possibly much less, down to δ!

Consequently, we can adapt LID to any tree-
decomposition, and any form of factoring. Instead of
iterating over the maximal number of value changes
of a variable, we iterate over the maximal number of
value changes of a factor, i.e., a node of the given tree-
decomposition. We refer to this procedure as LID-GF, and
its complexity is described by Theorem 3.

Theorem 3 Given a planning problem Π, the time com-
plexity of solving it using LID-GF on an optimal tree-
decomposition of GCG is O

(
n(wa+ a)df

)
, where w is the

treewidth of GCG, a = maxi {|Ai|}, and df ≤ (w + 1)δ.

It is now apparent that by moving from the extreme of fac-
tor = variable to an optimal tree-decomposition, we cannot
lose, and are most likely to improve our worst-case com-
plexity. The complexity now changes from exponential in
wδ to something that is at least as good as wdavg , where
davg is the maximal (over the factors) average number of
variable changes within the factor. Thus, when constructing
a tree-decomposition, one needs to consider both the cluster
size and its variability, where the value to keep in mind is
the (unknown) sum of value changes of variables in a clus-
ter. The good news is that even if we know nothing about
the domain, Theorems 2 and 3 imply that we cannot lose by
moving to an optimal tree-decomposition.

Perhaps the better news is that we have here a concrete
role for domain knowledge. Suppose we have some idea
about which variables are likely to change a lot and which
variables are likely to change just a little. In that case, we
can impose some constraints on the tree-decomposition, en-
suring that certain variables appear together in it. We can do
this by constructing a constrained tree-decomposition, that
is, a tree decomposition in which we a priori require certain
problem variables to be together. This could lead us to tree
decomposition with larger nodes, but with smaller sum-of-
value-changes, leading to improved performance.

Comparison with AE
Having our generalized LID-GF approach, we now show that
it provides better complexity guarantees than AE, a recently
proposed approach to factored planning with the first clear
complexity analysis (Amir & Engelhardt 2003).

Similarly to LID-GF, AE has a single factoring phase, fol-
lowed by a sequence of planning phases invoked in an iter-
ative deepening fashion over the upper-bound on the depth
of the local plans. The factoring phase takes a certain graph
induced by the given problem instance, and constructs a tree
decomposition of this graph (named here AEGΠ) using one
of the off-the-shelf algorithms for close-to-optimal tree de-
composition. Given such a tree of planning factors (each fac-
tor corresponding to a subset of state variables), each plan-
ning phase processes this tree incrementally in a bottom-up
fashion. In processing each sub-domain, AE looks for a lo-
cal plan of a bounded depth over a certain set of complex

macro actions. The search for local plans is performed us-
ing a generic black-box planner.4

Though algorithmically different, both LID-GF and AE
use local iterative deepening to search for plans, and pro-
vide similar guarantees on the quality of the resulting plan.
That is, plans returned by both approaches are guaranteed to
be locally optimal at the level of factors of tree decompo-
sition in use. However, the worst-case complexity of these
two approaches is not the same. First, while both approaches
scale linearly in the number of state variables, the worst-case
complexity of AE grows exponentially inwaedf = Θ(w2

aeδ)
where wae is the tree-width of AEGΠ, while that of LID-GF
grows exponentially in wdf = Θ(wδ). Assuming for a
moment that the tree-width of the causal graph and this of
AEGΠ are comparable, this already shows that LID-GF is
worst-case more efficient than AE. However, Theorem 4
shows that the actual difference is much larger, and that it
can be exponential in Θ(n).

Theorem 4 Given a planning problem Π, let w be the tree-
width of GCG, and wae be the tree-width of AEGΠ. For all
planning problems Π, we have wd ≤ wae, and there are
problems for which we have wd = O(1) and wae = Θ(n).

Such a gap between the time complexity of LID-GF and
AE stems from the structure of the dependencies between
the state variables that these two approaches exploit. While
problem decomposition in LID-GF is based on the causal
graph, AEGΠ is an undirected graph over the nodes V , con-
taining an edge (vi, vj) iff there is an action a ∈ A that
somehow involves both vi and vj , that is,

(pre(a)[i] 6= u ∨ post(a)[i] 6= u ∨ prv(a)[i] 6= u)∧
(pre(a)[j] 6= u ∨ post(a)[j] 6= u ∨ prv(a)[j] 6= u)

Given that, it is easy to verify that GCG is a subgraph of
AEGΠ, and thus w ≤ wae.

To show the potentially linear difference between w and
wae, consider the following problem Π′ over (possibly
propositional) variables v1, . . . , vn:
• v1, . . . , vn−1 can each be changed independently (and

only independently) of the rest of the variables, i.e.,

∀1 ≤ i ≤ n− 1,∀a ∈ Ai,∀1 ≤ j ≤ n. prv(a)[j] = u

• For each pair of variables from v1, . . . , vn−1, there exists
an action changing the value of vn prevailed by an assign-
ment to this pair of variables, that is:

∀1 ≤ i 6= j ≤ n− 1 ∃a ∈ An. prv(a)[i] 6= u ∧ prv(a)[j] 6= u

Here, GCG forms a tree (that is, w = 1), while AEGΠ forms
a clique of all n nodes, and thus wae = n.

Factoring and Plan Optimality
Classical planning offers a few notions of plan optimality,
with the most standard being sequential optimality (hence-
forth, OP), which corresponds to a plan with a minimal num-
ber of actions. Step-optimal planning (SOP) is an alternative
that stands for minimizing the number of time steps in which

4For detailed description of AE, see (Amir & Engelhardt 2003).
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a plan can be executed under a valid parallelizing of its ac-
tions. Depending on the application, SOP can be either of
interest on its own, or considered as a reasonable compro-
mise when OP is beyond reach. We argue that, from this
perspective, the notion of local optimality (LOP) targeted
by factored planners is not any different. In some applica-
tions, LOP is of interest on its own, e.g., in the context of
distributed systems. And viewed as an approximation to OP,
LOP and SOP provide similar guarantees, as shown below.

Lemma 1 Given a planning problem Π, let
mop,msop,mlop denote the number of actions in an
optimal, step-optimal, and locally optimal plan, respec-
tively. We have that msop ≤ n ·mop and mlop ≤ n ·mop

(where n is the number of variables in Π), and both these
bounds are tight.

Given the “approximation equivalence” between SOP and
LOP established by Lemma 1, we turn to consider the time
complexity guarantees of standard methods for OP, SOP, and
LOP. To the best of our knowledge, such worst-case time
guarantees for OP are either exponential in the length of the
optimal plan (e.g., state-space forward search using BFS), or
exponential in the problem size (e.g., planning-as-CSP with
a linear encodings (Kautz & Selman 1996)). At this point,
for SOP, all methods with established complexity guaran-
tees are of the second type, that is, worst-case exponential in
the problem size – we will have something to say about this
later. Thus, moving from OP to SOP appears to buy us noth-
ing in terms of formal bounds on the time complexity. The
situation with LOP, however, is different. Theorem 2 shows
that the direct dependence of LID’s complexity on both the
problem size and plan length is polynomial. The exponential
dependence of LID is on two other, deeper problem charac-
teristics, namely the tightness of problem structure (w), and
the amount of local effort required on each problem factor
in order to solve the problem (δ).

Below we take a closer look at the relationship between
the complexity guarantees for LOP, SOP, and OP. In the
course of this comparative analysis, we provide and exploit
some new results on the complexity of SOP. In particular,
these results show that in certain situations SOP can actu-
ally provide better upper bounds on time complexity than
OP. Moreover, these results emphasize the importance of the
causal graph in the analysis of planning, as its tree-width
plays an important role in the analysis of SOP, as well.

Complexity of SOP using DK

To make our discussion concrete, we consider a character-
istic planning-as-CSP approach to SOP described in (Do &
Kambhampati 2001) (named here DK). While describing
the DK encoding, we ignore the use of graphplan in DK to
obtain reachability information in form of temporal mutexes.
We make this simplification to separate between the core of
the methods and their various possible extensions. The DK
encoding is parameterized by an upper bound, m, on the
step-length of a plan. Given m, the DK encoding includes a
single variable v[k] for every problem variable v and every
time stamp 1 ≤ k ≤ m. The domain of each variable v[k]
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Figure 3: Primal graph G(d)
DK of DK-CSPΠ(3) for example.

is the set of actions that can change the value of v. For any
1 ≤ k ≤ m, the value of all variables v[k] encode the state
of the system at time k. The following (binary) constraints
are imposed:

• Initial state: If v[1]
i = a, then pre(a) ∪ prv(a) ⊆ I .

• Goals: If v[m]
i = a and G[i] 6= u, then post(a)[i] = G[i].

• Precondition: If v
[k]
i = a and v

[k−1]
i = a′, then

post(a′)[i] = pre(a)[i].

• Prevail condition: If v[k]
i = a, v[k−1]

j = a′, v[k]
j = a′′,

and prv(a)[j] 6= u, then post(a′)[j] = post(a′′)[j] =
prv(a)[j].

• Simultaneity: If a ∈ Ai ∩Aj , then v[k]
i = a iff v[k]

j = a.

Example 2 Consider the Rocket domain once again, and let
m = 3. The DK encoding of this domain is as follows.

• Initial-state: Set dom(f [1]) = {noopfull, f ly-e-m},
dom(r[1]) = {noopr=e, f ly-e-m}, etc.

• Goal-state:
For A, we set dom(a[3]) = {noopa=m, unload-a-m}.

• Precondition relevant to r[2]:

r
[2] ∈ {noopr=e, fly-e-m} → r

[1] ∈ {noopr=e, fly-m-e}

r
[2] ∈ {noopr=m, fly-m-e} → r

[1] ∈ {noopr=m, fly-e-m}

• Prevail relevant to a[2]:

a
[2] ∈ {load-e, unload-e} → r

[1] ∈ {noopr=e, fly-m-e} ∧

r
[2] ∈ {noopr=e}

a
[2] ∈ {load-m,unload-m} → r

[1] ∈ {noopr=m, fly-e-m} ∧

r
[2] ∈ {noopr=m}

• Simultaneity:

r
[2]

= fly-e-m ↔ f
[2]

= fly-e-m

r
[2]

= fly-m-e ↔ f
[2]

= fly-m-e

The DK encoding, when used in conjunction with itera-
tive deepening on the plan-length bound m is guaranteed to
yield a step-optimal plan (Do & Kambhampati 2001). Now,
Figure 3 depicts the primal graph G(3)

DK of DK-CSPΠ(3) for
our running example. Observe that constraints between vari-
ables at adjacent time points in DK-CSPΠ(m) (i.e., variables
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of the form v
[k]
j and v[k+1]

i ) involve only neighboring vari-

ables within the causal graph. Indeed, G(m)
DK corresponds to

connected layers of (undirected) causal graphs GCG. Thus,
we would expect the tree-width of G(m)

DK to be closely related
to the tree-width w of GCG, and this is indeed the case.

Lemma 2 Let Π be a planning problem, and let w be the
tree-width of GCG. For any m ≥ 1, the tree-width wm of
G(m)
DK is bounded by wm ≤ min {wm,n}. This upper bound

is tight for m > n, that is, we have wm = n.

Using Lemma 2, we can immediately provide a structure-
aware complexity bound on the “global-length” iterative
deepening approach to CSP-based planning.

Theorem 5 Let Π be a planning problem, w be the
tree-width of GCG, and m be the minimal concurrent
length of a plan for Π. Then, Π can be solved
in time O(min {nm · an+1, nm · awm+1}), where a =
maxi {|Ai|}.

LID/LOP vs. DK/SOP
With these results, we can compare the relative strengths and
weaknesses of DK and LID with respect to their time com-
plexity guarantees. We believe that the overall insight holds
for other SOP methods as well. We distinguish between a
few cases based on the tightness of the causal graph (w),
and the step-length of optimal plans (m).
(1) w = Θ(n). This is the case of very dense causal graphs,
indicating strong interactions between variables. This case
is a-priori unlikely to be favorable for a factored approach,
and Theorems 2 and 5 concur.
(2) w = O(1). In that case, LID’s complexity is exponential
in δ, while DK is exponential in min{m,n}. Since δ ≤ m,
LID dominates whenever δ < n. For example, when m =
O(n2), we must have δ ≥ n. However, if m = o(n log n),
and local plans are well balanced (recall our discussion of
general factorization), we have δ < n. And if m = o(n),
then δ < n for any factorization.
(3) w = o(n). In such case (e.g., w = log(n)), LID com-
plexity is exponential in δw, whereas DK is exponential
in min{mw,n}. As in case (2), LID is a win when local
plan length is not too large in comparison to n/w, e.g., if
w = log n and δ = o(n/ log(n)).

In short, considering scalability in terms of complexity
guarantees, we see that LOP scales better than SOP when lo-
cal plans are not too long (relatively to n), and the causal tree
is not too dense, satisfying the relation wδ < min {wm,n}.
Similarly, it can be shown that LOP scales better than OP
if the domain preserves the relation wδ < min {mop, n}.
Intuitively, if the number of factors grows proportionally to
the number of problem variables, and the topology of the
causal graph and the required local efforts on the factors
remain bounded, LOP will scale up. It is then natural to
ask whether interesting problems have such features. While
this ultimately requires empirical evaluation, we can already
point out a few very encouraging indications.

First, upon examination of the standard benchmarks used
in recent IPCs, we found5 that the step-optimal plan length
in all these benchmarks is relatively low, and does not ap-
pear to grow faster than n. Second, if one considers the type
of oversubscription planning problems recently discussed in
the literature (Smith 2004; Benton, Do, & Kambhampati
2005), one sees that many such problems are characterized
by the need to accomplish many, relatively independent and
simple tasks (e.g., small experiments at different sites). Fi-
nally, (Williams & Nayak 1997) describe planning for me-
chanical systems with many parts possibly contributing to
the plan, but only a small number of actions each. We be-
lieve that these observations strongly encourage theoretical
and empirical analysis of factored planning.

The Implicit Local Encoding
At this point, we are basically done with our theoretical anal-
ysis of factored planning and causal graphs. However, we
would like to address one pragmatic problem with the ex-
plicit sequence-based encoding that we used throughout the
paper. This encoding has variables with very large domains.
Each variable assignment makes a relatively strong commit-
ment about the nature of the plan. This has no implications
regarding our theoretical worst-case analysis, yet in practice,
this is usually not a very good idea. Here we would like to
address a question that may have arisen in the mind of the
reader regarding the possibility of encoding factored plan-
ning in a manner more similar to standard planning-as-CSP
approaches, where variable values correspond to the execu-
tion of a single action, rather than a sequence of actions. The
answer to this question is positive, although the encoding is
not obvious, a bit involved, and less intuitive.6

The new encoding created for the dth iteration of LID is
denoted here by CSPΠ(d). The variables of CSPΠ(d), are
X = {v(j)

i | 1 ≤ i ≤ n, 1 ≤ j ≤ d} with

Dom(v
(j)
i ) = {(a, t) | a ∈ Ai ∪NOOPi, 1 ≤ t ≤ nd} ,

where, for each vi ∈ V with dom(vi) = {ϑ1, . . . , ϑk},
NOOPi = {noopi,1, . . . , noopi,k} is a set of value-
preserving dummy actions with prv(noopi,j) = ∅, and
pre(noopi,j) = post(noopi,j) = ϑj . In short, the value of

v
(j)
i captures the jth value change of vi on a plan for Π. The

following five types of constraints are imposed. For ease
of presentation, in what follows we refer to the action and
time-point components of the value of v(j)

i by α(v(j)
i ) and

τ(v(j)
i ), respectively.

(a) Initial state: Variables of the form v
(1)
i can be assigned

only to actions that are executable in the initial state.

(b) Goal state: Variables of the form v
(d)
i can be assigned

only to actions that produce/preserve the goal value for
vi (if any.)

5For additional closely related observations, see analysis of
planning under “canonicity assumption” in (Vidal & Geffner 2006)
where each action is assumed to be required at most once.

6This is why we decided to stick with the explicit sequence en-
coding so far.
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(c) Precondition: If α(v(k)
i ) = a, then v(k−1)

i must have as
its value an action providing/preserving pre(a)[i].

(d) Prevail: For each (−−−→vk, vi) ∈ CGΠ, and each 1 ≤
j, l ≤ d, we pose a constraint ψ1 ∨ ψ2 ∨ ψ3 over
{v(j)
i , v

(l)
k , v

(l+1)
k }, where

ψ1 ≡ prv(α(v
(j)
i ))[k] = u

ψ2 ≡ τ(v
(j)
i ) < τ(v

(l)
k ) ∨ τ(v

(j)
i ) > τ(v

(l+1)
k )

ψ3 ≡ τ(v
(j)
i ) > τ(v

(l)
k ) ∧ τ(v

(j)
i ) < τ(v

(l+1)
k ) ∧

prv(α(v
(j)
i ))[k] = post(α(v

(l)
k ))[k]

Informally, if the action α(v(j)
i ) is independent of the value

of vk (that is, ψ1 holds), or v(j)
i gets scheduled either before

the lth or after the (l + 1)th value changes of vk (that is,
ψ2 holds), then this particular pair of value changes of vk is
irrelevant to applicability of v(j)

i . Otherwise, α(v(l)
k ) should

provide α(v(j)
i ) with the value required by the latter.

(e) Simultaneity: For each (vi, vk) ∈ CGΠ, and each
1 ≤ j ≤ d, we pose a constraint φ1 ∨ φ2 over
{v(j)
i , v

(1)
k , . . . v

(d)
k }, where

φ1 ≡ α(v
(j)
i ) 6∈ Ai ∩Ak

φ2 ≡
_

1≤l≤d

α(v
(j)
i ) = α(v

(l)
k ) ∧ τ(v(j)

i ) = τ(v
(l)
k )

and a similar constraint is posed in the other direction. In-
formally, if α(v(j)

i ) is not one of the actions affecting both
vi and vk, then its scheduling does not require any synchro-
nization between vi and vk. Otherwise, the action α(v(j)

i )
should appear similarly scheduled in time in the sub-plans
for both vi and vk.

Example 3 Considering our Rocket domain with d = 3, a
snapshot of the CSPΠ(d) encoding is as follows.

• Initial-state: Set α(f (1)) ∈ {noopfull, f ly-e-m}, α(r(1)) =
{noopr=e, f ly-e-m}, etc.

• Goal-state:
For A, we have α(a[3]) ∈ {noopa=m, unload-a-m}.

• Precondition between r(2) and r(1):

r
(1)

= (fly-e-m, t1) −→“
r
(2)

= (fly-m-e, t2) ∨ r(2) = (noopr=m, t2)
”
∧ (t2 > t1)

• Prevail between r(2) and f (1), f (2):

ψ1 ←→ r
(2)

= (noopr=e, t2) ∨ r
(2)

= (noopr=m, t2)

ψ2 ←→

r
(2)

= (∗, t2) ∧ f(1)
= (∗, t′1) ∧ f

(2)
= (∗, t′2) ∧

`
t2 < t

′
1 ∨ t2 > t

′
2

´
ψ3 ←→

“
r
(2)

= (fly-e-m, t2) ∨ r(2) = (fly-m-e, t2)
”
∧“

f
(1)

= (fuel, t
′
1) ∨ f

(1)
= (noopfull, t

′
1)

”

ONMLHIJKf (1) ONMLHIJKf (2)

NNNNNNNNNNNNNN

pppppppppppppp
ONMLHIJKf (3)

ONMLHIJKr(1)

gggggggggggggggggggggggggggg

��
��

��
�

ONMLHIJKr(2)

��
��

��
�

pppppppppppppp

NNNNNNNNNNNNNN ONMLHIJKr(3)

��
��

��
�

WWWWWWWWWWWWWWWWWWWWWWWWWWWW

ONMLHIJKa(1)

jjjjjjjjjjjjjjjjjjjjj

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ONMLHIJKa(2)

jjjjjjjjjjjjjjjjjjjjj

??????? ONMLHIJKa(3)

???????

TTTTTTTTTTTTTTTTTTTTT

GFED@ABCb(1)

oooooooooooooooooooooooooooooooo GFED@ABCb(2) GFED@ABCb(3)

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Figure 4: Primal graph G(3)
CSP of CSPΠ(3) for our example.

• Simultaneity between r(2) and f (1), f (2), f (3):

φ1 ←→ r
(2)

= (noope, t2) ∨ r
(2)

= (noopm, t2)

φ2 ←→ ξem ∨ ξme, where

ξem ←−
“
r
(2)

= (fly-e-m, t2) ∧ f(1)
= (fly-e-m, t′1) ∧ (t2 = t

′
1)

”
∨“

r
(2)

= (fly-e-m, t2) ∧ f(2)
= (fly-e-m, t′2) ∧ (t2 = t

′
2)

”
“
r
(2)

= (fly-e-m, t2) ∧ f(3)
= (fly-e-m, t′3) ∧ (t2 = t

′
3)

”
and ξme is defined symmetrically.

Lemma 3 LID based on a sequence of CSPΠ(d) problems is
a sound and complete planning algorithm. Moreover, given
a solvable planning problem Π, LID over {CSPΠ(d)}∞d=1
terminates at iteration δ as in Eq. 2.

The proof of Lemma 3 is simple, yet technically involved
(and thus omitted here), showing that the constraints of
CSPΠ(d) simply imitate these of SeqCSPΠ(d).

But we would like to establish more than simply the cor-
rectness of the implicit encoding. We now prove that the
two encodings are equivalent complexity-wise by provid-
ing a precise characterization of the tree-width of the primal
graph associated with the implicit encoding: Consider the
primal graph G(d)

CSP of CSPΠ(d). Not very surprisingly, the
structure of this primal graph relates closely to the structure
of the causal graph. Specifically, if we have (vi, vj) ∈ GCG,
then, for 1 ≤ k, l ≤ d, we have (v(k)

i , v
(l)
j ) ∈ G(d)

CSP . By
exploiting this connection, Lemma 6 provides the precise
relation between the tree-width of G(d)

CSP and tree-width of
GCG, that is, of the causal graph.

Theorem 6 Let Π be a planning problem, w be the tree-
width of GCG, and wd be the tree-width of G(d)

CSP . Then, we
have wd = wd.

Conclusion
The idea of divide and conquer through domain decomposi-
tion has always appealed to planning researchers. In this pa-
per we provided a formal study of some of the fundamental
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questions factored planning brings up. This study resulted
in a number of key results and insights. First, it provides a
novel factored planning approach that is more efficient than
the best previous method of (Amir & Engelhardt 2003). Sec-
ond, it identifies the domain’s causal graph as one of the key
parameters in the complexity of factored and non-factored
planning. Third, the complexity analysis provided enables
us to compare between the complexity of standard and fac-
tored methods, and provides new classes of tractable plan-
ning problems. As we noted, these tractable classes appear
to be of genuine practical interest, which has not often been
the case for past results on tractable planning. Finally, our
analysis helps to understand what makes one factorization
better than another, and makes a concrete recommendation
on how to factor a problem domain both in presence and in
absence of additional domain knowledge.

Future work must examine how well our theoretical in-
sights and new performance guarantees translate into prac-
tical performance. However, note that Amir and Engel-
hardt (2003) have already demonstrated on a certain domain
that factored planning can significantly outperform state-of-
the-art planners such as FF (Hoffmann & Nebel 2001) and
IPP (Köehler & Hoffmann 2000). While the empirical eval-
uation in (Amir & Engelhardt 2003) is very preliminary,
it does indicate that on some non-trivial problems factored
planning can be extremely beneficial.
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Abstract

This paper presents theFDP planning system based on
the paradigm of planning as constraint satisfaction.FDP
integrates consistency rules and filtering and decom-
position mechanisms suitable for planning, rather than
transform the planning problem into a CSP and make
use of an external solver.FDPworks directly on a struc-
ture related to Graphplan’s planning graph. Given a
fixed bound on the length of the plan, the graph is in-
crementally built. Each time the graph is extended, a
sequential plan is searched. In the search for a plan dif-
ferent strategies can be employed. Currently,FDP uses
a forward-search procedure based on problem decom-
position with action sets partitioning.
FDP produces optimal sequential plans. Various tech-
niques are also used to avoid useless processings, in
particular to discard redundant sequences of actions and
dead-end states.
Empirical evaluation shows thatFDP is competitive on
many problems, especially compared to other optimal
sequential planners.

Introduction
Historically, several translations of planning problems in
formalisms of another domain of AI have been attempted.
The first one was done in first order logic (Green 1969), at
the very beginning of the field of AI planning. Nowadays,
most of the new attempts in this direction impose a fixed
bound for the plan length which results in a problem that lies
in NP. This was first proposed in (Kautz & Selman 1992),
where the authors define a SAT encoding of planning prob-
lems and use efficient SAT solvers to construct valid plans.
The relative success of this approach has led researchers to
work on even better SAT encodings, e.g. (Kautz & Sel-
man 1999), or to translate planning problem in other NP-
complete formalisms, e.g. Integer Programming (Vossenet
al. 1999), Constraint Statisfaction (van Beek & Chen 1999).

Some of the encodings of planning problems are based
on the well-knownplanning graph. It was proposed in
the GRAPHPLAN system (Blum & Furst 1995), and repre-
sents important relationships between propositions and ac-

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

tions of the planning problem. During its construction, one
can derive additional information about actions and propo-
sitions, calledmutex constraints. The graph and these re-
lations have been successfully represented as SAT encod-
ings in BLACKBOX (Kautz & Selman 1999), and as CSP
encodings in GP-CSP(Do & Kambhampati 2001). The sys-
tem DPPLAN (Baioletti, Marcugini, & Milani 2000) pro-
poses another SAT approach but does not encode the re-
lations of the graph: The actions and the propositions of
the planning graph are handled as propositional variables
whose truth values are constrained. Each time a variable
is assigned a value, several rules are used topropagatethe
change. That may force other variables to be assigned a
value. DPPLAN uses a Davis-Putnam-like procedure com-
bined with several possible search strategies for choosing the
next variable to assign and its value. Another approach that
uses some propagation rules but not based on the planning
graph were previously proposed in (Rintanen 1998) to per-
form non-directional search. In this work,invariantsare also
computed as 2-literal clauses that must hold in some states,
and allow the system to further propagate assignments of
propositional variables.

More recently, a direct encoding of planning problems as
CSP has been proposed (Lopez & Bacchus 2003). It is not
based on the planning graph although it captures all of its
properties and constraints. This approach allows more con-
straints to be detected and added, asadditional binary con-
straintsandsequence constraints. Moreover, single valued
variable reduction and reasoning about the set of constraints
makes it possible to reduce the number of both the variables
and the constraints of the problem. The resulting system
CSP-PLAN has shown very good performances compared to
GRAPHPLAN, GP-CSPand BLACKBOX .

However, CSP-PLAN uses an external solver to search for
a solution plan. In this paper, we present theFDP system
which handles CSP-like representation of the problem but
does not use any external solver. AsDPPLAN, FDP integrates
consistency rules and filtering and decomposition mecha-
nisms suitable for planning. That allows to totally control
the search procedure and the CSP mechanisms and to adapt
them for the purpose of planning.

FDP works on a structure that resembles GRAPHPLAN’s
planning graph without no-ops actions. It is a leveled graph
composed ofsteps. A step consists in anaction levelfol-
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lowed by aproposition level. The structure is incremen-
taly extended until a solution is found or a fixed bound
of the number of steps is reached. The current imple-
mentation extends the structure with one step more and
the search procedure is forward-chaining with depth-first
search, based on problem decomposition with action sets
partitioning. Hence, it is basicallyDepth-First Iterative
Deepening(Korf 1985) (orIDA∗ with admissible heuris-
tic of constant cost1). This will eventually change in further
implementations. First, other heuristics can be employed,
that are admissible or not, e.g. (Bonet & Geffner 2001;
Hoffmann & Nebel 2001). Furthermore, the underlying
consistency rules and filtering procedure make it possible
to operate any decomposition anywhere in the structure.
Hence, it is possible not to perform solely forward-chaining
but also backward-chaining, or bidirectional search, and
more generally, undirectional search as all the approaches
to planning as constraint satisfaction or satisfiability do,
e.g. (Rintanen 1998; Baioletti, Marcugini, & Milani 2000;
Lopez & Bacchus 2003).

The current implementation ofFDP does not detect un-
solvability of problems, as many other similar approaches
(Rintanen 1998; Baioletti, Marcugini, & Milani 2000; Lopez
& Bacchus 2003). Then, it must be given a fixed bound of
plan length in order to stop on unsolvable instances of prob-
lems. This weakness of the algorithm will be adressed in
future work.

The search procedure is complete. If a solution is found,
it is minimal in terms of plan length. On the other hand, the
current search procedure ofFDP requires that any solution
must contain only one single action per step. Hence, solu-
tions returned byFDP are optimal in terms of the number of
actions. This feature becomes quite rare for nowadays plan-
ners. Some of them perform heuristic search without any
guaranty of minimality of solutions (Bonet & Geffner 2001;
Hoffmann & Nebel 2001). Others search for minimal so-
lutions in plan length with several actions per step but
not in the number of actions, e.g. (Blum & Furst 1995;
Do & Kambhampati 2001; Vidal & Geffner 2004). We be-
lieve that optimality in the number of actions may be of
interest for some applications, in particular if actions are
costly. A future development of this work will take into ac-
count cost-values of actions for producing minimal plans.

However, it should be noted that non optimal planners (in
the number of actions) often scale better and solve larger
problems than optimal sequential planners do. Even if we
have observed thatFDP remains rather competitive on some
problems, those planners cannot be compared, as they do not
have the same objectives. Empirical evaluation with some
optimal sequential planners are presented in the paper, that
show thatFDP is competitive.

The input language is PDDL with typing and equality.
Initial state is interpreted according to the closed world as-
sumption. Given the initial state of a problem and the set
of operators of the domain, we construct all the propositions
and all the operator instances (i.e. actions) by the applica-
tion of every operator. Hence, the system only works on
propositions and fully instantiated actions.

The paper is organized as follows: first we define the

structure the system uses, then we introduce the consistency
rules and we present the consistency procedure, next the
search procedure is described, and finally experimental re-
sults are presented that show the competitiveness ofFDPand
we conclude with some future developments of this work.

Preliminaries
The purpose of planning is to find aplan, which is a set
of actions taken in a given setA and an (partial or total)
ordering of them, such that the execution in a giveninitial
stateI of any sequence of the plan’s actions according to the
ordering achieves givengoalsG.

Many planners returns solution plans of lengthk that are
of the formA0, A1, . . ., Ak, where eachAi is a subset ofA.
Such plans mean that every action ofAi must be executed
before those ofAi+1. Actions of the same setAi can be
executed in any order, even in parallel. In this case,k + 1
is said to be themakespan, i.e. the earliest time to achieve
the goals. In the approach we present herein, eachAi will
be a singleton, i.e.FDP returns plans as totally ordered se-
quences of actions. On the other hand,FDP returns optimal
plans in terms of the number of actions, what usually is not
guaranteed by parallel approaches.

Definition 1 (Planning Problem) A planning problemP is
a 4-uple(A, I, G, P ) whereA is a set of actions,I is the
initial state,G are the goals, andP is the set of all the propo-
sitions that occur inI, G and inA (in positive or negative
form).

The initial stateI and the goalsG are conjunctions of
literals (i.e. possibly negated propositions). The set of the
literals is notedL. The setI describes what must be true
in the initial state. It is interpreted according to theclosed
world assumption, that is every propositionp ∈ P that does
not appear inI is supposed to be false (¬p is true in I).
The setG describes the literals the plan must achieve, that is
literals that must be true in the last state.

Once PDDL-operators have been instantiated,FDP han-
dles classical grounded actions. Every actiona ∈ A is de-
scribed by its preconditionspre(a), and its effectseff(a).
pre(a) is a set of literals that must be true fora to be appli-
cable, andeff(a) is a set of literals thata makes true.

FDPmakes use of special CSP-like representations to find
valid plans of a given length, calledfdp-structures.

Definition 2 (fdp-structure) Given a planning problemP
= (A, I, G, P ), let define a fdp-structure forP as a 4-uple
〈k, Va, Vp, d〉, where:

• k is the size of the fdp-structure,
• Va = {a0, . . . , ak−1} is a set ofaction variables
• Vp = {xi,p}0≤i≤k,p∈P is a set ofproposition variables,
• d is a function which makes correspond variables with

their domains:
– to each action variableai ∈ Va a subset ofa denoted

Ai,
– to each proposition variablexi,p ∈ Vp a subset of
{TRUE, FALSE}, denotedDi,p.
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A fdp-substructureof the fdp-structure〈k, Va, Vp, d〉 is a 4-
uple〈k, Va, Vp, d

′〉 such that for eachx ∈ Va ∪Vp, d′(x) ⊆
d(x).

A proposition variable whose domain is{TRUE, FALSE} is
undefined. If v is the valueTRUE (resp.FALSE), its opposite
denotedopposite(v) is the valueFALSE (resp. TRUE). For
convenience, we will usevirtual proposition variables. To
each proposition variablexi,p corresponds a virtual proposi-
tion variablexi,¬p whose domain isDi,¬p = {opposite(v) |
v ∈ Di,p}, i.e. Di,¬p contains the opposites of the possible
values forxi,p. In the following we will then use (virtual)
proposition variablesxi,l wherel is a literal. Virtual propo-
sition variables will serve as a shortcut, since it will be more
convenient to talk about truth value of a literall than to dis-
tinguish between the valuesTRUE andFALSE of a proposi-
tion. Moreover, virtual proposition variables must be con-
sidered as “views”, since removing a valuev from the do-
main of a (virtual) proposition variablexi,l, also removes the
valueopposite(v) from the domain of the (virtual) proposi-
tion variablexi,¬l. In the following, the symbolp stands for
propositions, andl stands for literals. >From now on we will
consider the problemP = (A, I, G, P ) and we will always
refer to fdp-structures for this problem.

A fdp-structure can be viewed as a graph that resembles
the well-known GRAPHPLAN planning graph (Blum & Furst
1995). It is a leveled graph that alternatespropositions levels
andactions levels. The i-th propositions level, denotedPi,
represents the validity of the propositions at stepi: it is the
set of the proposition variables{xi,p}p∈P . Thei-th actions
level Ai represents the possible values for the action that is
applied at stepi. Note that a fdp-structure does not contain
no-ops actions.

Definition 3 (Valid Plan) A valid planfor the fdp-structure
〈k, Va, Vp, d〉 is an assignmentθ of the variables inVa ∪ Vp

such that:

1. ∀ai ∈ Va, θ(ai) ∈ Ai,

2. ∀xi,p ∈ Vp, θ(xi,p) ∈ Di,p,

3. ∀l ∈ I, θ(x0,l) = TRUE, and∀l 6∈ I, θ(x0,l) = FALSE,

4. ∀l ∈ G, θ(xk,l) = TRUE,

5. ∀ai ∈ Va,∀l ∈ pre(θ(ai)), θ(xi,l) = TRUE,

6. ∀ai ∈ Va,∀l ∈ eff(θ(ai)), θ(xi+1,l) = TRUE,

7. ∀l ∈ L, if θ(xi,l) 6= θ(xi+1,l) then l ∈ eff(θ(ai)) or
¬l ∈ eff(θ(ai)).

where∀p ∈ P, θ(xi,¬p) = opposite(θ(xi,p)).

The sequence of the actions of the valid plan (exactly one
action per step) is a plan of lengthk for the problemP.
Searching for an optimal plan in the number of actions con-
sists in searching for the shortestP valid plan.

Consistent fdp-structures
Given a fdp-structure, consistency rules aim to remove pos-
sible values of proposition variables or actions that cannot
occur in any valid plan. For example an action whose one
precondition is not valid should not be considered, and then
can be removed without loss of completeness.

These built-in rules capture all the axioms of satisfiability
approaches to sequential planning. They correspond roughly
to the propagation rules ofDPPLAN, with the major differ-
ence thatDPPLAN is a parallel planner.

Definition 4 (Inconsistent values of proposition variables)
Given the fdp-structure〈k, Va, Vp, d〉, the valueTRUE for
the (virtual) proposition variablexi,l (i.e the proposition
variablexi,p ∈ Vp or the virtual proposition variablexi,¬p)
is inconsistent if any of the following situations holds:

1. (forward persistency)
0 < i ≤ k, TRUE 6∈ Di−1,l and∀a ∈ Ai−1, l 6∈ eff(a),

2. (all actions delete)
0 < i ≤ k, ∀a ∈ Ai−1, ¬l ∈ eff(a),

3. (backward persistency)
0 ≤ i < k, TRUE 6∈ Di+1,l and∀a ∈ Ai, ¬l 6∈ eff(a),

4. (opposite always required)
0 ≤ i < k, ∀a ∈ Ai, ¬l ∈ pre(a).

One can note that the fourth rule is original and does not
exist inDPPLAN.

Definition 5 (Inconsistent values of action variables)
The actiona ∈ Ai is inconsistent if one of the following
situations holds:

1. (falsified precondition)
∃l ∈ pre(a) such thatTRUE 6∈ Di,l,

2. (falsified effects)
∃l ∈ eff(a) such thatTRUE 6∈ Di+1,l,

3. (effect required)
∃l ∈ L such thatTRUE 6∈ Di,l, FALSE 6∈ Di+1,l and
l 6∈ eff(a).

A value for a proposition variable that is not inconsistent is
consistent. An action that is not inconsistent is consistent.

Definition 6 (Consistent fdp-structure) The fdp-structure
〈k, Va, Vp, d〉 is consistentif and only if:

1. the domain values of the proposition variables and action
variables are not inconsistent,

2. for each propositionp and for each stepi, Di,p is not
empty,

3. for each stepi, Ai is not empty.

Property 1 (Consistency in a Valid Plan) Given a valid
plan θ for a fdp-structure〈k, Va, Vp, d〉, for eacha ∈ Va

the actionθ(a) is consistent, and for eachx ∈ Vp the value
θ(x) is consistent.

Proof 1 Obviously, any inconsistent value or action violates
the definition of a valid plan.

Property 2 (Largest Consistent Substructure) A fdp-
structureS is equivalent to its largest consistent substruc-
ture S′ if one exists, and this substructure is unique. If no
consistent substructure exists then there is no valid plan for
S.

Proof 2 First note that if a value of a proposition variable
or an action is inconsistent inS, then it remains inconsis-
tent in any substructure ofS. Then an inconsistent value or
action cannot occur within a valid plan and can be removed
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without effect on the set of valid plans forS. Removing iter-
atively inconsistent values or actions until none exists pro-
duces a new structureS′ which either contains an empty
domain or is consistent and equivalent toS. S′ is unique
since inconsistent values and actions remain inconsistent in
any substructure ofS.

Formalizing fdp-structures as constraint satisfaction prob-
lems is feasible, making use ofn-ary constraints and dy-
namic CSP (van Beek & Chen 1999; Do & Kambhampati
2001). Since our objective here is just to simplify the struc-
ture removing inconsistent values, we make the choice to
use specific representation and filtering procedures.

Mutually exclusive propositions and actions Most plan-
ning systems support mutual exclusions between proposi-
tions: at a proposition level two propositions are mutually
exclusive if no valid plan could possibly contain both. Mu-
tual exclusions are propagated through the planning struc-
ture (in general a planning graph) extending mutual exclu-
sions to actions and using propagation rules. In these plan-
ning systems mutual exclusions help either to construct con-
sistent sets of actions, or to eliminate propositions which are
mutually exclusive with instanciated propositions.

FDP does not implement a specific processing for mutual
exclusions. The reason is that mutually exclusive actions are
useless sinceFDP produces only sequential plans, and the
effects of mutual exclusions of propositions are redundant
with FDP inconsistency rules, actually, as for the following
mutual exclusions definition: the literalsl andl′ are mutu-
ally exclusive at stepi, if one the following situations holds:

1. each action inAi−1 either deletesl or l′ or both,

2. l is false at stepi− 1 and each action inAi−1 that addsl,
also deletesl′ (or the contrary),

3. l andl′ are false at stepi− 1 and no action add bothl and
l′.

In each case one can prove that mutexes are of no interest.
Suppose for example in the case 2 thatl′ is true at stepi.
Then, l would not be true at stepi since it is mutually ex-
clusive withl′. If the fdp-structure is consistent mutexes are
useless: sincel′ is true at stepi, thenFALSE 6∈ Di,l′ (and
TRUE 6∈ Di,¬l′ ). According to definition 5.2, there are no
(consistent) action inAi−1 that deletel′ (i.e have¬l′ in ef-
fects). As each action inAi−1 which addsl also deletesl′,
then there are no action inAi−1 that addl. Moreover, since
TRUE 6∈ Di−1,l, thenTRUE 6∈ Di,l (definition 4.1).

Filtering inconsistent values and actions
Making a fdp-structure consistent consists in removing in-
consistent values and actions until none exists or a domain
becomes empty. The functionMakeConsistent is similar
to arc consistency enforcing procedures in the domain of
constraint satisfaction (Dechter 2003; Mackworth 1977). A
queueH contains the“to remove” elements. These are 3-
uples(p, v, i) representing the valuev in Di,p or pairs(a, i)
representing the actiona in Ai. Until H empty, an element is
extracted, the corresponding value or action is removed, and
the values or actions which become inconsistent because of

functionMakeConsistent(S, H)
in: H a set of values and actions to be deleted,

S = 〈k, Va, Vp, d〉 a fdp-structure,
out: TRUE if S is consistent after the propagation of the

removals of the facts and actions ofH, FALSE if not,

1 while H 6= ∅ do
2 if H contains a 3-uple(p, v, i) then
3 remove(p, v, i) from H,
4 Di,p = Di,p \ {v},
5 if Di,p = ∅ then
6 return FALSE,
7 else ifH contains a pair(a, i) then
8 remove(a, i) from H,
9 Ai = Ai \ {a},
10 if Ai = ∅ then
11 return FALSE,
12 insert new inconsistent values and actions inH
13 according toFDP inconsistency rules
14 return TRUE.

this deletion are enqueued inH. FDP inconsistency rules
are used to detect these new inconsistencies (Definition 5
andDefinition 6). The removals are propagated forward and
backward through the fdp-structure.

Propagation stops with failure if a domain becomes empty
andMakeConsistentreturns FALSE. In the other case the
procedure stops with the consistent fdp-structureS.

MakeConsistentmaintains counters and lists to detect ef-
ficiently new inconsistent values and actions. For example
at each stepi an array of lists of values contains all the val-
ues at stepi, indexed on the number of actions which delete
them. It is then a very low cost to scan the values which are
deleted by all the actions at stepi.

For each value removal the propagation procedure scans
the actions, and for each action removal it scans the proposi-
tion variables. In the worst case at each step of the structure,
a value for each proposition variable is removed and all but
one action are removed. The overall complexity of the func-
tion MakeConsistentis thenO(k × |P | × |A|).

Search procedure
To find an optimal plan,FDP starts with a one step fdp-
structure, and extends it until a plan is found or a given fixed
bound is reached. Each time the fdp-structure is extended,
a depth-first search is performed. This ensures the optimal-
ity of the solution plan if one exists.FDP employs adivide
and conquerapproach to search for a plan: the structure
is decomposed into smaller substructures and the procedure
searches recursively each of them. Each time the substruc-
tures are filtered so as to detect failures as soon as possible.
We have experimented several decompositions such asenu-
merating actions, assigning proposition variablesor split-
ting action sets. This last one gives the best results: splitting
consists in partitionning a set of actions so as to put together
actions which own common deletions. Our splitting proce-
dure simply search an undefined proposition variable such
that the number of actions that delete it and the number of
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actions that do not are as close as possible.
When searching for a plan of lengthk, FDP uses a fdp-

structureS and a set NoGoods. Initially each action set ofS
is set toA and each proposition variable is undefined. Then,
the values which are not in the initial state and the opposites
of the goals are removed and a preliminary filtering is per-
formed onS. If S is inconsistent then the search stops with
failure, there is no plan of lengthk. In the other case No-
Goods is set to the empty set and the procedureFDP-search
starts with the consistent structureS. The fdp-structureS
is decomposed into two substructures corresponding to the
subsets obtained by splitting an action set (line 7). In fact
FDP-searchis a depth first iterative deepening search, since
it always chooses the first non singleton action set for split-
ting, starting from the initial state (lines 4 and 5). Then the
current partial plan is extended step by step until the fdp-
structure becomes inconsistent or a valid plan is found (since
S is consistent, if all the action sets are singletons then no
proposition variable is undefined inS andS is a plan).

During the search, each timeFDP-searchencounters a
state which does not contain undefined variables and the
current call returns failure, this state is memorized as a no-
good (lines 16 and 17). The distancek − i from Fi+1 to
the final state is also memorized. Indeed, it is always pos-
sible that the stateFi+1 could be extended to a valid plan if
there were more steps (or less, but this situation could not
occur in FDP if the nogoods are kept each time the struc-
ture is extended: if a smaller valid plan exists fromFi+1

then it should have been discovered before, while search-
ing a smaller plan). WheneverFi+1 will be encountered at
a distance less thank − i to the final state the search will
be aborted. Memorizing nogoods improves drastically the
performances of the search.

functionFDP-search(i, S)
in: S = 〈k, Va, Vp, d〉 a consistent fdp-structure,

i a step,
out: TRUE if the structure contains a valid plan,

FALSE, otherwise.
1 if Fi+1 does not contain undefined variablesthen
2 if 〈Fi+1, k − i〉 ∈ NoGoodsthen return FALSE,
3 if MinSteps(Fi+1) > k then return FALSE,
4 while |Ai| = 1 and i < k do
5 i = i + 1,
6 if i = k then return TRUE, // S is a valid plan
7 〈A′, A′′〉 = SplitActionSet(Ai),
8 S′ = S,
9 if MakeConsistent(S′, A′′) then
10 if FDP-search(i, S′) then
11 return TRUE,
12 S′ = S,
13 if MakeConsistent(S′, A′) then
14 if FDP-search(i, S′) then
15 return TRUE,
16 if Fi+1 does not contain undefined variablesthen
17 NoGoods = NoGoods∪{〈Fi+1, k − i〉},
18 return FALSE.

Minimal bound of the number of steps

Anytime a propositional levelFi is completely instanciated,
FDP performs a greedy evaluation of a minimal bound of
the number of steps to achieve all the unsatisfied goals. The
idea is to choose at each of the following steps the action
which adds the most unsatisfied goals. In the best case these
actions will constitute a valid plan. If the number of un-
satisfied goals added by the selected actions is less than the
number of unachieved goals, then the current instanciation
is rejected (line 3, the functionMinStepsevaluates the min-
imal number of steps which are necessary to achieve all the
missing goals).

Redundant actions sequences

SinceFDP searches sequential plans, it can generate equiv-
alent permutations of “independent” actions and perform as
many redundant processings. This constitutes the main de-
fect of sequential planning compared to parallel planning.
To cope with this problem,FDP discards sequences of inde-
pendent actions that do not respect an arbitrary total order
on the actions denoted≺.

Definition 7 (Ordered 2-Sequences)The actionsa1 and
a2 are independentif the following situations hold:

1. ∀l ∈ pre(a1) thenl 6∈ eff(a2) and¬l 6∈ eff(a2)1,

2. ∀l ∈ pre(a2) thenl 6∈ eff(a1) and¬l 6∈ eff(a1).

The sequence(a1, a2) is anordered 2-sequenceif either a1

anda2 are independent anda1 ≺ a2, or a1 anda2 are not
independent.

FDP discards unordered 2-sequences. Besides, it also dis-
cards sequences whose actions have exactly opposite effects,
i.e such thateff(a1) = {¬l | l ∈ eff(a2)}, as such sequences
are useless in a plan.

Property 3 For any plan(a0, . . . , ak−1), there exists a per-
mutation of the actionsa0, . . . , ak−1 which is a plan, such
that any two successive actions constitute an ordered 2-
sequence.

Proof 3 It suffices to permute successive independent un-
ordered actions as much as possible in the initial plan. Each
transformation produces a plan which is equivalent to the
initial plan. When the processus stops any two successive
actions form an ordered 2-sequence.

To implement this property the following rules are added
to the definition 5, of inconsistent actions:

4. (no backward ordered 2-sequence)
i > 0 and ∀a′ ∈ Ai−1, (a′, a) is not an ordered 2-
sequence,

5. (no forward ordered 2-sequence)
i < k − 1 and∀a′ ∈ Ai+1, (a, a′) is not an ordered 2-
sequence.

1If a1 requires a fact which is added bya2, it is possible in some
situations that the sequence(a2, a1) must be authorized. Thena1

anda2 should not be considered as independent.
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Relevant literals and actions

FDP searches optimal sequential plans. Then actions which
do not help effectively to achieve the goals are useless and
should not be considered. In particular, this is the case of
actions of the last step not adding goals. This property can
be propagated backwards introducing the notion ofrelevant
literals and actionsat some steps.

Definition 8 (Relevant literals and actions) In a given
fdp-structure, relevant actionsand relevant literalsare
recursively defined as follows:

1. each goal inG is relevant at stepk,

2. a literal l is relevant at stepi if there exists an action
a ∈ Ai such thatl is a precondition ofa anda is relevant
at stepi,

3. an actiona is relevant at stepi if one of its effects is rele-
vant at stepi + 1.

Actions that are not relevant at a given step can be re-
moved from this step as it could not serve in a minimal so-
lution. The functionMakeConsistent performs these re-
movals whenever it is possible.

Experimental results
We have comparedFDPwith some other planners on several
problems taken from usual planning benchmarks. They are
the problemsmysteryandmystery-prime, hanoi towers, xy-
world; problems from IPC3 competition:depot, driver-log,
freecell, satellite, zeno-travel; problems from IPC4 com-
petition: airport, psr-small, pipesworld(tank-notempand
notank-notemp), optical, philosophersandsatellite. In each
serie some problems have been rejected: the problems that
all the planners solve in less than 0.1 second, and the prob-
lems that all the sequential planners (and some parallel plan-
ners) could not solve in less than 1,500 seconds. Also, for
the remaining problems, we have selected only representa-
tive instances in each serie. For example, many instances in
themysteryandpsrseries have similar results and just some
of them are reported here.

As previously said, action sets splitting is the best decom-
position among strategies that are proposed in this work. It
is then used in both thefdpN2s andfdp2s versions ofFDP.
The difference betweenfdp2sandfdpN2s, is that the former
takes into account theordered 2-sequencesand discards un-
ordered sequences of actions. In few problems, the compu-
tation and the use of all the permitted 2-sequences is more
costly than the benefits they provide. It is the case for ex-
ample for themysteryseries, in which there are many ac-
tions and many permitted 2-sequences. There can be sev-
eral reasons: First, the computation of the 2-sequences is
polynomial-time in the number of actions. Second, the ben-
efits of the 2-sequences decrease with their number. Third,
taking the 2-sequences into account produces a better filter-
ing but then the heuristics used to split the action sets could
in some cases give worse results.

Apart from such problems, one can note thatfdp2s per-
forms better thanfdpN2s, even if it is not drastically.

We have also reported the experimental results of the fol-
lowing planners:BFHSP(Zhou & Hansen 2004) with a back-
ward search and h3max option (bfhspbk), BFHSP with a
forward search and h1max option (bfhspfw), HSP (Haslum
& Geffner 2000) with the command line option-seq to
generate sequential plans (hspSeq), SATPLANNER (Rinta-
nen 2004) a planner based on satisfiability testing that we
run with the Siege V4 SAT solver and the-opt option to
produce optimal sequential plans,DPPLAN (Baioletti, Mar-
cugini, & Milani 2000) which uses propagation rules in a
Davis-Putnam-like search procedure, andSATPLAN (Kautz
& Selman 1999) that we run with the Siege V4 SAT solver.
The last two produce parallel plans whereas the first four
produce optimal sequential plans. Some problem instances
have resulted in some errors that are different given the plan-
ner. They are reported with – (two many operators, parse
error, max steps reached, planner killed, time or memory
exceeded,. . . ). Time limit was fixed to 1500 seconds. The
computation times are summarized for each serie (various
domains, IPC3 and IPC4).

One can remark that in general parallel planners per-
form better than sequential planners, since parallel plans are
shorter. In fact, optimal parallel planners and optimal se-
quential planners are not comparable, as they do not search
for the same optimality. However, we have reported the re-
sults ofDPPLAN andSATPLAN since they serve as a refer-
ence. In particular,DPPLAN is a planner that also uses prop-
agation rules and is very related to the work we present in
this paper.

It seems thatFDPandBFHSPperform better than the other
sequential planners.FDP is generally better for problems
with a large number of operators but short plans, as the mys-
tery domains. On these problems it seems that a breadth-
first search will spend a significant amount of time to com-
pute huge layers of states. On the contrary, when there
are few actions and long plans, as in Hanoi and FreeCell,
BFHSPplanners dominate. On the other hand , very rarely
bfhsp-back andbfhsp-forw have both a good performance
whereasfdp2s for instance is often better than at least one
version ofBFHSP.

Finally, the main advantage ofFDP is its regularity. Some
planners are much more efficient on some problems. For
exampleDPPLAN andbfhsp-backare really faster for IPC3
serie. But on other series they have bad results and were
stopped with timeout (and in some cases where the processes
were not easily killed, the search was finally stopped after
more than 10000 seconds) or sometimes stopped with errors.
This is rarely the case withFDP which was stopped with
timeout only one time on this selection of problems.

Conclusion and perspectives
We described in this paperFDP, a new planner which builds
sequential optimal plans. Compared to other optimal se-
quential plannersFDP seems to be rather competitive. Its
consistency rules and its decomposition strategies allow to
operate backward chaining search or bidirectional search
and more generally undirectional search.FDP could be im-
proved with other evaluations of the minimal distance to
the goals (Haslum, Bonet, & Geffner 2005) and concurrent
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actions facts lengths mkspan fdpN2s fdp2s bfhspbk bfhspfw hspSeq satplanner dpplan satplan

mprime-x-5 3,464 319 11 6 1,500.00 1,500.00 246.77 1,500.00 1,500.00 136.28 2.53 –

mprime-x-7 1,708 426 5 1 0.63 1.10 282.63 13.49 15.95 8.11 1.15 0.18

mprime-x-8 10,206 513 6 5 21.18 75.34 1,500.00 1,500.00 141.52 62.15 – 1.80

mprime-x-21 15,324 838 6 5 15.91 134.43 1,500.00 1,500.00 250.07 – 6.88 –

mprime-x-29 4,872 269 4 4 1.65 9.87 259.66 51.69 63.38 10.74 1.32 1.04

mystery 19 6,521 562 6 6 3.24 21.98 1,139.77 403.15 53.49 59.32 3.28 17.86

mystery 30 4,085 412 9 6 50.42 23.45 392.35 1,500.00 27.12 41.44 3.08 26.06

hanoi 6 166 75 63 3.77 2.73 0.46 0.18 1,500.00 1,500.00 1,500.00 1,500.00

hanoi 7 238 94 127 33.31 26.41 – – 1,500.00 1,500.00 1,500.00 1,500.00

xy-world f10 200 40 10 1 0.06 0.06 74.08 270.29 – 8.52 0.01 0.18

Sum Various 1,630.10 1,795.30 5,395.70 6,738.80 5,051.50 3,326.50 3,018.20 3,047.10

depot 2 180 82 15 8 3.78 2.18 0.46 6.35 21.89 3.89 0.08 0.50

Driver log 4 144 63 16 7 56.84 27.77 1.09 113.90 1,500.00 213.38 0.44 0.45

Driver log 5 168 75 18 8 201.92 108.60 27.89 896.25 1,500.00 990.14 0.07 0.65

FreeCell 2 1,144 139 14 8 130.78 110.33 6.27 347.27 1,500.00 1,413.84 31.20 1,500.00

FreeCell 3 1,616 183 18 7 1,500.00 1,283.06 94.22 1,500.00 1,500.00 1,500.00 2.01 1,500.00

satellite 3 188 66 11 6 1.24 0.99 0.21 138.81 3.05 0.93 0.04 –

satellite 4 259 71 17 10 89.18 60.20 4.33 1,500.00 1,500.00 99.15 17.51 –

Zeno 5 376 52 11 5 5.65 3.57 0.41 41.91 – 60.32 0.07 0.46

Zeno 6 392 58 11 5 45.28 27.51 1.96 297.84 – 53.31 0.14 2.65

Zeno 7 408 64 15 6 41.46 30.03 13.77 772.86 – 1,500.00 0.08 1.02

Sum IPC3 2,076.10 1,654.20 150.60 5,615.10 7,524.90 5,834.90 51.60 3,005.70

Airport 12 203 356 39 21 5.32 3.95 11.49 0.77 2.34 159.55 0.15 1.13

Airport 14 347 493 60 26 744.25 546.11 225.78 35.26 1,500.00 1,500.00 65.32 3.30

PSR 19 163 41 25 15 7.09 6.20 42.79 1.62 1,500.00 25.77 549.18 1.79

PSR 22 112 56 33 25 76.69 145.11 102.42 135.72 1,500.00 106.56 1,500.00 168.86

PSR 25 9,400 58 9 9 31.34 54.96 22.56 126.41 130.75 27.37 – 132.44

PSR 36 343 82 22 16 1,040.47 697.83 128.20 1,500.00 1,500.00 11.72 1,500.00 7.16

PSR 40 762 66 20 15 321.27 278.83 31.39 396.39 1,500.00 11.10 1,500.00 18.09

PSR 46 98 60 34 43.20 74.57 996.85 79.30 1,500.00 254.20 1,500.00 1,500.00

PipesW NT-NT 11 720 211 20 227.19 243.66 720.98 278.85 1,500.00 1,500.00 1,500.00 1,500.00

PipesW NT-NT 13 896 251 16 12 124.12 110.54 62.22 147.93 1,500.00 160.61 287.99 81.64

PipesW NT-NT 21 1,140 292 14 14 18.49 8.58 70.91 104.29 1,500.00 20.53 1,500.00 200.82

PipesW T-NT 5 768 164 8 7 3.37 1.87 – 74.03 231.70 13.90 1.41 3.46

PipesW T-NT 6 768 164 10 7 19.03 12.05 – 301.49 1,500.00 66.38 2.06 9.42

PipesW T-NT 7 2,672 204 8 7 37.01 19.11 – 1,500.00 1,500.00 – 1,500.00 512.50

Optical 1 446 282 36 13 177.80 135.26 – 34.79 1,500.00 1,500.00 0.18 1.74

Philosophers 3 112 120 44 11 141.72 158.56 – 12.33 1,500.00 1,500.00 0.16 0.56

satellite 3 188 66 11 6 1.24 0.99 0.21 165.05 3.03 0.97 0.04 7.57

satellite 4 259 71 17 10 88.13 60.30 3.90 1,500.00 1,500.00 85.75 19.48 165.89

Sum IPC4 3,107.70 2,558.40 2,419.70 6,394.20 21,367.80 7,544.40 11,425.90 4,316.40

Figure 1:
CPU times for different planners on a serie of selected problems

(times are in seconds on a Linux computer with a Pentium 3 Ghz processor, and 1 Go RAM).
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bidirectional searches which could cooperate through valid
or invalid states. The lack of termination criterion will be
also adressed in future work. FinallyFDP could be extended
to handle valued actions and to compute plans of minimal
costs. Also, planning with ressource will be a matter of de-
velopment.
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Abstract 
In this paper we address the problem of encoding of plan-
space planning problems as a CSP. We propose a con-
straint model for expressing plan-space partial plans. As an 
enrichment of the notion of partial plans we propose a 
world state management within the partial plan. We incor-
porate the world state management into our CSP model 
too. Next we propose a specialized algorithm for solving 
the CSP model. The algorithm builds the constraint model 
dynamically as conflicts are resolved in the model. The 
performed preliminary experiments showed the usefulness 
of state management in the constraint model. The usage of 
state management allows the additional search space prun-
ing compared to the model without states. 

Introduction   
Planning is a widely studied topic of artificial intelligence. 
The importance of studying planning arises from needs of 
real-life applications such as industrial automation, trans-
portation, robotics and other braches (Nau, Regli, Gupta, 
1995). The research in planning is also motivated by the 
needs of researches in other areas. The most prominent 
example from the above areas is space exploration where 
autonomous spacecrafts (Bernard et al., 1998) and vehi-
cles (Ai-Chang et al., 2004) are successfully used. But 
autonomous devices can be used in many other situations 
both in science and real-life. The autonomous behavior is 
controlled by planning techniques and algorithms in many 
of these cases. 
 From the traditional view of planning, the planning 
problem is posed as finding of a sequence of actions 
which transform a specified initial state of the planning 
world into a desired goal state of the world (Allen, 1990). 
The limitation is that only actions from a set of allowed 
actions can be used. The action typically makes a small 
local change of the world in which the task takes place. 
 There are several paradigms for solving planning prob-
lems. We deal with so called state-space planning (Fikes, 

                                                 
Compilation copyright © 2006, American Association for Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

Nilsson, 1971) and plan-space planning (Sacerdoti, 1975) 
in this paper. The state-space planning represents a more 
traditional approach for solving planning problems while 
the plan-space planning is a newer method, which is cur-
rently not so spread. 
 Although the plan-space planning provides a flexible 
and intuitive paradigm for solving planning problems, it is 
less competitive to the recent traditional state-space plan-
ning techniques in situations where heuristics play a role. 
As it is evidenced by the results of the 2004 International 
Planning Competition, several successful heuristic based 
planning algorithms (HSP, TP-4) use state-space approach 
(Haslum, Geffner, 2001; Bonet, Geffner, 2001). The most 
significant drawback of plan-space planning is caused 
mainly by the fact that domain specific heuristics are 
often based on extracting information from the states of 
the planning world (Ghallab, Nau, Traverso, 2004). The 
extraction of information cannot be done in straightfor-
ward way within the plan-space framework. On the other 
hand, another successful planner (CPT) in IPC 2004 uses 
ideas from plan-space approach and from constraint pro-
gramming (Vidal, Geffner, 2004). This fact was one of 
our motivations to deal with plan-space planning ap-
proach. 
 The classical state-space planning is based on the no-
tion of an evolution of states of the planning world by 
planning operators. A given world state is changed by 
planning operators into new ones. A state based solving 
algorithm for planning problems performs this evolution 
in some kind of a controlled way until a required goal 
state of the planning world is reached. The states of the 
planning world are explicitly available along the whole 
resolution process. 
 Algorithms for solving planning problems within the 
plan-space paradigm work in a completely different way. 
They usually refine so called partial plan until a certain 
level of consistency is enforced. The partial plan contains 
a set of planning operators and a set of precedence and 
binding relations over these operators which the final plan 
has to satisfy. When the partial plan becomes consistent it 
is ensured that a valid plan (sequence of fully instantiated 
planning operators, i.e. actions) can be extracted from it. 
The main difference from state-space planning is the lack 
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of explicit planning world states during the resolution 
process. This fact represents the key obstacle in adapta-
tion of domain specific heuristics for plan-space planning 
paradigm. 
 Our work is motivated by a number of successful at-
tempts to use constraint satisfaction techniques in plan-
ning (Nareyek et al., 2005). We want to propose a frame-
work in which the complete planning problems can be 
expressed. The design of the framework should allow the 
use of advanced constraint satisfaction techniques. Our 
goal is also to preserve world states to be directly accessi-
ble along the reasoning process. The explicit presence and 
accessibility of the world states will allow us to reduce 
uncertainty in the framework. Moreover, when we have 
explicit world states, the domain specific heuristics can be 
adapted more easily. 
 Many approaches exploiting constraints in planning are 
based on Graphplan algorithm (Blum, Furst, 1997). 
Graphplan-based algorithms use some kind of compres-
sion of many world states into a single structure. Another 
approach represents CPlan algorithm (Van Beek, Chen, 
1999). The CPlan algorithm uses state-space based encod-
ing of the whole planning problem up to a certain number 
of steps. Compared to Graphplan-based algorithms the 
CPlan algorithm provides an easier access to the states of 
the planning world along the resolution process. It is en-
abled by direct encoding of the world states into the 
model. 
 Our work is primarily inspired by the CPlan algorithm. 
But contrary to CPlan we are trying to use state encoding 
within the plan-space framework. More precisely, we 
address a problem of integration of state management into 
the plan-space framework. We formulate partial plans as a 
dynamic constraint satisfaction problem where states of 
the planning world are also modeled. We propose a spe-
cialized search algorithm for this model. Our search algo-
rithm dynamically changes the constraint model according 
to the applicable refinements until a partially consistent 
(in our case arc-consistent) partial plan is obtained. Then 
the algorithm continues with trying to extract a valid plan 
from the consistent partial plan while it is still applying 
refinements if it is necessary. 
 The state management in the constraint model of the 
partial plan allows the search algorithm to reduce uncer-
tainty in the model and to deduce more information about 
the precedence relations in the partial plan. This leads into 
a stronger search space reductions and the final fully con-
sistent partial plan is found earlier. The presence of ex-
plicit planning world states in the constraint model can be 
utilized for an easier integration of domain specific heu-
ristics into the search algorithm. 
 The paper is organized as follows. State-space and 
plan-space planning paradigms are introduced in the first 
section. Then we describe how the constraints are used in 
plan-space planning and the details of our constraint 
model. Having the constraint model, we design a special-
ized search algorithm for the model subsequently. Finally 
we show some empirical results. 

State-Space and Plan-Space Planning 
The classical formalism for stating planning problems is 
based on a first order language with finitely many predi-
cate and constant symbols, and infinitely many symbols 
for variables. There are no function symbols in the lan-
guage (Ghallab, Nau, Traverso, 2004). 
 The classical statement of a planning problem is a triple 

),,( 0 gsOP = , where 0s  is an initial state of the planning 
world, g  is a goal condition and O  is a finite set of 
planning operators. The initial state 0s  is expressed as a 
finite set of ground atoms. It is interpreted as a set of 
propositions that hold in the planning world at the begin-
ning. The goal condition g  is a finite set of literals. Simi-
larly, it is interpreted as a set of proposition we want to 
make true (compared to initial state we allow negative 
propositions). Finally, O  is a finite set of planning opera-
tors, through which it is possible to locally change the 
world states. The planning operator is a triple 

))(),(),(( oeffectsoprecondonameo = , where )(oname  
denotes the name of the operator, )(oprecond  is an op-
erator precondition and )(oeffects  is an effect of the op-
erator. Precondition is modeled as a finite set of atoms 
which must hold in the world state before the operator can 
be applied. The effect of the operator is modeled as a 
finite set of literals that hold in the state after the operator 
is applied. The task is to find a sequence of ground plan-
ning operators (actions) such that it transforms the given 
initial state into a state satisfying the given goal condition. 
We call this sequence a plan. 
 The required sequence of actions is searched directly 
within the state-space planning. The search process starts 
from the initial or from the goal state and builds the se-
quence of actions by adding a new action at the end of the 
already finished partial sequence of actions. The current 
state of the world corresponding to the application of the 
partial sequence of actions on the initial state or on the 
goal state is maintained along the whole search process. 
 In plan-space planning, we work with so called partial 
plans. A partial plan is a tuple ),,,( LBA p=π  (Ghallab, 
Nau, Traverso, 2004), where A  is a finite set of partially 
instantiated planning operators present in the partial plan, 
p  is a finite set of precedence constraints on the elements 
of A , B  is a set of binding constraints, which bind vari-
ables appearing in the planning operators in A , and L  is 
a set of causal links. A causal link is a relation of the form 

j
p

i aa ⎯→⎯ , where Aaa ji ∈,  and ia  has an effect p , 
which is required as a precondition for ja . 

CSP and Plan-Space Planning 
The structure of the partial plan is very close to the struc-
ture of constraint satisfaction problem. Both structures use 
the notion of a constraint between a set of objects. 
 A constraint satisfaction problem (CSP) is a triple 

),,( CDX  (Dechter, 2003), where X  is a finite set of 
variables, D  is a finite domain of values for the variables 
from X  and C  is a finite set of constraints over the vari-
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ables from X . The constraint can be an arbitrary relation 
over the elements of the domains of its variables. Having 
a constraint satisfaction problem the task is to find an 
assignment of values to the variables such that all the 
constraints are satisfied. 
 In our framework for plan-space planning we model 
partial plans as constraint satisfaction problems. Actions 
occurring in the partial plan are modeled as CSP variables 
whose domains are sets of possible moments of execution 
of the corresponding action. In the following sections we 
will denote these variables as time variables. With time 
variables it is easy to translate temporal precedence rela-
tions directly into constraints of the constructed CSP 
model. Since we will be working only with actions 
(ground operators) we do not need to translate binding 
relations into constraints of our CSP model (note that we 
would also need other types of variables if we want to 
model partially instantiated operators). Note that this kind 
of constraint satisfaction problem can be solved in poly-
nomial time (Dechter, Meiri, Pearl, 1991). Such simpli-
fied problem does not exploit the full generality of CSP 
which is NP-hard in general. However, our constraint 
model will be extended with other types of variables and 
constraints in the following sections. 
 Since the standard resolution process over the partial 
plan changes the structure of the plan, we also need to 
reflect this dynamicity in our CSP model. Typically plan-
space algorithms insert new actions and relations into the 
partial plan as the search proceeds. We can model these 
changes as incremental additions of variables and con-
straints into and from our CSP model. 

Partial Plans as an Incremental Dynamic CSP 
A dynamic constraint satisfaction problem (DCSP) 
(Dechter, 1988) is a sequence of constraint satisfaction 
problems KK ,,,,, 210 αPPPP , where each problem is a 
result of a modification of the preceding one. The allowed 
modifications are constraint addition and retraction, and 
variable addition and removal. The evolution of the dy-
namic problem is controlled by outside mechanism, for 
example by the interaction with the user. The controlling 
mechanism is the solving algorithm itself in our case with 
partial plans. All the static problems from the sequence 
must be solved to solve the whole dynamic problem. 
 Since we are doing only incremental changes in our 
model we do not need the general dynamic constraint 
satisfaction problem as given above but only an incre-
mental restriction of DCSP. We also do not follow the 
above concept exactly in the sense of finding a solution. It 
is sufficient to solve only the last constraint satisfaction 
problem from the sequence of the dynamic problem. 

Constraint Model 
Our constraint model is always built for a limited maxi-
mum length of the resulting sequence of actions. Let l  be 
this length. First we will show how actions are stated 

within the model. Let us consider a ground operator 
))(),(),(( aeffectsaprecondanamea = . For the action a  

we introduce a time variable },,2,1{ ltimea K=  into the 
constraint model*. Semantically the value of the time 
variable describes the time of the execution of the corre-
sponding action in the final plan. When we are working 
with non-durative actions only, the value of the corre-
sponding time variable determines the position of the 
action in the resulting plan. By using time variables we 
can cover the presence of actions in the partial plan. We 
define the following bounds for each time variable: 

Earliest execution time of action a : =)(aet minimal 
element in the current domain of atime  

Latest execution time of action a : =)(alt maximal 
element in the current domain of atime  

Incorporation of States into the Model 
For the purposes of more compact representation within 
the constraint satisfaction problem we require that pre-
conditions and effects of the action are expressed func-
tionally using state variables. More specifically instead of 
saying that some proposition about some object is true in 
a given world state, we say that the function describing 
corresponding property of the object takes a certain value 
in the given world state. The situation is explained in the 
following examples. In the example 1 a classical represen-
tation of an action is showed. 

Example 1. Consider an action that moves robot_1 
from location_A to location_B, where robot, loca-
tion_A and location_B are constants with obvious 
meaning. We also use a binary predicate at  saying 
that the first argument is at the place specified by the 
second argument. The classical representation of the 
move action is following: 

;__1_( BlocationAlocationrobotmove −−−   
 )};_,1_({ Alocationrobotatonpreconditi =
 ),_,1_({ Blocationrobotateffects =       
 )})_,1_( Alocationrobotat¬ . 

 
To express the move action functionally we need a func-
tion locationsSrobotslocation ⎯→⎯×: , where robots  
and locations  are sets of constants for which 

robotsrobot ∈1_  and ⊆}_,_{ BlocationAlocation  
locations⊆ , and S  is the set of states. Let us call this 

function a state variable function. The following example 
shows the action represented using state variable function. 

Example 2. Representation of the action moving ro-
bot_1 from location_A to location_B using state vari-
able function. 

;__1_( BlocationAlocationrobotmove −−−   
};_)1_({ Alocationrobotlocationonpreconditi ==

 })_)1_({ Blocationrobotlocationeffects == . 

                                                 
* We allow a certain action to appear multiple times in the partial plan. 
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With each action in the partial plan we associate a set of 
precondition variables and a set of effect variables. To-
gether we will call these variables world state variables. 
The set of precondition variables contains one variable for 
each state variable function describing properties of a 
certain object in our planning world. Similarly for the set 
of effect variables, this set also contains one variable for 
each state variable function in the constraint model. The 
domains of precondition and effect variables are the same 
as the ranges of corresponding functions. The situation is 
explained in more details in the following example. 

Example 3. Again consider the action that moves ro-
bot_1 from location_A to location_B. In addition we 
have a new constant robot_2 in this example. There 
is also the state variable function 

Srobotslocation ×: locations⎯→⎯ , where 
robotsrobotrobot ⊆}2_,1_{  and ,_{ Alocation  

⊆}_ Blocation locations . We introduce following 
state variables into the constraint model: 

},_,_{1_
)1_( KBlocationAlocationprecond ABrobotmove

robotlocation =−−

 
},_,_{2_

)2_( KBlocationAlocationprecond ABrobotmove
robotlocation =−−

 
},_,_{1_

)1_( KBlocationAlocationeffect ABrobotmove
robotlocation =−−  

},_,_{2_
)2_( KBlocationAlocationeffect ABrobotmove

robotlocation =−− . 
 
The set of precondition variables describes the world state 
before the corresponding action is applied. Similarly the 
set of effect variables describes the world state after the 
application of the action. The initial state and the goal 
condition are handled as special actions. 

How the Model is Constrained 
The above simple collection of variables is sufficient to 
describe all the objects and possible transitions that can 
appear within the modeled partial plan. But it is useless 
without the appropriate set of constraints that would for-
bid incompatible tuples of values in the domains of vari-
ables. A lot of constraints arise directly from the defini-
tion of partial plans. 
State Transition Constraints. The first type of con-
straints we introduce into our model ensures that state 
transitions are reflected in the world state variables. Con-
sider an action and corresponding world state variables 
that represents the world state before and after the execu-
tion of the action. Suppose that the action requires the 
state variable function f  to take the value x  before the 
action can be executed. Then the state transition constraint 
must ensure that the precondition world state variable 
corresponding to the state variable function f  takes the 
value x . Next, suppose that the action changes the value 
of the state variable function f  to the value y . Then the 
state transition constraint ensures that the effect world 
state variable corresponding to the state variable function 
f  takes the value y . Since these constrains are unary, 

the information contained in them can be directly encoded 
into domains of world state variables. The following ex-

ample shows encoding of state transitions into the variable 
domains. 

Example 4. Let us have the same action and the 
same constants as in the example 3. We can restrict 
the domains the world state variables as follows: 

}_{1_
)1_( Alocationprecond ABrobotmove

robotlocation =−−  

}_{1_
)1_( Blocationeffect ABrobotmove

robotlocation =−− . 
 
The world state variables, whose state variable function 
does not appear in preconditions or in the effects of the 
actions, remain unchanged. 
Frame Axiom Constraints. State variable functions that 
do not occur in the effects of the particular action do not 
change its value after execution of this action. This fact is 
not implied by the state transition constraints and must be 
ensured separately. Generally for this reason so called 
frame axioms are used. In our constraint model we also 
use constraints for encoding frame axioms. The frame 
axiom constraint ensures that a certain precondition world 
state variable and the corresponding effect world state 
variable have the same values. The frame axiom con-
straints are added for all pairs of precondition and effect 
variables whose state variable function is invariant with 
respect to the corresponding action. 

Example 5. Let us have the same action and the 
same constants as in the example 3. The frame axiom 
constraint is the following:  

ABrobotmove
robotlocation

ABrobotmove
robotlocation effectprecond −−−− = 2_

)2_(
2_

)2_( . 
 
Suppose that there is a frame axiom constraint for ac-
tion a  and state variable function f , then the propagator 
for the constraint is: 

a
f

a
f

a
f effectprecondprecond ∩←

 
a
f

a
f

a
f effectprecondeffect ∩← .

  
Unique Action Time Constraints. Each action in the 
partial plan has to be executed at a unique time. Our con-
straint model is designed to produce a plan as a totally 
ordered sequence of actions, so this is a natural require-
ment. Another reason for this requirement is that we want 
to reduce uncertainty in the model as much as possible. It 
is important for the next type of constraints which are 
used to manage evolution of states. The unique action 
time constraint is modeled as ntallDiffere  constraint over 
time variables. Suppose that there are actions kaaa ,,, 21 K  
in the partial plan. Then we introduce a constraint 

),,( 21 akaa timetimetimentallDiffere K  into the constraint 
model. The propagator for the ntallDiffere  constraint is 
described in (Régin, 1994). 
State Sequencing Constraints. As the current domains of 
time variables are narrowed during the search process, 
there arise situations when it is necessarily true that two 
actions must be executed consecutively. More specifi-
cally, an action must be performed right after another 
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action if all the other actions are scheduled before or after 
this pair of actions. 
 Consider that there are actions ia  and ja  in the partial 
plan and it is known that these two actions must be exe-
cuted consecutively in the resulting plan. Without loss of 
generality suppose that ja  must be executed right after  

ia . Then it is possible to post a constraint that binds pre-
condition world state variables belonging to the action ja  
to effect world state variables belonging to the action ia . 
This idea can be used conversely too. Consider that it is 
known that effect world state variables of one action can-
not be bind to the precondition world state variables of the 
other action. In such situation we can conclude that these 
two actions cannot be executed consecutively and it is 
possible to post a constraint into the model that ensures 
this fact. 
 Now we can propose a constraint that realizes the 
above statements. We will call it a state sequencing con-
straint. It comprises a condition enforcing the equality of 
effect world state variables and precondition world state 
variables when the corresponding two actions must be 
executed consecutively. And next it comprises a condition 
which does not allow the execution of one action right 
after the other action if its precondition and effect world 
state variables are not compatible. The situation is ex-
plained in the following example.  

Example 6. Let us have an action that moves robot_1 
from location_A to location_B and an action that 
moves robot_1 from location_B to location_C. Then 
the state sequencing constraints look like as follows: 

if 1+= moveABmoveBC timetime  then  
 moveBC

robotlocation
moveAB

robotlocation onpreconditieffect )1_()1_( =  

if 1+= moveBCmoveAB timetime  then  
 moveAB

robotlocation
moveBC

robotlocation onpreconditieffect )1_()1_( = . 

Since the right hand side of the conditional statement 
of the second constraint cannot be satisfied, the ac-
tion moveAB  cannot be executed right after 
moveBC  action. 

 
The propagator for state sequencing constraint is similar 
to that of frame axiom constraint. Suppose that there are 
actions ia  and ja  in the partial plan, and state variable 
function f . Then the propagator is: 

if 1+= aiaj timetime  then 
 ai

f
aj
f

ai
f effectonpreconditieffect ∩←

 ai
f

aj
f

aj
f effectonpreconditionpreconditi ∩←  

if 1+= ajai timetime  then 
 aj

f
ai
f

aj
f effectonpreconditieffect ∩←

 aj
f

ai
f

ai
f effectonpreconditionpreconditi ∩←  

if aj
f

ai
f onpreconditieffect ≠  then 

 propagate 1+≠ aiaj timetime   

if ai
f

aj
f onpreconditieffect ≠  then 

 propagate 1+≠ ajai timetime  . 
 

The reason for having state sequencing constraints is not 
for maintaining world states itself. The whole state man-
agement is intended to work reversely. The state sequenc-
ing constraint can discover that two actions cannot be 
consecutive. If we add the fact that the maximum plan 
length is usually very tight this mechanism allows a sig-
nificant pruning of current domains of time variables. It is 
preferred to post as many as possible state sequencing 
constraints into the model and therefore it is also impor-
tant to have the above unique action time constraints. 
Precedence Constraints. Until now we did not reflect 
causal links in our constraint model. If there is a causal 
link j

p
i aa ⎯→⎯  in the partial plan, it is necessary that the 

action ia  is executed before the action ja . This relation 
is simply expressed through a precedence constraint be-
tween corresponding time variables: 

ajai timetime < . 
 
The propagator for precedence constraint is the following: 

1)()( −← ji altalt   
1)()( +← ij aetaet . 

 
Threat Resolving Constraints. A threat for a causal link 

j
p

i aa ⎯→⎯  is an action in the partial plan that changes 
the value of a state variable function to the value that is 
not compatible with the effect p  of the action ia . To 
resolve the threat it is necessary to ensure that it is exe-
cuted before both ia  and ja  or after both ia  and ja . 
Since the actions ia  and ja  are already ordered by 
precedence constraint is sufficient to ensure the execution 
of threat action before ia  or after ja . Suppose that ka  is 
a threat for causal link j

p
i aa ⎯→⎯ . The corresponding 

threat resolving constraint is: 

)()( akajaiak timetimetimetime <∨< . 
 
A propagator for threat resolving constraint is following: 

if )()( ki aetalt <  then  
 1)()( −← kj altalt , 1)()( +← jk aetaet  

if )()( kj altaet >  then  
 1)()( −← ik altalt , 1)()( +← ki aetaet . 

The Utility of State Management in the Model 
The proposed constraint model is built dynamically as the 
solving algorithm proceeds. During solving process do-
mains of variables in the constraint model are narrowed. It 
is the standard process how the constraint satisfaction 
problems are solved. 
 The narrowing of variable domains results into discov-
ering of new conflicts in the partial plan (for example a 
threat or unsatisfied precondition of the already present 
action is discovered). The conflicts are resolved by the 
extension of the model with new variables and con-
straints. This may prolong the resulting plan. The exten-
sion of the model is forbidden when the maximum al-
lowed length l  of the resulting plan is reached. The final 
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goal of a solving algorithm is to find the total ordering of 
actions in the plan. 
 The total ordering of actions in the plan is found when 
the domains of all the time variables become singleton. In 
order to reach this we want to prune the domains of time 
variables as much as possible. The state management in 
the constraint model helps the search algorithm to dis-
cover additional inconsistent values in the domains of 
time variables and to rule them out. 
 The situation when the state management is useful is 
showed in figure 1. Note the propagation of effects in the 
chain of actions through frame axiom constraints. If there 
would not be the action that loads the package X at loca-
tion A in the partial plan, the remaining two actions can 
be executed consecutively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 
In this section we describe an algorithm for solving the 
proposed constraint model. Our algorithm is a combina-
tion of standard backtracking based labeling algorithm for 
solving constraint satisfaction problems and a special 
resolution mechanism which dynamically extends the 
constraint model when a flaw in the partial plan is discov-
ered. Along the whole search process the constraint model 
is maintained in an arc-consistent state. We are using an 
incremental version of a classical AC-3 algorithm (Mack-
worth, 1977). 
 In each step of the algorithm there are two possibilities 
what can be done. If the constraint model involves a flaw 
(the flaw in constraint model directly corresponds to a 

flaw in modeled partial plan) the algorithm can repair the 
flaw by extending the constraint model with new variables 
and constraints. The second possibility is to perform a 
labeling step. The labeling step consists in addition of a 
labeling constraint. The labeling constraint selects a value 
for a selected variable and distributes the original con-
straint satisfaction problem (Schulte, 2002) into two sim-
pler sub-problems. The labeling constraint is positive in 
the first sub-problem (the selected variable must take a 
selected value) and negative in the second sub-problem 
(the selected variable must take the different value than 
selected). If one of the sub-problems is solved then this 
solution is also a solution of the original problem. 
 The flaw resolution step is preferred. Thus if there is a 
flaw in the constraint model the algorithm would try to 
repair it and not to label a variable. 
 In both cases the arc-consistency of the constraint 
model is restored. The maintaining arc-consistency during 
the search allows an earlier detection of inconsistencies. 

Flaw Resolution Step 
The flaw is an open goal or a threat. From the previous 
sections we already know how to resolve a threat. The 
treat is repaired by posting an appropriate threat constraint 
into the constraint model. 
 An open goal is a precondition of an action for that 
there is no causal link in the partial plan. This means it is 
not decided how to satisfy the precondition. Consider that 
the precondition p  of the action ja  is an open goal. 
There are two possibilities how to resolve this open goal. 
If there is an action ia  already present in the constraint 
model that has the unsatisfied precondition as its effect. 
We can simply create a new causal link j

p
i aa ⎯→⎯ . 

After creation of a new causal link a new precedence 
constraint ajai timetime <  is added to the model. Although 
causal links are explicitly included in our constraint model 
via precedence constraints, it is more convenient to main-
tain current causal links in a separate set. Every newly 
created causal link has to be inserted into this set. The set 
of causal links can then be used during both kinds of flaw 
resolution. 
 Another way how to resolve the open goal is to add a 
new action into the constraint model that supports the 
open proposition p  of ja . The addition of a new action 
into the constraint model is carried out by adding a time 
variable and corresponding precondition and effect world 
state variables. It is necessary to insert appropriate set of 
constraints too. 
 Consider that we want to add an action ia . It must have 
p  as an effect. A time variable aitime  and world state 

variables ai
fonpreconditi  and ai

feffect  for all the state 
variable functions f  are added into the model. State 
transition constraints are encoded directly into the do-
mains of world state variables. Next we add frame axiom 
constraints for all the pairs of ai

fonpreconditi  and ai
feffect  

variables, where state variable function f  is not affected 
by the action ia . The unique action time constraint is 
extended over the aitime  variable.  Here a dynamic ver-

1 2 3 4 5 
time/move-A-B 

  loc=B  load=X 

     effect/move-A-B precondition/move-A-B 
   loc=A  load=X 

1 2 3 4 5 
time/load-X-at-A 

loc=A  load=empty 

precondition/load-X-at-A     effect/load-X-at-A 
    loc=A  load=X 

frame/transition 
constraints 

state se-
quencing 
constraints 

1 2 3 4 5 
time/load-Y-at-A 

loc=B  load=empty 

precondition/load-Y-at-B     effect/load-Y-at-B 
    loc=B  load=Y 

state se-
quencing 

constraints 

* 

Removed values * 

Action load-Y-at-B 
cannot be executed in 
time 5 since its pre-
conditions are not 
compatible with effects 
of action in time 3 

Propagated through 
frame axiom con-
straint 

Figure 1: Constraint propagation through world state variables
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sion of ntallDiffere  constraint for backtracking based 
environments can be used (Barták, 2003). The state se-
quencing constraint is added for all new pairs of actions, 
i.e. for all pairs of actions ),( ki aa  where ik ≠  a state 
sequencing constraints that bind ai

fonpreconditi , 
ak
fonpreconditi , ai

feffect , ak
feffect , aitime  and aktime  

variables for all the state variable functions f  are added. 
Finally the precedence constraint ajai timetime <  is added. 

Labeling Step 
The labeling step corresponds to the standard variable 
labeling from CSP solving algorithms. In each labeling 
step a variable and a value from its current domain are 
selected. An ordering heuristics are used for selection of 
the variable and the value. Currently we use heuristics that 
select the variable with the smallest current domain and 
then the first value from its domain is selected for label-
ing. Let us suppose that variable x  and value v  is se-
lected for labeling. Then constraints vx =  and vx ≠  are 
used to distribute the problem. 
 The deterministic implementation of the algorithm 
should use a special ordering heuristics to determine the 
most promising order of threats and open goals. The heu-
ristics should be also used for selecting the best refine-
ments. However, in our testing implementation we did not 
use any heuristic for resolution steps. Threats and open 
goals are tried in the order as they were discovered. 
 Figure 2 summarizes the whole search algorithm. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Preliminary Empirical Results 
We have implemented the proposed constraint model and 
search algorithm in C++ in order to examine its proper-
ties. The goal of our evaluation is to examine the benefit 
of state management within the constraint model. We 
have compared how the algorithm works on the model 
with and without variables and constraints for managing 
states. In our preliminary experiments we have used a 
naive implementation of the ntallDiffere  constraint. We 
intend to use a dynamic ntallDiffere  constraint as it is 
proposed in (Barták, 2003) in the future. 
 The algorithm was tested on a simple planning prob-
lem. There were several packages and locations in the 
testing planning problem. There were also one or more 
transporters to transport packages from one location to 
other location. The transporter can move between loca-
tions and can load just one package. The goal was to 
transport packages to selected locations. We have created 
several testing instances of our transportation planning 
problem. These instances differ in the minimum plan 
length and in number of goals that has to be satisfied (if it 
is required to transport two packages there are two goals). 
 Our search algorithm was tested on several instances of 
the proposed transportation problem. In each run we have 
measured the number of steps of the algorithm. We have 
measured separately the number of resolution and labeling 
steps. In addition we counted the number of actions that 
were considered to be a part of the partial plan. 
 

Plan length / 
Steps / States 

4 5 6 7 8 9 10 

no 33 39 121 137 218 259 451 Resolution 
steps yes 22 25 52 59 117 127 337 

no 15 19 44 55 145 163 1179 Labeling 
steps yes 12 15 18 22 51 62 695 

no 7 8 27 28 51 52 71 Actions 
considered yes 4 5 10 11 21 21 49 
 

Figure 3: Empirical results for models with and without states 
 
 The performed experiments showed that if there is only 
one goal in the planning problem, the number of steps of 
the algorithm was almost the same no matter whether the 
state management was used or not. But note that if the 
state management is used more variables are necessary be 
assigned. The same situation appeared when there were 
more goals in the planning problem but independent on 
each other (this corresponds to the situation with two or 
more transporters and the same number of packages to 
transport). 
 We have obtained different results for problems with 
more than one goal which were interacting. This corre-
sponds to the situation when there are fewer available 
transporters than the number of packages to transport. The 
state management within the constraint model seems 
promising in this situation. The results for problems with 
independent goals are listed in figure 3. 

SolveCSPModel((V,C), l) 
(V,C) ← EnforceArcConsistency((V,C)) 
if exists x∈V with empty current domain then 
  return FAILURE; 
threats ← GetThreat((V, C)) 
if threats ≠ Ø then 
  non-deterministically choose a 
    threat t∈ threats 
  (V,C) ← ResolveThreat(t, (V,C), l) 
  return SolveCSPModel((V,C), l) 
else 
  openGoals ← GetOpenGoals((V,C)) 
  if openGoals ≠ Ø then 
    non-deterministically choose an open 
      goal g∈openGoals 
    (V,C) ← ResolveOpenGoal(g, (V,C), l) 
    return SolveCSPModel((V,C)) 
  else 
      if all the variables in V are assigned then 
        return (V,C) 
      select a not yet assigned variable x∈V 
        according to the variable ordering heuristic 
      select a value v from the current 
        domain of x 
      non-deterministically choose a labeling 
      constraint c∈ {x=v, x≠v} 
      (V,C) ← (V,C∪{c}) 
      return SolveCSPModel((V,C), l) 

arc-
consistency threat resolution open goal resolution 

labeling 

Figure 2: Search algorithm for solving partial plan constraint model
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 The current stage of the implementation does not allow 
us to confirm the corresponding improvement in time 
when state management is used. Our testing implementa-
tion has very different costs of the operations. So we can-
not make any conclusion about the time improvement at 
the current stage. 

Conclusion and Future Work 
We studied the utility of integration of state management 
into plan-space planning from the constraint programming 
perspective. We proposed the constraint model for ex-
pressing partial plans. The world states are maintained as 
the actions are sequenced in the resulting plan. We pro-
pose special variables and constraints suitable for express-
ing such world state sequencing. 
 We have also designed a special solving algorithm for 
the proposed model. The algorithm dynamically builds the 
constraint model as the uncertainty is reduced. Our em-
pirical evaluation showed that the state management 
within the model significantly reduces the number of steps 
of the algorithm in certain situations. Namely when the 
planning problem requires satisfying of multiple interact-
ing goals the state management seems to be useful. We 
cannot say the same about the time improvement at cur-
rent stage. It is a matter of further research and testing. 
 We plan to use the proposed state management in the 
constraint model for an integration of domain specific 
heuristics into the solving algorithm. The algorithm makes 
many decisions during solving the planning problem. All 
these decisions can be more targeted with the aid of the 
appropriate domain specific heuristics. 
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Abstract

This paper proposes an approach to interleave planning
and scheduling when dealing with real-world problems
in a collaborative way. Hence, the paper analyses some
challenging points for this collaboration, such as mod-
elling the problem in a joint way, introducing the in-
tegrated architecture and, particularly, the definition of
planning and scheduling conflicts and the way they are
solved when both processes work together. We also in-
clude an example to illustrate the interaction of both
processes.

Introduction and Motivation
The development of planning and scheduling (P&S) tech-
niques allow to tackle real-world problems that require han-
dling duration of activities, reasoning on resource usage, ex-
ecution costs, optimisation criteria, etc. in a wide variety of
problems (Ghallab, Nau, & Traverso 2004; Smith, Frank, &
Jónsson 2000). The aim of planning is to find out which
actions need to be executed to achieve the problem goals,
whereas scheduling aims at finding out when these actions
need to be executed and with which resources, which usu-
ally entails a constraint satisfaction process to validate all
the problem constraints.

Although it is clear that real-world problems require
features of both planning and scheduling, these two pro-
cesses have been traditionally managed separately and, con-
sequently, this has been the most straightforward approach.
However, this approach does not seem sensible: selecting
an action in a plan is usually conditioned to several tem-
poral constraints, resource availability and criteria to be
optimised. Consequently, planning and scheduling com-
plement each other perfectly, which clearly motivates the
challenge in designing flexible models to integrate P&S
capabilities. After some attempts to integrate P&S sys-
tems (Bartak 2004; Chien et al. 2000; Muscettola 1994),
the question of how best to design such inter-leaved sys-
tems still remains open (Smith, Frank, & Jónsson 2000;
Smith & Zimmerman 2004). There are many subtle details
for a collaborative system, but the main open points for this
collaboration, which also represent the main contributions
of this paper, are:

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

• How to model the real problem and specify features of
both planning and scheduling. The definition of the basic
problem elements is essential to identify the requirements
of the integrated system.

• How to define the system architecture to bridge the gap
between planning and scheduling. Since both processes
do have their own role in the problem solving, we should
take this fact into account when designing the system ar-
chitecture.

• How to identify the most adequate P&S technology for
the system, particularly considering that they use similar
techniques (graph search, heuristics, constraints manage-
ment and reasoning, etc.) and the necessities of sharing
and exchanging information between the two processes.

• How to solve the different types of P&S conflicts that may
arise in a mixed-initiative way, thus analysing the way in
which the two processes cooperate, communicate and in-
teract.

The objective of this paper is to shed some light about
these points and present an architecture for integrating plan-
ning and scheduling as a model that dynamically interleaves
a planner and a scheduler.

Modelling Planning and Scheduling Problems.
A Brief Description through an Example

A P&S problem involves the execution of a sequence of ac-
tions, which must satisfy several constraints (both temporal
and on resource availability), in order to achieve some goals,
while trying to optimise a metric function. Let us assume a
problem inspired by a planetary rovers scenario1 (see Fig-
ure 1) that we will use throughout the rest of the paper. This
problem requires that a collection of rovers navigate a planet
surface, finding samples, taking images, etc., and communi-
cating them back to a lander. Concurrent use of the rovers
must be coordinated with the bottleneck of communication,
which must be performed only when the lander is visible
from the rover. Further, rovers consume energy in their var-
ious activities and they can only be recharged at locations

1This problem was introduced in the
International Planning Competition 2002
(http://ipc.icaps-conference.org) and used since
then
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Figure 1: A rovers scenario where rovers have to perform
sampling tasks and communicate results back to a lander
when visible. The use of rovers must be properly coordi-
nated since tasks require navigation, consume energy and
they can only be recharged at particular locations with sun.

that are in the sun (actions to recharge are very limited and
need to be planned precisely), which implies to manage en-
ergy efficiently. Therefore, trying to separate the navigation
and communication part from managing energy consump-
tions and recharging is nearly impossible. This is a clear
example of a real-world problem that makes it necessary to
include temporal constraints and resource availability into
planning as they modify the structure of the plan; i.e. the
plan generation is highly influenced by the scheduling con-
straints, and separating planning and scheduling turns un-
likely. The requirements to model a P&S problem like this
rovers scenario include:

• Initial state and problem goals with the information that is
true at the beginning of the problem and the facts that need
to be achieved, respectively. E.g. the locations with sun,
the initial energy of the rovers and their availability, etc.
is part of the initial state, whereas the data about samples
(rocks, soil and images) to be communicated is part of the
goals.

• Actions, with duration, conditions and effects, thus allow-
ing different alternatives to achieve the goals. E.g. the
actions allow rovers to navigate, calibrate their cameras,
recharge energy, and take images among others.

• Resources available to execute the actions in the plan. In
general, this is implicitly included in the actions as con-
ditions and/or effects, and usually even represented as
numeric expressions. E.g. the rovers, the cameras, en-
ergy, time, etc. are the resources, and actions modify their
propositional state (available, calibrated, empty, etc.) and

numeric value (decrease energy in 10 units or increase to-
tal time of the plan –makespan– in 5 units).

• Metric function, as a multi-criteria function defined by the
user that needs to be optimised. The application of this
metric allows to find plans where several weighted criteria
that play an important role in the plan are considered. E.g.
a metric to minimise the plan makespan and the energy
used by all the rovers helps assess the quality of different
plans to choose the most appropriate.

• Problem constraints (including temporal and non-
temporal constraints), with additional constraints the plan
needs to satisfy obligatorily (strong constraints) or as a
preference (soft constraint). E.g. some constraints such as
deadlines in (sub)goals (communication needs to be per-
formed before 30’) or constraints in the form of time win-
dows (sun is available from 6’ to 150’) help better model
the requirements of the real problem.

Although there is not a well accepted language to spec-
ify real problems of planning and scheduling (at least to the
authors’ knowledge), from a planning perspective there ex-
ists a widely accepted language to define planning domains,
which is now called PDDL3 (Gerevini & Long 2005). De-
spite some limitations in PDDL3 to describe scheduling fea-
tures such as explicit resources and complex temporal con-
straints, a high number of features of real-world problems
can be currently modelled in PDDL3, which makes it ex-
pressive enough to model P&S problems.

Collaborative Planning and Scheduling
The resolution of P&S problems has followed two different
perspectives. In one of the research directions, the tempo-
ral planning approach, the objective is to extend planning
to cope with scheduling capabilities, that is augmenting the
planning reasoning capabilities in order to handle time and
resources (Chen, Hsu, & Wah 2004; Gerevini et al. 2004;
Ghallab, Nau, & Traverso 2004). In the other research di-
rection, planning embedded into scheduling, the solution
consists of including planning capabilities into a scheduler
(Smith & Zimmerman 2004). In this approach, the starting
point is usually a pre-planned set of ordered activities and
planning is called each time it is necessary to release, to set
up or to make available any problem component. However,
the solution does not necessarily go through any of these two
approaches since this indistinguishable mixture of processes
may increase the complexity of the overall approach, mak-
ing some problems intractable. Our contribution is to pro-
vide a general and flexible model where both planning and
scheduling processes have an important role in the problem
solving per se. Our two main goals when designing the sys-
tem architecture are:

• To have two separate but coordinated P&S components,
each specialised in solving different problems. First, a
planner that initially does not contemplate time and re-
sources, i.e. it only considers the propositional part of the
problem in a STRIPS-like style (Fikes & Nilsson 1993).
Second, a scheduler that assists the planner to accomplish
a plan that accommodates and satisfies the time/resources
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requirements. Even though this might sound inefficient
for simple problems, it turns out to be extremely effective
for solving complex problems with complex constraints.

• To come up with a model where both P&S tasks can be
solved by applying existing techniques. There exist many
planning and scheduling techniques that, properly com-
bined, can be used for our purpose of creating a coopera-
tive and highly-coupled integrated model of planning and
scheduling.

Architecture. Planning and scheduling modules
Figure 2 depicts the structure of the integrated architecture
for planning and scheduling, which contains four identifi-
able elements:

1. The input data. The input is the problem model (do-
main+problem definition in any specification language,
e.g. PDDL3) together with an initial plan (either pro-
vided by the user as a set of activities or by a planner)
used as a basis. Although the system could start from
an empty plan, it does not seem sensible to tackle such a
complex task from scratch since there are many state-of-
the-art planners that generate plans very efficiently. The
underlying idea is to use a classical planner, as simple (in
terms of expressivity and calculus) and efficient as pos-
sible. Note that this does not imply a loss of generality:
a plan provided by any planner can be used as an input,
and even a plan generated by hand. Also note that this
plan may abstract out the scheduling (time+resources) re-
quirements, i.e. the plan does not need to be executable
because the objective of the integrated module is precisely
to repair a given plan and make it fully executable w.r.t. all
the scheduling requirements. This increases the opportu-
nities to use efficient planners as a previous step to the
integrated module.

2. The action network (AN). The input plan is converted
into a network that represents the plan with its actions,
causal links and (temporal+resource) constraints. Sim-
ilarly to the activity network used in (Fratini & Cesta
2005), this network represents: i) the shared data struc-
ture between the planner and the scheduler; and ii) the
shared search space. The AN (see an example in Figure 4
below) follows the philosophy of temporal constraint net-
works and consumable resource networks (TCN and rCN
(Dechter, Meiri, & Pearl 1991; Wallace & Freuder 2005),
respectively) to represent the plan, actions and constraints
on time and resources. Nodes represent timepoints where
actions start/end, while edges, all of them labelled with an
interval, represent: i) usage of a resource (time is consid-
ered as a resource as well); ii) causal links between time-
points of actions; and iii) temporal constraints between
timepoints. The AN also includes information about
obligatory actions to indicate that these actions must be
present in all the plans because they are the only way to
support some problem (sub)goals, similarly to the work
on landmarks presented in (Hoffmann, Porteous, & Se-
bastia 2004).

3. The planning process. This process updates the AN
when solving the planning conflicts and makes actions

propositionally executable. This process acts as a plan re-
pairer when it works upon the input plan (adding or delet-
ing actions to make the plan executable), as a replanner
when a conflict is detected in the plan or simply as a plan-
ner when it deals with goal achievement.

4. The scheduling process. This process validates and
checks the feasibility of the AN and its constraints. The
scheduler performs two important roles in the overall pro-
cess, one as an autonomous task and another as a coopera-
tive task with the planner. The former involves allocating
actions so as to fulfil the temporal constraints and the re-
source requirements. The latter informs and collaborates
with the planner when it detects a scheduling conflict that
requires planning abilities to solve it.

The planning and scheduling processes are specially de-
vised to work together in the resolution of the different
conflicts that arise during the plan construction (or recon-
struction). The proposed architecture brings twofold advan-
tages:

• The input data to the integrated model can be a proposi-
tionally executable plan, an incomplete plan or an empty
plan given by any planner. It is also possible to provide
the model with a plan that already satisfies some of the
problem constraints. In any case, all this information is
transformed into the appropriate elements in the AN. The
idea is to provide a flexible input since for some problems
it is possible to compute a plan in advance, for some other
problems the knowledge engineer or the user can supply
some activities (actions) that are known to be necessary
in the problem, and for some other complex problems we
might not have this type of information or even be very
difficult to compute a plan by any standard planner.

• This architecture provides a high flexibility, being possi-
ble to plug-in additional specialised modules. The pro-
posed scheduler is thought to work as a TCN by prop-
agating and validating the time and resource constraints
feasibility, and providing useful information to help the
planner repair the possible conflicts. The same schema
can be used for other modules, as for example a mod-
ule in charge of checking hard and soft constraints among
planning states and plan trajectories (Gerevini & Long
2005) or a module specialised in some specific type of
constraints. The overall idea is that each of the modules
attempts to maintain the consistency of their constraints
and collaborate with the planner when conflicts arise in
the AN.

Technology. Planning and scheduling techniques
The model for this integration tries to be general enough to
use already existing techniques for planning and schedul-
ing. The main goal of the planning process is to get an
executable plan without taking into account the resource
constraints. This process carries out the typical operations
to solve planning conflicts, insert actions to support new
goals and so on. Therefore, no special requirements are
needed and most current (heuristic) planning and plan re-
pair techniques can be used (Chen, Hsu, & Wah 2004;
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0: (calibrate rover0 cam0 obj wp0)

0: (sample_rock rover0 rover0st wp0)

1: (take_img rover0 wp0 obj1 cam0 low_res)

1: (drop rover0 rover0st)

2: (sample_soil rover0 rover0st wp0)

3: (comm_rock_data rover0 gen wp0 wp0 wp1)

...

Plan / Set of activities (by hand)

Integrated heuristics

common heuristics based on actions

and cost/problem metric

0.001: (calibrate rover0 cam0 obj wp0) [5]

0.001: (recharge rover0 wp0) [7.09091]

0.001: (sample_rock rover0 rover0st wp0) [8]

5.006: (take_img rover0 wp0 obj1 cam0 low_res) [7]

8.009: (drop rover0 rover0st) [1]

9.01: (sample_soil rover0 rover0st wp0) [10]

27.028: (comm_rock_data rover0 gen wp0 wp0 wp1) [10]

37.038: (comm_soil_data rover0 gen wp0 wp0 wp1) [10]

...

;; Plan makespan: 47

;; Plan cost: 75.9

;; Number of actions: 12

Executable plan

Planner

Any kind of  plan

(provided by a

classical planner) or

set of activities

(provided by a user)

Integrated module

update

(add/delete)

integrated

problem solving

Planning process

Replanner (plan

execution and reparation)

Scheduling process

Validation of (temporal +

resource) constraints

checking problem

consistency

Action

Network

[5,5]

[-8,-6]
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Figure 2: Structure of the collaborative system for planning and scheduling.

Gerevini et al. 2004; Ghallab, Nau, & Traverso 2004;
van der Krogt & de Weerdt 2005). On the other hand, the
scheduling process needs to validate and guarantee the fea-
sibility of the AN. Here different techniques can be used.
From the AI point of view, scheduling algorithms for check-
ing the consistency of the constraints involved in the AN
(such as TCN (Dechter, Meiri, & Pearl 1991)) are more ap-
propriate than dynamic CSP that try to find a solution to
the problem (Tsang 1993). From the OR point of view,
there exist many efficient algorithms that can also be used
to perform the allocation of the actions in the AN while
checking its feasibility (Baptiste, Le Pape, & Nuijten 1995;
Winston 1994). In both cases, the scheduler needs to provide
information about where the conflicts appear.

As can be seen, the open design of this model represents
an important advantage since it allows to use and adequately
combine existing techniques and implementations for plan-
ning and scheduling to achieve a bi-modular solver. How-
ever, such a combination of different techniques makes it
difficult to guarantee some properties such as completeness
and optimality. Fortunately, when solving complex real-
world problems, these two properties are not the most de-
sired properties in our approach.

Interaction. Solving planning and scheduling
conflicts

Solving problems that include temporal/resource constraint
is a complex task that becomes especially tricky in a collab-
orative approach for P&S because there exist features that
are better managed by these two processes by separate, but
there exist others that require a strong stage of interaction
and cooperation between both processes. This is particu-

larly more evident when solving P&S conflicts, which needs
a deep explanation.

Types of P&S conflicts
We have identified three types of conflicts, which usually
arise when generating a plan that must fulfil both P&S fea-
tures, and must be solved by the processes by separate (type
1 and 2) or by a close collaboration of both of them (type 3).
These types are:

• Type 1. Planning conflicts solved via planning. These
conflicts are the classical ones that are caused by unsup-
ported action preconditions, threats or by mutex relations
between the actions in the plan. E.g. if an action in
the AN requires to take an image at a particular location
while the rovers is in a different point, it becomes neces-
sary to support such a condition by planning new actions.
This type of conflict is related to propositional informa-
tion (pure STRIPS) that is specifically managed by the
planning process. Therefore, these conflicts are solved by
applying classical planning techniques (flaw repair mech-
anisms, such as inserting and deleting actions to satisfy
unsupported preconditions).

• Type 2. Scheduling conflicts solved via scheduling.
These conflicts are those caused by oversubscripted re-
sources that must be allocated to competing actions. E.g.
if two actions in the AN use the same resource with uni-
tary capacity, which cannot be shared at the same time,
it becomes necessary to impose an order of execution be-
tween them. This type of conflict is basically related to
resource information and it can be implicitly represented
in the action as (STRIPS) propositional information or
as numeric information. Since these conflicts imply an
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assignment problem, they can be solved by scheduling
techniques that shift the actions until finding a feasible
allocation.

• Type 3. Scheduling conflicts solved via planning. Un-
like type 2 conflicts, there exist other conflicts that cannot
be strictly solved by shifting or re-allocating actions since
they require to include a collection of setup actions (sub-
plan) or template that cannot be pre-planned in a domain-
independent context (Smith & Zimmerman 2004). E.g.
if an action in the AN requires an energy level that ex-
ceeds the current value, it becomes necessary to recharge.
However, if the action for recharging is conditioned by
the result of a collection of actions (i.e. the rover needs
to navigate to a particular location), a conflict similar to
type 1 appears since new subgoals need to be achieved.
This type of conflict is related to resource information
and sometimes to propositional information for the setup
actions. Solving this conflict is a highly complex pro-
cess since it first needs scheduling to detect it and second
planning to: i) find the place in the plan where repair (sub-
plan) is needed; and ii) modify the original plan (includ-
ing and/or deleting actions) in order to make the resource
available to be used again.

As can be noticed, dealing with P&S features and solv-
ing their conflicts is the main task to be done in the col-
laborative approach. Algorithm 1 shows the scheme for
this collaboration, which also represents the functional be-
haviour of the integrated model when solving the previ-
ous types of conflicts. The algorithm works by interleav-
ing the P&S stages in turns and the goal is to revise, both
from the planning and scheduling points of view (rev PLN

and rev SCH), all actions in the AN to find a conflict-free
plan. Selecting one action at a time (step 5), three are
the main (planning+scheduling) tasks to perform. One is
solve PLN conflicts (step 8), responsible for solving type
1 conflicts. Once the current planning conflicts have been
solved, the scheduler revises the scheduling conflicts (steps
9–14). First, it searches for a consistent allocation of the ac-
tions in rev SCH (steps 11–12) to solve type 2 conflicts. If
this allocation fails, the conflict then becomes a type 3 one
(solve SCH conflicts in step 14) which means it is necessary
to modify the AN (insert/delete actions) to solve it.

The key points in Algorithm 1 are the two calls (steps
8 and 14) which correspond to the resolution of type 1
and 3 conflicts. The resolution of these conflicts require
planning and scheduling. The overall idea is to reformu-
late a planning conflict as a planning repair problem which
is later solved by classical planning techniques. On the
other hand, the scheduler provides the planner with ad-
vice about the conflicting actions and the resources involved
there. Hence, the scheduler helps the planner focus its search
upon those planning alternatives that better accomplish the
time/resource objectives/constraints. Particularly, the P&S
interaction for solving these conflicts is (see Figure 3):

1. solve PLN conflicts (type 1 conflicts). In this case, the
planner needs to solve a planning conflict in rev PLN.
First, the planner uses a heuristic estimator, which is
later explained, to find out the best alternatives to repair

1: rev PLN ← IS {IS: fictitious action for the initial
state}

2: rev SCH← ∅
3: while ∃a ∈ AN | a 6∈ rev SCH do
4: {Planning part; reasoning on causal links}
5: a← earliest action that can be planned in AN

6: rev PLN← rev PLN ∪ {a}
7: if number of conflicts(rev PLN) > 0 then
8: solve PLN conflicts(rev PLN) {Type 1 conflicts}
9: {Scheduling part; reasoning on time and resources}

10: for all ai ∈ rev PLN | ai 6∈ rev SCH do
11: if ∃ a consistent allocation of ai in rev SCH then
12: rev SCH← rev SCH ∪ {ai} {Type 2 conflicts}
13: else
14: solve SCH conflicts(ai,R, quantity, time point,

Other Constraints) {Type 3 conflicts}

Algorithm 1: General scheme for collaborative planning and
scheduling, and the way conflict resolution is invoked

the conflict. Particularly, the heuristic estimator informs
about the different places (states in the AN) where the re-
pair turns out to be feasible, obviously from a heuristic
point of view. Starting from the most promising state, the
planner tries to solve the conflict by transforming it into
its own terms: the planner formulates a repair problem
in terms of which subgoals are to be achieved and which
ones are to be maintained in the AN. In order to deduce
this information, the planner makes use of its own plan-
ning tactics to decide which actions need to be inserted
into the AN. The interesting point here is that the plan-
ner also counts on the information provided by the sched-
uler (heuristic selector), thus guiding the planner process
and helping decide which planning alternative to take on
according to scheduling criteria. This way, the planner
shows the scheduler the planning decision points (plans
P1, P2, . . . P5) and the scheduler determines the best al-
ternative (P2) from the time/resource perspective. Finally,
if the conflict cannot be solved by just inserting new ac-
tions, the planner selects another alternative place (state)
from the heuristic estimator and repeats the repairing pro-
cess. The planner tries to solve the conflict on the basis
of the current AN, and it will only take the decision of
deleting actions from the AN when there are no more al-
ternatives (states) to try out. Deleting actions obviously
produces new conflicts since the goals of the deleted ac-
tions are not longer supported. Consequently, the planner
needs to select a new conflict as a new type 1 conflict,
which means starting the process again.

2. solve SCH conflicts (type 3 conflicts). In this case,
the scheduler needs to solve the scheduling conflict in
rev SCH. However, this implies solving a scheduling con-
flict through planning in a joint way. When the scheduler
detects a constraint violation due to an oversubscripted
resourceR that cannot be solved by the scheduler per se
(a subplan is required), it informs the planner about when
that resource is needed (at which time point), how much
is required (quantity) and who requires it (action ai),
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Figure 3: Planning and scheduling interaction for solving type 1 and type 3 conflicts.

thus creating a new subgoal to be supported. Additionally,
the scheduler provides the planner helpful information as
an extra set of constraints (Other Constraints) that the
planner must hold when solving the problem; for instance,
do not use more than n units of resource Rj when solv-
ing this conflict. Basically, the planner uses this informa-
tion and acts similarly as when solving a type 1 conflict,
i.e. it uses the heuristic estimator to find the best states
in the AN to insert the subplan to solve the conflict that
appears with the resourceR. Note that there is no guaran-
tee of solving this conflict just by inserting actions. Con-
sequently, in cases of deadline-related conflicts deleting
actions becomes the only valid alternative.

Solving conflicts, especially type 1 and 3, require a high
component of search and thus the use of heuristic estima-
tions to guide this process appears very convenient.

Heuristic tactics to help solve conflicts Figure 3 shows
two heuristic processes that help in the P&S interaction: the
heuristic estimator in the planner and the heuristic selec-
tor in the scheduler. The former provides heuristic estima-
tions to discover the best state in the AN from which repair-
ing the conflict (inserting the subplan). These estimations
are calculated on a relaxed version of a numeric planning
graph, which is similar to the one used in metric-FF (Hoff-
mann 2003) but with two differences. Firstly, we ignore the
action conditions related to the use of numeric resources,
which usually denote consumable resources. Secondly, we
consider all action effects related to the numeric resources
either they imply an increase or decrease in the resource us-
age. This way we will be able to check the goodness of es-
timations that consider a global use of resources (consump-
tion/restock). Intuitively, ignoring the numeric conditions
may lead to include actions in the planning graph although
they are not executable, which would entail very optimistic
situations that can negatively affect the estimations. How-
ever, even ignoring the numeric conditions, if actions finally
turn out to be executable, the estimations will be very close
to the real values. On the other hand, considering all type of
effects allows to obtain more accurate estimations for most
resources since their values will be more informed. In short,

these estimations are more oriented to finding out the final
consumption of all the resources after executing a set of ac-
tions rather than to the realisation of those actions.

Note that the use of relaxed planning graphs is not only
valid for estimating numeric resources but also for any kind
of resources that require setup activities such as making
available a vehicle fleet, flight crew, etc. In these cases, the
estimations will be even more precise since the numeric re-
laxation has no impact in their values as we will see in the
illustration example below.

On the other hand, the heuristic selector is used to choose
a plan during the plan repairing process. During this process,
the planner will likely find several actions that achieve the
same goals, thus forming alternative plans. Instead of doing
a complete search, which may be very costly, the heuristic
selector informs the planner about which alternative plan to
use. The selector makes its decision on the basis of: i) the
use of resources; and ii) the multi-criteria problem metric
to be optimised. First, it selects plans that use up those re-
sources that require setup activities, thus reducing the num-
ber of these activities. For instance, trying to use up the re-
source energy will reduce the number of actions in the plan
(fewer recharge actions will be necessary), the makespan
and eventually the cost. Second, it selects plans with the best
problem metric which means selecting the plan that best fits
the user’s preferences. Note, however, that other criteria can
also be used, such as number of actions, makespan, etc.

An illustration example Let us take an example of the
rovers problem to illustrate the way the planner and sched-
uler interact when solving conflicts and how the heuristic
tactics help in this process. The goal of the problem is to
have soil, rock and image data communicated. The initial
plan, generated by an automated planner is shown in Figure
4-a, which is subsequently converted into an AN (see Fig-
ure 4-b). Moreover, the problem imposes these additional
complex constraints: i) actions have different durations and
consume energy of rover0 (e.g. (sample soil wp0)
increases time in 10 units and decreases energy in 3 units);
ii) the initial energy level of rover0 is 10; iii) sun is avail-
able to recharge only in waypoint1 and waypoint3;
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0: (calibrate camera0 waypoint0)

1: (take_image camera0 waypoint0)

2: (sample_soil waypoint0)

3: (communicate_image waypoint0 waypoint1)

4: (communicate_soil waypoint0 waypoint1)

5: (drop)

6: (sample_rock waypoint0)

7: (communicate_rock waypoint0 waypoint1)
(a)

(calibrate cam0

wp0).on

(calibrate cam0

wp0).off

[5,5]

[-2,-2]

CL

(take_image cam0

wp0).on

(take_image cam0

wp0).off

[7,7]

[-1,-1]

IS (T0)

(comm_image

wp0 wp1).on

(comm_image

wp0 wp1).off

[15,15]

[-6,-6]

(sample_soil

wp0).on

(sample_soil

wp0).off

[10,10]

[-3,-3]CL

have_image obj1

[20,¥]

CL

CL

calibrated cam0

[0,30]

communicated_image obj1

[0,40]

time (makespan)

energy of rover0

causal link (CL)

temporal constraint

(b)

Figure 4: (a) Initial plan for the illustration example; (b)
Fragment of the AN of the initial plan: obligatory actions
are underlined, solid and dashed lines represent usage (in-
crease/decrease) of resources in actions (makespan and en-
ergy, respectively), thick lines represent causal links, and
dotted lines represent temporal constraints.

iv) the subgoal (have image objective1) must not
be achieved before time 20; v) the effect (calibrated
camera0) only persists during 30 units; and vi) the goal
(communicated image) has a deadline, so it is due to
time 40. In this problem, conflicts arise because of the loca-
tion of the rover (type 1), its energy level and the makespan,
but only the energy and the makespan are managed by the
scheduler as numeric resources (type 3 conflicts).

According to Algorithm 1, actions are selected from the
AN and revised to check for P&S conflicts. The AN is free
of conflicts until revising (comm image wp0 wp1) that
introduces a type 3 conflict that the scheduler per se cannot
solve because the resource energy becomes oversub-
scripted: (comm image wp0 wp1) requires 6 units of
energy, but only 4 (10-3-2-1) are available. Then, the sched-
uler executes solve SCH conflicts((comm image wp0
wp1), (energy rover0), 2 (6-4), (comm image
wp0 wp1).on, {(

∑
(energy rover0) ≤ 10),

(makespan < ∞)}). Hence, the scheduler informs the
planner about all the information about the conflict: action,
resource, quantity required and timepoint. Moreover, it
also informs about the other constraints to be satisfied
that include: i) consumption of energy rover0 cannot
now exceed 10 (since this is the initial value); and ii)
consumption of makespan is not really constrained.

The heuristic estimator calculates the four states where

State 1 {10}, {0}

Subplan
Remaining actions

State 2 {8}, {5}

Subplan
Remaining actions

(calibrate

cam0 wp0)

State 3 {5}, {10}

Subplan
Remaining actions

State 4 {4}, {12}

Subplan

Remaining

actions

(calibrate cam0 wp0)

(sample_soil wp0)

(calibrate cam0 wp0)

(sample_soil wp0)

(take_image cam0 wp0)

Figure 5: The four states from where the planner can start
the subplan to recharge, after executing 0,1,2,3 actions, re-
spectively, of the AN. Each subplan also contains the ini-
tial value of the resources energy and makespan, respec-
tively. Hence, the initial values for the subplan of the state
3 are {5},{10} that coincide with the consumption of both
resources of the parallel execution of actions calibrate
and sample soil.

Table 1: Estimation for the consumption of resources to exe-
cute actions to recharge energy inserting the subplan in four
different states (values for wp1 and wp3 are the same).

energy rover0 makespan
State 1 10-8=2 0+5=5
State 2 8-8=0 5+5=10
State 3 5-8=-3 10+5=15
State 4 4-8=-4 12+5=17

the subplan to solve this conflict can be inserted, as depicted
in Figure 5. The only two actions that increase the energy
level are (recharge wp1) and (recharge wp3) (in
this problem they have the same estimations because both
waypoints are interchangeable), so the planner has to in-
clude a subplan (setup activities) to navigate there, which
consumes 8 units of energy and 5 of makespan. Ac-
cording to the scheduling constraints on the energy and
makespan, the subplan can only be placed in states 1 or 2
(see Table 1). Clearly, state 3 is not a valid choice because
the initial energy level for the subplan is 5 and it uses 8
units to solve the conflict. The same happens in state 4 where
there is a lack of 4 units of energy to achieve the subplan.
In order to decide between state 1 or 2, the estimator uses
criteria based on the use-up of resources and problem metric
(as in the heuristic selector). In this case, the state 2 is cho-
sen since the fact of totally using up the resource energy
allows to minimise the number of recharges and improve
the quality of the final plan. Then, the planner will generate
the subplan, which consists of actions {(navigate wp0
wp1) → (recharge wp1)} (or analogously in wp3),
updating the actions in the AN and resuming the Algorithm
1. This shows how the P&S interaction, together with the
use of heuristic tactics, allow to face conflict resolution in a
collaborative way.

Conclusions through Related Work
In the last decade, combining AI planning and scheduling
has posed a lot of interesting and challenging questions, be-
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ing considered a hot topic of research even from the OR
point of view (Baptiste, Le Pape, & Nuijten 1995; Bartak
2004; Fratini & Cesta 2005; Ghallab, Nau, & Traverso 2004;
Smith, Frank, & Jónsson 2000). The combination of P&S
techniques varies from loosely-coupled integration (Pec-
ora & Cesta 2005) to highly-coupled integration with a
constant interaction of P&S modules (Chien et al. 2000;
Muscettola 1994). The way to share information between
planning and scheduling, as the level of synergy between
both solving processes (Pecora & Cesta 2003), becomes a
key aspect in both types of integration, being particularly
more difficult to achieve in the latter. There have been some
successful attempts in such a highly-coupled integration,
such as HSTS (Muscettola 1994) or Aspen (Chien et al.
2000). These ad-hoc systems exhibit a good performance in
the domains they were designed for, but they are limited in
more general domains. Therefore, the challenge of design-
ing a general model of planning and scheduling still remains
open.

This paper represents a step ahead towards a collabora-
tive approach for planning and scheduling which intends to
be general and flexible enough to tackle any kind of P&S
problems, with a strong or weak component of time/resource
management. Our model is based on the common idea of dy-
namically interleaving planning and scheduling, both play-
ing a similar role. However, we bring two novelties with
respect to other approaches: i) none of the two processes
(planner and scheduler) is embedded into the other but both
work together in the problem resolution; and ii) the proposed
model can be implemented using existing technologies of
planning and scheduling. We have not focused on building
a complete and optimal approach for planning and schedul-
ing, but on designing the interaction between both processes,
which we consider a key point for the success of the collab-
oration. This implies making decisions on when to com-
municate, what to communicate and how the processes will
tackle the task when they have all the information at hand.
In particular, we have shown how the planner and scheduler
interact for early detection and solution of conflicts, more
specifically for the type 3 conflicts which require capabili-
ties of both processes to be solved. As part of our immediate
research, we are focusing our work on: i) how to improve
the P&S interaction; and ii) the implementation of the ad-
hoc mechanism for providing feedback from the scheduler
to the planner and the evaluation of its effectiveness.
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Abstract

Many real-world scheduling problems are subject to change,
and scheduling solutions should be robust to those changes.
We consider a single-machine scheduling problem where
the processing time of each activity is characterized by a
normally-distributed random variable, and we attempt to min-
imize flowtime. We develop an initial constraint model for
generating theβ-robust schedule - the schedule that has high-
est probability of producing a flowtime less than a stated
bound. Experiments with this initial model show that a
constraint-based approach is feasible, but that better propa-
gation methods will be required.

Introduction
Most scheduling research considers problems that are static
and certain – all the activities and their durations are known
in advance and do not change as the solution is being exe-
cuted. However, many real-world scheduling problems are
subject to change: new jobs arrive, resources fail, or tasks
take longer than expected. If these changes are significant,
then optimal solutions to the original problem may turn out
to be poor in practice. For this reason, it may be better
to generate solutions that are robust to the likely changes.
A β-robustschedule (Daniels & Carrillo 1997) is one that
has maximum probability of achieving a given performance
level (e.g. total flowtime less than a threshold). Alterna-
tively, we may want to find the best performance that a solu-
tion will deliver with a given confidence level.

Constraint-based methods have proven to be very effec-
tive in a wide range of industrial scheduling problems. The
advantage comes from the flexibility of the modeling lan-
guage, and the ability of the solvers to deliver effective per-
formance despite the presence of a wide range of different
constraints and objectives. Again, though, most constraint
based research assumes static and certain problems. In this
paper, we consider how to modelβ-robustness in a con-
straint modelling language, and we show how to search for
β-robust schedules.

In particular, we consider single machine problems,
where the processing time of each task is uncertain, but
can be characterized by a normally-distributed random vari-
able. We consider flowtime (the amount of time the tasks
remain in the system) as the main criterion. The simplest

approach would focus on optimizing the expected total flow-
time. However, this ignores the variance in the task dura-
tions, which may be significant. For any given schedule,
we will measure the probability of the total flowtime being
less than a target level. We will then generate (i) a schedule
which maximizes the probability, or (ii) a schedule which
optimizes the target level that can be achieved with a given
probability.

The paper is structured as follows: first, we briefly review
techniques for scheduling under uncertainty; we then con-
sider flowtime as a performance measure for schedules with
uncertain task durations; we give a formal definition ofβ-
robustness; we present our initial constraint models for the
β-robust scheduling problem; and finally we report on some
experiments with the model.

Background

A number of approaches have been proposed to handle un-
certain scheduling problems. Redundancy-based Schedul-
ing generates schedules with temporal slack so that unex-
pected events during execution can be handled by using
that reserved slack (Davenport, Gefflot, & Beck 2001; Gao
1995). Contingent scheduling anticipates likely disruptive
events and generates multiple schedules which optimally
respond to the anticipated events (Drummond, Bresina,
& Swanson 1994; Fowler & Brown 2003). Probabilis-
tic scheduling uses probabilities over possible events, and
searches for schedules which optimize the expected value
of some performance measure (Daniels & Carrillo 1997;
Walsh 2002; Beck & Wilson 2004; 2005). A number of ap-
proaches use sampling and scenarios, in order to produce
robust decisions (Bent & Hentenryck 2004; Beck & Wilson
2004).

In particular, Daniels and Carrillo (Daniels & Carrillo
1997) introduced the concept of theβ-robust schedule for a
single machine scheduling problem with processing time un-
certainty. They solved the problem by a branch-and-bound
method with dominance rules, and heuristics for branch se-
lection. The total flowtime was used to measure the per-
formance of solutions, which will be explained in the next
section.
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The flowtime of a schedule
In a single machine scheduling problem, in which each job
consists of a single task, a machine can only process one
job at a time, and a job cannot be interrupted once started, a
solution is a sequence of the jobs, and we assume the jobs are
executed in sequence with no delay between them. Suppose
we have a sequenceJ1, J2, . . . Jn. Each jobJi has an arrival
time Ai (its earliest possible start time), a start timeSTi, a
durationdi, and an end timeEi. We assume that each job is
available for processing at time 0 (i.e.Ai = 0).

We note the following simple relations:Ei = STi + di,
ST1 = 0, STi = Ei−1, and henceEi =

∑i
j=1 dj .

Theflowtimeis the total time the jobs are in the system:

TFT =
n∑

i=1

(Ei −Ai)

Because we assumeAi = 0, we can rewrite the equation
for total flowtime as follows:

TFT =
n∑

i=1

Ei (1)

=
n∑

i=1

i∑

j=1

dj (2)

=
n∑

i=1

(n + 1− i) ∗ di (3)

We now assume that each jobJi’s duration is an indepen-
dent normally distributed random variabledi ∼ N(µi, σ

2
i ).

We assume that the jobs will still be executed in the given
sequence, regardless of the actual values of the durations.

We note that for any two independent random variables
X ∼ N(µx, σ2

x) andY ∼ N(µy, σ2
y), and two constants

a and b, the sumaX + bY is also a normally distributed
random variable, such thataX+bY ∼ N(aµx+bµy, a2σ2

x+
b2σ2

y).
Since the activity durations are independent normally dis-

tributed random variables, and flowtime is a linear combina-
tion of durations, then for any particular sequence of jobs,
the flowtime is also a normal random variable. From (3):

TFT ∼ N(
n∑

i=1

(n− i + 1)µi,
n∑

i=1

(n− i + 1)2σ2
i )

β-robust schedules
For scheduling problems with uncertainty, we must decide
the criteria by which the solutions will be judged. The sim-
plest criterion is the expected flowtime (or the average actual
flowtime over a number of runs). In this case, the scheduler
only needs to consider the expected parameters of the indi-
vidual jobs. However, in real settings, some form of service
level may be more important – what level of confidence can
a customer or manager have in predicted performance lev-
els? Rather than gambling on the expected performance, it
may be more useful to give a lower limit on the performance,

and to state the confidence in being able to achieve that level.
In this case, it is not enough to know the expected values of
the job parameters – the scheduler must also reason about
the variance of those parameters in order to determine the
variance of the schedule as a whole.

For example, consider the simple problem consisting
of three jobs{x, y, z}, with uncertain durations{dx ∼
N(9, 2), dy ∼N(5, 1), dz ∼N(8, 7)}. The sequencese =
〈y, z, x〉 has a flowtime which is distributed asN(40, 39).
40 is, in fact, the smallest expected flowtime possible for
this problem. An alternative sequence,sβ = 〈y, x, z〉, has
flowtime∼ N(41, 24), and thus has a higher expected flow-
time. However, suppose we now introduce a desired maxi-
mum flowtime of (for example)51: the scheduler will incur
a penalty if the actual schedule has a flow time greater than
51. Sequencese has a probability of0.04 of producing a
flowtime greater than51, while sβ has a probability of just
0.02 of delivering a flowtime greater than51, and thussβ

is likely to be less expensive.sβ is theβ-robust(Daniels &
Carrillo 1997) schedule for the maximum flowtime of51 -
that is, it has the highest probability of delivering a flowtime
no greater than51. In addition, for the confidence level of
0.98, sβ also delivers the minimal flowtime limit (51).

Definition 1. For the single machine scheduling problem
with n jobs, with normally-distributed uncertain durations,
and with a flowtime limitS, theβ-robust scheduling problem
is to find the sequence,s, which maximizes the probability
of the flowtime being less thanS. That is, find thes that
maximizesProb(flowtime(s) ≤ S) (Daniels & Carrillo
1997).

First, we show how to computeProb( flowtime ≤ S )
for an arbitrary sequence of then jobs. Since the ran-
dom variables in the problem are normally distributed, we
can use the formula below to compute the probability of
flowtime ≤ S, whereµ is the mean flowtime of the se-
quence, andσ2 is its variance:

φ(x ≤ X) =
1

σ
√

2π

∫ X

−∝
e
−(x−µ)2

2σ2 dx

An arbitrary normal distribution can be converted to a stan-
dard normal distribution by changing variables toz = (x−
µ)/σ, so the normal distribution function becomes:

φ(x ≤ X) =
1√
2π

∫ z

−∝
e
−t2
2 dt

=
1√
2π

∫ 0

−∝
e
−t2
2 dt + φ(z)

=
1
2

+ φ(z)

where

φ(z) =
1√
2π

∫ z

0

e
−t2
2 dt.

Hence, the probability offlowtime ≤ S can be computed
by

Prob( flowtime ≤ S ) =
1
2

+ φ(z) (4)
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Figure 1: the Constraint Model.
Variables:

Job positions:Pos1, ..., Posn

Job mean flowtime contributions:
meanFTContrib1, ..., meanFTContribn

Job variance flowtime contributions:
varFTContrib1, ..., varFTContribn

Constraints:

allDifferent (Job positions)

meanFTContribi = (n− Posi + 1)µi

varFTContribi = (n− Posi + 1)2σ2
j

mean(flowtime) =
∑n

i=1 meanFTContribi

var(flowtime) =
∑n

i=1 varFTContribi

Dominance constraints:
for 0 ≤ i < j < n,
µi ≤ µj andσ2

i ≤ σ2
j ⇒ Posi < Posj

µi ≥ µj andσ2
i > σ2

j ⇒ Posi > Posj

µi > µj andσ2
i = σ2

j ⇒ Posi > Posj

objective = max(z) = max( S−mean(flowtime)√
var(flowtime)

)

whereS ≥ 0 and

z =
S −mean(flowtime)√

var(flowtime)
. (5)

For each possible schedule, we can compute the mean and
variance of the flowtime bymean(flowtime) =

∑n
i=1(n−

i + 1)µi andvar(flowtime) =
∑n

i=1(n− i + 1)2σ2
i as in

equation (3). Then,φ(z) can be obtained by checkingz in
the standard normal distribution table (Z-table).

Alternatively, there is a simple approximation ofφ(z)
which is good to two decimal places (Weisstein 2006), given
by

φ(z) ≈ ϕ(z)

{ 0.1z(4.4− z) (0 ≤ z ≤ 2.2)
0.49 (2.2 < z < 2.6)
0.50 (z ≥ 2.6)

(6)

Theorem 1. ϕ(z) increases on[0,+∞). For proof, see ap-
pendix.

The β-robust schedule is one of those alternative se-
quences of the jobs, such that it has the maximum probabil-
ity of flowtime ≤ S. To find aβ-robust schedule, we need
to have an objective function to maximize the probability.
We use the approximation ofφ(z) to compute the probabil-
ity, because it simplifies the calculation. Ifφ(z) is increasing
on [0, +∞), maximizing the probability offlowtime ≤ S

is the same as maximizingz.

objective = max( probability (flowtime ≤ S) )

= max(
1
2

+ φ(z) )

=
1
2

+ max( φ(z) )

≈ 1
2

+ max( ϕ(z) )

=
1
2

+ ϕ( max(z) ).

With above analysis and calculations, we are ready to in-
troduce our constraint models for theβ-robust scheduling
problem.

Constraint models

We first consider the originalβ-robust scheduling problem
described in (Daniels & Carrillo 1997) as a CSP, and then
we propose a variable ordering heuristic.

The Constraint Model is shown in Figure 1. We as-
sume a set{J1, J2, . . . Jn} of jobs, each with a normally-
distributed random variable durationDi ∼ N(µi, σ

2
i ). Dif-

fering from the previous sections, we now do not assume
that the jobs are scheduled in the given sequence. With each
job Ji, we associate a position variable,Posi, with domain
{1, 2, . . . , n}. The position variablePosi represents the po-
sition of Ji in the sequence: for instance,Pos2 = 3 states
that J2 is scheduled to be the third job to start on the ma-
chine. Besides position variables, we also introduce ad-
ditional variables for computing flowtime mean and vari-
ance and then the probability. The formula (3) indicates
that flow time can be viewed as the sum of the contribu-
tions from all jobs. We define flowtime contribution ofJi as
FTContribi = (n−Posi +1)Di. meanFTContribi and
varFTContribi are the mean and variance of the flowtime
contributions fromJi. The former has an integer value in
[µi, nµi], and the latter has a value in[σ2

i , n2σ2
i ]. The goal

is to sequence those jobs, i.e. assign a distinct value to each
Posi, such that the likelihood of the sequence (schedule)
to achieve a fixed system performance levelS is optimized,
i.e. Max(Probability(X ≤ S ) ), whereX is flowtime.
Alternatively, we can look for a schedule with the optimal
system performanceS for a fixed probability, i.e.Min(S )
such thatProbability(X ≤ S ) ≥ C, whereC is the fixed
probability.

We show how to achieve the first goal, i.e. optimizing
the probability for a fixed performance. Firstly, we have a
permutation constraint that ensures each job takes a differ-
ent position in the sequence. This can be implemented as
a global all-different constraint on all thePosi. Also if we
consider the flowtime as a sum of contributions from each
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job, from formula (3), we have

mean(flowtime) =
n∑

i=1

meanFTContribi

=
n∑

i=1

(n− Posi + 1)µi,

var(flowtime) =
n∑

i=1

varFTContribi

=
n∑

i=1

(n− Posi + 1)2σ2
i .

With those additional variables, we can use formula (4), (5)
and (6) to compute the probability of a schedule’s actual
flowtime being less thanS.

We are also able to impose some dominance constraints
as in figure 1, using the properties of theβ-robust schedule.

Theorem 2. In a β-robust schedule, if jobi with Di ∼
N(µi, σ

2
i ) precedes jobj with Dj ∼ N(µj , σ

2
j ) , then ei-

ther the mean duration of jobi, µi, is no greater than the
mean duration of jobj, µj , or the duration variance of job
i, σ2

i , is no greater than the duration variance of jobj, σ2
j ,

that isµi ≤ µj or σ2
i ≤ σ2

j . (see Appendix for the proof)

With this property, we post further constraints: for jobi
and jobj (0 ≤ i < j < n), if µi ≤ µj andσ2

i ≤ σ2
j , then

Posi < Posj ; if µi ≥ µj andσ2
i > σ2

j thenPosi > Posj ;
if µi > µj andσ2

i = σ2
j thenPosi > Posj . Note that for

the jobs have the same duration mean and the same duration
variance, we take the lexicographical order on their indexes,
i.e. if µi = µj andσ2

i = σ2
j andi < j, thenPosi < Posj .

So far, we have presented our constraint model to achieve
the first objective. Our second objective is to minimize sys-
tem performanceS such that there exists a schedule that can
achieveS with a fixed probability. That isMin(S ) such
thatProbability( X ≤ S ) ≥ C, whereC is the fixed prob-
ability. Using the same constraint model, we can getz value
from formula (4) and (6)

z = ϕ−1(C − 1
2
).

Then, from formula (5), we have a new objective function

min(S) = min( z∗
√

var(flowtime)+mean(flowtime) ).

Besides those constraints we discussed above, we also
implement a variable ordering heuristic to guide search.
From formula (5), we can see that theβ-robust schedule
has the optimized combination ofmean(flowtime) and
var(flowtime). In order to find theβ-robust schedule more
quickly, we prefer to first schedule a jobi, which has shorter
mean processing timeµi and smaller varianceσ2

i . We use
a family of variable ordering heuristics, ordering the jobs
by increasingµi + q ∗ σ2

i , selecting a value forq based on
the problem characteristics. For the first objective (maxi-
mizing the probability), we start by finding the SEPT (short-
est expected processing time) schedule; we then compute

the probabilityP of it having a flowtime less thanS; and
from P we select a value forq from a lookup table based
on previous experiments with other problems. For the sec-
ond objective (minimizing the flowtime target achievable by
a given probability), we baseq on the probability. In both
cases, for higher probabilities, we expect the variance to be
more significant, and so we choose higher values ofq which
give increasing weight to the duration variance in the vari-
able ordering. Example values for q are 0.3,0.6, and 1.0 for
probabilities of 0.85, 0.95 and 0.99. Note that this variable
ordering heuristic does not improve the total solving speed
(i.e. the time of finding the schedule and proving it is the
optimal), but does shorten the time to find the optimal solu-
tion.

Discussion and Experimental results
We implemented theβ-robust scheduling problem as a
constraint satisfaction problem using ILOG Scheduler and
Solver 6.0. Our first aim is to verify our initial constraint
model, and so we expect to see the same pattern of results as
obtained by (Daniels & Carrillo 1997). Secondly, we want
to determine whether or not a constraint model is feasible
for such problems, and so we hope to see runtimes of a sim-
ilar order of magnitude. If we succeed in both aims, we will
then investigate more sophisticated constraint models.

We consider problems with either 10 or 15 jobs, using
the same experimental setup as (Daniels & Carrillo 1997).
The mean processing time for each jobi is randomly drawn
from a uniform distribution of integers on the intervalµi ∈
[10, 50δ1]; the processing time variance of jobi is then ran-
domly drawn from a integer intervalσ2

i ∈ [0, 1
9µ2

i δ2]. The
parameterδ1 and δ2 control the variability in the average
processing times in the test problems, which can both take
any value of 0.4, 0.7 or 1.0. We are interested in schedules
that yield acceptable performance with probability approxi-
mately 0.85, 0.95 or 0.99. Ten instances are generated ran-
domly for each combination of number of jobs,δ1, δ2, and
probability level, resulting in a total 540 test problems.

Table 1 contains the results for our constraint methods and
the corresponding figures taking directly from Daniels and
Carrillo (Daniels & Carrillo 1997). The CPU is the com-
putation time for finding and proving theβ-robust sched-
ule. Since Daniels and Carrillo performed the experiment
on a 486 personal computer, our CPU time is not directly
comparable with theirs but should give us an indication of
whether or not a constraint-based approach is feasible. Ta-
ble 1 also shows the differences (in average and in maximum
deviation) between the mean processing time of theβ-robust
schedule and the shortest expected processing time (SEPT).

The results in table 1 show that we do have a similar pat-
tern in term of the mean flowtime of theβ-robust schedule
compared to the SEPT schedule. In addition, our CPU time
is comparable for the smaller problems, but is poorer for the
larger problems. This indicates that a constraint-based ap-
proach may be feasible, but that a more sophisticated model
with better propagation will be required. We set up a further
experiment to determine the effort require to prove that the
solution is optimal. For each probability level, we experi-
mented with 90 problems generated the same way as table
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Table 1: Computational performance ofβ-robust solution
procedure.

Constraint model Branch-and-bound
total prob. CPU Avg. Max. CPU Avg. Max.

abv. abv. abv. abv.
jobs level (sec.) SEPT SEPT (sec.) SEPT SEPT

(%) (%) (%) (%)
10 0.85 0.1 0.1 0.4 0.2 0.1 0.8

0.95 0.1 0.3 1.7 0.2 0.3 1.9
0.99 0.1 0.5 1.9 0.3 0.6 2.5

15 0.85 2.3 0.1 0.3 1.0 0.1 0.5
0.95 2.4 0.2 0.7 1.7 0.2 1.0
0.99 3.0 0.3 1.5 2.1 0.4 1.9

Table 2: The comparison of finding the optimal result and
proving that is optimal.

Time(s) Time(%)
total jobs prob. level search prove search prove

15 0.85 0.06 2.28 2.63 97.37
0.95 0.35 2.50 14.04 85.96
0.99 1.03 3.84 26.82 73.18

1. We also used the variable ordering heuristic as described
in constraint models section. The time of finding the optimal
solution and the time to prove it is optimal were recorded in
each case. Table 2 shows that it takes little time to find the
best solution but usually a long time to prove if it is theβ-
robust schedule. We believe that a problem is hard for our
model if it has many jobs with similar duration mean and
variance. The program is able to do little propagation, and
thus spends a lot of time trying different permutations of the
jobs for no benefit.

With the general model, we can also give the minimum
system performanceS for a problem, so that the jobs in the
problem can be scheduled to achieve the minimizedS with
a desired probability level. Table 3 shows the time to find
the minimumS for 15 jobs problems and the corresponding
mean flowtime over the SEPT.

Daniels and Carrillo compared the mean flowtime of the
β-robust schedule and the optimal expected flowtime. That
indicates how much worse theβ-robust schedule is com-
pared to the SEPT schedule. It seems more reasonable to
compare the probabilities of achieving the system perfor-
mance of theβ-robust schedule with the SEPT schedule.
That is

[probability( flowtimeβ ≤ S )
− probability( flowtimeSEPT ≤ S )]
÷ probability( flowtimeSEPT ≤ S )

which indicates the benefit of using theβ-robust schedule.
In fact, when some jobs have the same mean, there are mul-

Table 3: Computational performance of finding the mini-
mum system performance of required probability level (15
jobs).

Constraint model
number probability CPU Avg. abv. Max. abv.
of jobs level (sec.) SEPT(%) SEPT(%)

15 0.85 2.63 0.04 0.24
0.95 3.38 0.16 0.87
0.99 2.70 0.28 1.11

tiple possible schedules with shortest expected processing
time, but each will have different robustness levels. Daniels
and Carrillo did not report the detail of how they generated
the SEPT schedule. In our experiments, we used the existing
variable ordering, breaking ties lexicographically.

Future work
We are currently working on thedual model of the original
(primal) model, and a third model which channels between
the other two (Hnich, Smith, & Walsh 2004). We believe us-
ing the combined model will help us to improve the solving
speed. We also plan to investigate better bounds for prun-
ing branches at the top of the search tree, better heuristics
to guide the search, and the construction of a global con-
straint for achievingβ-robustness. We are also conduct-
ing an investigation into the characteristics of the problems
which make some of them much harder to solve than others.
Finally, we plan to extend this work to consider problems
with multiple machines and with non-zero arrival times, for
which the probability calculations reported here will not ap-
ply.

Conclusion
In this paper, we presented a general constraint model for the
β-robust scheduling problem, which allows us to produce
schedules which are robust to uncertainty in the durations of
tasks. With flowtime as the performance measure, we can
optimize the probability and find a most promising schedule
to satisfy the system performance requirement; or we can
optimize the performance level for a fixed probability. Our
initial model demonstrates that a constraint-based approach
is feasible for this problem, but that more more sophisticated
models are required for good performance.

Appendix
Theorem 1. ϕ(z) increases on[0, +∞).

Proof. For all b > a > 2.2, it is trivial to seeϕ(b) ≥ ϕ(a).
For all0 ≤ a < b ≤ 2.2,

ϕ(b)− ϕ(a) = 0.1 b( 4.4− b )− 0.1 a( 4.4− a )
= 0.1( 4.4b− b2 − 4.4a + a2 )
= 0.1[ 4.4( b− a ) + ( a + b )( a− b ) ]
= 0.1( b− a )( 4.4− a− b ).
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Sinceb > a,
⇒ (b− a) > 0

and0 ≤ a, b ≤ 2.2

⇒ 0 ≤ a + b ≤ 4.4

⇒ 4.4− a− b ≥ 0.

Hence,
ϕ(b)− ϕ(a) ≥ 0

for all 0 ≤ a < b ≤ 2.2, i.e. ϕ(z) increases on[0,+∞).

Theorem 2. In a β-robust schedule, if jobi with Di ∼
N(µi, σ

2
i ) precedes jobj with Dj ∼ N(µj , σ

2
j ) , then ei-

ther the mean duration of jobi, µi, is no greater than the
mean duration of jobj, µj , or the duration variance of job
i, σ2

i , is no greater than the duration variance of jobj, σ2
j ,

that isµi ≤ µj or σ2
i ≤ σ2

j .

Proof. (by contradiction)
AssumeX is aβ-robust schedule ofn jobs, and there exist
two jobsi andj in X such thati precedesj, µi > µj and
σ2

i > σ2
j .

Supposei’s position in X is a (1 ≤ a ≤ n) and j’s
position isb (1 ≤ b ≤ n).
Sincei precedesj, we have:

1 ≤ a < b ≤ n.

Also, the expected flowtime contribution fromi,
meanFTContribi, is (n − a + 1)µi and the expected
flowtime contribution from j, meanFTContribj , is
(n − b + 1)µj . Now, we consider only swapi and j but
keep other jobs’ positions unchanged inX to get schedule
X ′. In X ′, i’s position isb andj’s position isa. Then,

meanFTContrib′i = (n− b + 1)µi

and
meanFTContrib′j = (n− a + 1)µj .

The difference betweenX andX ′ in term of the expected
total flowtime is:

mean(flowtime)−mean(flowtime)′

= meanFTContribi + meanFTContribj

+meanFTContribrest − (meanFTContrib′i
+meanFTContrib′j + meanFTContribrest )

= meanFTContribi + meanFTContribj

−meanFTContrib′i −meanFTContrib′j
= (n− a + 1)µi + (n− b + 1)µj

−(n− b + 1)µi − (n− a + 1)µj

= (n− a + 1)(µi − µj) + (n− b + 1)(µj − µi)
= (b− a)(µi − µj)

wheremeanFTContribrest is the expected flowtime con-
tributions from the jobs other thani andj, which is the same
in bothX andX ′.
Because in assumptionµi > µj andb > a, (b − a)(µi −
µj) > 0, that is:

mean(flowtime) > mean(flowtime)′.

Similarly, in scheduleX, the variance of flowtime con-
tribution from i, varFTContribi is (n − a + 1)2σ2

i ; the
variance of flowtime contribution fromj, varFTContribj ,
is (n− b + 1)2σ2

j .
For scheduleX ′, varFTContrib′i = (n − b + 1)2σ2

i and
varFTContrib′j = (n− a + 1)2σ2

j . Then,

var(flowtime)− var(flowtime)′

= varFTContribi + varFTContribj

−varFTContrib′i − varFTContrib′j
= (n− a + 1)2σ2

i + (n− b + 1)2σ2
j

−(n− b + 1)2σ2
i − (n− a + 1)2σ2

j

= (2n + 2− a− b)(b− a)(σ2
i − σ2

j )

Sinceσ2
i > σ2

j , b > a and2 ≤ a + b ≤ 2n, we get:

var(flowtime) > var(flowtime)′.

Hence thez value ofX is

z =
S −mean(flowtime)√

var(flowtime)

and forX ′ that is

z′ =
S −mean(flowtime)′√

var(flowtime)′
.

Clearly, z < z′, which means scheduleX ′ has a higher
probability to achieve the fixed system performanceS than
scheduleX. That contradicts toX is a β-robust schedule
for then jobs.
Therefore the statement has been proved.
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Abstract

This paper discusses alternative approaches to the execution,
monitoring and repairing of pre-defined schedules enforced
in a constraint-based framework. After presenting a plat-
form able to perform reproducible experiments, we try to
shed light on a set of basic trade-offs which focus on two
aspects: (a) the type of initial solution generated from an off-
line problem solving phase, which represents a baseline for
execution. In the attempt to increase proactive robustness,
we analyze two alternatives to the classical fixed time sched-
ule – flexible schedules containing a single point solution and
partial order schedules. (b) The re-scheduling policy to re-
act to unexpected events: we distinguish between the incre-
mental modification of the initial schedule vs. the retraction
of previously made decisions, followed by a new resolution.
An interesting set of results is presented then analyzed. Part
of the outcome represents a direct confirmation of theoreti-
cal expectations from previous analysis; yet, the presence of
counterintuitive insights in the results opens the way for fur-
ther investigation and new perspectives.

Introduction
Despite its relatively recent development, research on sched-
ule execution management is receiving increasing attention.
In fact the dynamism and unpredictability which inherently
permeate real-world application domains, make the ability
to cope with unexpected events during the schedule execu-
tion phase an absolutely primary concern.

The growing attention dedicated to this specific issue in
research areas such as OR and AI is proved by the in-
creasing number of single results and surveys (Davenport
& Beck 2000; Aytuget al. 2005; Herroelen & Leus 2004;
Verfaillie & Jussien 2005). Notwithstanding the relatively
recent developments, the whole topic still offers much room
for investigation.

Our aim is to compare different approaches to schedule
execution in a fair and controlled way, specifically focus-
ing on project scheduling problems (Bruckeret al. 1999).
These problems are characterized by a rich initial structure:
they are based on a network of activities, among which it is

∗PhD student at the Dipartimento di Informatica, Sistemistica e
Telematica, University of Genova.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

possible to identify precedence relations as well as complex
temporal relations. As a further source of complexity, sev-
eral heterogeneous resources with different capacities serve
the activities according to complex modalities.

Having identified this problem, in a recent work we have
discussed an approach for the generation of unexpected
events to develop reusable benchmarks which could be used
to assess the efficacy of re-scheduling policies through re-
producible experiments (Policella & Rasconi 2005). In this
paper we present a set of experiments carried out to compare
different approaches to the problem of project scheduling
with uncertainty.

Figure 1 shows the complete platform that we have set
up in order to produce the experiments. It is composed of
three blocks: thesolverand thegeneratorwork off-line and
have the job of, respectively, computing the initial solution
and generating the exogenous events, intended to disturb the
schedule execution; the third block, calledSEaM, Sched-
ule Execution and Monitoring(Rasconi, Policella, & Cesta
2006), works on-line, and is responsible of performing a
complete simulation of the execution of the initial solution
(the baseline schedule). The disturbing events synthesized
by the generatorare injected during the simulated execu-
tion at specified times, and their effects are counteracted
by the SEaM module, which is endowed with a portfolio
of reschedulingalgorithms to the aim of restoring schedule
consistency whenever necessary.

The platform is devised to be modular and reusable.
By plugging in different versions of either off-line solvers
and/or on-line reschedulers (see the dotted boxes in the fig-
ure) it is possible to explore different aspects of the execu-
tion problem. This paper provides a first analysis on the ex-
periments produced within this schema. In particular: (a) the
exogenous events produced by thegeneratorare exclusively
of temporal nature (e.g., delays in the activities start times,
lengthenings in the activities durations, etc.); (b) the solvers
are chosen so as to produce initial solutions characterized
by different levels of temporal flexibility; (c) the designated
set of rescheduling algorithms follow a constraint-based ap-
proach.

The analysis of the experimental reports performed in this
paper aims to broadening our understanding about the rela-
tion between the structural properties of the baseline sched-
ule and the policies chosen for rescheduling, in terms of
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Figure 1: The platform for comparing execution strategies

overall executional behavior. In particular, we want to as-
sess how the various combinations of the two aspects affects
execution performance by measuring the number of success-
fully completed executions, the average worsening of the
makespan, etc.

Project Scheduling Problems
The scheduling problem is primarily concerned with find-
ing a suitable temporal allocation for all the tasks that have
to be executed so that the final solution guarantees “good”
performance relatively to the optimization of an objective
function. As already stated, we focus here on a particular
family of problems known asProject Scheduling(Brucker
et al. 1999), composed of the following elements:

– Activities. A = {a1, . . . , an} represents the set of activi-
ties or tasks. Every activity is characterized by a process-
ing timepi;

– Resources. R = {r1, . . . , rm} represents the set of the
resources necessary for the execution of the activities. Ex-
ecution of each activityai can require an amountreqik of
resourcerk to be processed. Different kinds of resources
can be taken into account: disjunctive or cumulative, re-
newable or consumable, among others;

– Constraints. The constraints are rules that limit the pos-
sible allocations of the activities. They can be divided
into two types: (1) thetemporal constraintsimpose limi-
tations on the times in which activities can be scheduled.
For instance, a binary constraint can be imposed between
two activities, in order to mutually bind the instant of oc-
currence of their start times. Such constraints are usually
formulated as bound on differences (Dechter, Meiri, &
Pearl 1991). (2) theresource constraintslimit the maxi-
mum capacity of each resource. At no time, the total de-
mand level of any resource being assigned to one or more
activities can exceed its maximum capacity.

A classical solution to a project scheduling problem is
a fixed-time schedulewhich consists in an assignment of
start times to activitiesa1, a2, . . . an, i.e. a vectorS =
(s1, s2, . . . , sn) wheresi denotes the start time of activity

ai. The time at which activityai has been completely pro-
cessed is called itscompletion timeand is denoted byei.

This class of problems is interesting because it allows to
model a quite broad range of real domains, that is, all the do-
mains that require the modeling of causal relations between
activities, coordination between multiple steps, and are char-
acterized by a rich variety of time and resource constraints.
In the following paragraph we describe the specific aspects
of the reference scheduling problem.

RCPSP/max. The problem we focus upon is the Resource-
Constrained Project Scheduling Problem with minimum and
maximum time lags, orRCPSP/max (Bartusch, Mohring, &
Radermacher 1988).

What distinguishesRCPSP/max instances from other
scheduling problems is the presence of temporal constraints
which designate either minimum and maximum time lags
between the start times of any two activities,

lmin
ij ≤ sj − si ≤ lmax

ij (1)

wherelmin
ij andlmax

ij are the minimum and maximum time
lag of activityaj relative toai. Moreover, since the process-
ing times are deterministic and preemption is not permitted,
completion times are determined by:

ei = si + pi (2)

A scheduleS = (s1, s2, . . . , sn) is time feasible, if all in-
equalities given by the activity precedences/time lags (1) and
durations (2) hold for start timessi.

In the case ofRCPSP/max we have reusable resources,
i.e. they are released when no longer required by an activity
and are therefore available for use by another activity. Each
activity ai requires of the use ofreqik units of the resource
rk during its processing timepi. Each resourcerk has a
limited capacity ofck units. A schedule isresource feasible
if at each timet the demand for each resourcerk ∈ R does
not exceed its capacityck, i.e.

∑

si≤t<ei

reqik ≤ ck. (3)

A scheduleS is said to befeasibleif it is both time and
resource feasible.

We conclude remarking thatRCPSP/max is recognized as
a quite complex problem; in fact, even the feasibility version
of the problem is NP-hard. The reason for the NP-hardness
lies in the presence of maximum time-lags, which inevitably
imply the satisfaction of deadline constraints.

Flexible schedules vs.POSs
In this paper we follow a particular research trend with re-
spect to solving scheduling problems, that is based on the
general concept of “temporal flexibility”. This approach, in-
troduced in (Cheng & Smith 1994) for problems with binary
resources and then extended to more general problems in
an amount of later works, is based on the fact that the rele-
vant events on a scheduling problem can be represented in a
temporal CSP, usually called Temporal Constraint Network
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Figure 2: Example of a scheduling problem and of its TCN
representation.

(TCN) (Dechter, Meiri, & Pearl 1991). The variables in a
temporal CSP represent the time points, which can be con-
strained one another by binding the distance between any
two variables. Every activity is associated with two time
points (the start and the end times), and by constraining the
time points it is possible to define simple precedence rela-
tions among activities, task durations, and general separa-
tion constraints.

An example is given by Fig. 2 where it is shown a schedul-
ing problem with a resource of capacity 2 and four activi-
ties{a,b,c,d}, which require respectively{1,1,2,1} resource
units during their execution (note the double height of activ-
ity c, representing the higher resource demand). A network
of activities is used to describe precedence constraints be-
tween pair of activities{a ≺ b, a ≺ c, a ≺ d}. Moreover we
might have a resource conflict among the activities{b,c,d}.
Figure 2(b) presents the TCN representation of the schedul-
ing problem. Each activity is represented by two time points
the start and the end points. Beyond the precedence con-
straints present in Fig. 2(a), Fig. 2(b) shows further con-
straints between pairs of start and end times which model
the activity durations.

The search schema used in this approach focus on de-
cision variables which represent conflicts in the use of the
available resources; the solving process proceeds by order-
ing pair of activities until all conflicts in the current problem
representation are removed. This approach is usually re-
ferred to as the Precedence Constraint Posting, PCP (Cheng
& Smith 1994), because it revolves around imposing prece-
dence constraints to solve the resource conflicts, rather than
fixing rigid values to the start times.

In (Cesta, Oddi, & Smith 1998) it is shown that though
the previous schedule representation inherently provides a
certain level of flexibility at execution time, it guarantees
a solution only if lower bounds of the feasibility intervals
are chosen for the time points, as described in the following
definition:

Definition 1 (Flexible schedule)A flexible schedule for a
problemP is a network of activities, (readily interpretable
as a temporal graph), such that a feasible solution for the
problem is obtained by allocating each activity at the tem-
poral lower bound allowed by the network.

In order to overcome the limitation imposed by the flexi-
ble schedule, i.e. having only one consistent solution, a
generalization of the TCN produced by a PCP phase is
proposed in works such as (Cesta, Oddi, & Smith 1998;
Policellaet al. 2004), in which methods for defining a set
of both time and resource feasible solutions are presented.
This new representation is calledPartial Order Schedule:

Definition 2 (Partial Order Schedule) A Partial Order
SchedulePOS for a problemP is an network of activ-
ities, such that any possible temporal solution is also a
resource-consistent assignment.

A POS is a special case of a flexible solution. With respect
to the solution synthesized by the PCP phase as shown in
the cited works, aPOS can be obtained replacing theso-
lution constraintswith a new set of constraints that impose
a stronger condition on the TCN. For reasons that will be
explained later, we call this new set of constraintschaining
constraints. By adding thechaining constraintsto the prob-
lem constraints, we have a particular TCN that identifies not
only a set of temporal solution but also a set of resource fea-
sible solutions.

It is worth underlining that in existing literature the
“goodness” of different flexible solutions has been measured
a priori with structural measures, called flexibility and flu-
idity in (Policella et al. 2004), on the resulting TCN; the
present work offers a first experimental comparison of fixed
time solutions, flexible schedules andPOSs, with respect
to a homogeneous set of benchmarks. This analysis offers
the possibility to confirm (or deny!) theoretical conjectures
from a truly empirical standpoint.

Fixing the Schedule or Solving Again
Execution uncertainty in scheduling can be dealt with ei-
therproactively, or reactively. In the proactive approach, the
solving process is performed taking into account optimiza-
tion functions that consider execution robustness as a metric
to evaluate the produced solutions; in the reactive approach,
uncertainty is not taken into account during the construc-
tion of the initial solution: all efforts aimed at counteracting
the effects of unforeseen events are postponed to the on-line
phase, where the schedule is adjusted every time a change
compromises proper execution. This approach is obviously
based on the implicit assumption that generally it is not pos-
sible to bound the scope of a change required to the current
schedule in advance.

The key point in the proactive approach is to synthesize
solutions that are able to absorb the effects of unexpected
events without rescheduling, while the reactive approach re-
quires to exploit local or global adjustments to the sched-
ule, in order to re-gain consistency. As it will be shown, the
boundary between these two strategies is often very thin; the
objective of this paper is to investigate the possibilities of-
fered by trading-off among simple adjustments, fixes to the
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baseline schedule, and new calls to problem solvers. To this
aim, we have built an experimental environment targeted at
studying how increasingly robust baselines can influence the
reactive phase.

Local vs. Global Reactivity. In the current research sce-
nario it is possible to distinguish two different reactive
scheduling approaches: local and global approaches. An
example of local approach is represented by OPIS (Smith
1994), a scheduling system designed to incrementally re-
vise schedules in response to changes in the solution con-
straints. This approach is based on an analysis of the sched-
ule flaws which may be caused by the occurrence of un-
predicted events; at each perturbation, the system initiates
a cycle in which the outstanding conflicts are iteratively re-
paired by triggering local modifications, until consistency
is restored. On the other hand, the approach based on the
resolution of the minimal perturbation problem (El Sakkout
& Wallace 2000), pursues a global approach to obtain the
same goal. This in general guarantees to find a higher qual-
ity solution with respect to a local method. Even though
solution quality is an extremely relevant issue, the global ap-
proach exhibits a lack in reactivity with respect to the local
approach, as it requires more time for system reconfigura-
tion.

In our schema, we model the local and global approach to
rescheduling by enabling different constraint removal strate-
gies on the current solution1. More specifically:

– No-Retraction strategy: in a local perspective, before each
revision, none of the constraints imposed is removed, and
the subsequent solution is computed by adding further so-
lution constraints.

– Retraction strategy: in a global perspective, before each
revision, all the previously imposed solution constraints
are removed; the subsequent solution is computed by
adding new constraints to this “clean” representation.

We notice that, because of the min/max time lags (1), either
the strategies do not always solve all the events that may oc-
cur – in fact max time lags imply deadline constraints on the
activities: for this reason the No-retraction strategy can pro-
duce solutions more constrained (hence more fragile) than
the ones produced by the Retraction strategy. On the other
hand the Retraction strategy will require more CPU time
than the No-retraction alternative.

Uncertainty in Schedule Execution. In the present study,
we focus our attention on the temporal changes which nor-
mally characterize the physical environments. In particular,
we produce a set of exogenous events for every simulated
schedule execution. For obvious reasons, each set is com-
puted on the basis of the baseline schedule’s initial charac-
teristics. For the present analysis, we limit ourselves to the

1Exception is made for the constraints which model the dy-
namic aspects of the progressing execution. These constraints are,
of course, always preserved.

Algorithm 1 : Solve a scheduling problemP and Exe-
cute one of its solutionS

Input : problemP, policies parameterretract andpos
Output : Execution report

// off-line phase
S ← offlineScheduler( P)
if S does not existthen

STOP(SOLVER FAILURE)
if pos then

S ← createPOS( S)

// on-line phase
while a disturbE existsdo

if retract then
if propagation( E, S) fails∨ S is not resource
consistentthen

S ← removeChoice (S)
if propagation( E,S) fails then

STOP(EXECUTION FAILURE)
S ← onlineScheduler( S)
if S does not existthen

STOP(EXECUTION FAILURE)
if pos then

S ← createPOS * ( S)

else
if propagation( E,S) fails then

STOP(EXECUTION FAILURE)
if S is not resource consistentthen

S ← onlineScheduler( S)
if S does not existthen

STOP(EXECUTION FAILURE)

generation of temporal events, such as delays of the activ-
ities start times and/or modifications of activity processing
times:

– delay of the activity start time: activity ai undergoes
a delay of∆st time units, att = taware (edelay =
〈ai,∆st, taware〉);

– change of activity processing time: activity ai’s process-
ing timepi is extended by∆p time units, attaware (ep =
〈ai,∆p, taware〉).

Both the events are characterized by the temporal value
taware. This specifies the temporal instant in which, dur-
ing the execution, we are aware of the presence of a given
event. During the event generation phase this value is com-
puted in order to be always smaller than the start time of the
influenced activity in the case of delay events and smaller of
the end time in the case of changes of processing time.

For reasons of space we cannot give a complete account
on the event generation here. The reader should refer to (Po-
licella & Rasconi 2005) for further details.

Integration of Proactive and Reactive Phases
The core of our work, see Fig. 1, is based on the execution
module we callSEaM(for Scheduling Execution and Mon-
itoring). This component integrates the management of the
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following objects: (1) the scheduling problem, (2) the ini-
tial solution, (3) a world simulation in terms of temporally
spaced exogenous events, and (4) the repair strategies.

Algorithm 1 puts together off-line and on-line work. The
differentiation between the off-line (proactive) and on-line
(reactive) phases is immediately visible. In order to produce
flexible schedules (offlineScheduler() in the algo-
rithm), we have implemented theISES procedure described
in (Cesta, Oddi, & Smith 1999), because this algorithm has
proved to be effective onRCPSP/max problems. It relies, at
its core, on a PCP search procedure, which generates flexi-
ble schedules by incrementally removing resource conflicts
from a temporally feasible solution. This search is then
embedded within a larger iterative-sampling framework to
broaden search space coverage and promote solution opti-
mization.
POSs generation (createPOS() ), is performed by ap-

plying a procedure introduced in (Policellaet al. 2004)
calledCHAINING, to a flexible schedule previously obtained
with ISES. In particular, in the off-line phase we use the
iterative-sampling version of this procedure, so as to en-
hance the robustness and stability properties of the produced
solution.

At execution time, we privilege algorithms that are not too
demanding in term of CPU time. For this reason we slightly
modified the previousISESandCHAINING procedures to ob-
tain computationally lighter versions denoted, respectively,
with onlineScheduler() and createPOS * () . In
fact the original procedures, being based on an iterative
schema, are CPU expensive: the modified versions are there-
fore implemented so as to stop the computation as soon as
a first viable solution is found, in the aim of reducing the
computational effort.

Moreover, it is worth noting that thecreatePOS * ()
procedure is called into play during execution only if we
are enacting the Retraction strategy. In fact, in the No-
Retraction case, the initialPOS preserves all its character-
istics even if new constraints are posted in the problem, and
there is no need to launch the chaining procedure again.

In order to distinguish among all the different execution
combinations, we introduce two flags in the algorithm:

– the flagpos allows to distinguish the case in which a
POS is created (case POS), from the case in which a flex-
ible schedule is used (case FS);

– the flagretract allows to distinguish between the Re-
traction strategy (case R from “Retract”) and the No-
Retraction strategy case (NR).

From this distinction we globally recognize the four strate-
gies that will be compared in the experimental analysis, and
denoted as: FS-NR, FS-R, POS-NR and POS-R.

In order to further clarify the algorithm, the following
points should be remarked: (a) regardless of how the initial
solution is computed (flexible schedule orPOS), the on-
line phase of the algorithm is always initiated with the ear-
liest start time solution; (b) thepropagation() function
represents a call to the temporal propagation on the TCN;
(c) as the execution proceeds, further constraints are posted
in the problem to model the actual start of an activity, i.e.,

the constraints which fix the start time of an activity to a
precise time instant.

Example. Figure 3 shows the two phases, off-line and on-
line, of the scheduling problem described in Fig. 2. In the
off-line phase two solutions are produced: a partial order
schedule (left hand side) and a flexible solution (right hand
side).

In the on-line phase we simulate the lengthening of the
activity b duration. This change is represented by changing
the constraint that models the duration of activityb: from pi

to new pi. In the left hand side is shown how thePOS is
able to react to the disturb without any repair. In fact, due to
its inherently constrained structure, the chances to respond
to the exogenous event without the need to reschedule are
maximized.

On the right hand instead we have the execution of the
flexible schedule. As said before, a problem change can
be faced by using two alternative strategies. Using the No-
retraction strategy we obtain a new solution by posting a new
precedence constraint betweenb andc. In the case of the
Retraction strategy we see that as soon as the new event is
acknowledged, the precedence betweend andc is removed
(the previously imposed solving constraint), and a new solu-
tion is found by imposing a precedence betweenb andc.

Experimental Analysis
The comparison presented in this section is based on a
scheduling problem benchmark taken from OR community,
j100 (Kolisch, Schwindt, & Sprecher 1998). This consists
of 540 scheduling problem instances each of 100 activi-
ties and 5 resources. Each problem belonging to thej100
scheduling benchmark is executed with four instances of
world simulations of different size (1, 2, 3, and 5 events
each). Each instance of the reactive scheduling benchmark
is composed of a set of properly modeled disturbing events.
As stated above, each event represents either a delay on the
start time, or a delay on the end time of the activities. These
two event types are produced with the same probability.

It is worth remarking at this point that not all the prob-
lems belonging to the scheduling benchmark admit a solu-
tion; moreover, the off-line scheduler,ISES, does not per-
form a systematic search. For these reasons, our experimen-
tal analysis is based on a subset of 480 predictively solved
problems. Moreover, the execution of a project scheduling
problem can not be considered completed until all the ac-
tivities are successfully processed. This represents a major
difference with respect to other dynamic problems where the
execution of certain activities can be overruled.

Results. Table 1 shows the results of our investigation. As
explained earlier, we evaluate the different combinations of
off-line/on-line policies — POS-R, POS-NR, FS-R, and FS-
NR. To make the comparison more complete, we add a fur-
ther execution mode based on the use of fixed time solution
where each activity is assigned a single start time instead of
a set of alternatives. For each entry in the tables, we take
into account the following aspects:
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Figure 3: Comparison of different schedule shapes execution

– the number of disturbs (unexpected events) injected dur-
ing each single execution;

– percentage (with respect to the number of initially solved
problems) of the schedules which successfully completed
the execution (% executed);

– execution failure percentage due to the inability to find an
alternative solution (% failed resch.);

– execution failure percentage due to the impossibility to
accept the exogenous event on behalf of the TCN (% re-
fused events);

– the average makespan of the solutions at the end of the
execution (mk);

– the average difference between the initial and the final
makespan (∆ mk);

– the percentage of the performed rescheduling actions
with respect to the number of the injected disturbs (%
rescheduling). We recall that we have a rescheduling ac-
tion each time the on-line solver is invoked;

– the average CPU time, in msecs, to compute the initial
solution (CPU Off-line);

– the average CPU time spent to perform all reschedulings
during the execution (CPU On-line);

– the sensitivity of activity start time w.r.t. the execution
process (ψ):

ψ =
N∑

i=1

|sf
i − s0

i |
N

wheres0
i andsf

i are respectively the initial start time of
ai and the start time in which the activity is really started.
This measure gives an assessment of how much the initial
solution has been affected by the occurrence of the exoge-
nous events during the execution. The lower the value, the
more the solution proved to be stable.

It is worth remarking that the execution can terminate with
failure for two alternative reasons: (1) the exogenous event
produces a temporal inconsistent situation and (2) the event
is consistent with the current situation but the on-line solver
is not able to find an alternative solution (also in the execu-
tion phase we do not use a systematic search). The two situ-
ations are reported respectively in column% refused events
and column% failed resch.Notice that during the execution,
where further constraints are added to simulate the begin of
an activity, it is possible to have a refused event also in the
case the Retraction strategy is used. Finally we specify that,
for a fair comparison of the different policies, the data pre-
sented in the rightmost part of the table are computed on the
basis of the problem instances commonly executed with all
the execution strategies.

Comments. One of the most striking results that we ob-
serve regards the different abilities in preserving the exe-
cutability of a solution. The outcome shows that the use
of partial order schedules tends to lower the success rate in
terms of completed executions (% executedcolumn). As the
table presents, this is mainly due to the dramatic increase
in the number of rejected disturbs (refused eventscolumn).
This apparent anomaly can be explained as follows: the cre-
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number of % failed refused mk ∆mk % CPU CPU ψ
disturbs executed resch. events resched. off-line on-line

FS-R 91,04% 2,08% 6,88% 424,60 9,02 24,38% 36242,48 766,15 5,44
POS-R 1 87,29% 2,08% 10,63% 419,88 5,07 11,58% 36287,86 303,97 3,00
FS-NR 91,87% 1,25% 6,87% 419,06 3,48 24,14% 36242,48 130,74 1,48

POS-NR 86,87% 2,50% 10,62% 417,11 2,31 11,58% 36287,86 54,59 1,05
fixed time 89,79% 3,75% 6,45% 437,36 21,78 99,75% 36242,48 3035,68 15,16

FS-R 85,21% 3,13% 10,66% 435,54 13,95 23,04% 30259,15 874,70 9,48
POS-R 2 76,46% 2,29% 21,25% 429,22 8,41 10,03% 32371,82 674,86 5,17
FS-NR 85,62% 2,71% 11,66% 427,90 6,30 22,88% 30259,15 258,50 3,07

POS-NR 73,95% 5,00% 21,04% 424,74 3,93 9,56% 32371,82 97,46 2,02
fixed time 81,25% 8,54% 10,20% 446,62 25,02 99,53% 30259,15 2768,37 17,73

FS-R 79,17% 3,96% 16,87% 449,84 19,40 20,27% 26318,37 963,16 11,83
POS-R 3 69,58% 2,92% 27,50% 441,49 11,93 9,41% 28406,98 675,18 6,96
FS-NR 80,00% 2,50% 17,50% 439,66 9,23 22,37% 26318,37 371,03 4,08

POS-NR 67,71% 5,41% 26,87% 436,24 6,68 9,63% 28406,98 151,26 3,16
fixed time 77,50% 6,87% 15,62% 458,32 27,89 99,22% 26318,37 3716,15 19,77

FS-R 70,21% 4,17% 25,63% 464,12 28,85 22,45% 25682,40 2391,92 17,36
POS-R 5 60,42% 3,13% 36,46% 455,56 21,07 10,57% 27544,98 1748,56 13,12
FS-NR 70,41% 3,33% 26,25% 447,42 12,15 21,66% 25682,40 646,90 5,80

POS-NR 56,66% 7,08% 36,25% 444,68 10,18 10,48% 27544,98 289,17 4,81
fixed time 67,08% 8,33% 24,58% 465,56 30,29 98,43% 25682,40 6721,48 19,74

Table 1: Summarizing data for each execution strategy (the values in the last six columns are computed on the intersection set
of all successfully executed j100 problems)

ation of aPOS inherently involves a higher level of “con-
strainedness” in the TCN, in order to guarantee a resource
conflict-free solution. This circumstance inevitably makes
the TCN more reluctant in accepting new contraints, in the
specific case, the constraints which model the exogenous
events. Also, note how this effect gets worse as the number
of the exogenous events increases (86,87% in the POS-NR
case with 1 event, against 56,66% with 5 events).

It should be noted how the highest rate of failed reschedul-
ings (failed resch. column) is reached in the execution of
fixed timesolutions. This result is not surprising, as fixed
time solutions require a rescheduling every time an exoge-
nous event occurs; since the rescheduler does not perform a
complete search, the chance of failure gets sensibly higher.
It can again be noticed how, on average, this effect grows
with the number of injected events.

The rightmost part of Table 1 offers different yet interest-
ing results. One of the most important characteristic to be
observed is the extremely low rate of necessary reschedul-
ings exhibited by the POS-R/POS-NR policies (% resched.
column): this result is all but surprising and confirms the
theoretical expectations which motivated the study on the
POS. As shown, the need for schedule revision in case
of POS utilization roughly decreases by more than 50% in
case of 5 disturbs. Note also the≈ 100% reschedulingsfig-
ure relative to the case offixed timeschedules: in this case,
a schedule revision is practically always needed: this is con-
firmed by the extremely highCPU on-linevalues.

A maybe misleading results is given by the compari-
son of the final makespan (mk) obtained respectively by
using the Retraction and the No-Retraction strategies. In

fact, one would expect the R strategies (which allow a
greater re-shuffling) to return better makespan values with
respect to NR strategies. This is not our case because, as
described before, the rescheduling actions are performed
by using a less specialized makespan-optimizing procedure
(onlineScheduler in Algorithm 1) which tends to spoil
the makespan quality. On the other hand, the NR strategy
that tries to maintain the schedule continuity is also able to
obtain a preservation of makespan values.

Another interesting aspect can be observed by compar-
ing theCPU on-linevalues between theRetractionandNo
Retractionstrategies. In general, the Retraction methods
require a higher CPU on-line load because the removal of
the solution constraints inevitably re-introduces some re-
source conflicts that must be solved by rescheduling. But
the intriguing result lies in the fact that this difference in the
CPU on-line rates standsdespite the comparable amount of
performed reschedulings. Let us look at the difference be-
tween the FS-R and FS-NR rates: it can be seen that, in the
5 events case, we have 2392 ms. (FS-R) against 647 ms.
(FS-NR), although the number of performed reschedulings
is practically the same (≈ 21%)! The same effect can be
observed between the POS-R and POS-NR cases: 1748 ms.
against 289 ms, notwithstanding the same (≈ 10.5%) num-
ber of reschedulings. This circumstance can be explained as
follows: NR execution modes retain all the temporal con-
straints of the previous solution: hence, the rescheduler is
bound to work on a smaller search space, finding the next
solution almost immediately.

One last word on theψ column: these values can in fact
be taken as a measure of the solution stability. As it can be
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seen, the highest stability during execution is obtained with
the NR methodologies, as they maintain the structure of the
initial solution for the whole execution. The most unstable
solutions are produced in the fixed time case, as a direct con-
sequence of the complete lack of temporal flexibility.

Conclusions and Future Work
This paper discusses alternative approaches to the execution,
monitoring and repairing of pre-defined schedules enforced
in a constraint-based framework –SEaM. This framework
allows us to obtain different insights on the combination of
two aspects: (a) the use of temporal flexible solutions to
increase proactive robustness and (b) the use of complemen-
tary re-scheduling policies to react to unexpected events. In
particular we analyze two alternatives to the classical fixed
time schedule – flexible schedules, containing a single point
solution, and partial order schedules orPOSs. Moreover,
we distinguish between the incremental modification of the
initial schedule vs. the retraction of previously made deci-
sions followed by a new resolution.

A set of results support the usefulness of this analysis.
Part of the outcome represents a direct confirmation of theo-
retical expectations from previous analysis; yet, the presence
of counterintuitive insights in the results opens the way for
further investigation and new perspectives.

For future work we have several alternatives to pursue.
First we want to extend this analysis to different benchmarks
both in terms of modeled disturbs and reference scheduling
problems (either problems of larger size or different families
of problems).

A different point consists, instead, of enriching theSEaM
framework with further repair strategies: for instance we
want to introduce complete search methods (i.e., branch-
and-bound techniques) to evaluate the trade-off between
the efficiency and computational complexity with respect
the heuristic method used in this paper. Another oppor-
tunity could be to enrich the chaining procedure with de-
constraining methods like the one introduced in (Muscet-
tola, Morris, & Tsamardinos 1998). In fact, being aPOS
a temporal network, it is possible to apply these reformula-
tion methods to reduce the constrainedness of the produced
POSs and further speed up the propagation phase.

Additionally, we also aim at modifying the solutions con-
sidered for the execution. As remarked above, for both flex-
ible and partial order schedules we consider the earliest start
time solution. In fact, a different solutions could provide a
certain degree of temporal and/or resource redundancy that,
if intelligently distributed, might reveal useful to better tol-
erate unforeseen events.
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Abstract

Railway Scheduling is considered to be a difficult and
time-consuming task. This is due to real railway net-
works can be modelled as Constraint Satisfaction Prob-
lems (CSPs), but they require a huge number of vari-
ables and constraints. The general CSP is known to be
NP-complete; however, distributed models may reduce
the exponential complexity by dividing the problem into
a set of subproblems. In this work, we present several
proposals to distribute the railway scheduling problem
into a set of sub-problems as independent as possible.
The first technique carries out a partition over the con-
straint network, meanwhile the second distributes the
problem by trains and the third technique divides the
problem by means of contiguous stations.

Introduction
Train timetabling is a difficult and time-consuming task, par-
ticularly in the case of real networks, where the number of
constraints and the complexity of constraints grow drasti-
cally. A feasible train timetable should specify the departure
and arrival time of each train to each location of its jour-
ney, in such a way that the line capacity and other opera-
tional constraints are taken into account. Traditionally, train
timetables are generated manually by drawing trains on the
time-distance graph. The train schedule is generated from a
given starting time and is manually adjusted so that all con-
straints are met. High priority trains are usually placed first
followed by lower priority trains. It can take many days to
develop train timetables for a line, and the process usually
stops once a feasible timetable has been found. The result-
ing plan of this procedure may be far from optimal.

The literature of the 1960s, 1970s, and 1980s relating to
rail optimization was relatively limited. Compared to the
airline and bus industries, optimization was generally over-
looked in favor of simulation or heuristic-based methods.
However, Cordeau et al. (Cordeau, Toth, & Vigo 1998) point
out greater competition, privatization, deregulation, and in-
creasing computer speed as reasons for the more prevalent
use of optimization techniques in the railway industry. Our
review of the methods and models that have been published
indicates that the majority of authors use models that are

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

based on the Periodic Event Scheduling Problem (PESP)
introduced by Serafini and Ukovich (Serafini & Ukovich
1989). The PESP considers the problem of scheduling as
a set of periodically recurring events under periodic time-
window constraints. The model generates disjunctive con-
straints that may cause the exponential growth of the com-
putational complexity of the problem depending on its size.
Schrijver and Steenbeek (Schrijver & Steenbeek 1994) have
developed CADANS, a constraint programming- based al-
gorithm to find a feasible timetable for a set of PESP con-
straints. The scenario considered by this tool is different
from the scenario that we used; therefore, the results are not
easily comparable. Nachtigall and Voget (Nachtigall & Vo-
get 1997) also use PESP constraints to model the cyclic be-
havior of timetables and to consider the minimization of pas-
senger waiting times as the objective function. Their solv-
ing procedure starts with a solution that is obtained in a way
similar to the one that timetable designers in railway com-
panies use. This initial timetable is then improved by us-
ing a genetic algorithm. In our problem, the waiting time
for connections is not taken into account because we only
consider the timetabling optimization for a single railway
line. The train scheduling problem can also be modeled as
a special case of the job-shop scheduling problem (Silva de
Oliveira (Silva de Oliveira 2001), Walker et al. (Walker &
Ryan 2005)), where train trips are considered as jobs that are
scheduled on tracks that are regarded as resources. The ma-
jority of these works consider the scheduling of new trains
on an empty network. However, railway companies usually
also require the optimization of new trains on a line where
many trains are already in circulation (that is, trains that
have a fixed timetable). With this main objective, Lova et
al. (Lova et al. 2006) propose a scheduling method based
on reference stations where the priority of trains, in the case
of conflict, changes from one iteration to another during the
solving process.

Our goal is to model the railway scheduling problem as a
Constraint Satisfaction Problems (CSPs) and solve it using
constraint programming techniques. However, due to the
huge number of variables and constraints that this problem
generates, a distributed model is developed to distribute the
resultant CSP into a semi-independent subproblems such as
the solution can be found efficiently.

The overall goal of a long-term collaboration between our
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group at the Polytechnic University of Valencia (UPV) and
the National Network of Spanish Railways (RENFE) is to
offer assistance to help in the planning of train scheduling,
to obtain conclusions about the maximum capacity of the
network, to identify bottlenecks, etc.

In parallel computing, many researchers are working on
graph partitioning (Schloegel, Karypis, & Kumar 2003),
(Karypis & Kumar 1998). The main objective of these
techniques is to divide the graph into a set of regions such
that each region has roughly the same number of nodes and
the sum of all edges connecting different regions is mini-
mized. Fortunately, many heuristics may solve this prob-
lem efficiently. For instance, graphs with over 14000 nodes
and 410000 edges can be partitioned in under 2 seconds
(Karypis & Kumar 1995). Graph partitioning can also be
applied to constraint satisfaction problem. Thus, we can use
ideas about graph partitioning, when dealing with railway
scheduling problem, to distribute the problem into a set of
sub-problems.

In this work, we propose several ways to distribute the
railway scheduling problem. It is partitioned into a set of
subproblems by means of graph partitioning, by means of
types of trains and by means of contiguous constraints.

In the following section, we summarize some definitions.
In section 3, we study three models to distribute the railway
scheduling problem. In section 4, we present the distrib-
uted model to be solved by the DCSP. An evaluation among
different models is carried out in section 5. Finally we sum-
marizes the conclusions and future work in section 6.

Definitions
This section presents CSPs in a slightly non-standard form,
which will be convenient for our purposes, and will unify
works from constraint satisfaction communities.

Definition 1: A CSP consists of:
• a set of variables X = {x1, x2, ..., xn}
• each variable xi ∈ X has a set Di of possible values (its

domain)
• a finite collection of constraints C = {c1, c2, ..., cp} re-

stricting the values that the variables can simultaneously
take.

A solution to a CSP is an assignment of values to all the
variables so that all constraints are satisfied; a problem is
satisfiable or consistent when it has a solution at least.

State: one possible assignment of all variables.

Partition : A partition of a set C is a set of disjoint subsets
of C whose union is C. The subsets are called the blocks of
the partition.

A running map : contains information regarding railway
topology (stations, tracks, distances between stations, traffic
control features, etc.) and the schedules of the trains that use
this topology (arrival and departure times of trains at each
station, frequency, stops, crossings, etc,).

Distributed CSP: A distributed CSP (DCSP) is a CSP in
which the variables and constraints are distributed among
automated agents (Yokoo & Hirayama 2000).

Each agent has some variables and attempts to deter-
mine their values. However, there are interagent constraints
and the value assignment must satisfy these interagent con-
straints. In our model, there are k agents 1, 2, ..., k. Each
agent knows a set of constraints and the domains of vari-
ables involved in these constraints.

Definition 2: A block agent aj is a virtual entity that
essentially has the following properties: autonomy, social
ability, reactivity and pro-activity (Wooldridge & Jennings
1995).

Block agents are autonomous agents. They operate their
subproblems without the direct intervention of any other
agent or human. Block agents interact with each other by
sending messages to communicate consistent partial states.
They perceive their environment and changes in it, such as
new partial consistent states, and react, if possible, with
more complete consistent partial states.

Definition 3: A multi-agent system is a system that con-
tains the following elements:

1. An environment in which the agents live (variables, do-
mains, constraints and consistent partial states).

2. A set of reactive rules, governing the interaction between
the agents and their environment (agent exchange rules,
communication rules, etc).

3. A set of agents, A = {a1, a2, ..., ak}.

Constraints in the Railway Scheduling Problem
There are three groups of scheduling rules in our railway
scheduling problem: traffic rules, user requirements rules
and topological rules. A valid running map must satisfy the
above rules. These scheduling rules can be modelled using
the following constraints, where variable TAi,k represents
that train i arrives at station k and the variable TDi,k means
that train i departs from station k:
1. Traffic rules guarantee crossing and overtaking opera-

tions. The main constraints to take into account are:

• Crossing constraint: Any two trains going in opposite
directions must not simultaneously use the same one-
way track.

TAi,A < TDj,A or TAj,B < TDi,B

The crossing of two trains can be performed only on
two-way tracks and at stations, where one of the two
trains has been detoured from the main track (Figure
1).

• Overtaking constraint: Any two trains (Ti and Tj) go-
ing at different speeds in the same direction can only
overtake each other at stations.

TDi,A < TDj,A → TAi,B < TAj,B

The train being passed is detoured form the main track
so that the faster train can pass the slower one (see Fig-
ure 1).

• Expedition time constraint. There exists a given time
to put a detoured train back on the main track and exit
from a station.
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Figure 1: Constraints related to crossing and overtaking in
stations

• Reception time constraint. There exists a given time
to detour a train from the main track so that crossing or
overtaking can be performed.

2. User Requirements: The main constraints due to user
requirements are:

• Type and Number of trains going in each direction to
be scheduled.

• Path of trains: Locations used and Stop time for com-
mercial purposes in each direction.

• Scheduling frequency. Train departure must satisfy
frequency requirements in both directions. This con-
straint is very restrictive because, when crossings are
performed, trains must wait for a certain time interval at
stations. This interval must be propagated to all trains
going in the same direction in order to maintain the es-
tablished scheduling frequency. The user can require
a fixed frequency, a frequency within a minimum and
maximum interval, or multiple frequencies.

• Departure interval for the departure of the first trains
going in both the up and down directions.

• Maximum slack. This is the maximum percentage δ
that a train may delay with respect to the minimum
journey time.

3. Railway infrastructure Topology and type of trains to
be scheduled give rise to other constraints to be taken into
account. Some of them are:

• Number of tracks in stations (to perform techni-
cal and/or commercial operations) and the number of
tracks between two locations (one-way or two-way).
No crossing or overtaking is allowed on a one-way
track,

• Time constraints, between each two contiguous sta-
tions,

• Added Station time constraints for technical and/or
commercial purposes.

The complete set of constraints, including an objective
function, transform the CSP into a constraint satisfaction
and optimization problem (CSOP), where the main objec-
tive function is to minimize the journey time of all trains.
Variables are frequencies and arrival and departure times of
trains at stations. Constraints are composed by user require-
ments, traffic rules, and topological constraints.

The complete CSOP is presented in Figure 2. Let’s sup-
pose a railway network with r stations, n trains running in

Figure 2: Formal Model of the Railway Scheduling Prob-
lem.

the down direction, and m trains running in the up direc-
tion. We assume that two connected stations have only one
line connecting them. Timei,k−(k+1) is the journey time of
train i to travel from station k to k+1; TSi,k and CSi,k rep-
resent the technical and commercial stop times of train i in
station k, respectively; and ETi and RTi are the expedition
and reception time of train i, respectively.

Partition Proposals
Due to specific properties in the railway scheduling problem,
several models can be adopted to distribute the problem.

Partition Proposal 1
The first way to distribute the problem is carried out
by means of a graph partitioning software called METIS
(METIS ), for the purpose of this distribution, the model
constraints are converted into binary constraints, this is triv-
ial and the result is a binary CSP. METIS provides two pro-
grams pmetis and kmetis for partitioning an unstructured
graph into k equal size parts. In this way, the railway
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Figure 3: Distributed models: From Graph Partitioning to
Train Partitioning and Station Partitioning.

scheduling problem can be modelled as a constraint net-
work. This network can be partitioned in semi-independent
subproblems by means of METIS. However, this software
does not take into account additional information about the
railway infrastructure or the type of trains to guide the par-
tition, so the generated clusters may not be the most appro-
priate and the results are not appropriate. To improve the
partition procedure, we extract additional information from
the railway topology to obtain better partitions such as par-
tition proposal 2 and 3.

Partition Proposal 2
The second model is based on distributing the original rail-
way problem by means of train type. Each agent is commit-
ted to assign values to variables regarding a train or trains
to minimize the journey travel. Depending on the selected
number of partitions, each agent will manage one o more
trains. Figure 4 shows a running map with 20 partition, each
agent manages one train. This partition model has two im-
portant advantages: Firstly, this model allow us to improve
privacy. Currently, due to the policy of deregulation in the
European railways, trains from different operators work in
the same railway infrastructure. In this way, the partition
model gives us the possibility of partition the problem such
as each agent is committed to a operator. Thus, different
operators maintain privacy about strategic data. Secondly,
this model allow us to manage efficiently priorities between
different types of trains (regional trains, high speed trains,
freight trains). In this way, agents committed to priority
trains (high speed trains) will firstly carry out value assign-
ment to variables, in order to achieve better journey travels

Partition Proposal 3
The third model is based on distributing the original railway
problem by means of contiguous stations. Due to deregula-
tion of European railways operators, long journeys may be
scheduled. However, long journeys involve large number of
stations at different countries with different railway policies.
Therefore, a logical partition of the railway network can be
carried out by means on regions (contiguous stations). To
carry out this type of partition, it is important to analyze the

Figure 4: Distributed Railway Scheduling Problem. Pro-
posal 2.

railway infrastructure and detect restricted regions (bottle-
necks). To balance the problem, each agent is committed to
a different number of stations. An agent can manage many
stations if they are not restricted stations, whereas an agent
can manage only few stations if they are bottlenecks. Fur-
thermore, the agents committed with bottleneck have prefer-
ences to assign values to variables due to their domains are
reduced (variable ordering).

Thus, the running map to be scheduled between two cities
is decomposed in several and shorter running maps. Figure
5 (up) shows a running map to be scheduled. The set of sta-
tions will be partitioned in block of contiguous stations and
a set of agents will coordinate to achieve a global solution
(Figure 5 (down)). Thus, we can obtain important results
such as railway capacity, consistent timetable, etc.

The Distributed Model
In the specialized literature, there are many works about dis-
tributed CSPs. In (Yokoo & Hirayama 2000), Yokoo et al.
present a formalization and algorithms for solving distrib-
uted CSPs. These algorithms can be classified as either
distributed stochastic search methods, synchronous back-
tracking or asynchronous backtracking (Yokoo & Hirayama
2000).

Our model can be considered as a synchronous model. It
is meant to be a framework for interacting agents to achieve
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Figure 5: Distributed Railway Scheduling Problem. Pro-
posal 3.

a consistent state. The main idea of our multi-agent model is
based on (Salido, Giret, & Barber 2003) but partitioning the
problem in k subproblems as independent as possible, clas-
sifying the subproblems in the appropriate order and solving
them concurrently.
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Figure 6: Multi-agent model.

In all our proposals, the problem is partitioned in k blocks
or clusters in order to be studied by agents called block
agents. Furthermore, a partition agent is committed to clas-
sify the subproblems in the appropriate order depending on
the selected proposal. For instance, if Metis is selected to
partition the problem, the partition agent must classify the
subproblems such as the most interrelated problem is stud-
ied first.

Once the constraints are divided into k blocks by a pre-
processing agent, a group of block agents concurrently man-
ages each block of constraints. Each block agent is in charge
of solving its own subproblem by means of a search algo-
rithm. Each block agent is free to select any algorithm to
find a consistent partial state. It can select a local search
algorithm, a backtracking-based algorithm, or any other, de-
pending on the problem topology. In any case, each block
agent is committed to finding a solution to its particular sub-
problem. This subproblem is composed by its CSP subject
to the variable assignment generated by the previous block
agents. Thus, block agent 1 works on its group of con-
straints. If block agent 1 finds a solution to its subproblem,
then it sends the consistent partial state to block agent 2, and
both they work concurrently to solve their specific subprob-
lems; block agent 1 tries to find other solution and block
agent 2 tries to solve its subproblem knowing that its com-
mon variables have been assigned by block agent 1. Thus,
block agent j, with the variable assignments generated by
the previous block agents, works simultaneously with the
previous block agents, and tries to find a more complete
consistent state using a search algorithm. Finally, the last
block agent k, working simultaneously with block agents
1, 2, ...(k− 1), tries to find a consistent state in order to find
a problem solution.

Figure 6 shows the multi-agent model, in which the pre-
processing agent carries out the network partition and the
block agents (ai) are committed to concurrently finding par-
tial problem solutions (sij). Each block agent sends the par-
tial problem solutions to the following block agent until a
problem solution is found (by the last block agent). For ex-
ample, state: s11 +s21 + ...+sk1 is a problem solution. The
concurrence can be seen in Figure 6 in Time step 6 in which
all block agents are concurrently working. Each block agent
maintains the corresponding domains for its new variables.
The block agent must assign values to its new variables so
that the block of constraints is satisfied. When a block agent
finds a value for each new variable, it then sends the consis-
tent partial state to the next block agent. When the last block
agent assigns values to its new variables satisfying its block
of constraints, then a solution is found.

Evaluation
In this section, we carry out an evaluation between our dis-
tributed model and a centralized model. Furthermore, we
evaluate the behavior of three proposed partition models.
To this end, we have used a well-known CSP solver called
CON’FLEX1 which uses Forward Checking (FC) algorithm.

1It can be found in: http://www-bia.inra.fr/T/conflex/ Logi-
ciels/adressesConflex.html.
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Table 1: < n, 20, 120 >: 20 stations, 120 minutes fre-
quency.

Trains (n) Variables Constraints
1 80 107
2 160 234
3 240 379
4 320 550
5 400 742
6 480 953
7 560 1186
8 640 1442
9 720 1717

10 800 2010

Table 2: < 5, s, 120 >: 5 trains, 120 minutes frequency.

Stations (s) Variables Constraints
10 200 527
20 400 742
30 600 1178
40 800 1608
50 1000 2073
60 1200 2555

This empirical evaluation was carried out over a real rail-
way infrastructure that joins two important Spanish cities
(La Coruna and Vigo). The journey between these two cities
is currently divided by 40 stations. In our empirical evalua-
tion, each set of random instances was defined by the 3-tuple
< n, s, f >, where n was the number of periodic trains in
each direction, s the number of stations and f the frequency.
The problems were randomly generated by modifying these
parameters.

Tables 1 and 2 show the parameters used to evaluate the
behavior of the centralized model and the distributed model
with the proposal partitions. We can observe that the com-
plexity increased when the number of trains and stations
increased. All instances maintain a frequency f = 120
minutes.

Table 1 shows the number of variables and the number
of constraints generated when the number of trains in each
direction increased from 1 to 10 in a railway infrastruc-
ture with 20 stations and a frequency of 120 minutes <
n, 20, 120 >.

Table 2 shows the number of variables and the number of
constraints generated when the number of stations increased
from 10 to 60 in a running map with 5 train in each direction
and a frequency of 120 minutes < 5, s, 120 >. Because
the real railway infrastructure maintains 40 stations, we have
virtually eliminated and added stations to carried out this
evaluation.

General graph partitioning applications work well in gen-
eral graphs. However, in the railway scheduling problem,
we did not obtain good results using these softwares. We
evaluate the partition proposal 1 by using METIS in several

instances of Table 1. However, the obtained results were
even worse in the distributed model than in the centralized
model. We studied the partitions generated by METIS and
we observed that the journey of a train is partitioned in sev-
eral clusters, and each cluster was composed by tracks of
trains in opposite directions. This cluster is easy to solve but
very difficult to propagate to other agents. Furthermore, the
following partition proposals make the contrary, that is, they
never join tracks of trains in opposite directions.

So, we can conclude that the problem is very dependent of
the partition that we carry out, and a general partition based
on low connectivity is not always the best solution.

Figure 7 shows the running time of the instances pre-
sented in Table 1 meanwhile Figure 8 shows the running
time of the instances presented in Table 2. In both Figures,
the partition model selected was partition proposal 2, where
the number of partition/agents was equal to the number of
trains. In both figures, we can observe that the running time
increased when the number of trains increased (Figure 7)
and when the number of stations increased (Figure 8). How-
ever, in both cases, the distributed model maintained better
behavior than the centralized model.
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Figure 7: Running Time when the number of trains in-
creased.

The partition proposal 2 was the best of the partition pro-
posals, where we can schedule many trains in large railway
infrastructure. However, how many partitions must divide
the railway problem? If we select a large number of parti-
tions, each subproblem is very easy, but the efficiency de-
creased due to communication messages. If we select a low
number of partitions, each subproblem may be also difficult
to solve. So, an appropriate number of partitions must be
studied to solve the problem efficiently.

Figure 9 shows the running time with different partitions
in problems where we fix the frequency (120 minutes), the
number of stations (20) and the number of trains in each
direction was increased from 5 to 10. Each instance was
solved by the distributed model with different number of
partitions (8,10,12,14,16,18,20 partitions). We can observe
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Figure 8: Running Time when the number of station in-
creased.
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Figure 9: Running Time with different partitions.

the direct relation between the number of trains and the num-
ber of partitions. Thus, a agent was committed to schedule
a train. If a agent was committed to schedule several trains,
the efficiency decreased. Similar results happened when a
train was scheduled by several agents.

The partition proposal 3, based on distributing the rail-
way problem by means of contiguous stations was evaluated
using the instances presented in Table 3.

This table shows the number of variables and the num-
ber of constraints generated when the number of trains in
each direction increased from 1 to 10 in a railway infrastruc-
ture with 10 stations and a frequency of 120 minutes <
n, 10, 120 >.

Figure 10 shows the running time of the centralized model
and the distributed model, of the instances presented in Table
3 with a fixed number of partitions (6 partitions). It can be
observed that the distributed model maintained a better be-
havior than the centralized model in all instances even with

Table 3: < n, 10, 120 >: 10 stations, 120 minutes fre-
quency.

Trains (n) Variables Constraints
1 40 78
2 80 157
3 120 241
4 160 378
5 200 527
6 240 675
7 280 859
8 320 1078
9 360 1288
10 400 1515

a fixed number of partitions. However, in this type of distri-
bution proposal, determining the appropriate number of par-
titions is difficult. It depends on the number of stations, the
distance between them, the inclination of tracks, the number
of tracks between stations, etc.
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Figure 10: Running Time in problem with 6 partitions.

Conclusion and Future work

In this paper, we present a distributed model for solving the
railway scheduling problem, in which several proposals are
developed to distribute the railway scheduling into a set of
sub-problems as independent as possible. Then, a set of
block agents are incrementally and concurrently committed
to building partial solutions until a global solution is found.
The evaluation section shows the railway scheduling prob-
lem can be solved more efficiently in a distributed way. We
are working on developing new heuristics to solve the dis-
tributed model in a more efficient way. Furthermore, it is
necessary to built up a formal relation between the railway
topology and the appropriate number of partitions.
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Abstract 

 
In a disaster environment no single agent knows the 
disaster situation completely. So, rescue agents share their 
information in order to identify rescue tasks that are then 
allocated. In this paper we model the allocation problem as 
a reverse combinatorial auction and we apply some 
existing algorithms to solve it. Our results have been 
compared with the RoboCup classification of 2005.  

Keywords 
Resource Allocation, Combinatorial Auctions. 

Introduction 
Scheduling concerns the allocation of limited resources to 
tasks over time. It is a difficult problem that often requires 
ad hoc solutions. This is the case of the rescue scenario of 
the RoboCup rescue project [1]. In a simulated 
environment of an earthquake in a city and its first 300 
cycles of simulation, rescue agents and victim agents 
interact. As in a real scenario, no agent has complete 
knowledge about the situation of the disaster. 
Coordination is required to share information about the 
situation and actuate consistently, so rescue agents 
collaborate to diminish the consequences of the disaster.  

Rescue agents gather information on the area where they 
are placed, and report it to a central agent (station or 
office). This information includes victim localization, 
blocked roads, and fires. Next, the central agent facilitates 
information about some rescue tasks to an idle agent.  

When deciding which resource agent should be assigned 
to a rescue task, a central agent has partial knowledge of 
the current situations of the agents. All the information 
concerning the agents’ situations must be gathered in 
communication messages that require some time 
(simulation cycles in the RoboCup simulator). Rescue 
agents, conversely, know which actions are required to 
tackle a given task by considering several factors such as:  
blocked roads, other distended victims close to them, and 
their own survival rooms (since they can also be 
damaged), among others. It therefore seems appropriate 
that rescue agents are able to express their task 
preferences before central agents allocate them.  

Auctions provide such a framework: agents make bids 
that represent their task performance preferences. A 
central agent, using the knowledge of the bids, can then 
make a final decision. In the rescue domain, in particular, 
when different tasks must be tackled at the same time, the 
appropriate framework is a combinatorial auction. In this 
paper we present the application of combinatorial 
auctions to coordinate the rescue agents in the RoboCup 
environment following the methods described in [5] and 
[6].  

Rescue Domain Description 
Disaster rescue is a complex domain in which it is hard to 
conduct real life experimentation. For this reason, we 
have used the simulator provided for the RoboCup [1] to 
simulate a disaster environment caused by an earthquake. 
In this simulated scenario, there are collapsed buildings, 
fires, blocked highways, people in a state of panic looking 
for a safe place and rescue agents such as fire brigades, 
ambulance teams, police forces and rescue headquarters. 
These last ones have to coordinate all kinds of rescue 
agents.  
There are several communication and capability 
constraints in this scenario [3]. Regarding 
communication, for example, ambulance agents cannot 
detect victims and spend too much time looking for them. 
In this sense, effective communication among 
heterogeneous rescue agents about the position of victims 
is crucial to rescuing them.  
With regard to planning and scheduling, agents have to 
make decisions about task execution. These decisions are 
related to which victim (in the case of an ambulance 
team) agents have to rescue first in order to maximize 
benefits from the system, such as reaching and rescuing 
the highest number of victims while minimizing damage 
in the surrounding area. In the case of police forces, for 
example, they need to determine which roads they should 
unblock first, taking into account that other kinds of 
rescue agents can be stopped by these blocked roads [2]. 
Besides, in the case of fire brigade agents, they first need 
to extinguish fires in buildings containing the highest 
number of potential victims.  
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Two main problems can be distinguished in this scenario: 
planning which tasks should be performed first (for 
example, a plan to rescue a victim should not be made 
before the road is unblocked) and scheduling which 
resources are used to perform the tasks. In previous works 
[2] we have studied temporal dependencies related to the 
planning problem. In this paper, we do not consider task 
dependencies and only deal with the allocation of a set of 
agents to rescue tasks.  

Reverse Combinatorial Auction Formulation 
A traditional reverse combinatorial auction is a type of 
combinatorial auction in which the buyer wants to obtain 
a set of items, M={1,2,…,m}, and the sellers submit a set 
of asks, B={B1,B2,…,Bn}. An ask is a tuple Bj=(Sj,aj), 
where Sj ⊆ M is a set of items and aj, aj ≥ 0 is an asking 
cost. How to determine the combination of winner bids 
(i.e. the ones that minimize the cost) is known as the 
winner determination problem. The integer programming 
formulation for the winner determination problem 
consists of labeling the asks as winning or losing so as to 
minimize the buyer’s cost under the constraint that the 
buyer obtains each item: 

Min ∑
=

n

j
jj xa

1
   subject to mix

jSij
j ,...,2,11

|

=≥∑
∈

 (1) 

The Xj  variable can take 0 or 1 value and there is one for 
each bid Bj. It means that if Xj=1, Bj is accepted. The 
constraint ensures that at least one bid is allocated for 
each item.  

Rescue Formulation 
In the rescue domain, the problem of assigning rescue 
agents to rescue tasks can be formulated as a reverse 
combinatorial auction problem. To do so, we consider 
that central agents are buyers, and rescue agents are 
sellers who are submitting asks for rescue tasks. We then 
define the following 4-step communication protocol:  
1. The rescue agents send the local tasks they can detect 

in their surroundings. 
2. The central agents receive the tasks from the rescue 

agents and return the complete list of tasks to each 
agent. 

3. With information about all the tasks, the rescue 
agents send bids corresponding to combinations of 
tasks to the central agents. 

4. The central agents determine the winners, using the 
winner determination algorithm for combinatorial 
auctions, and send the results to the rescue agents. 

Since each message can be sent/received in a simulation 
cycle, the protocol requires four cycles. Consistently, a 

combinatorial auction is performed once every 4 
simulation cycles.   

Bid Generation 
The rescue agents generate bids corresponding to 
combinations of tasks to be performed in sequential order. 
Bids consist of a list of tasks and the costs assumed by the 
agents to carry out these tasks. The cost is determined by 
the sum of distances from the agents to the tasks. 

Solving the Winner Determination Problem 
Winner determination algorithms are aimed at solving the 
optimization problem defined by a combinatorial auction 
as explained in the previous section. For our particular 
problem, we have used a formulation based on [5]. It is an 
A* search algorithm where the bids are organized in a 
structure called a bidtree. The bidtree is used to define a 
heuristic to order the bids in the A* search according to 
[6].  

The Bidtree Formulation 
A bidtree is a binary tree whose principal purpose is to 
support content-based lookup of bids [6]. The tree depth 
is m+1, where m is the number of tasks in the problem. 
The bids appear in the leaf nodes. Each level of the 
bidtree represents one task and the in and out branches 
show if the task belongs or not to the bid. For example, 
suppose we have some victims at some simulation time 
with the following identifications, Id_1, Id_2, Id_3, Id_4, 
and assume that our ambulance central has received the 
following bids, B1(s1, 30), B2(s2, 27), B3(s3, 17), B4(s4, 
32), B5(s5, 39), B6(s6, 14), B7(s7, 12), B8(s8, 65), B9(s9, 
24), B10(s10, 33), with the corresponding set of tasks as 
follows: 
si= (s1=[Id_2, Id_4], s2= [Id1, Id_2], s3=[Id_1], s4=[Id_2, 
Id_4], s5=[Id_1, Id_2, Id_3], s6=[Id_4], s7=[Id_1], 
s8=[Id_1, Id_2, Id_3, Id_4], s9=[id_1, id_4], s10=[id_3, 
id_4]). 
Taking into account that bid B3 has the same task set as 
bid B7 and that the cost of B3 is higher than the cost of 
B7, B3 can be erased from the bid set as it will never 
generate an optimal solution. The same is true for bid B4 
with regard to bid B1.  

Bid ordering  
Taking into account how many times the tasks appear in 
the bids (bid count), the tasks can be ordered with either 
an increasing or a decreasing bid count. Using the 
increasing bid count, the order of tasks for the bidtree is: 
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id_1, id_4, id_2, id_3. The bidtree with this sorting is 
shown in Figure 1. 
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Figure 1. Bidtree with increasing bid count 
 

On the other hand, taking into account a decreasing bid 
count, the order that we get is: id_3, id_2, id_1, id_4. The 
bidtree for this case is presented in Figure 2. 
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Figure 2. Bidtree with decreasing bid count 

Generating the Search Tree 
The bidtree is used to generate the search tree. The 
algorithm based on A* for generating the search tree is 
presented below. 
Let B = {B1, B2,…Bn} be the set of bids submitted to be 
considered in the winner determination process. Let 
Bc={Bc1, Bc2,…Bcm} be the subset of bids of B that do 
not include any tasks that have already been allocated and 
which are still available to be appended to the search 
path. Let Bl={Bl1, Bl2,…Bln} be the subset of bids in the 
leave nodes of the left subtree of the bidtree (in branch). 
These are the bids in shaded squares in Figure 2. Let Br= 
{Br1, Br2,…Brn } be the subset of bids in the leave nodes 
of the right subtree of the bidtree (out branch). These are 
the bids in unshaded squares in Figure 2. Let allocbest be a 
subset of B which is the best allocation found so far (i.e. 
with the minimum cost), and C(allocbest) be the total cost 
of allocbest. Let Bo={Bo1, Bo2,…Bon } be the set resulting 
from Bc ∩ Br. Analogously, let Bq(Bi)= {Bq1,Bq2,…Bqn} 

be a set which stores the bids that conflict with bid Bi. In 
addition, for one partial allocation alloc={B1…Bn}, it is 
possible to define: 

Bq(alloc)= Ui iB        (2). 
The steps of the algorithm are shown in Figure 3. This 
algorithm is exponential in the worst case, when b  ∞   
(b=number of bids), and finds the optimal solution, 
always the least costly path in the search tree, if any 
exists. 

 
Set C(allocbest) = {} 

For each b from Bl 

1. b=one bid from set Bl. 

2. alloc={} 

3. Bc(alloc)= B – Bq(alloc) – (alloc)  (3) 

4. Bo=Bc(alloc)∩Br 

5. if Bo != {} then 

bj= one bid from Bo which has the lowest cost. 

If bj  then 

 alloc=alloc ∪ bj 

6. if (|tasks(alloc)| = total)  then 

if C(alloc) < C(allocbest) then 

C(allocbest) = C(alloc) 

Return to point 1, next b. 

 else 

Backtracking 

7. Return to point 3. 

 
Figure 3. Algorithm to generate the search tree for the winner 

determination in combinatorial auctions based on A*  

 
Regarding the decreasing order of our example (Figure 
2), the Bl set is {B8, B5, B10}, and the Br set is {B2, B1, 
B9, B7, B6}. First, alloc B8 is explored. Since B8 
contains all tasks, no further exploration is carried out. 
So, B8 is the first feasible solution found for the 
algorithm. Next B5 is explored. Regarding the Bc set, for 
instance, the B and Bq sets for alloc = B5 are as follows: 
B={B1, B2, B5, B6, B7, B8, B9, B10}, Bq(B5)= {B1, 
B2, B7, B8, B9, B10}. And according to step 3: 
Bc(allocB5)= B-Bq(B5)-B5, Bc(allocB5)= B6, and Bo=Bc 
∩ Br, so Bo=B6. As Bo is composed just for one bid, no 
bid ordering which takes cost into account is required. 
Since {B5, B6} is a combination that contains all the 
tasks, it is another feasible solution. Finally, the total 
search space generated is presented in Figure 4. The best 
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allocation found allocbest is {B5,B6}. And the cost 
C(allocbest)= 55. 
 

 

B5 B8 

B5,B6 B10,B2 

B10

 
Figure 4. Search tree. Solutions provided in bold squares. 

 

With the increasing bid ordering (Figure 1), the solution 
of the problem is the same. However, the number of 
nodes explored is higher. This is something that has been 
already studied in [6]. The ideal task ordering is one in 
which the left subtree (the in branch) is always maximally 
larger than the right subtree (the out branch).  
Regarding our example, the ambulance agents who have 
submitted bids B5 and B6 are the winners and can carry 
out the set of tasks in their correspondent bids. 

Results 
We performed 10 simulations and we recorded the results 
according to the V score defined in the competition [1], 
which is the following:  

V=(P + S/Sint) * sqrt(B/Bint)       (4). 
The higher V value for a map, the better the rescue 
operation (maximum V value is 97).  
Our V average is 62.73. As a frame of reference, the 
scores of the first four teams in the final of the latest 
RoboCup Rescue competition (2005) for the Kobe 
scenario map were 83, 79, 69 and 58. So, our agents have 
obtained a good score in this frame. Note that in our 
experiments we have not used any planning method to 
take into account either task precedence (only re-
scheduling as explained in [2]) or path planning 
computation for rescue agents. Therefore, we believe that 
our results are quite encouraging. If we include planning 
competences in our agents in the future, we believe that 
our results will be even more satisfactory.  

Conclusions and Future Work 
This paper presents the application of reverse 
combinatorial auctions for task scheduling in rescue 
operations following [5] and [6]. The RoboCup rescue 
simulator has been used as a test bed. The allocation 
process is repeated with every 4 cycles of simulation.  

As a future work, we are thinking about introducing the 
expected utility theory [7] to improve the planning 
process in the ambulance team agents. In this sense, the 
utility attained by agents from scheduling victim rescues 
is maximized. We are also thinking of applying our 
approach to one decentralized scheduling model. 
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Abstract 
Paint planning is one of the key issues in fully automatic 
robotic spray painting systems. Generation of the precise spray 
painting paths is no longer sufficient to cope with high 
demands concerning optimization of both the lead-time and 
painting quality. In this context it is the sequence of the 
painting tasks that affects the efficiency of painting process. 
This paper presents a novel idea of improving the painting 
process by design of a scheduler that captures the aspect of 
quality. The proposed scheduler is based on the new concept of 
building a Product Process Structure Tree. It represents all 
possible solutions, constrained by quality requirements that are 
defined by process technical rules. By means of the Product 
Process Structure Tree the scheduling problem can be 
formulated as the constraint satisfaction problem. It is the first 
time the constrain satisfaction techniques are applied in the 
field of automatic spray painting.  

Introduction   
The automation of the industrial painting and inculcating a 
teachingless programming to the spray painting robot has 
been the subject of intensive research for over 10 years. 
Commonly used methodology aims at automatic 
generation of the trajectory of the spray-gun path and 
transferring the path to the robot motions. It originates 
from [1], where the first system architecture of an 
automatic robotic spray painting was introduced. The 
architecture consists of four general subsystems: reading 
part data, paint planning, motion planning and generation 
of the robot program. The verification tests showed that 
automation of the robotic painting reduces the 
programming time of a robot by 50%. Though, it was still 
not possible to apply the method in the industry mainly due 
to small number of elementary geometries considered and 
assumption that there is CAD data available. The approach 
was later undertaken as a part of a research project 
FlexPaint [2]. The system was extended by the laser 
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triangular sensor, which enables to scan the part to obtain 
3D measurement of point data of the object and therefore 
determine part geometry without prior 3D CAD data. The 
features of the paint planner were extended to capture more 
complex geometries, such as cavities or ribs. Finally, a 
collision avoidance system was designed and integrated 
with the motion planner. However, all the improvements 
did not assure satisfactory results in terms of painting 
quality. In FlexPaint the spray painting path was 
represented by the set of paint strokes. The sequence of 
paint strokes was planned with the objective of minimizing 
the Cartesian distance between the strokes. This method 
did not always provide acceptable quality of painting.  
   As a consequence in this paper the hypothesis is posed, 
that changing the order of paint strokes can significantly 
improve the painting quality. The designed paint strokes 
scheduler is the first attempt to formalize the way of 
coping with combined quality and management issues in 
the automatic spray painting. The inspiration for this 
research was the work presented in [3], which shows a 
general approach, allocation-state space expansion 
algorithm (ASSE), for allocation of the tasks to the 
resources. The approach captures the data structure of all 
possible solutions. The quality is an extra parameter to be 
optimized, which is first considered while searching the 
data structure for an optimal sequence. However, as it is 
stated in [4], case studies on using the ASSE algorithm for 
sequencing painting tasks shows that the scheduler 
becomes a bottleneck if the number of tasks exceeds 5 
paint strokes, while it is common for complex parts to have 
up to 500 tasks ascribed to a single robot. This paper 
undertakes the problem and describes it as a constraint 
satisfaction problem. The study presented here is limited to 
single resource, multiple tasks environment. The 
achievement of this work is the improvement of the 
painting quality by designing the Product Process Structure 
algorithm, which captures several quality rules and enables 
scheduling 500 paint strokes. This paper also shows the 
new application for the constraint satisfaction techniques, 
which is in the field of automatic industrial painting.  
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Design of the System Architecture 
The scheduler discussed in this paper is a part of automatic 
robotic spray painting system, which consists of four main 
entities: object geometry recognition, paint path planner, 
motion planner and scheduler. They are integrated as 
shown in figure 1. 
 

Object geometry 
recognition

Paint path 
planner

Geometry data 

Scheduler

Unordered paint 
strokes sequence

Motion 
planner

Process 
technical rules/

constraints

Start of the next 
paint stroke

Time of inter-task 
motions

Ordered paint 
strokes sequence

Generation of 
the robot 
program  

 
Fig1. System architecture of the robotic spray painting system 

 
The object geometry recognition returns the geometry data 
of a part. This information is then passed to the paint 
planner, which generates the paint path represented by a 
list of paint strokes. The simplified visualization of the 
paint planner output is depicted in figure 2. 
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4

 
 

Fig2. Example of spray paint path 
 

The paint strokes are scheduled using interactive 
communication with the motion planner while the search 
space is limited by the process technical rules and 
equipment constrains, such as robot limitations and size of 
a paint cell.  
 For most of the painting guns a paint stroke does not 
have a uniform distribution of paint within the cross 
section. Due to this property all of the paint strokes are 
planned in a way that their outermost parts are overlapping. 
Additionally, some of the paint strokes can be completely 
covered by another paint stroke, as it is the case for paint 
strokes number 5 and number 6 in figure 2. Creating 

multiple layers of paint is a necessity when the required 
paint thickness is too large to be performed within a single 
paint stroke. The overlaps create dependencies between 
paint strokes, which should be considered in the design of 
the scheduler. The influence of the overlaps on the paint 
quality is discussed in the following section.  

Concept of Painting Quality in Terms of 
Scheduling 

According to the international painting standards [5] and 
[6] the painting quality can be defined by a number of 
parameters such as: color, gloss, environmental impact, dry 
paint thickness and hardness of the paint film. It can be 
adjusted by means of the paint, painting equipment and 
painting techniques. Moreover, in the automatic painting it 
can be influenced by the precision of the paint path 
planning and the robot motion planning. In this paper it is 
claimed that the quality can also be changed by scheduling 
the sequence of painting tasks, which are given by the 
paint path planner.   

In this context the quality is defined by means of the 
dry paint thickness covering the surface of a part. It can be 
checked in visual inspection and measured by several types 
of equipment and methods, e.g. eddy current thickness 
gages, magnetic thickness gages and the penetration 
method, thoroughly described in [7]. The term high quality 
would therefore describe the acceptable deviation of dry 
paint thickness. The term low quality would be ascribed to 
the parts that encounter defects. The most common 
painting defects, which can be reduced by terms of the 
scheduler, are:    

  
• Overpaint and underpaint - occurs when the 

thickness of the paint covering a part is under or 
over a certain limit specified for each part. 

• Paint dust - describes not smooth surface of the 
painted part. It appears when the paint is sprayed on 
the top of the dry paint. 

• Poor adhesion, blistering and cracking – they reveal 
as dips, flows and rollers of paint. 

• Sliding paint – results from spraying too much paint 
on the wet surface of the painted part. It appears as 
swellings of the paint. 

• Runners – defined as the drops of paint, congealed 
on the edges of the part. They are due to the effluent 
paint. 

 
There are several paint stroke features that can decrease the 
chance for the defects to appear and therefore influence the 
painting quality. Some of them will be exemplified in this 
paper.  

Length of a paint stroke:  It is common that there are 
paint strokes with many different sizes within each paint 
path. As it was verified in [4] short paint strokes should be 
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sequenced before the overlapping long ones, otherwise 
there may occur painting defects such as sliding paint, 
dips, flows and rollers. The length of the paint strokes can 
be represented by the Cartesian distance from the start to 
the end position of the paint stroke. For clarity of this paper 
all the paint strokes have one of two available states: either 
they are short or long. Their length is identified with 
respect to the average length of paint strokes, which is 
calculated for each part individually. Crossing the average 
length in positive direction defines a long paint stroke, 
crossing the average length in negative direction defines a 
short paint stroke. For the painting path exemplified in 
figure 2 the paint strokes number 3, 4, 5, 7 should be 
scheduled before the paint strokes number 1, 2, 6, 8.   

Position of a paint stroke: Position of a paint stroke 
relates to the gravity. It is described in the World 
Reference Frame, with respect to a part. Generally it is 
received that parts should be painted from the top to the 
bottom, because due to the force of gravity the paint dust 
falls down and sticks to the surfaces below. This painting 
direction assures also better flow of the paint. According to 
this rule the paint stroke number 1 from figure 2 will be 
sequenced first and the paint stroke number 8 will be 
sequenced last. 

Shape of surface: In the present system each paint stroke 
carries the information about the surface of the part it is 
ascribed to, that is flat, curved or cavity surface. It is 
recommended that the paint strokes with the flat features 
are performed after the paint strokes with the curved and 
cavity features, since the paint-dust from the later strokes is 
the most visible on the flat surface.  
 
Recapitulating, the following process technical rules for 
scheduler can be defined: 

a) Short paint stroke should be scheduled before an 
overlapping long one. 

b) Paint stroke from the top should be scheduled 
before the one from the bottom. 

c) Paint stroke with the flat feature should be 
scheduled after the paint stroke with the curved 
or cavity feature. 

Grouping paint strokes 
The process technical rules are used here as constrains for 
limiting search space of tasks to be scheduled. They apply 
to all paint strokes and therefore require that the paint 
strokes carry the same amount of information about their 
features, e.g. length, position and shape of a surface. The 
paint strokes that have all the same states of the features 
are said to belong to the same group. Figure 3 shows an 
example with four groups. 
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Fig3. Example of grouping paint strokes 

 
Executing all paint strokes from each group results in a 
certain product state. All product states need to be 
achieved in order to reach the completion state, which is 
the state in which all the painting tasks are finished.  
 Grouping is performed in a certain order of paint strokes 
features. The paint strokes, which features have the biggest 
impact on the quality, are grouped first.  Figure 3 is an 
example where the position of a paint stroke is more 
crucial in terms of quality than the length of a paint stroke. 

Design of the Product Process Structure Tree 
The quality is captured in the design of the scheduler by 
identifying the permissible product states. Product states 
can be interpreted as the stages of the process that have a 
certain effect on the product. They carry information about 
the tasks that need to be processed but do not determine 
their sequence. Product states are defined based on process 
technical rules that are important for the quality and 
correspond to appropriate groups of paint strokes. The 
quality of painting depends on the product states’ 
sequence, which is called Product Process Structure 
(PPS). The product states are ordered according to the 
weights of the groups, wg. The highest weights are given to 
the groups that have the biggest influence on the quality. 
Weighting of groups is exemplified in table 1. 
 

Table1. Weighting of groups 

Groups Weights 

Top-Short wg=3 

Top-Long                wg=2 

Bottom-Short          wg=2 

Bottom-Long          wg=1 

The product process structure can be presented using graph 
method, described in [8] and for the data presented in table 
1 it is depicted in figure 4. It takes the shape of the tree 
with the root in the initial state of the product and the 
leaves leading to the completion state. The nodes represent 
the product states, out-going arrows point at states that 
must be carried out from a given product state and in-going 
arrows point at which processes need to be performed to 
reach a particular state. If some of the product states have 
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the same weight, wg, they are connected with the arc and 
called the parallel product states. Changing their sequence 
does not have impact on the quality.  
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Fig4. Product process structure algorithm 

Scheduling Algorithm 
PPS algorithm is a systematic way of introducing quality 
rules. It shows the way through the product states that 
fulfils quality requirements and contains many possible 
ways of sequencing painting strokes. The final paint stroke 
order is found by performing a search through the PPS 
Tree with the objective of minimizing lead time while 
satisfying quality requirements. Scheduling of paint strokes 
can be done within constraint satisfaction framework. In 
this context all paint strokes are interpreted as the set of 
variables, each of which is associated with a domain. 
Domain consists of a set of numbers  
{0, 1, 2, …, number_of_paint_strokes-1}, that correspond 
to the position in the ordered paint strokes sequence. PPS 
tree and lead time requirement restrict the values the paint 
strokes can take.  

Conclusions 
In this paper a painting process was examined not only 
with respect to the lead time, but also with respect to the 

painting quality. The quality aspect was captured by the 
process technical rules. They were presented using 
graphical method and took the form of a PPS tree with the 
permissible product states in each of the nodes. The PPS 
algorithm can be used as a constraint for scheduling and 
determine degrees of freedom for the scheduler. It can be 
viewed as the method for grouping the paint strokes. 
Applying PPS for scheduling reduces significantly the 
computational power and at the same time increases the 
painting quality. 

In closure of this paper it should be mentioned 
that the designed scheduling algorithm has not been 
implemented yet. It is a part of a currently on-going 
European research program Eco2Painter [9] to test the 
proposed method. Its evaluation will be reported as the 
completion of this work. 
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